WorldWideScience

Sample records for al2o3 thin films

  1. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  2. Ultrasonically assisted intercalation of Ni in Al2O3 thin film prepared by SILAR technique

    Science.gov (United States)

    Dhanayat, Swapnali; Digraskar, Renuka; Gattu, Ketan; Upadhye, Deepak; Mahajan, Sandeep; Sharma, Ramphal; Ghule, Anil

    2013-06-01

    The Al2O3 thin film were prepared by successive ionic layer adsorption and reaction (SILAR) technique and annealed at 250 °C. Thereafter, Ni was ultrasonically intercalated in Al2O3 thin films for different sonication time period of 5 and 10s, and subsequently annealed at 250 °C to form NiO-Al2O3. The films were further characterized using scanning electron microscopy, energy dispersive X-ray analysis, UV-Vis spectrophotometer and I-V system, to study morphological, compositional, optical and electrical properties.

  3. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  4. Characterization of Al2O3 Thin Films on GaAs Substrate Grown by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Hong-Liang; LI Yan-Bo; XU Min; DING Shi-Jin; SUN Liang; ZHANG Wei; WANG Li-Kang

    2006-01-01

    @@ Al2O3 thin films are grown by atomic layer deposition on GaAs substrates at 300℃. The structural properties of the Al2O3 thin film and the Al2O3/GaAs interface are characterized using x-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), and x-ray photoelectron spectroscopy (XPS). The XRD results show that the as-deposited Al2O3 film is amorphous. For 30 atomic layer deposition growth cycles, the thicknesses of the Al2O3 thin film and the interface layer from the HRTEM are 3.3nm and 0.5nm, respectively.XPS analyses reveal that the Al2O3/GaAs interface is almost free from As2O3.

  5. Atomic Layer Deposition Al2O3 Thin Films in Magnetized Radio Frequency Plasma Source

    Science.gov (United States)

    Li, Xingcun; Chen, Qiang; Sang, Lijun; Yang, Lizhen; Liu, Zhongwei; Wang, Zhenduo

    Self-limiting deposition of aluminum oxide (Al2O3) thin films were accomplished by the plasma-enhanced chemical vapor deposition using trimethyl aluminum (TMA) and O2 as precursor and oxidant, respectively, where argon was kept flowing in whole deposition process as discharge and purge gas. In here we present a novel plasma source for the atomic layer deposition technology, magnetized radio frequency (RF) plasma. Difference from the commercial RF source, magnetic coils were amounted above the RF electrode, and the influence of the magnetic field strength on the deposition rate and morphology are investigated in detail. It concludes that a more than 3 Å/ purging cycle deposition rate and the good quality of ALD Al2O3 were achieved in this plasma source even without extra heating. The ultra-thin films were characterized by including Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectric spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The high deposition rates obtained at ambient temperatures were analyzed after in-situ the diagnostic of plasmas by Langmuir probe.

  6. Broadband infrared emission from Er-Tm :Al2O3 thin films

    Science.gov (United States)

    Xiao, Zhisong; Serna, R.; Afonso, C. N.; Vickridge, I.

    2005-09-01

    Thin films of amorphous aluminum oxide (Al2O3) co-doped with Er3+ and Tm3+ have been synthesized by alternate pulsed laser deposition. When pumped at 794 nm a broad emission band over 1400-1700 nm is observed. Two peaks related to the 1540 nm band from Er3+ and to the 1640 nm band from Tm3+ are clearly distinguished. The photoluminescence intensity ratio of the 1640-1540 nm emissions has been controlled by modifying the Tm concentration. A spectrum with a fairly flat profile and a full width at half maximum of 230 nm is obtained for an Er concentration of 7.2×1019cm-3 and a [Tm]/[Er] concentration ratio of 3. It is found that the Er3+ to Tm3+ energy transfer processes play an important role in the definition of the luminescent response. The large width of the emission band and the excellent optical and thermomechanical properties of the Er-Tm co-doped Al2O3 signal this system as a potential candidate for the development of broadband integrated optical amplifiers.

  7. Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure

    Indian Academy of Sciences (India)

    Ping Yang; Liqiang Zhang; Haiying Yang; Dongjing Liu; Xialong Li

    2014-05-01

    We predict that there is a critical value of Al2O3/ZnO nano thin interface thickness based on two assumptions according to an interesting phenomenon, which the thermal conductivity (TC) trend of Al2O3/ZnO nano thin interface is consistent with that of relevant single nano thin interface when the nano thin interface thickness is > 300 nm; however, TC of Al2O3/ZnO nano thin interface is higher than that of relevant single nano thin interface when the thin films thickness is < 10 nm. This prediction may build a basis for the understanding of interface between two different oxide materials. It implies an idea for new generation of semiconductor devices manufacturing.

  8. Studies on the properties of Al2O3:Cr2O3 (50:50) thin film

    Science.gov (United States)

    Ponmudi, S.; Sivakumar, R.; Sanjeeviraja, C.

    2016-05-01

    Aluminium oxide (Al2O3) and chromium oxide (Cr2O3) thin films have received great attention of researchers because of their unique properties of corrosion/oxidation resistance and high dielectric constant. In addition, chromium aluminium oxide has been considered as a best candidate for deep-ultraviolet optical masks. In the present work, thin films of Al2O3:Cr2O3 (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  9. Mercury cadmium telluride (HgCdTe) passivation by advanced thin conformal Al2O3 films

    Science.gov (United States)

    Fu, Richard; Pattison, James; Chen, Andrew; Nayfeh, Osama

    2012-06-01

    HgCdTe passivation process must be performed at low temperature in order to reduce Hg depletion. Low temperature plasma enhanced atomic layer deposition (PE-ALD) is an emerging deposition technology for thin highly conformal films to meet the demand. Room temperature PE-ALD Al2O3 film's passivation on HgCdTe has been studied. Conformal film was investigated through SEM images of the Al2O3 film deposited onto high aspect ratio features dry etched into HgCdTe. Minority carrier lifetime was measured and compared by photoconductive decay transients of HgCdTe before and after deposition. Room temperature ALD Al2O3 film increased the minority carrier lifetime of HgCdTe.

  10. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Li-Bin; ZHENG Yan; REN Jun-Yuan; LI Ming-Biao; ZHANG Feng-Yun; LI Bo-Xin; DONG Hai-Kuan

    2007-01-01

    Double-sided superconducting MgB2 thin films are deposited onto c-Al2O3 substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgBz/Al2O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at 0K (λe0 = 463 nm) and surface resistance (R3 = 1.52mΩ at 11 K and 8.73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/Al2O3 result in increasing penetration depth and surface resistance of the films.

  11. The FTIR studies of gels and thin films of Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems.

    Science.gov (United States)

    Adamczyk, Anna; Długoń, Elżbieta

    2012-04-01

    In this work, samples in form of bulk ones and thin films were obtained using the sol-gel method. The bulk samples were heated at different temperatures (500 °C, 850 °C and 1100 °C) corresponding to the annealing process of coatings, deposited on different substrates by dipping and pulling out samples from the proper sol with the stable speed. Thin films of both Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems were deposited on carbon, steel and titanium substrates in two different ways: as single layers obtained from Al2O3 sol, TiO2 sol and Al2O3 sol or deposited as mixed coatings from Al2O3-TiO2 sol as well as Al2O3-TiO2-SiO2 one. All bulk samples were studied by the FTIR spectroscopy and the X-ray diffractometry while thin films were also investigated by the electron microscopy. In the IR spectra of Al2O3-TiO2 samples, as well as gels and coatings, bands due to the vibrations of AlO bonds of the octahedrally and tetrahedrally coordinated aluminum were observed. The IR spectra of samples of Al2O3-TiO2-SiO2 system differ from that of Al2O3-TiO2 ones in presence of bands assigned to the SiO bond vibrations and in positions of bands due to AlO bond vibrations. In all spectra of bulk samples and coatings, the positions of TiO bond vibrations were ascribed basing on the IR spectra of the pure anatase and rutile.

  12. Working Pressure Dependence of Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    ZHAN Mei-Qiong; Wu Zhong-Lin; FAN Zheng-xiu

    2008-01-01

    The effects of working pressure of Al2O3 thin films are investigated.Transmittance of the Al2Oa thin film is measured by a Lambda 900 spectrometer.Laser-induced damage threshold(LIDT)is measured by a Nd:YAG laser at 355nm with 8 pulse width of 7ns.Microdefects were observed under a Nomarski microscope.The samples are characterized by optical properties and defect,as well as LIDT under the 355nm Nd:YAG laser radiation.It js found that the working pressure has fundamental effect on the LIDT.It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.

  13. Molecular beam epitaxy and characterization of thin Bi2Se3 films on Al2O3 (110)

    Science.gov (United States)

    Tabor, Phillip; Keenan, Cameron; Urazhdin, Sergei; Lederman, David

    2011-07-01

    The structural and electronic properties of thin Bi2Se3 films grown on Al2O3 (110) by molecular beam epitaxy are investigated. The epitaxial films grow in the Frank-van der Merwe mode and are c-axis oriented. They exhibit the highest crystallinity, the lowest carrier concentration, and optimal stoichiometry at a substrate temperature of 200 °C determined by the balance between surface kinetics and desorption of Se. The crystallinity of the films improves with increasing Se/Bi flux ratio. Our results enable studies of thin topological insulator films on inert, non-conducting substrates that allow optical access to both film surfaces.

  14. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    Science.gov (United States)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  15. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  16. Preparation and characterization of Co epitaxial thin films on Al2O3(0001) single-crystal substrates

    Science.gov (United States)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki

    2011-01-01

    Co epitaxial thin films were prepared on Al2O3(0001) single-crystal substrates in a substrate temperature range between 50 and 500 °C by ultra high vacuum molecular beam epitaxy. Effects of substrate temperature on the structure and the magnetic properties of the films were investigated. The films grown at temperatures lower than 150 °C consist of fcc- Co(111) crystal. With increasing the substrate temperature, hcp-Co(0001) crystal coexists with the fcc crystal and the volume ratio of hcp to fcc crystal increases. The films prepared at temperatures higher than 250 °C consist primarily of hcp crystal. The film growth seems to follow island-growth mode. The films consisting primarily of hcp crystal show perpendicular magnetic anisotropy. The domain structure and the magnetization properties are influenced by the magnetocrystalline anisotropy and the shape anisotropy caused by the film surface roughness.

  17. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    Science.gov (United States)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  18. Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Seguini, G.; Cianci, E.; Wiemer, C.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza MB (Italy); Saynova, D.; Van Roosmalen, J.A.M. [ECN Solar Energy, Westerduinweg 3, NL-1755 ZG Petten (Netherlands)

    2013-04-05

    High-quality surface passivation of crystalline Si is achieved using 10 nm thick Al2O3 films fabricated by thermal atomic layer deposition at 100C. After a 5 min post deposition annealing at 200C, the effective carrier lifetime is 1 ms, indicating a functional level of surface passivation. The interplay between the chemical and the field effect passivation is investigated monitoring the density of interface traps and the amount of fixed charges with conductance-voltage and capacitance-voltage techniques. The physical mechanisms underlying the surface passivation are described. The combination of low processing temperatures, thin layers, and good passivation properties facilitate a technology for low-temperature solar cells.

  19. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    Science.gov (United States)

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  20. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    XU Min; LU Hong-Liang; DING Shi-Jin; SUN Liang; ZHANG Wei; WANG Li-Kang

    2005-01-01

    @@ Ultra-thin Al2O3 dielectric films have been deposited on Si substrates by using trimethyl aluminium (TMA)and water as precursors in an atomic layer deposition (ALD) system. Growth of the interfacial layer between ultra-thin Al2O3 and the Si substrate is effectively suppressed by a long-time TMA surface pretreatment of the Si substrate prior to Al2O3 atomic layer deposition. High resolution transmission electron microscopy (TEM) images show that the thickness of the interfacial layer is reduced to be 0.5nm for the sample with TMA pretreatment lasting 3600s. The x-ray photoelectron spectroscopy results indicate that the Al2O3 film deposited on the TMApretreated Si surface exhibits very good thermal stability. However, a hysteresis of about 50mV is observed in the C-V curve of the samples with the TMA pretreatment.

  1. Effects of annealing conditions on the dielectric properties of solution-processed Al2O3 layers for indium-zinc-tin-oxide thin-film transistors.

    Science.gov (United States)

    Kim, Yong-Hoon; Kim, Kwang-Ho; Park, Sung Kyu

    2013-11-01

    In this paper, the effects of annealing conditions on the dielectric properties of solution-processed aluminum oxide (Al2O3) layers for indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) have been investigated. The dielectric properties of Al2O3 layers such as leakage current density and dielectric strength were largely affected by their annealing conditions. In particular, oxygen partial pressure in rapid thermal annealing, and the temperature profile of hot plate annealing had profound effects on the dielectric properties. From a refractive index analysis, the enhanced dielectric properties of Al2O3 gate dielectrics can be attributed to higher film density depending on the annealing conditions. With the low-temperature-annealed Al2O3 gate dielectric at 350 degrees C, solution-processed IZTO TFTs with a field-effect mobility of approximately 2.2 cm2/Vs were successfully fabricated.

  2. Growth and magnetic anisotropy of thin W(110)/Co films on Al2O3(112¯0)

    Science.gov (United States)

    Sellmann, R.; Fritzsche, H.; Maletta, H.; Leiner, V.; Siebrecht, R.

    2001-06-01

    The growth and magnetism of thin W(110)/Co films deposited by molecular beam epitaxy on single-crystal sapphire Al2O3(112¯0) substrates is investigated. Low-energy electron diffraction analysis shows that the Co films grow on the epitaxial W(110) substrate layer with a constant lattice strain up to a Co thickness dCo=20 Å. Pseudomorphic growth is found for the W[11¯0] direction. The thickness-dependent magnetic anisotropy is studied in situ at T=300 K by means of magneto-optical Kerr-effect measurements on a Co wedge-shaped sample prior and after coverage with a Au overlayer. After the coverage the Co wedge reveals a perpendicular magnetic anisotropy for small Co film thickness followed by a spin-reorientation transition from out-of-plane to in-plane alignment of the magnetization vector in the thickness regime 7 Å<=dCo<=9 Å. Spin-dependent neutron reflectivity data provide evidence for a pronounced magnetic anisotropy within the film plane even for relatively thick Co films. The observed decrease of the splitting between spin-up and spin-down reflectivities for decreasing temperature indicates that the spin-reorientation transition of the system W(110)/Co/Au can also be induced thermally.

  3. Behaviour of Parallel Coupled Microstrip Band Pass Filter and Simple Microstripline due to Thin-Film Al2O3 Overlay

    Directory of Open Access Journals (Sweden)

    S. B. Rane

    1996-01-01

    Full Text Available The X-band behaviour of a seven-section parallel-coupled microstrip band pass filter and microstripline due to thin-film Al2O3 overlay of different thickness is reported in this paper. This Al2O3 film can give a homogeneous overlay structure. There is a substantial increase in the bandwidth due to the overlay, the pass band extending towards higher frequency side. In most of the cases, an increase in the pass band transmittance of a microstripline also increases due to a thin-film Al2O3 overlay, especially for frequencies less than 9.0 GHz. At higher frequencies, random variations are observed. It is felt that thin-film overlays can be used to modify the microstripline circuit properties, thereby avoiding costly and time consuming elaborate design procedures.

  4. Al2O3衬底上多晶硅薄膜的外延和区熔再结晶%Polycrystalline Silicon Thin Films on Al2O3 Substrates for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    励旭东; 许颖; 顾亚华; 李艳; 王文静; 赵玉文

    2003-01-01

    研究了陶瓷衬底上多晶硅薄膜的生长和区熔再结晶.利用快速热化学气相沉积(RTCVD)方法,在低成本的Al2O3衬底上沉积了重掺杂的致密多晶硅薄膜,薄膜的晶粒尺寸在微米级.经区熔再结晶(ZMR)后,薄膜的晶粒尺寸有了较大的提高,而且迁移率较高,这样的薄膜可以用作晶体硅薄膜太阳电池的籽晶层.最大的晶粒达到毫米量级,空穴迁移率超过50 cm2·V-1·s-1.在籽晶层上外延的活性层形貌与此类似.这些结果显示这种薄膜在光伏应用方面有较大的潜力.%In this paper, growth and recrystallization of silicon films on ceramic substrates were studied. Heavily doped polycrystalline silicon thin films were deposited on low cost Al2O3 by thermal rapid chemical vapor deposition (RTCVD). Compact and uniform films with grain size in the order of some micrometers were fabricated. By means of zone melting recrystallization (ZMR) method, polycrystalline silicon thin films with large grains and relative high carrier mobility were obtained, which could act as a seeding layer. The maximum grain of these films was about one millimeter in width and some millimeters in length, and hole mobility exceeded 50 cm2·V-1·s-1. Active silicon films deposited on these seeding layers showed the same morphologies. These results showed that these films have great potential for photovoltaic applications.

  5. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rizwan Ali

    2015-05-01

    Full Text Available We investigate the optical and thermo-optical properties of amorphous TiO\\(_2\\–Al\\(_2\\O\\(_3\\ thin-film bilayers fabricated by atomic layer deposition (ALD. Seven samples of TiO\\(_2\\–Al\\(_2\\O\\(_3\\ bilayers are fabricated by growing Al\\(_2\\O\\(_3\\ films of different thicknesses on the surface of TiO\\(_2\\ films of constant thickness (100 nm. Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE\\textsuperscript{\\textregistered}. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO\\(_2\\ films. The effects of TiO\\(_2\\ surface defects on the films' thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al\\(_2\\O\\(_3\\ diffusion barrier layers. Increasing the ALD-Al\\(_2\\O\\(_3\\ thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO\\(_2\\. The thermo-optic coefficients of the 100 nm-thick ALD-TiO\\(_2\\ film and 30 nm-thick ALD-Al\\(_2\\O\\(_3\\ film in a bilayer are (0.048 \\(\\pm\\ 0.134 \\(\\times 10 ^{-4} {^\\circ}\\mathrm {C}^{-1}\\ and (0.680 \\(\\pm\\ 0.313 \\(\\times 10^{-4} {^\\circ} \\mathrm {C}^{-1}\\, respectively, at a temperature \\(T = 62 ^\\circ \\mathrm{C}\\.

  6. Growth and Characterization of Zr and ZrC Thin Films on Al2O3(0001)

    Science.gov (United States)

    Fankhauser, Joshua Paul

    I report the growth of epitaxial Zr(0 0 0 1) and ZrC(1 1 1) thin films on Al2O3(0 0 0 1) via dc magnetron sputtering in an ultra-high vacuum deposition system equipped with facilities for chemical vapor deposition, low-energy electron diffraction, and Auger electron spectroscopy. Zr layers with a nominal thickness up to 270 nm are deposited at a rate of ˜0.07 nm/s in 10 mTorr Ar (99.999%) atmosphere. ZrC layers with a nominal thickness up to 110 nm are deposited at a rate of ˜0.06 nm/s in 10 mTorr atmosphere composed of 1 mTorr C2H4 (99.999%) and 9 mTorr Ar. As part of my thesis work, I investigate the effect of substrate temperature during sputter-deposition on the composition and crystallinity of the Zr and ZrC films. The as-deposited films are characterized in situ using Auger electron spectroscopy and low energy electron diffraction and ex situ using x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. I deposited Zr thin films at temperatures between 600°C and 900°C. My x-ray diffraction studies reveal that increasing the substrate temperature during sputter-deposition of Zr leads to the growth of polycrystalline hexagonal close-packed structure Zr films. Cross-sectional transmission electron microscopy images reveal columnar growth and the formation of an interfacial layer, whose thickness increased with increasing temperature. Energy dispersive x-ray spectra obtained from this region reveal the presence of both Zr and Al. I attribute the formation of this interfacial layer to plasma-induced substrate decomposition followed by interdiffusion of Al and Zr at the film-substrate interface during sputtering. I deposited ZrC layers at temperatures between 800°C and 1400°C. X-ray diffraction data acquired from my samples indicate that the crystallinity improves with increasing temperature. X-ray photoelectron spectra reveal that all of my films contain excess carbon, whose content

  7. Microwave plasma-assisted ALD of Al2O3 thin films: a study on the substrate temperature dependence of various parameters of interest

    Science.gov (United States)

    Thomas, Subin; Nalini, Savitha; Kumar, K. Rajeev

    2017-03-01

    This study utilizes microwave plasma-assisted atomic layer deposition (MPALD) in remote mode to deposit Al2O3 thin films with increased growth per cycle (GPC). Optical emission spectroscopy (OES) was used to identify the plasma configuration in the ALD chamber. MPALD-Al2O3 thin films were deposited at temperatures ranging from room temperature to 200 °C and the electrical parameters were investigated with Al/Al2O3/p-Si metal oxide semiconductor (MOS) structures. A GPC of 0.24 nm was observed for the films deposited at room temperature. The fixed oxide charge densities ( N fix) in all films were of the order of 1012 cm-2. The interface state density ( D it) exhibited a distinct minimum for the films deposited at 100 °C. The dependence of built-in voltage, N fix, and D it on Al2O3 deposition temperature was investigated. This can be used as a measure of the electrical applicability of these thin films.

  8. Hydrophobicity enhancement of Al2O3 thin films deposited on polymeric substrates by atomic layer deposition with perfluoropropane plasma treatment

    Science.gov (United States)

    Ali, Kamran; Choi, Kyung-Hyun; Kim, Chang Young; Doh, Yang Hoi; Jo, Jeongdai

    2014-06-01

    The optoelectronics devices such as organic light emitting diodes are greatly vulnerable to moisture, which reduces their functionality and life cycle. The Al2O3 thin films are mostly used as barrier coatings in such electronic devices to protect them from water vapors. The performance of the Al2O3 barrier films can be improved by enhancing their hydrophobicity. Greater the hydrophobicity of the barrier films, greater will be their protection against water vapors. This paper reports on the enhancement of hydrophobicity of Al2O3 thin films through perfluoropropane (C3F8) plasma treatment. Firstly, good quality Al2O3 films have been fabricated through atomic layer deposition (ALD) on polyethylene naphthalate (PEN) substrates at different temperatures. The fabricated films are then plasma treated with C3F8 to enhance their hydrophobicity. Hydrophobic Al2O3 thin films have shown good morphological and optical properties. Low average arithmetic roughness (Ra) of 1.90 nm, 0.93 nm and 0.88 nm have been recorded for the C3F8 plasma treated films deposited at room temperature (RT), 50 °C and 150 °C, respectively. Optical transmittance of more than 90% has been achieved for the C3F8 plasma treated films grown at 50 °C and 150 °C. The contact angle has been increased from 48° ± 3 to 158° ± 3 for the films deposited at RT and increased from 41° ± 3 to 148° ± 3 for the films deposited at 150 °C.

  9. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    Science.gov (United States)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  10. Effect of an Al2O3/TiO2 Passivation Layer on the Performance of Amorphous Zinc-Tin Oxide Thin-Film Transistors

    Science.gov (United States)

    Han, Dong-Suk; Park, Jae-Hyung; Kang, Min-Soo; Shin, So-Ra; Jung, Yeon-Jae; Choi, Duck-Kyun; Park, Jong-Wan

    2015-02-01

    The effect of an Al2O3/TiO2 stacked passivation layer on the performance of amorphous ZnSnO ( a-ZTO) thin-film transistors (TFTs) was investigated by comparing field-effect mobility ( μ FE) and subthreshold swing after passivation layer deposition. The values observed were 4.7 cm2/Vs and 0.64 V/decade, respectively, for uncoated TFTs and 4.6 cm2/Vs and 0.62 V/decade for passivated TFTs. In addition, excellent water vapor transmission was observed for electron beam-irradiated Al2O3/TiO2-passivated poly(ether sulfone) substrates in a humidity test, because the Al2O3/TiO2 passivation layer can enhance the interface properties between Al2O3 and TiO2. To investigate the origin of this enhancement, we performed x-ray photoelectron spectroscopy of both unpassivated and Al2O3/TiO2-passivated TFTs with a-ZTO back-channel layers after Ar annealing.

  11. Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition

    Science.gov (United States)

    Cui, Guodong; Han, Dedong; Dong, Junchen; Cong, Yingying; Zhang, Xiaomi; Li, Huijin; Yu, Wen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-04-01

    By applying a novel active layer comprising ZnO/Al2O3 multilayers, we have successfully fabricated fully transparent high-performance thin-film transistors (TFTs) with a bottom gate structure by atomic layer deposition (ALD) at low temperature. The effects of various ZnO/Al2O3 multilayers were studied to improve the morphological and electrical properties of the devices. We found that the ZnO/Al2O3 multilayers have a significant impact on the performance of the TFTs, and that the TFTs with the ZnO/15-cycle Al2O3/ZnO structure exhibit superior performance with a low threshold voltage (V TH) of 0.9 V, a high saturation mobility (μsat) of 145 cm2 V‑1 s‑1, a steep subthreshold swing (SS) of 162 mV/decade, and a high I on/I off ratio of 3.15 × 108. The enhanced electrical properties were explained by the improved crystalline nature of the channel layer and the passivation effect of the Al2O3 layer.

  12. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Science.gov (United States)

    Zhang, Ruiying; Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang; Liu, Xuehua; Zhang, Jinping; Zhang, Yi; Fang, Qi; Ren, Zhong; Bai, Yu

    2015-12-01

    We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device's leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10-9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  13. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ruiying Zhang

    2015-12-01

    Full Text Available We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10−9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  14. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes.

    Science.gov (United States)

    Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Zhou, Zhongwei; Peng, Junbiao

    2016-12-09

    A laminated structure of Al2O3 and MgO deposited by atomic layer deposition (ALD) is used to realize a thin film encapsulation technology in organic light-emitting diodes (OLEDs). This film was targeted to achieve an excellent barrier performance. As the thickness of MgO layer increased from 0 nm to 20 nm, its physical properties transformed from the amorphous state into a crystalline state. The optimized cyclic ratio of ALD Al2O3 and MgO exhibited much lower water vapor transmission rate (WVTR) of 4.6 × 10(-6) gm(-2)/day evaluated by Calcium (Ca) corrosion at 60 °C&100% RH, owing to the formation of a terrific laminated structure. Top-emitting OLEDs encapsulated with laminated Al2O3/MgO show longer operating lifetime under rigorous environmental conditions. These improvements were attributed to the embedded MgO film that served as a modified layer to establish a laminated structure to obstruct gas permeation, as well as a scavenger to absorb water molecules, thus alleviating the hydrolysis of bulk Al2O3 material.

  15. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al2O3 Thin Films

    NARCIS (Netherlands)

    Jinesh, K. B.; van Hemmen, J. L.; M. C. M. van de Sanden,; Roozeboom, F.; Klootwijk, J. H.; Besling, W. F. A.; Kessels, W. M. M.

    2011-01-01

    A comparative electrical characterization study of aluminum oxide (Al2O3) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al2O3 deposited by the plasma-assisted ALD shows excellent d

  16. Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds.

    Science.gov (United States)

    Wei, Yaowei; Pan, Feng; Zhang, Qinghua; Ma, Ping

    2015-01-01

    Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.

  17. Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters

    Science.gov (United States)

    Nayar, Priyanka; Zhu, Xue-Yi; Yang, Fuyi; Lu, Minghui; Lakshminarayana, G.; Liu, Xiao Ping; Chen, Yan-Feng; Kityk, I. V.

    2016-10-01

    Erbium doped amorphous alumina thin films were fabricated using Co-sputtering technique in various depositions runs with varying parameters for optimizing the deposition parameters to obtain the films with best optical performance. The main subject of investigation includes the effects of change in various deposition parameters such as substrate heating, radio frequency (RF) power and oxygen pressure inside the chamber while deposition. High quality as-deposited films with various Er concentrations and low carbon content have been confirmed by XPS. Substrate heating ∼500 °C was found to be very effective in getting highly dense films with high refractive index of 1.70 at 1530-1570 nm emission band. The Er3+-doped films showed very intense near-infrared luminescence peak at 1550 nm even without any post-deposition annealing treatment.

  18. Electroless Plating of Thin Silver Films on Porous Al2O3 Substrate and the Study of Deposition Kinetics

    Institute of Scientific and Technical Information of China (English)

    Fang Mei; Donglu Shi

    2005-01-01

    A novel concept has been developed to coat the inner pore surfaces of reticulated alumina with a thin silver film by an electroless-plating method. As a result of coating, the porous alumina sample exhibits a sharp transition from insulating to conducting due to a thin silver layer on the inner pore surfaces. Systematic studies have been carried out to investigate the coating kinetics by employment of scanning electron microscope (SEM), X-ray diffraction (XRD), and computer simulation. Both coating procedures and effects of processing parameters on the quality of films are reported. Also, this paper presents the film bonding strength to the substrate, effects of sintering, and conduction mechanism of coated composite. The fundamental silver electroless-plating mechanism has been identified based on computer modeling. The simulation results indicate an excellent agreement between the silver deposition behavior and the physical model applied.

  19. Al2O3/Au/Al2O3 layered films as tritium permeation barrier%Al2O3/Au/Al2O3层状阻氚薄膜

    Institute of Scientific and Technical Information of China (English)

    汤波楷; 何业东; 曹江利; 唐涛; 饶咏初

    2012-01-01

    Single Al2O3 films, single Au films and Al2O3/Au/Al2O3 layered films were prepared on 316L stainless steel substrate by megnetron sputtering. Then vapour phase permeation experiment of deuterium through 316L substrate and its film materials were carried out at 500℃ with a partial pressure of deuterium 0. 06 MPa. The results indicate that morphology of the three films is good and no phenomenon of cracking and spalling is found after deuterium permeation. Deuterium permeation reduction factors (PRF) of these films are over one order of magnitude relative to clean 316L. The performance of barrying deuterium increases progressively in the order of single Al2O3 films, single Au films and Al2O3/Au/Al2O3 ayered films. Al2O3/Au/Al2O3 layered films exhibit excellent performance of barrying deuterium because the mechanical properties of the layered films are improved visibly by the ductile interlayer Au and the interdiffusion between Au and 316L substratc is hindered by Al2O3 layer, so Au can give full play to barry deuterium. The study shows that layered films like precious metal integrated with ceramics is a new way in the domain of tritium permeation barrier development.%采用磁控溅射法在316L不锈钢基体上分别沉积单层Al2O3,膜、单层Au膜以及Al2O3/Au/Al2O3层状薄膜。采用气相渗透法在500℃,氘分压为0.06MPa条件下测试了薄膜的阻氘性能。结果表明,3种薄膜氘渗透后,薄膜的形貌良好,无开裂、无剥落的现象,氘渗透率减低因子均比316L不锈钢基材增大一个数量级以上,阻氘效能按单层Al2O3,膜、单层Au膜以及Al2O3/Au/Al2O3层状薄膜依次递升。Al2O3/Au/Al2O3层状薄膜的优异阻氘效能可归因于,延性的Au夹层使层状薄膜的力学性能得到显著提高;Al2O3层能阻止Au与基体间互扩散,使Au能充分发挥阻氘效能。本研究表明,由贵金属与陶瓷阻氚材料构成的层状薄膜是发展阻氚涂层的新途径。

  20. Al2O3栅介质的制备工艺及其泄漏电流输运机制%Fabrication Process and Leakage Current Conduction Mechanisms of Al2O3 Gate Dielectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    任驰; 杨红; 韩德栋; 康晋锋; 刘晓彦; 韩汝琦

    2003-01-01

    利用室温下反应磁控溅射结合炉退火的方法在P-Si(100)衬底上制备了Al2O3栅介质层,研究了不同的溅射气氛和退火条件对Al2O3栅介质层物理特性的影响.结果表明:在较高温度下N2气氛中退火有助于减小泄漏电流;在O2气氛中退火有助于减少Al2O3栅介质中的氧空位缺陷.对Al2O3栅介质泄漏电流输运机制的分析表明,在电子由衬底注入的情况下,泄漏电流主要由Schottky发射机制引起,而在电子由栅注入的情况下,泄漏电流可能由Schottky发射和Frenkel-Poole发射两种机制共同引起.

  1. Low-temperature multi-layer Al2 O3/TiO2 composite encapsulation thin film by atomic layer deposition%原子层沉积方法制备低温多层Al2 O3/TiO2复合封装薄膜的研究

    Institute of Scientific and Technical Information of China (English)

    周忠伟; 李民; 徐苗; 邹建华; 王磊; 彭俊彪

    2016-01-01

    Atomic layer deposition (ALD)is considered as one of the most promising thin-film encap-sulation technologies for flexible organic light-emitting diode (OLED)device because of high-quality films formed.In this work,different laminated structures of Al2 O3/TiO2 composite film were pre-pared at low temperature (80 ℃)by ALD method.The growth mechanism of Al2 O3 and TiO2 film was studied.The water vapor barrier properties of the different stacked structures of composite Al2 O3/TiO2 thin film were studied by the calcium film,which were analyzed by water vapor transmission rate (WVTR)test and contact angle measurements.The WVTR of the 5 nm/5 nm×8 dyads Al2 O3/TiO2 composite thin film was 2.1×10-5 g/m2/day and the OLED devices encapsulated by this optimized Al2 O3/TiO2 structure exhibited better lifetime characteristics in high temperature and high humidity test.%原子层沉积(ALD)方法可以制备出高质量薄膜,被认为是可应用于柔性有机电致发光器件(OLED)最有发展前景的薄膜封装技术之一.本文采用原子层沉积(ALD)技术,在低温(80℃)下,研究了 Al2 O3及TiO2薄膜的生长规律,通过钙膜水汽透过率(WVTR)、薄膜接触角测试等手段,研究了不同堆叠结构的多层 Al2 O3/TiO2复合封装薄膜的水汽阻隔特性,其中5 nm/5 nm×8 dyads(重复堆叠次数)的Al2 O3/TiO2叠层结构薄膜的WVTR达到2.1×10-5 g/m2/day.采用优化后的 Al2 O3/TiO2叠层结构薄膜对 OLED器件进行封装,实验发现封装后的 OLED 器件在高温高湿条件下展现了较好的寿命特性.

  2. Cathode encapsulation of OLEDs by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks

    NARCIS (Netherlands)

    Keuning, W.; Van de Weijer, P.; Lifka, H.; Kessels, W.M.M.; Creatore, M.

    2011-01-01

    Al2O3 thin films synthesized by plasma-enhanced atomic layer deposition(ALD) at room temperature (25 ºC) have been tested as water vapor per-meation barriers for OLED devices. Silicon nitride films (a-SiNx:H)deposited by plasma-enhanced chemical vapor deposition (PE-CVD) servedas reference and were

  3. 原子层沉积Al2O3薄膜钝化n型单晶硅表面的研究%n-type Crystalline Si Surface Passivated by Al2O3 Thin Films Synthesized by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    李想; 颜钟惠; 刘阳辉; 竺立强

    2013-01-01

    以三甲基铝(TMA)和水为反应源,采用原子层沉积(ALD)技术在n型单晶硅表面沉积15 nm、30 nm和100 nm的Al2O3薄膜,并对样品进行快速退火(RTA)处理.采用少子寿命测试仪测试样品的有效少子寿命,获得了表面复合速率(SRV),通过X射线光电子能谱(XPS)分析了薄膜的化学成分,在此基础上研究了薄膜厚度及退火条件对钝化效果的影响,并分析了钝化机理.结果表明:ALD技术制备的Al2O3薄膜经退火后可使n型单晶硅SRV值降低到7 cm/s,表面钝化效果显著.%A12O3 thin films with the thickness of 15 ran, 30 nm and 100 nm were synthesized by thermal atomic layer deposition (ALD) using A1(CH3 )3 and H2O as sources. The surface passivation of n-type monocrystalline silicon was studied. After receiving rapid thermal annealing, the impact of film thickness and annealing conditions on the passivation performance was investigated. The passivation mechanism was analyzed through characterizing the effective minority carrier lifetime, surface recombination velocities and X-ray photoelectron spectroscopy (XPS). It is shown that a high level surface passivation was addressed by post-deposition annealed AI2O3 thin films with an effective surface recombination velocity of 7 cm/s.

  4. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    Science.gov (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  5. Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation

    Science.gov (United States)

    Gielis, J. J. H.; Hoex, B.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-10-01

    Thin films of Al2O3 synthesized by atomic layer deposition provide an excellent level of interface passivation of crystalline silicon (c-Si) after a postdeposition anneal. The Al2O3 passivation mechanism has been elucidated by contactless characterization of c-Si/Al2O3 interfaces by optical second-harmonic generation (SHG). SHG has revealed a negative fixed charge density in as-deposited Al2O3 on the order of 1011 cm-2 that increased to 1012-1013 cm-2 upon anneal, causing effective field-effect passivation. In addition, multiple photon induced charge trapping dynamics suggest a reduction in recombination channels after anneal and indicate a c-Si/Al2O3 conduction band offset of 2.02±0.04 eV.

  6. Preparation and Characterization of Nanocrystalline Thin Films of Al2O3 or TiO2 Doped Scandia Stabilized Zirconia Solid Electrolytes%Al2O3或TiO2掺杂的ScSZ固体电解质纳米晶薄膜的制备及表征

    Institute of Scientific and Technical Information of China (English)

    张亚文; 杨宇; 金舒; 田曙坚; 李国宝; 贾江涛; 廖春生; 严纯华

    2001-01-01

    Dense,crack-free and uniform nanocrystalline (Al2O3)0.10(Sc2O3)0.08(ZrO2)0.82and (Sc2O3)0.125(TiO2)0.175(ZrO2)0.70 thin films with thickness of 0.31 μm and 0.36 μm respectively on Si(100) substrate,have been successfully prepared by a Sol\\|Gel spin coating method.Cubic nanocrystals can be obtained at relatively low sintering temperature with an average grain size of about 47 nm and 51 nm respectively.The aluminia-doped ScSZ thins film are the same dense as the ScSZ thin films.However,there are a small amount of pinholes found in the microstructure of the titania-doped ScSZ films.%利用溶胶-凝胶旋涂法,在单晶硅基片(100)上分别制得了厚度约为0.31 μm的(Al2O3)0.10(Sc2O3)0.08(ZrO2)0.82和0.36 μm的(Sc2O3)0.125(TiO2)0.175(ZrO2)0.70固体电解质纳米晶薄膜。烧结实验结果表明,两种薄膜均在650℃以上开始晶化,温度越高,晶化越完全,在800℃可完全晶化;所得纳米晶颗粒呈纯的萤石结构立方相;铝和钛掺杂的纳米晶颗粒的平均大小分别为47和51 nm。铝掺杂的薄膜非常均匀致密,然而,钛掺杂的薄膜存在少量微气孔。

  7. Microstructural characteristics of tin oxide-based thin films on (0001) Al2O3 substrates: effects of substrate temperature and RF power during co-sputtering.

    Science.gov (United States)

    Hwang, Sooyeon; Lee, Ju Ho; Kim, Young Yi; Yun, Myeong Goo; Lee, Kwan-Hun; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    While tin oxides such as SnO and SnO2 are widely used in various applications, surprisingly, only a limited number of reports have been presented on the microstructural characteristics of tin oxide thin films grown under various growth conditions. In this paper, the effects of the substrate temperature and content of foreign Zn ion on the microstructural characteristics of tin oxide thin films grown by radio-frequency magnetron sputtering were investigated. The increase in substrate temperature induced change in the stoichiometry of the thin films from SnO(1+x) to SnO(2-x). Additionally, the phase contrast in the transmission electron microscopy image revealed that SnO(1+x) and SnO(2-x) phases were alternating in thin films and the width of each phase became narrower at high substrate temperature. The ternary zinc tin oxide thin films were deposited using the co-sputtering method. As the ZnO target power increased, the crystallinity of the thin films became poly-crystalline, and then showed improved crystallinity again with two types of phases.

  8. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  9. Comparison of ALD and IBS Al2O3 films for high power lasers

    Science.gov (United States)

    Liu, Hao; Jensen, Lars; Becker, Jürgen; Wurz, Marc Christopher; Ma, Ping; Ristau, Detlev

    2016-12-01

    Atomic layer deposition (ALD) has been widely studied in Micro-electronics due to its self-terminating property. ALD also grows film coatings with precise thickness and nodular-free structure, which are desirable properties for high power coatings. The depositing process was studied to produce uniform, stable and economic Al2O3 single layers. The layer properties relevant to high power laser industry were studied and compared with IBS Al2O3 single layers. ALD Al2O3 showed a stable growth of 0.104 nm/cycle, band gap energy of 6.5 eV and tensile stress of about 480 MPa. It also showed a low absorption at wavelength 1064 nm within several ppm, and LIDT above 30 J/cm2. These properties are superior to the reference IBS Al2O3 single layers and indicate a high versatility of ALD Al2O3 for high power coatings.

  10. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1-xZrxO2/Al2O3 thin film stacks

    Science.gov (United States)

    Dey, Sonal; Tapily, Kandabara; Consiglio, Steven; Clark, Robert D.; Wajda, Cory S.; Leusink, Gert J.; Woll, Arthur R.; Diebold, Alain C.

    2016-09-01

    Using a five-step atomic layer deposition (ALD)-anneal (DADA) process, with 20 ALD cycles of metalorganic precursors followed by 40 s of rapid thermal annealing at 1073 K, we have developed highly crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films (DADA ALD process. We surmise that the interfacial metal germanate layer also function as a diffusion barrier limiting excessive Ge uptake into the dielectric film. An ALD Al2O3 passivation layer of thickness ≥1.5 nm is required to minimize Ge diffusion for developing highly conformal and textured HfO2 based higher-k dielectrics on Ge substrates using the DADA ALD process.

  11. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-03-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 1012 to 1 × 1012 cm-2 eV-1, the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 1012 cm-2 for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  12. Pulsed Laser Deposition and Reflection High-Energy Electron Diffraction studies of epitaxial long range order, nano- and microstructured Ag thin films grown on MgO, Al2 O3 , STO and Si

    Science.gov (United States)

    Velazquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2015-03-01

    Pulsed Laser Deposition is a state-of-the-art technique that allows for the fine tunability of the deposition rate, highly uniform and epitaxial sample growth, the ability to introduce partial pressures of gases into the experimental chamber for growth of complex materials without interfering with the energy source (laser). An auxiliary in situ technique for growth monitoring, Reflection High-Energy Electron Diffraction, is a powerful characterization tool for predictability of the surface physical structure both, qualitatively and quantitatively. RHEED patterns during and post deposition of Ag thin films on MgO, Al2O3, Si and STO substrtates are presented and their interpretations are compared with surface imaging techniques (SEM, STM) to evidence the usefulness of the technique.

  13. Hard α-Al2O3 Film Coating on Industrial Roller Using Aerosol Deposition Method

    Science.gov (United States)

    Seto, Naoki; Endo, Kazuteru; Sakamoto, Nobuo; Hirose, Shingo; Akedo, Jun

    2014-12-01

    It is well known that α-Al2O3 forms very hard, highly insulating, smooth films. There is demand for the use of such films instead of conventional hard, smooth films; For example, industrial rollers such as calendering rollers etc. are always required to have a harder and smoother surface than conventional rollers. Therefore, this work investigated the specification of α-Al2O3 films, e.g., their wear resistance and chemical stability, using various tests. This paper also discusses whether α-Al2O3 film can take the place of Cr plating film as a hard, smooth film by comparing their wear resistance and chemical stability.

  14. Anisotropic temperature-dependent thermal conductivity by an Al2O3 interlayer in Al2O3/ZnO superlattice films

    Science.gov (United States)

    Lee, Won-Yong; Lee, Jung-Hoon; Ahn, Jae-Young; Park, Tae-Hyun; Park, No-Won; Kim, Gil-Sung; Park, Jin-Seong; Lee, Sang-Kwon

    2017-03-01

    The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50–300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26–0.63 W m‑1 K‑1 of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%–370% less than the in-plane thermal conductivity (0.96–1.19 W m‑1 K‑1) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

  15. Nano-engineering by implanting Al2O3 nano particle as sandwiched scattering centers in between the Lao.5Pr0.2Sr0.3MnO3 thin film layers.

    Science.gov (United States)

    Markna, J H; Vachhani, P S; Kuberkar, D G; Shah, N A; Misra, P; Singh, B N; Kukreja, L M; Rana, D S

    2009-09-01

    We report the use of non-magnetic Al2O3 nano particles deposited between two ferromagnetic La0.5Pr0.2Sr0.3MnO3 (LPSMO) manganite layers with an aim to improve the electronic and magnetotransport properties of the layered supper lattice grown on single crystal STO(100) substrate using Pulsed Laser Deposition (PLD) technique. We studied the electronic-transport and magnetotransport properties of this system wherein Al2O3 particles are expected to act as insulating scattering centers between two ferromagnetic LPSMO layers. The scattering due to additional scattering centers (insulating Al2O3 nano particles) could be controlled by application of external field, resulting in high magnetoresistance (MR) approximately 72% as compared to pristine LPSMO film (MR approximately 51%) at temperature close to their T(M) values. In addition, incorporation of nanostructured Al2O3 barrier between the two ferromagnetic LPSMO layers results in a 2-3 fold increase in the values of temperature coefficient of resistance (TCR) and the field coefficient of resistance (FCR) as compared to pristine LPSMO film, suggesting the use of such nanoengineered manganite layered structure for better device application.

  16. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    赵佰军; 杨洪军; 杜国同; 缪国庆; 杨天鹏; 张源涛; 高仲民; 王金忠; 方秀军; 刘大力; 李万成; 马燕; 杨晓天; 刘博阳

    2003-01-01

    ZnO films were deposited by low-pressure metal organic chemical vapour deposition on epi-GaN/Al2O3 films and c-Al2O3 substrates.The structure and optical properties of the ZnO/GaN/Al2O3 and ZnO/Al2O3 films have been investigated to determine the differences between the two substrates.ZnO films on GaN/Al2O3 show very strong emission features associated with exciton transitions,just as ZnO films on Al2O3,while the crystalline structural qualities for ZnO films on GaN/Al2O3 are much better than those for ZnO films directly grown on Al2O3 substrates.Zn and O elements in the deposited ZnO/GaN/Al2O3 and ZnO/Al2O3 films are investigated and compared by x-ray photoelectron spectroscopy.According to the statistical results,the Zn/O ratio changes from Zn-rich for ZnO/Al2O3 films to O-rich for ZnO/GaN/Al2O3 films.

  17. Antireflective bilayer coatings based on Al2O3 film for UV region

    OpenAIRE

    Marszałek Konstanty; Winkowski Paweł; Marszałek Marta

    2015-01-01

    Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS). Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring syste...

  18. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  19. Antireflective bilayer coatings based on Al2O3 film for UV region

    Directory of Open Access Journals (Sweden)

    Marszałek Konstanty

    2015-03-01

    Full Text Available Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS. Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring system Inficon XTC/2. The experimental results of the optical measurements carried out during and after the deposition process have been presented. Physical thickness measurements were made during the deposition process and resulted in 44 nm/52 nm for Al2O3/MgF2 and 44 nm/50 nm for Al2O3/SiO2 system. Optimization was carried out for ultraviolet region with minimum of reflectance at 300 nm. The influence of post deposition annealing on the crystal structure was determined by X-ray measurements. In the range from ultraviolet to the beginning of visible region, the reflectance of both systems decreased and reached minimum at 290 nm. The value of reflectance at this point, for the coating Al2O3/MgF2 was equal to R290nm = 0.6 % and for Al2O3/SiO2R290nm = 1.1 %. Despite the difference between these values both are sufficient for applications in the UV optical systems for medicine and UV laser technology.

  20. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    Science.gov (United States)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  1. Nanostructured Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel thin films for integrated optics

    Science.gov (United States)

    Predoana, Luminita; Preda, Silviu; Anastasescu, Mihai; Stoica, Mihai; Voicescu, Mariana; Munteanu, Cornel; Tomescu, Roxana; Cristea, Dana

    2015-08-01

    The nanostructured multilayer silica-titania or silica-titania-alumina films doped with Er3+ were prepared by sol-gel method. The sol-gel method is a flexible and convenient way to prepare oxide films on several types of substrates, and for this reason it was extensively investigated for optical waveguides fabrication. The selected molar composition was 90%SiO2-10%TiO2 or 85%SiO2-10%TiO2-5% Al2O3 and 0.5% Er2O3. The films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Spectroellipsometry (SE), as well as by Atomic Force Microscopy (AFM) and photoluminescence (PL). The films deposited on Si/SiO2 substrate by dip-coating or spin-coating, followed by annealing at 900 °C, presented homogenous and continuous surface and good adherence to the substrate. Differences were noticed in the structure and properties of the prepared films, depending on the composition and the number of deposited layers. Channel optical waveguides were obtained by patterning Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel layers deposited on oxidized silicon wafers.

  2. Space-charge-controlled field emission model of current conduction through Al2O3 films

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  3. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  4. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities

    Science.gov (United States)

    Hwang, Byungil; An, Youngseo; Lee, Hyangsook; Lee, Eunha; Becker, Stefan; Kim, Yong-Hoon; Kim, Hyoungsub

    2017-01-01

    There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol. PMID:28128218

  5. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films.

    Science.gov (United States)

    Haeberle, Jörg; Henkel, Karsten; Gargouri, Hassan; Naumann, Franziska; Gruska, Bernd; Arens, Michael; Tallarida, Massimo; Schmeißer, Dieter

    2013-01-01

    We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4" wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  6. Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    D R Patil; L A Patil; D P Amalnerkar

    2007-12-01

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ethanol vapours at 300°C. Aluminium oxide grains dispersed around ZnO grains would result into the barrier height among the grains. Upon exposure of ethanol vapours, the barrier height would decrease greatly leading to drastic increase in conductance. It is reported that the surface misfits, calcination temperature and operating temperature can affect the microstructure and gas sensing performance of the sensor. The efforts are, therefore, made to create surface misfits by doping Al2O3 into zinc oxide and to study the sensing performance. The quick response and fast recovery are the main features of this sensor. The effects of microstructure and additive concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of ethanol vapours were studied and discussed.

  7. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.

    Science.gov (United States)

    Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun

    2016-05-01

    In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.

  8. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    Science.gov (United States)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (response was approximately linear from the MDD up to a few grays (the linearity correction was  response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  9. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  10. Tunneling Magnetoresistance (TMR on Fe-Al2O3 Nano Granular Film Growth by Helicon Plasma Sputtering

    Directory of Open Access Journals (Sweden)

    S. Purwanto

    2008-01-01

    Full Text Available Fe-Al2O3 nanogranular thin film by helicon plasma sputtering with the variation of Fe content from 0.1 to 0.7 volume fraction have been prepared. The magnetic and magnetoresistance properties were investigated by a Vibrating Sample Magnetometer (VSM and a Four Point Probe (FPP. The Rutherford BackScattering (RBS was performed with the SIMNRA software. Conversion Electron Mossbauer Spectroscopy (CEMS study was also performed to estimate the fraction of Fe and α-Fe2O3 in the granular film. The results suggested that the percolation concentration occured at 0.55 Fe volume fractions, with the maximum Magnetoresistance (MR ratio of 3%. The present MR ratio that was lower than the previous results may be related to the existence of α-Fe2O3 phase.

  11. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu;

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  12. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  13. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

    Directory of Open Access Journals (Sweden)

    Jörg Haeberle

    2013-11-01

    Full Text Available We report on results on the preparation of thin (2O3 films on silicon substrates using thermal atomic layer deposition (T-ALD and plasma enhanced atomic layer deposition (PE-ALD in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  14. Synthesis and Characterization of Biodegradable Ultrasonicated Films made from Chitosan/al2o3 Polymer Nanocomposites

    Science.gov (United States)

    Prakash, B.; Jothirajan, M. A.; Umapathy, S.; Amala, Viji

    Chitosan is a biopolymer which is biodegradable, biocompatible, non toxic and cationic in nature. Due to these interesting properties, it finds advanced applications in sensors, drug delivery vehicle and gene therapy etc., In this present work, the biocompatible Al2O3 Nano particles were embedded into Chitosan Polymer matrix by ultrasonication route. XRD and FTIR studies confirm the presence of Al2O3 nanoparticle in the Chitosan polymer matrix. The morphological, optical, electrical properties of the polymer nano composite films are carried out by employing scanning electron microscopy (SEM), UV- Vis, LCR and Impedance studies.

  15. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that...

  16. Effect of adsorbed films on friction of Al2O3-metal systems

    Science.gov (United States)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  17. Integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor circuits on Si(1 0 0) substrate

    Science.gov (United States)

    Oishi, Koji; Akai, Daisuke; Ishida, Makoto

    2015-01-01

    In this paper, integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor (CMOS) circuits on Si(1 0 0) substrate was reported. In this integration processes, crystalline γ-Al2O3 films need to be preserved their crystallinity during high temperature annealing processes of CMOS fabrication in order to prevent surface condition changes. The γ-Al2O3 films grown on Si substrates are annealed in the CMOS fabrication process conditions, drive-in annealing at 1150 °C in O2 atmosphere and wet annealing 1000 °C in H2O vapor atmosphere. Reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were used to characterize the crystallinity of γ-Al2O3 films after the annealing processes. Surface conditions of the films are analyzed and observed with X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). As a result, RHEED patterns of the γ-Al2O3 films indicated that wet oxidation annealing was a critical process severally inferior surface condition of crystalline γ-Al2O3 films. XRD, XPS, and SEM investigation unveiled further details of the crystallinity changes on γ-Al2O3 films for each process. These results indicated passivation films were required to integrate γ-Al2O3 films with CMOS fabrication process. Therefore we proposed and introduced Si3N4/TEOS passivation films on γ-Al2O3 films in CMOS fabrication processes. At last, MOSFETs on γ-Al2O3 integrated Si(1 0 0) substrate were fabricated and characterized. The designed characteristics of MOSFETs were obtained on γ-Al2O3 integrated Si substrate.

  18. Giant Hall Effect of Fe45.51(Al2O3)54.49 Nano-granular Film

    Institute of Scientific and Technical Information of China (English)

    XU Qing-Yu; NI Gang; SANG Hai; DU You-Wei

    2000-01-01

    A series of Fe45.51(Al2O3)54.49 nano-granular films were prepared using ion-beam sputtering technique. A saturated hall resistivity of about 12.5μΩ.cm at room temperature was observed. The transmission electron microscopy image showed that very small Fe particles of smaller than 1 nm are embedded in Al2Os matrix, and connected into network. The measured ρ- T curve indicated that this giant Hall effect may originate from the percolation phenomenon. With different annealing temperature (TA) up to 300℃, the saturated Hall resistivity decreased only a little. The good thermal stability of Fe45.51 (Al2O3)54.49 nano-granular Films showed potential application for magnetic sensor.

  19. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Science.gov (United States)

    Batra, Neha; Gope, Jhuma; Vandana, Panigrahi, Jagannath; Singh, Rajbir; Singh, P. K.

    2015-06-01

    The effect of deposition temperature (Tdep) and subsequent annealing time (tanl) of atomic layer deposited aluminum oxide (Al2O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, QF. The interface defect density (Dit) decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min).

  20. The Effects of Coupling Agents on the Properties of Polyimide/Nano-Al2O3 Three-Layer Hybrid Films

    Directory of Open Access Journals (Sweden)

    Lizhu Liu

    2010-01-01

    Full Text Available PI/nano-Al2O3 hybrid films were prepared by ultrasonic-mechanical method. Before addition, nano-Al2O3 particles were firstly modified with different coupling agents. The micromorphology, thermal stability, mechanical properties, and electric breakdown strength of hybrid films were characterized and investigated. Results indicated that nano-Al2O3 particles were homogeneously dispersed in the PI matrix by the addition of coupling agents. The thermal stability and mechanical properties of PI/nano-Al2O3 composite films with KH550 were the best. The tensile strength and elongation at break of PI composite film were 119.1 MPa and 19.1%, which were 14.2% and 78.5% higher than unmodified PI composite film, respectively.

  1. PHYSISORPTION OF WATER ON SiO2-TiO2-Al2O3 FILMS STUDIED BY IMPEDANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Alfonz Plsko

    2015-06-01

    Full Text Available The influence of film composition and surface roughness on process of physisorption of water on SiO2-TiO2-Al2O3 films prepared by sol-gel method was studied by impedance spectroscopy. The composition of prepared films, expressed by SiO2:TiO2:Al2O3 ratio, was in the range of following molar ratio: 0:0.95:0.05; 0.32:0.63:0.05; 0.475:0.475:0.05; 0.63:0.32:0.05; 0.95:0:0.05. Complex impedance spectra of thin film sensor for various relative humidities were measured in the range of 0.13 - 97.7 % and the frequency range was 1 kHz to 1 MHz. Measured dependences of complex impedance on frequency were processed by complex nonlinear least squares method. Serial connection with different counts of -(R/C-, -(R/CPE- and -R- equivalent circuits was used to analyse obtained spectra. The equivalent circuits were associated with physisorption of water, space charge polarization regions, and bulk or surface conductivity of the films. The dependencies presence of the relaxation processes on the value of relative humidity is used to analyse the process of water physisorption and determine composition influence, too.

  2. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films.

    Science.gov (United States)

    Palomares, Emilio; Clifford, John N; Haque, Saif A; Lutz, Thierry; Durrant, James R

    2002-07-21

    The conformal growth of an overlayer of Al2O3 on a nanocrystalline TiO2 film is shown to result in a 4-fold retardation of interfacial charge recombination, and a 30% improvement in photovoltaic device efficiency.

  3. Epitaxial growth and electric properties of γ-Al2O3(110) films on β-Ga2O3(010) substrates

    Science.gov (United States)

    Hattori, Mai; Oshima, Takayoshi; Wakabayashi, Ryo; Yoshimatsu, Kohei; Sasaki, Kohei; Masui, Takekazu; Kuramata, Akito; Yamakoshi, Shigenobu; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2016-12-01

    Epitaxial growth and electrical properties of γ-Al2O3 films on β-Ga2O3(010) substrates were investigated regarding the prospect of a gate oxide in a β-Ga2O3-based MOSFET. The γ-Al2O3 films grew along the [110] direction and inherited the oxygen sublattice from β-Ga2O3 resulting in the unique in-plane epitaxial relationship of γ-Al2O3 [\\bar{1}10] ∥ β-Ga2O3[001]. We found that the γ-Al2O3 layer had a band gap of 7.0 eV and a type-I band alignment with β-Ga2O3 with conduction- and valence-band offsets of 1.9 and 0.5 eV, respectively. A relatively high trap density (≅ 2 × 1012 cm-2 eV-1) was found from the voltage shift of photoassisted capacitance-voltage curves measured for a Au/γ-Al2O3/β-Ga2O3 MOS capacitor. These results indicate good structural and electric properties and some limitations hindering the better understanding of the role of the gate dielectrics (a γ-Al2O3 interface layer naturally crystallized from amorphous Al2O3) in the β-Ga2O3 MOSFET.

  4. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    Science.gov (United States)

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  5. Oxidation Resistance of Fe-13Cr Alloy with Micro-Laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) Films

    Institute of Scientific and Technical Information of China (English)

    Yao Mingming; He Yedong; Wang Deren; Gao Wei

    2005-01-01

    The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrO2-Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.

  6. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-08-01

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.

  7. Anomalous magnetic Properties of an iron film System deposited on fracture surfaces of α-Al2O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhi-Wei; Chen Miao-Gen; Jiang Wei-Di; Feng Chun-Mu; Ye Gao-Xiang

    2008-01-01

    An iron film percolation system is fabricated by vapour-phase deposition on fracture surfaces of α-Al2O3 ceramics.The zero-field-cooled(ZFC)and field-cooled(FC)magnetization measurement reveals that the magnetic phase of the film samples evolve from a high-temperature ferromagnetic state to a low-temperature spin-glass-fike state.which is also demonstrated by the temperature-dependent ac susceptibility of the iron films.The temperature dependence of the exchange bias field He of the iron film exhibits a minimum peak around the temperature T=5 K,which is independent of the magnitude of the cooling field Hcf.However,for T>10 K,(1)He is always negative when Hcf=2 kOe and(2) for Hcf=20kOe(1Oe≈80A/m),He changes from negative to positive values as T increases.Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase.

  8. Enhanced self-repairing capability of sol-gel derived SrTiO3/nano Al2O3 composite films

    Science.gov (United States)

    Yao, Manwen; Peng, Yong; Xiao, Ruihua; Li, Qiuxia; Yao, Xi

    2016-08-01

    SrTiO3/nano Al2O3 inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO3 films doped by equivalent amount of sol-Al2O3 have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO3 films doped with sol-Al2O3. The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodic oxidation reaction in origin, which can repair the internal and/or surface defects of the films.

  9. Teflon/Al2O3纳米复合膜的结构及微观摩擦学特性%Structure and Microtribological Properties of Teflon and Teflon/Al2O3 Micro-assembling Film

    Institute of Scientific and Technical Information of China (English)

    贾慧娟; 汤卉; 邵俊鹏

    2003-01-01

    为了提高聚四氟乙烯的耐磨损能力,用射频磁控溅射法交替溅射纯Teflon靶和Al2O3靶获得Teflon/Al2O3多层复合膜,通过PHI-5300ESCA型X射线光电子能谱及原子力显微镜(AFM)对其结构、力学性能和微观摩擦磨损特性研究表明:Teflon/Al2O3多层复合膜不但具有Al2O3膜的较高硬度和抗磨损性能,而且具有纯Teflon膜的减摩性和高承载能力.同Al2O3相比,复合膜的综合性能优于纯Al2O3膜和纯Teflon膜.Teflon/Al2O3多层复合膜的研制,解决了弹性金属塑料瓦耐磨损能力差的问题.

  10. RESEARCH ON ELECTROCHROMIC PROPERTIES OF Al2O3/ B-Al-NiO-BASED FILM%Al2O3/B-Al-Nio薄膜电致变色性能的研究

    Institute of Scientific and Technical Information of China (English)

    楼贤春; 周学东; 曾涛

    2009-01-01

    采用溶胶-凝胶法制备了B-Al-Nio和Al2O3/B-Al-NiO复合薄膜.采用扫描电镜,电化学测试和透过率测试分析Al2O3薄膜并对B-Al-NiO的变色性能和稳定性进行分析和表征.结果表明Al2O3薄膜对NiO基薄膜的变色效果影响不大,同时有效提高NiO基薄膜的稳定性.

  11. The Dielectic Properties of Polyimide/Nano-Al2O3 Composites Films%聚酰亚胺/纳米Al2O3复合薄膜的介电性能

    Institute of Scientific and Technical Information of China (English)

    李鸿岩; 郭磊; 刘斌; 陈维; 陈寿田

    2006-01-01

    为了提高聚酰亚胺(PI)的耐电晕性能,采用原位分散聚合法制备了聚酰亚胺/纳米Al2O3复合材料,并采用透射电子显微镜(TEM)对纳米Al2O3的分散状态进行了表征.研究了纳米Al2O3填加量对该复合材料耐电晕性能和其它介电性能的影响,结果表明,随着纳米Al2O3含量的增加,材料的耐电晕性能显著增强,在±910V(双极性)、15kHz条件下,纳米Al2O3质量分数为20%的PI薄膜的耐电晕寿命达到极大值,为纯PI薄膜寿命的25倍,聚酰亚胺/纳米Al2O3复合材料的体积电阻率和击穿场强没有明显的劣化,而相对介电常数和损耗角正切有所增加.

  12. Effect of annealing temperature on the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF gel films

    Science.gov (United States)

    Malashkevich, G. E.; Kornienko, A. A.; Dunina, E. B.; Prusova, I. V.; Shevchenko, G. P.; Bokshits, Yu. V.

    2007-06-01

    The dependence of the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF films on the annealing temperature has been investigated. It is shown by the methods of crystal field theory and computer simulation that the increase in the annealing temperature from 700 to 1100 °C leads to removal of bismuth from Eu-O-Bi complex centers with the C 3V symmetry in the Al2O3 structure and the change in symmetry from D 3 to O h for a large fraction of EuAlO3 centers.

  13. Study of a high-temperature and high-pressure FBG sensor with Al2O3 thin-wall tube substrate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; QIAO Xue-guang; WANG Hong-liang; FENG De-quan; WANG Wei

    2008-01-01

    A fiber Bragg grating (FBG) high-temperature and high pressure sensor has been designed and fabricated by using the Al2O3 thin-wall tube as a substrate. The test results show that the sensor can withstand a pressure range of 0-45 MPa and a temperature range of-10-300℃, and has a pressure sensitivity of 0.0426 nm/MPa and a temperature sensitivity of 0.0112nm/℃

  14. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    YUE Yuan-Zheng; HAO Yue; FENG Qian; ZHANG Jin-Cheng; MA Xiao-Hua; NI Jin-Yu

    2007-01-01

    @@ We report a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) with atomic layer deposited (ALD) Al2O3 gate dielectric. Based on the previous work [Appl. Phys. Lett. 86 (2005) 063501] of Ye et al. By decreeing the thickness of the gate oxide to 3.5nm and optimizing the device fabrication process, the device with maximum transconductance of 150mS/mm is produced and discussed in comparison with the result of 100mS/mm of Ye et al. The corresponding drain current density in the 0.8-μm-gate-length MOS-HEMT is 800mA/mm at the gate bias of 3.0 V. The gate leakage is two orders of magnitude lower than that of the conventional AlGaN/GaN HEMT. The excellent characteristics of this novel MOS-HEMT device structure with ALD Al2O3 gate dielectric are presented.

  15. Effects of Al2O3 Layer on Performance of Ultrathin Permalloy Films%Al2O3层对超薄各向异性磁电阻薄膜性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    丁雷; 王乐; 滕蛟; 于广华

    2009-01-01

    各向异性磁电阻(AMR)薄膜材料被广泛应用于磁传感器和硬盘的读出磁头中.器件的小型化要求AMR薄膜材料必须做得很薄.采用磁控溅射的方法在玻璃基片上制备了Ta/NiFe/Ta磁电阻超薄薄膜,将几个纳米厚的Al2O3层插入Ta/NiFe/Ta薄膜的Ta/NiFe界面,研究该插层对超薄NiFe薄膜性能的影响.结果表明:由于Al2O3层的“镜面反射”作用,适当厚度和结构状态的Al2O3层可以提高薄膜的磁电阻值, 当NiFe薄膜厚度为5 nm时,通过在界面处插入约2nm的Al2O3层,薄膜的磁电阻值从0.65%提高到了0.80%,增加幅度超过20%.性能提高的主要原因是除纳米Al2O3插层的“镜面反射”作用外, 抑制Ta/NiFe的界面反应以及减少Ta层分流也是重要的影响因素.

  16. Understanding $Al_2O_3:Er^{3+}$ device performance

    NARCIS (Netherlands)

    Agazzi, L.; Bradley, J.D.B.; Ay, F.; Wörhoff, K.; Pollnau, M.

    2010-01-01

    Al2O3:Er3+ thin films were deposited on Si wafers and subsequently structured. On-chip devices such as amplifiers, ring lasers and a loss-less splitter were fabricated; data transmission at 170 Gbits/s and monolithic integration with SOI waveguides were demonstrated. The discrepancy between device p

  17. Upconversion spectroscopy of $Al_2O_3:Er^{3+}$

    NARCIS (Netherlands)

    Agazzi, L.; Bradley, J.D.B.; Ay, F.; Kahn, A.; Scheife, H.; Petermann, K.; Huber, G.; Ridder, de R.M.; Wörhoff, K.; Pollnau, M.; Wörhoff, K.; Agazzi, L.; Ismail, N.; Leijtens, X.

    2008-01-01

    The spectroscopic properties of $Al_2O_3:Er^{3+}$ thin films have been investigated by lifetime measurements. The luminescence decay curves show an initial non-exponential component, followed by an exponential tail, whose decay time decreases with increasing $Er^{3+}$ concentration. This behavior ca

  18. Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing "FeCo core - oxide shell" nanoparticles

    Science.gov (United States)

    Kołtunowicz, Tomasz N.; Zukowski, Pawel; Sidorenko, Julia; Bayev, Vadim; Fedotova, Julia A.; Opielak, Marek; Marczuk, Andrzej

    2017-01-01

    Ferromagnetic resonance (FMR) spectroscopy is applied for comparative analysis of granular (CoFeZ)x(Al2O3)100-x, (31 at%≤x≤47 at%) films containing pure FeCo-based nanoparticles (NPs) or "FeCo-based core - oxide shell" NPs inside Al2O3 matrix when deposited in oxygen-free or oxygen-containing atmosphere, correspondingly. It is established that g-factor extracted from the FMR spectra of films with core-shell NPs decreases with x below the value g =2.0023 for free electron that is untypical for metallic NPs. This effect is associated with the formation of the interface between ferromagnetic core and antiferromagnetic (ferrimagnetic) oxide shell of NPs.

  19. Calculation Method for the Thermal Aging of Polyimide / Al2O3 Hybrid Films%聚酰亚胺/Al2O3掺杂薄膜热老化寿命计算方法研究

    Institute of Scientific and Technical Information of China (English)

    周浩然; 柳长富; 赵蕊; 崔晓禹; 孙安

    2012-01-01

    The thermal stabilization of PI / Al2 Q3 hybrid films was studied with TG. Meanwhile, the kinetics parameters (activation energy of thermal decomposition, collision coefficient and action progression) were calculated, and the upper limit temperature was predicted according to the relevant data. The experiment results showed that the order of reaction in air atmosphere was bigger than that in nitrogen atmosphere, and tended to second-order reaction. The value of E calculated by the method of Kissinger was lower than that in the method of Coats-Red fern. The collide coefficient (A) was calculated in the method of Coats-Red fern selected by contrast, and the upper limit temperatures of hybrid PI material was nearly 300 ℃ similar to those reported in previous literatures. The results have shown that Coats-Red fern method is one of the reliable methods to predict the long-term life upper limit temperature of hybrid PI materials.%利用热失重仪(TG)测定了Al2O3掺杂聚酰亚胺的热稳定性,采用Kissinger法和Coats-Red fern法计算动力学参数,预测杂化薄膜长期使用的上限温度.实验结果表明:在空气气氛中的反应级数大于氮气气氛中的反应级数,且趋于二级反应.利用Kissinger法求出的E值低于Coats-Redfern法求出的E值,选取Coats-Redfern法求取相应的碰撞系数(A)值后,预测杂化PI膜长期使用的上限温度在300℃左右,与文献报道基本相符.结果表明Coats-Red fern方法是预测杂化PI材料长期使用上限温度的可靠方法之一.

  20. Giant magneto-optical Faraday effect of Fe-Al2O3 films prepared by sol-gel techniques%溶胶-凝胶法制备Fe-Al2O3巨磁旋光薄膜

    Institute of Scientific and Technical Information of China (English)

    戴敏; 卜胜利; 孙国庆; 顾铮(一先)

    2010-01-01

    用溶胶一凝胶法制备了Fe-Al2O3铁磁金属一非磁绝缘体基体薄膜.实验结果表明,当Fe与Al2O3的质量比为1:1,热处理温度为420℃时,所制备的薄膜具有最大的磁致旋光(Faraday)效应,测得的费尔德(Verdet)常数V=(6.8X104)°/(T·cm).通过分析,得出了Fe-Al2O3薄膜巨磁Faraday旋光效应主要是由光、磁场与薄膜相互作用产生剧烈塞曼(Zeeman)分裂引起的.对影响薄膜Faraday旋光效应的各种主要因素进行了讨论.

  1. PI/TiC@Al2O3复合薄膜的制备及其电性能研究%Study on the Preparation and Electrical Properties of Pl/TiC@Al2O3 Composite Films

    Institute of Scientific and Technical Information of China (English)

    翁凌; 闫利文; 夏乾善

    2013-01-01

    With the continuous improvement of electronic components' integration, the researches of new inorganic/organic functional dielectric composite materials have become hot issues.In this paper, TiC@ Al2O3 nanop-articles with uniform dispersion were prepared by coating a layer of aluminum oxide ( Al2O3) which obtained by hydrolysis of aluminum isopropoxide on the surface of TiC particles.A series of PI/TiC@ Al2O3 composite films were prepared with mechanical blending polymerization in which modified TiC@ Al2O3 particles were doped into the poly-imide matrix.Surface morphology and thermal decomposition mechanism of the modified TiC@ Al2O3 particles were investigated.The effects of TiC@ Al2O3 particles on the surface morphology and electrical properties of PI/TiC@ Al2O3 composite films were investigated.Results showed that when the molar ratio of titanium carbide and aluminum isopropoxide was 1:1, the TiC@ Al2O3 particles demonstrated the best dispersionality.Thermal decomposition phenomenon of A100H was apparently reflected in the TGA test, which indicated that Al2O3 had been successfully coated on the surface of TiC.The surface SEM images of composite films showed that the dispersion of inorganic particles in films remained uniform and agglomeration could not be observed when TiC@ Al2O3 contents were less than 15%.Results of electrical performance test showed that the volume resistivity, surface resistivity and electric breakdown strength of composite films were all gradually decreased with the increase contents of TiC@ Al2O3 particles.In summary, the conductivity of composite films was significantly improved by the introduction of TiC@ Al2O3 nanoparticles.%随着电子元件集成度的不断提高,对新型有机/无机功能电介质复合材料的研究已成为热点.利用异丙醇铝的水解,在TiC粒子表面生成一层氧化铝(Al2O3),获得分散均匀的TiC@Al2O3纳米粒子.采用机械共混法将改性后的TiC@Al2O3粒子掺杂入聚酰亚胺基体中,制备出PI/TiC@Al

  2. Comparison of the microstructure and magnetic properties of strontium hexaferrite films deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates by pulsed laser technique

    Science.gov (United States)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2014-01-01

    Strontium hexaferrite SrFe12O19 (SrM) films have been deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates. The (001) oriented SrFe12O19 films deposited on the Al2O3(0001) and Si(100)/Pt(111) substrates have been confirmed by X-ray diffraction patterns. Higher coercivity in perpendicular direction rather than in-plane direction of the SrM/Al2O3(0001) and SrM/Pt(111) films showed that the films had perpendicular magnetic anisotropy. The (001) orientation and similar microstructure and magnetic properties of the SrM/Al2O3(0001) and SrM/Pt(111) films show the Al2O3(0001) substrate can be replaced by the Si(100)/Pt(111) substrate.

  3. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  4. Optimization of Wet or Dry Micro-blasting on PVD Films by Various Al2O3 Grain Sizes for Improving the Coated Tools' Cutting Performance

    Directory of Open Access Journals (Sweden)

    K. -D. Bouzakis

    2011-06-01

    Full Text Available Micro-blasting on PVD coated tools is an effective technology for improving their cutting performance. Through micro-blasting, compressive stresses are induced into the film, thus increasing the coating hardness, but its brittleness too. Simultaneously, abrasion phenomena are activated, which may lead to roughness augmentation, film thickness decrease and substrate revelation. In this way, for a successful process conduct, it is pivotal to adapt, among others, the applied micro-blasting pressure to the employed medium, air or water. The paper deals with the optimization of wet or dry micro-blasting pressure by various Al2O3 grain sizes for improving the coated tool’s wear resistance. The wear behaviour of coated and variously dry or wet micro-blasted tools was investigated in milling. Considering the grains’ penetration kinematics into the coated tool surface and the film deformation mechanisms during dry or wet microblasting by fine or coarse sharp–edged Al2O3 grains, optimum process pressures can be determined.

  5. Effect of interface on epitaxy and magnetism in h-RFeO3/Fe3O4/Al2O3 films (R  =  Lu, Yb).

    Science.gov (United States)

    Zhang, Xiaozhe; Yin, Yuewei; Yang, Sen; Yang, Zhimao; Xu, Xiaoshan

    2017-04-26

    We have carried out the growth of h-RFeO3 (0 0 1) (R  =  Lu, Yb) thin films on Fe3O4 (1 1 1)/Al2O3 (0 0 1) substrates, and studied the effect of the h-RFeO3 (0 0 1)/Fe3O4 (1 1 1) interfaces on the epitaxy and magnetism. The observed epitaxial relations between h-RFeO3 and Fe3O4 indicate an unusual matching of Fe sub-lattices rather than a matching of O sub-lattices. The out-of-plane direction was found to be the easy magnetic axis for h-YbFeO3 (0 0 1) but the hard axis for Fe3O4 (1 1 1) in the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1)/Al2O3 (0 0 1) films, suggesting a perpendicular magnetic alignment at the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1) interface. These results indicate that Fe3O4 (1 1 1)/Al2O3 (0 0 1) could be a promising substrate for epitaxial growth of h-RFeO3 films of well-defined interface and for exploiting their spintronic properties.

  6. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties

    Science.gov (United States)

    Kleshch, Victor I.; Ismagilov, Rinat R.; Smolnikova, Elena A.; Obraztsova, Ekaterina A.; Tuyakova, Feruza; Obraztsov, Alexander N.

    2016-03-01

    Atomic layer deposition (ALD) of metal oxides (MO) was used to modify the properties of nanographite (NG) films produced by direct current plasma-enhanced chemical vapor deposition technique. NG films consist of a few layers of graphene flakes (nanowalls) and nanoscrolls homogeneously distributed over a silicon substrate with a predominantly vertical orientation of graphene sheets to the substrate surface. TiO2 and Al2O3 layers, with thicknesses in the range of 50 to 250 nm, were deposited on NG films by ALD. The obtained NG-MO composite materials were characterized by scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy. It was found that ALD forms a uniform coating on graphene flakes, while on the surface of needle-like nanoscrolls it forms spherical nanoparticles. Field emission properties of the films were measured in a flat vacuum diode configuration. Analysis based on obtained current-voltage characteristics and electrostatic calculations show that emission from NG-TiO2 films is determined by the nanoscrolls protruding from the TiO2 coverage. The TiO2 layers with thicknesses of <200 nm almost do not affect the overall field emission characteristics of the films. At the same time, these layers are able to stabilize the NG films' surface and can lead to an improvement of the NG cold cathode performance in vacuum electronics.

  7. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer

    Science.gov (United States)

    Silva, J. P. B.; Faita, F. L.; Kamakshi, K.; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Pasa, A. A.; Gomes, M. J. M.

    2017-01-01

    An enhanced resistive switching (RS) effect is observed in Pt/BaTiO3(BTO)/ITO ferroelectric structures when a thin HfO2:Al2O3 (HAO) dielectric layer is inserted between Pt and BTO. The P-E hysteresis loops reveal the ferroelectric nature of both Pt/BTO/ITO and Pt/HAO/BTO/ITO structures. The relation between the RS and the polarization reversal is investigated at various temperatures in the Pt/HAO/BTO/ITO structure. It is found that the polarization reversal induces a barrier variation in the Pt/HAO/BTO interface and causes enhanced RS, which is suppressed at Curie temperature (Tc = 140 °C). Furthermore, the Pt/HAO/BTO/ITO structures show promising endurance characteristics, with a RS ratio >103 after 109 switching cycles, that make them potential candidates for resistive switching memory devices. By combining ferroelectric and dielectric layers this work provides an efficient way for developing highly efficient ferroelectric-based RS memory devices.

  8. Preparation and characterization of ultrathin [Ru(CO)3Cl2]2 and [BMIM][Tf2N] films on Al2O3/NiAl(110) under UHV conditions.

    Science.gov (United States)

    Sobota, Marek; Schernich, Stefan; Schulz, Hannes; Hieringer, Wolfgang; Paape, Natalia; Wasserscheid, Peter; Görling, Andreas; Laurin, Mathias; Libuda, Jörg

    2012-08-14

    Towards a better understanding of the interface chemistry of ionic liquid (IL) thin film catalytic systems we have applied a rigorous surface science model approach. For the first time, a model homogeneous catalyst has been prepared under ultrahigh vacuum conditions. The catalyst, di-μ-chlorobis(chlorotricarbonylruthenium) [Ru(CO)(3)Cl(2)](2), and the solvent, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf(2)N], have been deposited by physical vapor deposition onto an alumina model support [Al(2)O(3)/NiAl(110)]. First, the interaction between thin films of [Ru(CO)(3)Cl(2)](2) and the support is investigated. Then, the ruthenium complex is co-deposited with the IL and the influence of the solvent on the catalyst is discussed. D(2)O, which is a model reactant, is further added. Growth, surface interactions, and mutual interactions in the thin films are studied with IRAS in combination with density functional (DFT) calculations. At 105 K, molecular adsorption of [Ru(CO)(3)Cl(2)](2) is observed on Al(2)O(3)/NiAl(110). The IRAS spectra of the binary [Ru(CO)(3)Cl(2)](2) + [BMIM][Tf(2)N] and ternary [Ru(CO)(3)Cl(2)](2) + [BMIM][Tf(2)N] + D(2)O show every characteristic band of the individual components. Above 223 K, partial decomposition of the ruthenium complex leads to species of molecular nature attributed to Ru(CO) and Ru(CO)(2) surface species. Formation of metallic ruthenium clusters occurs above 300 K and the model catalyst decomposes further at higher temperatures. Neither the presence of the IL nor of D(2)O prevents this partial decomposition of [Ru(CO)(3)Cl(2)](2) on alumina.

  9. Growth of crystalline Al2O3 via thermal atomic layer deposition: Nanomaterial phase stabilization

    Directory of Open Access Journals (Sweden)

    S. M. Prokes

    2014-03-01

    Full Text Available We report the growth of crystalline Al2O3 thin films deposited by thermal Atomic Layer Deposition (ALD at 200 °C, which up to now has always resulted in the amorphous phase. The 5 nm thick films were deposited on Ga2O3, ZnO, and Si nanowire substrates 100 nm or less in diameter. The crystalline nature of the Al2O3 thin film coating was confirmed using Transmission Electron Microscopy (TEM, including high-resolution TEM lattice imaging, selected area diffraction, and energy filtered TEM. Al2O3 coatings on nanowires with diameters of 10 nm or less formed a fully crystalline phase, while those with diameters in the 20–25 nm range resulted in a partially crystalline coating, and those with diameters in excess of 50 nm were fully amorphous. We suggest that the amorphous Al2O3 phase becomes metastable with respect to a crystalline alumina polymorph, due to the nanometer size scale of the film/substrate combination. Since ALD Al2O3 films are widely used as protective barriers, dielectric layers, as well as potential coatings in energy materials, these findings may have important implications.

  10. Preparation and characterization of DLC/SiO2/Al2O3 nanofiltration membrane

    Indian Academy of Sciences (India)

    Jin-Su Jeong; Churl-Hee Cho; Jong-Oh Kim; Dong-Hun Yeo; Won-Youl Choi

    2013-12-01

    High quality ceramic thin films were fabricated by thin film deposition process in semiconductor field in order to fabricate high performance carbon/SiO2/Al2O3 membrane. -Al2O3 substrate was used as a supporting material. A severe thermal stress and rough surface for active ceramic top layer such as zeolite were observed. To overcome thermal stress, intermediate layer of SiO2 and diamond-like carbon (DLC) thin films were used. SiO2 and DLC thin films on porous alumina support were deposited using plasma-enhanced chemical vapour deposition (PECVD). Homogeneous and smooth surfaces and interfaces of DLC/SiO2/Al2O3 membrane were observed by FESEM. The phases of DLC and SiO2 thin films were identified by X-ray diffraction pattern. Gas permeabilities of the nanofiltration membrane with DLC/SiO2/Al2O3 were observed at various annealing temperatures. Mixed gas permeability of the membrane with 1 m-thick SiO2 and 2 m-thick DLC thin filmannealed at 200 °C was ∼18 ccm at 1018 mb back pressure.

  11. Electrical properties of (Al2O3)x(TiO2)1-x films deposited on a silicon substrate

    Science.gov (United States)

    Vitanov, P.; Alexieva, Z.; Harizanova, A.; Horvath, Z.; Dozsa, L.

    2008-05-01

    Direct current conductance in Al/(Al2O3)X(TiO2)1-X/silicon structure was studied, the dielectric layers being deposited by the chemical solution deposition method. The measurements were carried out at room temperature and 320, 340 and 360 K. The results correspond to bulk-limited conduction of the Poole-Frenkel type. High voltages and temperature lead to an additional current rise, explained by thermal excitation and tunneling of electrons through the lowered Poole-Frenkel barrier.

  12. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  13. Capability Study of Ti, Cr, W, Ta and Pt as Seed Layers for Electrodeposited Platinum Films on γ-Al2O3 for High Temperature and Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2017-01-01

    Full Text Available High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.

  14. Investigating the electronic properties of Al2O3/Cu(In,GaSe2 interface

    Directory of Open Access Journals (Sweden)

    R. Kotipalli

    2015-10-01

    Full Text Available Atomic layer deposited (ALD Al2O3 films on Cu(In,GaSe2 (CIGS surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf and interface-trap charge density (Dit, for as-deposited (AD and post-deposition annealed (PDA ALD Al2O3 films on CIGS surfaces using capacitance–voltage (C-V and conductance-frequency (G-f measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm−2, whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm−2. The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1 for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns, preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  15. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  16. 基于透射光谱确定溅射Al2O3薄膜的光学常数%Determination of the optical constants of the magnetron sputtered aluminum oxide films from the transmission spectra

    Institute of Scientific and Technical Information of China (English)

    廖国进; 骆红; 闫绍峰; 戴晓春; 陈明

    2011-01-01

    By combining Swanepoel's theory and the Wemple-DiDomenico dispersion model, a simple method was established to determine the optical contants of the magnetron sputtered aluminum oxide films directly from the corresponding transmission spectra. The results showed that the magnetron sputtered aluminum oxide films exhibit the optical characteristics of high refractive index of 1. 566-1.76 ( at 550 nm), negligible absorption in spectral region of 4001100 nm, as well as the direct band gap of about 3.91-4. 2 eV. And the specific values of the optical constants strongly depend on the annealing temperature , which is one of the important technological parameters for the magnetron sputtered aluminum oxide films. Moreover, in the weak and medium absorption spectral regions, the calculated values of refractive indices are in satisfactory agreement with the results derived from the high-resolution Tek3000 film - characterization system, indicating the reliability and feasibility of the method in determining the optical constants of Al2O3films.%基于反应磁控溅射Al2O3薄膜的紫外一可见一近红外透射实验光谱,采用Swanepoel方法结合Wemple-DiDomenico色散模型,方便地导出了Al2O3薄膜在200-1100 nm波长范围内的光学常数,包括折射率、色散常数、膜层厚度、吸收系数及能量带隙.研究发现反应磁控溅射Al2O3薄膜具有高折射率(1.556-1.76,测试波长为550nm)、低吸收和直接能量带隙(3.91-4.20 eV)等光学特性,而且其光学常数对薄膜制备过程中的重要工艺参数--膜层后处理温度表现出强烈的依赖性.此外,在膜层的弱吸收和中等吸收光谱区域内,计算得到的折射率色散曲线与分光光度法的测试结果基本符合,说明本实验中所建立的计算方法在确定反应磁控溅射Al2O3薄膜光学常数方面的可靠性.

  17. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    Science.gov (United States)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  18. Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics

    Directory of Open Access Journals (Sweden)

    P. R. Chalker

    2015-01-01

    Full Text Available We report the photochemical atomic layer deposition of Al2O3 thin films and the use of this process to achieve area-selective film deposition. A shuttered vacuum ultraviolet (VUV light source is used to excite molecular oxygen and trimethyl aluminum to deposit films at 60°C. In-situ QCM and post-deposition ellipsometric measurements both show that the deposition rate is saturative as a function of irradiation time. Selective area deposition was achieved by projecting the VUV light through a metalized magnesium fluoride photolithographic mask and the selectivity of deposition on the illuminated and masked regions of the substrate is a logarithmic function of the UV exposure time. The Al2O3 films exhibit dielectric constants of 8 – 10 at 1 MHz after forming gas annealing, similar to films deposited by conventional thermal ALD.

  19. Radiation endurance in Al2O3 nanoceramics

    Science.gov (United States)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C -namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  20. 聚酰亚胺纳米杂化薄膜的透光率与光击穿特性%Research on transmittance and characteristics of optical breakdown of Al2O3/PI hybrid films

    Institute of Scientific and Technical Information of China (English)

    刘晓旭; 阎凯; 朱波; 殷景华

    2011-01-01

    为了研究无机组分的添加对复合材料抗光击穿能力的影响,采用溶胶--凝胶法制备不同组分的AlO/PI复合薄膜,利用半导体激光照射不同组分的AlO/PI薄膜,研究其透光率、光击穿区域的形貌及不同区域的元素分布、击穿孔区的有效面积.数据分析表明:随AlO含量的增加,杂化薄膜的透光率、光击穿孔区的破坏程度、孔区的面积逐渐下降.实验结果表明:纳米AlO颗粒可以减小复合薄膜击穿孔的有效面积,从而提高复合薄膜耐击穿性.杂化薄膜的透光率可以表征其光击穿情况.%Aimed at investigating the effect of addition of inorganic content( Al203 ) on the anti-optical breakdown of hybrid films, this paper introduces the preparation of the Al2O3/PI composition films with different content by Sol-Gel method, the irradiation of the Al2O3/PI films using semiconductor laser,and the identification of the transmittance of hybrid films, the morphology of optical breakdown region,element distribution in different regions, and the effective area of optical breakdown hole. The data analysis show that the light transmittance of the films and the size of the breakdown hole decrease with the increase of Al2O3. The results show that the nano-Al2O3 can reduce the effective area of breakdown hole in the films, thus increasing breakdown-resistance performance, and characterizing the optical breakdown situation by transmittance of hybrid films.

  1. Surface modified Al2O3 in fluorinated polyimide/Al2O3 nanocomposites: Synthesis and characterization

    Indian Academy of Sciences (India)

    Zivar Ghezelbash; Davoud Ashouri; Saman Mousavian; Amir Hossein Ghandi; Yaghoub Rahnama

    2012-11-01

    Organic–inorganic hybrid materials consisting of inorganic materials and organic polymers are a new class of materials, which have received much attention in recent years. In the present investigation, at first, the surface of nano-alumina (Al2O3) was treated with a silane coupling agent of -aminopropyltriethoxysilane (KH550), which introduces organic functional groups on the surface of Al2O3 nanoparticles. Then fluorinated polyimide (PI) was synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride and 4,4'-diaminodiphenylsulfone. Finally, PI/modified Al2O3 nanocomposite films having 3, 5, 7 and 10% of Al2O3 were successfully prepared by an in situ polymerization reaction through thermal imidization. The obtained nanocomposites were characterized by fourier transform infrared spectroscopy, thermogravimetry analysis, X-ray powder diffraction, UV-Vis spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The results show that the Al2O3 nanoparticles were dispersed homogeneously in PI matrix. According to thermogravimetry analysis results, the addition of these nanoparticles improved thermal stability of the obtained hybrid materials.

  2. Trapped charge densities in Al2O3-based silicon surface passivation layers

    Science.gov (United States)

    Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo

    2016-06-01

    In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.

  3. Fabrication and Characteristics of AIInN/A1N/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; BI Zhi-Wei; LIANG Xiao-Zhen; ZHANG Jin-Feng; KUANG Xian-Wei; ZHANG Jin-Cheng; XUE Jun-Shuai; HAO Yao; MA Xiao-Hua; WANG Chong; LIU Hong-Xia; XU Sheng-Rui; YANG Lin-An

    2010-01-01

    @@ Al0.85In0.15N/AlN/GaN metal-oxide-semiconductor high electron mobility transistors(MOS-HEMTs)employing a 3-nm ultra-thin atomic-layer deposited(ALD)Al2O3 gate dielectric layer are reported.Devices with 0.6μm gate lengths exhibit an improved maximum drain current density of 1227mA/mm at a gate bias of 3 V,a peak transconductance of 328 mS/mm,a cutoff frequency fT of 16 GHz,a maximum frequency of oscillation fmax of45 GHz,as well as significant gate leakage suppression in both reverse and forward directions,compared with the conventional Al0.85In0.15N/AlN/GaN HEMT.Negligible C-V hysteresis,together with a smaller pinch-off voltage shift,is observed,demonstrating few bulk traps in the dielectric and high quality of the Al2O3/AlInN interface.It is most notable that not only the transconductance profile of the MOS-HEMT is almost the same as that of the conventional HEMT with a negative shift,but also the peak transconductance of the MOS-HEMT is increased slightly.It is an exciting improvement in the transconductance performance.

  4. 水基流延工艺制备β"-Al2O3固体电解质薄膜的研究%Study of β"-Al2O3 Solid Electrolyte Film Prepared by Water Based Tape Casting

    Institute of Scientific and Technical Information of China (English)

    谭强强; 徐宇兴; 陈晓晓

    2010-01-01

    采用溶胶-凝胶法制备了β″-Al2O3前驱体粉体,将该前驱体在850℃焙烧1h的产物作为水基流延浆料的陶瓷粉体,以去离子水为溶剂,加入适量的S464表面活性剂、WB4101粘结剂和PL005增塑剂,采用水基流延工艺成功制备了表面光滑、颗粒分布均匀的β″-Al2O3固体电解质前驱体薄膜.研究结果表明:β″-Al2O3前驱体水基流延薄膜经等静压成型并在1500℃高温烧结后,便可获得薄膜型β″-Al2O3固体电解质(JCPDS卡片号:19-1173).

  5. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    of the PL intensity (up to 689%). The effect of thickness, annealing temperature, annealing duration and precursor purge time on the PL intensity of ALD Al2O3 films was investigated. In order to investigate the penetration depth and passivation effect in porous SiC, the samples were characterized by X......-ray photoelectron spectroscopy (XPS) and time-resolved PL. The optimized passivation conditions (20 nm Al2O3 deposited at 160 °C with purge time of 20 s, followed by an annealing for 5 min at 350 °C) for porous SiC were achieved and the results indicate that surface passivation by ALD Al2O3 thin films is a very...

  6. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system.

    Science.gov (United States)

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-01-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  7. Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells

    OpenAIRE

    Joel, Jonathan

    2014-01-01

    In this thesis, a novel method of reducing the rear surface recombination in copper indium gallium (di) selenide (CIGS) thin film solar cells, using atomic layer deposited (ALD) Al2O3, has been evaluated via qualitative opto-electrical characterization. The idea stems from the silicon (Si) industry, where rear surface passivation layers are used to boost the open-circuit voltage and, hence, the cell efficiency. To enable a qualitative assessment of the passivation effect, Al/Al2O3/CIGS metal-...

  8. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响%Research on interface and fractal characteristics of Pl/Al2 O3 Films by SAXS

    Institute of Scientific and Technical Information of China (English)

    刘晓旭; 殷景华; 程伟东; 卜文斌; 范勇; 吴忠华

    2011-01-01

    Inorganic nano-composite polyimide (PI) films were prepared with the method of sol-gel. The interfacial situation and the fractal characteristics of PI films were investigated by small angle X-ray scattering (SAXS) using synchrotron radiation as X-ray source. SAXS results indicated that the scattering curves in the high-angle region have a negative slope,i. e., a negative deviation from Porod's law, which suggests that there are obvious interface layers between the organic phase and the inorganic phase in the PI films. The thicknesses of interface layers are 0. 54-1. 48 nm. The interaction of the organic phase and inorganic phase becomes stronger and the thickness of interfacial layer increases with the increase of inorganic nano-components. Nano-particles have mass fractal, simultaneously have surface fractal structure, and their distribution and assemblage are nonlinear dynamic processes. With the inorganic nano-components increasing, the surface fractal dimension increases and mass fractal dimension decreases, which shows that the nano-particles structure becomes looser and mass distribution becomes more uneven. The anchoring action of polymer chains is enhanced and the number of anchored point increased respectively, the surface of the hybrid PI films becomes rougher. Finally, according to the interface characteristics of hybrid PI films, the relationship of the breakdown field strength with component is analyzed by percolation theory and polarization theory.%采用溶胶-凝胶方法制备无机纳米杂化聚酰亚胺(PI),应用同步辐射小角X射线散射(SAXS)方法研究不同组分杂化PI薄膜的界面特性与分形特征.研究结果表明:散射曲线不遵守Porod定理,形成负偏离,说明薄膜中有机相与Al2O3纳米颗粒间存在界面层,界面层厚度在0.54 nm到1.48 nm范围内;随无机纳米组分增加,界面层厚度增加,有机相与无机相作用变强;无机纳米颗粒同时具有质量分形和表面分形特征,其分

  9. Model Research On Synthesis Of Al2O3-C Layers By MOCVD

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available These are model studies whose aim is to obtain information that would allow development of new technology for synthesizing monolayers of Al2O3-C with adjusted microstructure on cemented carbides. The Al2O3-C layer will constitute an intermediate layer on which the outer layer of Al2O3 without carbon is synthesized. The purpose of the intermediate layer is to block the cobalt diffusion to the synthesized outer layer of Al2O3 and to stop the diffusion of air oxygen to the substrate during the synthesis of the outer layer. This layer should be thin, continuous, dense and uniform in thickness.

  10. Pt-Ti/ALD-Al2O3/p-Si MOS Capacitors for Future ULSI Technology

    Directory of Open Access Journals (Sweden)

    Ashok M. Mahajan

    2011-01-01

    Full Text Available The high dielectric constant (high-k thin film of Al2O3 was deposited by using Plasma enhanced atomic layer deposition (PE-ALD technique. The electron beam evaporation system was used to deposit the Pt-Ti metal to fabricate the Pt-Ti/Al2O3/Si MOS capacitors. Thickness measurement of Al2O3 gate dielectric was carried out with variable angle spectroscopic ellipsometry, which is measured to be 2.83 nm. The MOS capacitors were characterized to evaluate the electrical properties using capacitance voltage (C-V analyzer at different measurement frequencies. Capacitance voltage measurement shows that, dielectric constant k ranges from 7.87 to 10.44. In CV curve a slight negative shift is observed in the flatband voltage because of presence of trap charges in the Al2O3 MOS capacitor. A lower equivalent oxide thickness (EOT of 1.057 nm is obtained for the fabricated Pt-Ti/ Al2O3 /Si MOS capacitors.

  11. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  12. Microstructure and Mechanical Property of Hot-Pressed Al2O3-Ni-P Composites Using Ni-P-Coated Al2O3 Powders

    Directory of Open Access Journals (Sweden)

    Hyeong-Chul Kim

    2015-01-01

    Full Text Available Al2O3-Ni-P composite powders with Ni-P contents of 10.9, 14.4, and 20.4 wt.% were synthesized via the Ni-P electroless deposition process. The as-received Al2O3-Ni-P composite powders were composed of Ni-P particles and Ni-P coating layer. Some Ni-P particles randomly adhered to the Al2O3 powders, and their particle diameter ranged from 5 nm to 20 nm. The thin Ni-P layer had about 5 nm thick amorphous structure and directly bonded with Al2O3 powders. Using the Ni-P-coated Al2O3 powders, a dense Al2O3-Ni-P composite can be successfully obtained using the hot press process at 1,350°C for 1 hour in an Ar atmosphere under an applied pressure of 30 MPa. The hot-pressed Al2O3-15 wt.% Ni-P composite showed excellent material properties. Its relative density, Vickers hardness, and fracture toughness were comparatively high: about 99.1%, 2,360 Hv, and 6 MPa·m1/2, respectively. The fracture surface of the hot-pressed Al2O3-Ni-P composite showed a semiductile mode due to the mixed intergranular and transgranular fracture mode. In particular, the fracture toughness of the hot-pressed Al2O3-15 wt.% Ni-P composite was strongly enhanced by the combined action of the crack branching and the crack deflection.

  13. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    Science.gov (United States)

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization.

  14. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3

    Science.gov (United States)

    Rückerl, Andreas; Zeisel, Roland; Mandl, Martin; Costina, Ioan; Schroeder, Thomas; Zoellner, Marvin H.

    2017-01-01

    Atomic layer deposited aluminum oxide (ALD-Al2O3) is a dielectric material, which is widely used in organic light emitting diodes in order to prevent their organic layers from humidity related degradation. Unfortunately, there are strong hints that in some cases, ALD-Al2O3 itself is suffering from humidity related degradation. Especially, high temperature and high humidity seem to enhance ALD-Al2O3 degradation strongly. For this reason, the degradation behavior of ALD-Al2O3 films at high temperature and high humidity was investigated in detail and a way to prevent it from degradation was searched. The degradation behavior is analyzed in the first part of this paper. Using infrared absorbance measurements and X-ray diffraction, boehmite (γ-AlOOH) was identified as a degradation product. In the second part of the paper, it is shown that ALD-Al2O3 films can be effectively protected from degradation using a silicon oxide capping. The deposition of very small amounts of silicon in a molecular beam epitaxy system and an X-ray photoelectron spectroscopy investigation of the chemical bonding between the silicon and the ALD-Al2O3 surface led to the conclusion that a silicon termination of the ALD-Al2O3 surface (Al*-O-SiOx) is able to stop humidity related degradation of the underlying ALD-Al2O3 films. The third part of the paper shows that the protection mechanism of the silicon termination is probably due to the strong tendency of silicic acid to resilificate exposed ALD-Al2O3 surfaces. The protective effect of a simple silicon source on an ALD-Al2O3 surface is shown exemplary and the related chemical reactions are presented.

  15. Ultra-low thermal conductivity in W/Al2O3 nanolaminates.

    Science.gov (United States)

    Costescu, R M; Cahill, D G; Fabreguette, F H; Sechrist, Z A; George, S M

    2004-02-13

    Atomic layer deposition and magnetron sputter deposition were used to synthesize thin-film multilayers of W/Al(2)O(3). With individual layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving rise to a thermal conductivity of approximately 0.6 watts per meter per kelvin. This result suggests that high densities of interfaces between dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal conductivity.

  16. Bimodal substrate biasing to control \\gamma-Al2O3 deposition during reactive magnetron sputtering

    CERN Document Server

    Prenzel, Marina; Stein, Adrian; von Keudell, Achim; Nahif, Farwah; Schneider, Jochen M

    2013-01-01

    Al2O3 thin films have been deposited at substrate temperatures between 500{\\deg}C to 600{\\deg}C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.9 dpa for a substrate temperature of 500{\\deg}C. This threshold shifts to 0.6 dpa for films grown at 550{\\deg}C.

  17. Encapsulation of Strontium Aluminate Powder by SiO2-Al2O3 Composite Film via Liquid Deposition%用液相沉积法在铝酸锶荧光粉表面包覆SiO2和Al2O3复合膜

    Institute of Scientific and Technical Information of China (English)

    侯志青; 刘东州; 王云明

    2010-01-01

    铝酸锶是典型的长余辉发光材料,已经广泛应用于日常生活中,但是铝酸锶在水中极易发生水解,抗湿性差,严重限制了其应用.采用化学气相沉积法和物理蒸汽沉积法在长余辉发光材料表面包覆膜,对设备要求高,价格贵,不易推广.因此,采用液相沉积法在长余辉荧光粉铝酸锶表面包覆SiO2膜和Al2O3膜来提高其耐水性能,采用电镜扫描(SEM)、X射线衍射(XRD)表征膜的存在,并对包膜试样进行了耐水性和发光性能的测试.结果表明:铝酸锶荧光粉包覆了致密的复合膜层后,耐水性得到显著的提高,同时,包膜对荧光粉的发光性能影响较小,发射光和激发光强度损失均在10%以下.

  18. Al2O3绝缘栅SiC MIS结构基本特性的研究%Fundamental characteristics of SiC MIS structure with Al2O3 as gate dielectric

    Institute of Scientific and Technical Information of China (English)

    刘莉; 杨银堂; 马晓华

    2011-01-01

    采用原子层淀积(ALD)方法在4H-SiC(0001)8°N-/N+外延层上制备了超薄(~4 nm)Al2O3绝缘栅高介电常数SiC MIS电容.通过对Al2O3介质膜以及Al2O3/SiC界面微结构和电学特性分析表明,实验所得Al2O3介质膜具有较好的体特性和界面特性,Al2O3薄膜的击穿电场为25MV/cm,并且在可以接受的界面态密度(2×1013 cm-2)下具有较小的栅泄漏电流(8 MV/cm电场下漏电流密度为l×10-3A/cm-2).电流-电压测试分析表明,在FN隧穿条件下,SiC/A12O3之间的势垒高度为1.4 eV,已达到制作SiC MISFET器件的要求.同时,在整个栅压区域也受Frenkel-Poole和Schottkv机制的共同影响.%SiC MIS structure with ultra-thin Al2O3 as gate dielectric deposited by atomic layer deposition (ALD) on epitaxial layer of 4H-SiC(0001)8°N-/N+ substrate is fabricated.The microstructure and electrical characteristics analysis on the film and Al2O3/SiC interface has shown that Al2O3 deposited has a good bulk characteristics and a good quality between Al2O3 and SiC.The breakdown electrical field of Al2O3 film is 25 MV/cm; the MIS capacitor has a fairly low gate leakage current (current density of 1×10-3A/cm-2 with a electric field of 8 MV/cm) under acceptable interface effective charge (2× 1013 cm-2).Current-voltage measurement and analysis has shown that when the gate leakage current mechanism is dominated by FN tunneling, the barrier height of SiC/Al2O3 is 1.4 eV,which can meet the requirement of SiC MISFET devices.Besides this, the gate leakage current is co-influenced by both of Frenkel-Poole mechanism and Schottky emission.

  19. Influences of Al2O3 grain size on high-temperature oxidation of nano-Ni/Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Hai Vu Pham

    2016-03-01

    Full Text Available Two 5 vol% Ni/Al2O3 composites with the difference in Al2O3 grain size were fabricated by pulsed electric current sintering technique to investigate the influence of Al2O3 grain size on oxidation behavior of the composites. Average Al2O3 grain sizes of two fabricated composites were 1.1 μm and 0.5 μm after sintering. Oxidation tests were conducted at temperatures ranging from 1100 to 1350 °C for 1–48 h in air. A thin NiAl2O4 layer was observed in exposed surface of samples after oxidation. An oxidized zone that consisted of Al2O3 matrix and NiAl2O4 grains was defined. Growth of the oxidized zone obeyed the parabolic law. Influences of Al2O3 grain size on high-temperature oxidation of the composites were discussed.

  20. Effect of Ultrasonic Vibration on the Behavior of Antifriction and Wear Resistance of Al2O3/Al2O3 Ceramic Friction Pairs Under Oil Lubrication

    Science.gov (United States)

    Dong, X. Y.; Qiao, Y. L.; Zang, Y.; Cui, Q. S.

    The behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs lubricated by four different lubrication oils under ultrasonic vibration was studied. The surface morphologies of wear scare was analyzed by metallographic microscope. The effect mechanism of ultrasonic vibration on frictional pairs under different lubrication oils was discussed. The studied results showed that, ultrasonic vibration would improve the behavior of antifriction and wear resistance of the Al2O3/Al2O3 ceramic friction pairs under various lubrication oils.The improving would be dramaticer when the viscosity of lubrication oil was low. Ultrasonic vibration decreased the friction coefficient and wear volume 12.9% and 38.7% respectively, when the lubrication oil was 6#,the viscosity of which is 39.77 mm2/s. When the lubrication oil was 150BS, the viscosity of which is 549.69 mm2/s, ultrasonic vibration made friction coefficient and wear volume decreased 4.6% and 11.6% respectively.The effect of ultrasonic vibration on the behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs was determined by the formation and the destruction of oil film on the friction surface and the upward floatage created by ultrasonic vibration.

  1. Evolution of complementary resistive switching characteristics using IrOx/GdOx/Al2O3/TiN structure

    Science.gov (United States)

    Jana, Debanjan; Samanta, Subhranu; Maikap, Siddheswar; Cheng, Hsin-Ming

    2016-01-01

    The complementary resistive switching (CRS) characteristics using an IrOx/GdOx/Al2O3/TiN single cell are observed whereas the bipolar resistive switching (BRS) characteristics are observed for the IrOx/GdOx/TiN structure. Transmission electron microscope and energy dispersive X-ray spectroscopy depth profile show crystalline GdOx film and the presence of higher amount of oxygen at both IrOx/GdOx interface and Al2O3 layer. Inserting thin Al2O3 layer, the BRS is changed to CRS. This CRS has hopping distance of 0.58 nm and Poole-Frenkel current conductions for the "0" and "1" states, respectively. A schematic model using oxygen vacancy filament formation/rupture at the TE/GdOx interface and Al2O3 layer has been illustrated. This CRS device has good endurance of 1000 cycles with a pulse width of 1 μs, which is very useful for future crossbar architecture.

  2. Hydrogen Embrittlement Processes and Al/Al2O3 Hydrogen Resistance Coatings of NdFeB Magnets

    Institute of Scientific and Technical Information of China (English)

    张万里; 彭斌; 蒋洪川; 张文旭; 杨仕清

    2004-01-01

    After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets,RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al2O3 composite films on the magnets as the hydrogen resistance coatings.SEM and EDS were used to examine the morphology and composition respectively.Hydrogen resistance performance was tested by exposing the magnets in 10 MPa hydrogen gas at room temperature.The results show that the magnets with 8 μm Al/Al2O3 coatings can withstand hydrogen of 10 MPa for 65 min without being embrittled into powder.The samples with and without hydrogen resistance coatings have almost the same magnetic properties.

  3. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    Institute of Scientific and Technical Information of China (English)

    雷雯雯; 李兴存; 陈强; 王正铎

    2012-01-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interracial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  4. CoFe2/Al2O3/PMNPT multiferroic heterostructures by atomic layer deposition

    Science.gov (United States)

    Zhou, Ziyao; Grocke, Garrett; Yanguas-Gil, Angel; Wang, Xinjun; Gao, Yuan; Sun, Nianxiang; Howe, Brandon; Chen, Xing

    2016-05-01

    Multiferroic materials and applications allow electric bias control of magnetism or magnetic bias control of polarization, enabling fast, compact, energy-efficient devices in RF/microwave communication systems such as filters, shifters, and antennas; electronics devices such as inductors and capacitors; and other magnetic material related applications including sensors and memories. In this manuscript, we utilize atomic layer deposition technology to grow magnetic CoFe metallic thin films onto PMNPT, with a ˜110 Oe electric field induced ferromagnetic resonance field shift in the CoFe/Al2O3/PMNPT multiferroic heterostructure. Our work demonstrates an atomic layer deposition fabricated multiferroic heterostructure with significant tunability and shows that the unique thin film growth mechanism will benefit integrated multiferroic application in near future.

  5. Nucleation and growth mechanisms of Al2O3 atomic layerdeposition on synthetic polycrystalline MoS2

    Science.gov (United States)

    Zhang, H.; Chiappe, D.; Meersschaut, J.; Conard, T.; Franquet, A.; Nuytten, T.; Mannarino, M.; Radu, I.; Vandervorst, W.; Delabie, A.

    2017-02-01

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are of great interest for applications in nano-electronic devices. Their incorporation requires the deposition of nm-thin and continuous high-k dielectric layers on the 2D TMDs. Atomic layer deposition (ALD) of high-k dielectric layers is well established on Si surfaces: the importance of a high nucleation density for rapid layer closure is well known and the nucleation mechanisms have been thoroughly investigated. In contrast, the nucleation of ALD on 2D TMD surfaces is less well understood and a quantitative analysis of the deposition process is lacking. Therefore, in this work, we investigate the growth of Al2O3 (using Al(CH3)3/H2O ALD) on MoS2 whereby we attempt to provide a complete insight into the use of several complementary characterization techniques, including X-ray photo-electron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To reveal the inherent reactivity of MoS2, we exclude the impact of surface contamination from a transfer process by direct Al2O3 deposition on synthetic MoS2 layers obtained by a high temperature sulfurization process. It is shown that Al2O3 ALD on the MoS2 surface is strongly inhibited at temperatures between 125°C and 300°C, with no growth occurring on MoS2 crystal basal planes and selective nucleation only at line defects or grain boundaries at MoS2 top surface. During further deposition, the as-formed Al2O3 nano-ribbons grow in both vertical and lateral directions. Eventually, a continuous Al2O3 film is obtained by lateral growth over the MoS2 crystal basal plane, with the point of layer closure determined by the grain size at the MoS2 top surface and the lateral growth rate. The created Al2O3/MoS2 interface consists mainly of van der Waals interactions. The nucleation is improved by contributions of reversible adsorption on the MoS2 basal planes by using low

  6. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Hongyuan FANG; Xin WAN

    2005-01-01

    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  7. Deposition and Properties of the Pseudobinary Alloy (Al2O3)x(TiO2)1-x and Its Application for Silicon Surface Passivation

    Science.gov (United States)

    Vitanov, P.; Harizanova, A.; Ivanova, T.; Alexieva, Z.; Agostinelli, G.

    2006-07-01

    The electrical properties of (Al2O3)x(TiO2)1-x thin films, obtained from sol solution by spin coating on Si substrates (c-Si or mc-Si), have been studied. By varying the ratios between Al2O3 and TiO2 components, the optical and dielectric characteristics can be changed. This deposition method can be used for effective engineering of physical properties of the dielectric layer. Surface recombination velocities as low as 150 cm/s have been obtained using (Al2O3)x(TiO2)1-x layers on 1 Ω\\cdotcm Czochralski (CZ) silicon wafers. Low surface recombination is achieved by field induced surface passivation due to a high density of negative fixed charges.

  8. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  9. Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-jun; HE Li-ping; CHEN Zong-zhang

    2006-01-01

    A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre- and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment,the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.

  10. SYNTHESIS AND ELECTRICAL PROPERTIES OF POLYIMIDE-Al2O3 COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Hong-yan Li; Shu-fan Ning; Hai-bing Hu; Bin Liu; Wei Chen; Shou-tian Chen

    2007-01-01

    Polyimide-alumina hybrid films were synthesized via in situ polymerization and thermal imidation process from a solution of polyimide precursor and nanosized alumina in N,N-dimethylacetamide, and the microstructure of the hybrid films was characterized by transmission electron microscope (TEM) and infra-red (IR) spectrometry. The dependence of thermal stability, tensile properties, dielectric properties and degradation endurance under corona on the nano-Al2O3 content of polyimide-alumina hybrid films was studied. The results show that with the increase of Al2O3 content, the thermal stability and the dielectric properties of the hybrids increase, while the tensile properties decrease. Better corona resistance can be achieved if the PI film is filled with α-Al2O3 nanometric particle.

  11. Usage of Porous Al2O3 Layers for RH Sensing

    CERN Document Server

    Timár-Horváth, Veronika; Vass-Várnai, András; Perlaky, Gergely

    2008-01-01

    At the Department of Electron Devices a cheap, more or less CMOS process compatible capacitive type RH sensor has been developed. Capacitive sensors are based on dielectric property changes of thin films upon water vapour uptake which depends on the surrounding media's relative humidity content. Because of the immense surface-to-volume ratio and the abundant void fraction, very high sensitivities can be obtained with porous ceramics. One of the ceramics to be used is porous Al2O3, obtained by electrochemical oxidation of aluminium under anodic bias. The average pore sizes are between 6...9 nm. In our paper we intend to demonstrate images representing the influence of the technological parameters on the porous structure and the device sensitivity.

  12. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    Science.gov (United States)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  13. The effect of thermal annealing on the adherence of $Al_2O_3$-films deposited by low-pressure, metal-organic, chemical-vapor deposition on AISI 304

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Vendel, van de D.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films, deposited at 280°C by low-pressure, metal-organic, chemical-vapor deposition on stainless steel, type AISI 304, were annealed at 0.17 kPa in a nitrogen atmosphere for 2,4, and 17 hr at 600, 700, and 800°C. The effect of the annealing process on the adhesion of the thin alumina fi

  14. Sliding Wear Behavior of Plasma Sprayed Alumina-Based Composite Coatings against Al2O3 Ball

    Institute of Scientific and Technical Information of China (English)

    Minh-quy Le; Young-hun Chae; Seock-sam Kim

    2004-01-01

    The sliding wear behaviors of a single layer Al2O3-30 wt pct ZrO2, a double layer Al2O3-30 wt pct ZrO2/Ni-Cr and a single layer Al2O3-13 wt pct TiO2 coating deposited on low carbon steel by plasma spraying were investigated under lubricated conditions with various normal loads. The plastic deformation, detachment and pull out of splats were involved in the wear process of the studied coatings under test conditions. Crack propagation was found in Al2O3-13 wt pct TiO2 under loads of 70 and 100 N and in Al2O3-30 wt pct ZrO2/Ni-Cr under a load of 130 N.While increasing the normal load, the wear rates of Al2O3-30 wt pct ZrO2 and Al2O3-30 wt pct ZrO2/Ni-Cr slightly increased, the wear rate of Al2O3-13 wt pct TiO2 increased rapidly. The results showed that the Ni-Cr bonding layer improved the wear resistance of the coating system even it is relatively thin compared with the outer coating layer.The influence of this bonding layer on wear behavior of the coating increased as increasing the normal load.

  15. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    Science.gov (United States)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  16. The improvement of Al2O3/AlGaN/GaN MISHEMT performance by N2 plasma pretreatment

    Institute of Scientific and Technical Information of China (English)

    Feng Qian; Tian Yuan; Bi Zhi-Wei; Yue Yuan-Zheng; Ni Jin-Yu; Zhang Jin-Cheng; Hao Yue; Yang Lin-An

    2009-01-01

    This paper discusses the effect of N2 plasma treatment before dielectric deposition on the electrical performance of a Al2O3/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MISHEMT), with Al2O3deposited by atomic layer deposition. The results indicated that the gate leakage was decreased two orders of magnitude after the Al2O3/AlGaN interface was pretreated by N2 plasma. Furthermore, effects of N2 plasma pretreatment on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al2O3 and AlGaN film was improved.

  17. Rapid fabrication of Al2O3 encapsulations for organic electronic devices

    Science.gov (United States)

    Ali, Kamran; Ali, Junaid; Mehdi, Syed Murtuza; Choi, Kyung-Hyun; An, Young Jin

    2015-10-01

    Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al2O3 encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al2O3 encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (Ra) of 9.66 nm have been effectively covered by Al2O3 encapsulation having Ra of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al2O3 films. Electrical current-voltage (I-V) measurements confirmed that the Al2O3 encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al2O3 encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one week. The performance of encapsulated device had been promising after being subjected to bending test for 100 cycles and the variations in its stability were of minor concern confirming the mechanical robustness and flexibility of the devices.

  18. Al2O3-Coated Nano-SiC Particles Reinforced Al2O3 Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of Al2O3-coated nano-SiC have been compared with those of as-received SiC. The isoelectric point (IEP)of SiC changed from pH3.4 to pH7.3 after coating with the alumina precursor, which is close to that of alumina.Because both surfaces of coated SiC and Al2O3 possess higher positive charge at pH=4.5~5.0, they are uniformly dispersed in the two-phase aqueous suspensions, Then a mixed powder containing nano-SiC dispersed homogeneously into the Al2O3 matrix was achieved from flocculating the two-phase suspension. Finally, Al2O3/SiC nanocomposites were obtained by coating nano-SiC with Al2O3, in which the majority of SiC particles were located within the Al2O3 grains. The observation by transmission electron microscopy (TEM) and the analysis by the X-ray photoelectron spectroscopy (XPS) showed that cracks propagated towards the intragranular SiC rather than along grain boundaries.

  19. Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Zhijiang Wang

    2015-01-01

    Full Text Available The natural brittleness of oxide ceramics heavily inhibits their more extensive applications. In present research, a highly flexible Al2O3/Al/Al2O3 hybrid composite was fabricated by employing plasma electrolysis oxidation to in situ grow alumina layers on Al foil, in which an outside layer of nanostructured polycrystalline oxide ceramic was composed of nanosized grains with the size of around 17 nm. Due to shear band formation, nanosized circle bubbles prolonging the crack path, grain rotation, and deformation, the fabricated Al2O3/Al/Al2O3 hybrid composite contains no observable cracks even after being bent on a cylindrical bar with a curvature of 1.5 mm. The composite exhibits alumina stiffness at the elastic stage and aluminum ductility during plastic deformation, which provides high flexibility with the well-integrated properties of the components. In a synergistic interaction, the alumina on the outside exhibited a strain of 0.33% at room temperature, which was higher than optimum value of 0.25% presented by reported most flexible oxide ceramics. With the unique characteristics and properties, the Al2O3/Al/Al2O3 composite demonstrates a great potential for various engineering applications.

  20. Optically stimulated luminescence response to Al2O3 to beta radiation

    DEFF Research Database (Denmark)

    Akselrod, A.; Akselrod, M.S.; Agersnap Larsen, N.

    1999-01-01

    High sensitivity dosemeters based on Al2O3:C have been prepared and tested for use as beta dosemeters using optically stimulated luminescence (OSL). Two types of sample were prepared and tested, namely unpolished thick, single crystal chips and thin powder layers on aluminium substrates...

  1. Synthesis and thermal characterization of Al2O3 nanoparticles

    Science.gov (United States)

    Ismardi, A.; Rosadi, O. M.; Kirom, M. R.; Syarif, D. G.

    2016-11-01

    Al2O3 nanoparticle has been successfully synthesized using sol gel method from AlCl3. The obtained nanoparticles was then characterized for grain size measurement, the size of nanoparticles was 6 nm by using surface area meter (SAM) and Transmission Electron Microscopy (TEM). The crystallinity property of the product was then checked with XRD spectroscopy, the result shows that the diffraction peaks were match with the 10-0425 JCPDS database. Thermal property of the Al2O3 nanoparticles was then studied by mixing it with engine base fluid as nanofluid. The usage of nanofluid was expected to be heat absorber and woulo increase cooling process in cooling machine. The results showed that cooling time increases when the concentration of nanofluid was increased. Finally, it is concluded that thermal property of Al2O3 was studied and applicable to be mixed with engine coolant of cooler machine to reduce cooling time process.

  2. DEPTH PROFILING OF DEUTERIUM IN Al2O3

    Institute of Scientific and Technical Information of China (English)

    谈效华; 赵国庆; 等

    1995-01-01

    D2+ ions of 70 and 90keV were separately implanted into two thick samples of sintered alumina ceramic and the distribution of deuterium has been measured for three runs at an interval of 5 months using high energy proton backscattering and elastic recoil detection (ERD).The measured data show that there is little diffusion of dueterium in Al2O3 and the diffusion coefficient is deduced to be 1.1×10-17 cm2/s.The measured total concentration of implanted deuterium is 4.5×1018at.cm2.The profile of hydrogen adsorbed on the surface of Al2O3 samples was also observed by ERD and 1H(19E,αγ)16O analysis.The distribution range of 1H in Al2O3 after deuterium implantation is much larger than that before one.

  3. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    Science.gov (United States)

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.

  4. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    Directory of Open Access Journals (Sweden)

    Mateusz Śmietana

    2013-11-01

    Full Text Available This work presents an application of thin aluminum oxide (Al2O3 films obtained using atomic layer deposition (ALD for fine tuning the spectral response and refractive-index (RI sensitivity of long-period gratings (LPGs induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device’s RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  6. New battery strategies with a polymer/Al2O3 separator

    Science.gov (United States)

    Park, Kyusung; Cho, Joon Hee; Shanmuganathan, Kadhiravan; Song, Jie; Peng, Jing; Gobet, Mallory; Greenbaum, Steven; Ellison, Christopher J.; Goodenough, John B.

    2014-10-01

    A low-cost, thin, flexible, and mechanically robust alkali-ion electrolyte separator is shown to allow fabrication of a safe rechargeable alkali-ion battery with alternative cathode strategies. A Na-ion battery with an insertion host as cathode and a Li-ion battery with a redox flow-through cathode are demonstrated to cycle without significant fade. The separator membrane is a composite of Al2O3 particles and cross-linked ethylene-oxide chains; it can be fabricated at low cost into a large-area thin membrane that blocks dendrites from an alkali-metal anode. To block a soluble ferrocene redox molecule from crossing from the cathode side to the anode in a Li-ion battery with a redox-flow cathode, a thin mixed Li+/electronic-conducting film has been added to the cathode side of the composite separator. An osmosis issue was minimized by balancing concentrations of solutes on the two sides of the separator where the cathode side contains a soluble redox molecule.

  7. Al2O3 Passivation on c-si Surfaces for Low Temperature Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Janssen, G.J.M.; Burgers, A.R.; Mewe, A.A. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Cianci, E.; Seguini, G.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2,I-20864 Agrate Brianza MB (Italy)

    2013-07-01

    Functional passivation of high resistivity p-type c-Si wafer surfaces was achieved using 10 nm Al2O3 layers and low temperatures for both the thermal ALD process and post-deposition anneal. Effective lifetime values higher than 1 ms were measured at excess carrier density {delta}n=1015 cm{sup -3}. This result was reached in combination with temperatures of 100C and 200C for the Al2O3 layer deposition and anneal, respectively. The Al2O3/c-Si interface was characterized using conductance-voltage and capacitance-voltage measurements. In particular, significantly reduced interface density of the electrically active defects Dit {approx} 2x1010 eV{sup -1}cm{sup -2} was detected, which enabled excellent chemical passivation. The measured density of fixed charges at the interface, Qf, after anneal were in the range +1x10{sup 12} to -1x10{sup 12} cm{sup -2} indicating that both inversion and accumulation conditions result in relevant field-effect passivation using Al2O3 layers and low temperature processes. Numerical simulations on representative test structures show that the uniform Qf effect can be understood in terms of a surface damage region (SDR) present near the interface in combination with asymmetry in the lifetime of holes and electrons in the SDR. The combination of low processing temperatures, thin layers and good passivation properties facilitate a technology for future low temperature solar cell applications.

  8. Current Tunnelling in MOS Devices with Al2O3/SiO2 Gate Dielectric

    Directory of Open Access Journals (Sweden)

    A. Bouazra

    2008-01-01

    Full Text Available With the continued scaling of the SiO2 thickness below 2 nm in CMOS devices, a large direct-tunnelling current flow between the gate electrode and silicon substrate is greatly impacting device performance. Therefore, higher dielectric constant materials are desirable for reducing the gate leakage while maintaining transistor performance for very thin dielectric layers. Despite its not very high dielectric constant (∼10, Al2O3 has emerged as one of the most promising high-k candidates in terms of its chemical and thermal stability as its high-barrier offset. In this paper, a theoretical study of the physical and electrical properties of Al2O3 gate dielectric is reported including I(V and C(V characteristics. By using a stack of Al2O3/SiO2 with an appropriate equivalent oxide thickness of gate dielectric MOS, the gate leakage exhibits an important decrease. The effect of carrier trap parameters (depth and width at the Al2O3/SiO2 interface is also discussed.

  9. Al2O3 sintered pellets as thermoluminescent dosimeters Pastillas sinterizadas de Al2O3 como dosímetros termoluminiscentes

    Directory of Open Access Journals (Sweden)

    Amalia Osorio

    2012-06-01

    Full Text Available Verification of the radiation doses received by the area exposed during medical treatment is essential for assessing any scheme radiotherapy. This workdescribes the characteristic thermoluminescent (TL of sintered Al2O3 pellets, for its use as dosimeter dose low. Sintered Al2O3 pellets under different calcinations with a diameter of 5 mm and a thickness of 1 mm, they were irradiated to different dose using an unit of60 Co Theratron 780Cr in air to ambient temperature. The reading was carried in a Harshaw TLD 4500. Themain dosimetric properties of the material (glow curve, response reproducibility, reutilization, linearity and fading have been studied in detail. The glowcurve of the thin sintered Al2O3 pellets presents an intense peak TL to about 165◦C, which can be used for dosimetry. The results show that the pellets canbe used in quality control programs as thermoluminescent dosimeter in therapeutic dose range. The importance of this work is that the aluminum oxide (α−Al2O3 is a promising alternative in TL materials used for dosimetry “in vivo” within quality control programs.La verificación de la dosis de radiación recibida por el área expuesta durante eltratamiento médico es esencial para la evaluación de cualquier régimen de radioterapia.Este trabajo describe las caracteríısticas termoluminiscentes (TLde pastillas sinterizadas de Al2O3, para su posible uso como dosímetro TL de baja dosis. Pastillas de Al2O3 sinterizadas bajo diferentes condiciones decalcinación, con un diámetro de 5 mm y un espesor de 1 mm, fueron irradiadasa diferentes dosis usando una unidad de 60Co Theratron 780Cr enaire a temperatura ambiente. La lectura se realizó en un Harshaw TLD 4500.Las principales propiedades dosimétricas del material (curva de brillo, reproducibilidadde la respuesta, reutilización, linealidad y decaimiento térmicohan sido estudiadas en detalle. La curva de brillo de las pastillas sinterizadasde Al2O3 presenta un intenso

  10. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    Science.gov (United States)

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption.

  11. Impacts of Heterogeneous TiO2 and Al2O3 Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2016-02-01

    Heterogeneous TiO2 and Al2O3 composites were employed as a mesoporous scaffold in formamidinium lead trihalide (FAPbI3-xClx)-based perovskite solar cells to modify surface properties of a mesoporous layer. It was found that the quality and morphology of the perovskite film were strongly affected by the TiO2/Al2O3 ratio in the mesoporous film. The conversion efficiency of the perovskite solar cell was improved by using a composite of TiO2 and Al2O3 in comparison with TiO2- and Al2O3-based cells, yielding 11.0% for a cell with a 7:3 TiO2/Al2O3 composite. Our investigation shows a change of electron transport path depending on a composition ratio of insulating Al2O3 to n-type semiconducting TiO2 in a mesoporous layer.

  12. Síntese e caracterização do compósito Al2O3 -YAG e do Al2O3-YAG e Al2O3 aditivados com Nb2O5 Synthesis and characterization of Al2O3 -YAG composite and Al2O3-YAG and Al2O3 with Nb2O5 additives

    Directory of Open Access Journals (Sweden)

    R. F. Cabral

    2012-03-01

    Full Text Available O compósito Al2O3-YAG possui alta resistência à corrosão e à fluência em ambientes agressivos, o que permite vislumbrar aplicações bastante atrativas, tais como aletas de motores a jato e de turbinas a gás. Este compósito também apresenta elevada dureza e alta resistência à abrasão possibilitando o seu emprego em blindagens balísticas. Nesse estudo os pós precursores de Al2O3, Y2O3 e Nb2O5 foram homogeneizados em moinho de bolas planetário por 4 h, secados em estufa a 120 ºC por 48 h, desaglomerados e peneirados. O compósito Al2O3-YAG foi produzido a partir das misturas de Al2O3-Y2O3 a 1300 ºC por 2 h. Foram produzidas amostras de Al2O3-YAG, Al2O3-YAG com Nb2O5 e Al2O3 com Nb2O5. Posteriormente os pós foram prensados uniaxialmente a 70 MPa. A sinterização foi feita a 1400 e 1450 ºC. Os pós como recebidos e os processados foram caracterizados quanto à área de superfície específica e ao tamanho médio de partícula. Os materiais sinterizados foram caracterizados por densidade e porosidade aparente pelo método de Arquimedes e avaliados quanto à retração e à perda de massa. Os resultados mostraram que são necessários ainda ajustes nas condições de sinterização da composição Al2O3-YAG com Nb2O5 para melhorar a densificação e a retração, que foram baixas, da ordem de 60 e 3%, respectivamente. O Al2O3 aditivado com Nb2O5, por sua vez, apresentou uma densificação satisfatória, de 96% e uma retração em torno de 15%.The Al2O3-YAG composite exhibits high corrosion and creep resistance in aggressive environments, which provides quite glimpse attractive applications such as jet engine vanes and as gas turbines. This composite also shows high hardness and wear resistance allowing its use in ballistic armor. In this study, precursor powders of Al2O3, Y2O3 and Nb2O5 were homogeneously mixed in a planetary ball mill for 4 h, dried in an oven at 120 ºC for 48 h, sieved and deagglomerated. The Al2O3-YAG composite

  13. High-temperature oxidation behavior of Al2O3/TiAl matrix composite in air

    Institute of Scientific and Technical Information of China (English)

    AI TaoTao; WANG Fen; FENG XiaoMing

    2009-01-01

    The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was in-vestigated at 900℃ in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pro-nounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AIN and TiAI phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900℃ for 120 h is multiple-layered, consisting mainly of an outer TiC2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of AI-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxida-tion scales. Ti ions diffuse outwardly to form the outer TiC2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has s good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is at-tributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particu-lates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2growth rate decreases, which is also beneficial to

  14. HIGH PROTON CONDUCTIVITY OF MESOPOROUS Al2O3

    Science.gov (United States)

    Shen, Hangyan; Maekawa, Hideki; Fujimaki, Yutaka; Kawada, Koutaro; Yamamura, Tsutomu

    Mesoporous Al2O3 was synthesized by the sol-gel method and the pore size was controlled over the range of 3-15nm. Proton conductivity of these samples was examined, which was as high as 0.004 S·cm-1 at 25°C. A systematic dependence of conductivity upon pore size was observed, in which the conductivity increased with increasing the pore size. Meanwhile the conductivity increased with increasing the humidity. Two peaks were observed in 1H NMR spectra, assigned to a "mobile" and an "immobile" proton, respectively. It can be seen that the conductivity of mesoporous-Al2O3 increased with increasing the "mobile" proton concentration. From TG-DTA measurement, proton species were categorized into three groups. It is suggested the group II protons have close relation with the NMR observed "mobile" protons.

  15. Antibiotic properties of Al2O3 doping silver

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-bin; LIU Qing-ju; ZHU Zhong-qi; ZHANG Jin; EU Xing-hui

    2005-01-01

    The preparation technique and properties of Ag-type inorganic antibiotic material carried by Al2 O3 were studied. The results show that the material has good antibiotic and safety properties, the acute toxicity taken by stomata is LD50 > 8 000 mg/kg (little and big white rats), and the normal quantity in subacute toxicity test is the optimal sintering temperature is from 1 000 ℃ to 1 100 ℃.

  16. Anomalous elongation of c-axis of AlN on Al2O3 grown by MBE using NH3-cluster ions

    Science.gov (United States)

    Ichinohe, Yoshihiro; Imai, Kazuaki; Suzuki, Kazuhiko; Saito, Hiroshi

    2016-11-01

    AlN thin films were grown on Al2O3 (0001) by MBE using NH3-clusters ionized with the energy of 4-7 eV/molecule at 960 °C. The a-axis is shrunken and the c-axis is extremely elongated at the initial growth stage (up to the film thickness of about 20 nm). The films thicker than 20 nm have the relaxed a- and c-axis lengths close to the unstrained values, which obey the Poisson relation.

  17. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  18. Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties

    Science.gov (United States)

    Testoni, G. E.; Chiappim, W.; Pessoa, R. S.; Fraga, M. A.; Miyakawa, W.; Sakane, K. K.; Galvão, N. K. A. M.; Vieira, L.; Maciel, H. S.

    2016-09-01

    TiO2/Al2O3 nanolaminates are being investigated to obtain unique materials with chemical, physical, optical, electrical and mechanical properties for a broad range of applications that include electronic and energy storage devices. Here, we discuss the properties of TiO2/Al2O3 nanolaminate structures constructed on silicon (1 0 0) and glass substrates using atomic layer deposition (ALD) by alternatively depositing a TiO2 sublayer and Al2O3 partial-monolayer using TTIP-H2O and TMA-H2O precursors, respectively. The Al2O3 is formed by a single TMA-H2O cycle, so it is a partial-monolayer because of steric hindrance of the precursors, while the TiO2 sublayer is formed by several TTIP-H2O cycles. Overall, each nanolaminate incorporates a certain number of Al2O3 partial-monolayers with this number varying from 10-90 in the TiO2/Al2O3 nanolaminate grown during 2700 total reaction cycles of TiO2 at a temperature of 250 °C. The fundamental properties of the TiO2/Al2O3 nanolaminates, namely film thickness, chemical composition, microstructure and morphology were examined in order to better understand the influence of the number of Al2O3 partial-monolayers on the crystallization mechanism of TiO2. In addition, some optical, electrical and mechanical properties were determined and correlated with fundamental characteristics. The results show clearly the effect of Al2O3 partial-monolayers as an internal barrier, which promotes structural inhomogeneity in the film and influences the fundamental properties of the nanolaminate. These properties are correlated with gas phase analysis that evidenced the poisoning effect of trimethylaluminum (TMA) pulse during the TiO2 layer growth, perturbing the growth per cycle and consequently the overall film thickness. It was shown that the changes in the fundamental properties of TiO2/Al2O3 nanolaminates had little influence on optical properties such as band gap and transmittance. However, in contrast, electrical properties as resistivity

  19. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm-1, above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m2 K GW-1, and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  20. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  1. NO2 adsorption on BaO/Al2O3: the nature of nitrate species.

    Science.gov (United States)

    Szanyi, Janós; Kwak, Ja Hun; Kim, Do Heui; Burton, Sarah D; Peden, Charles H F

    2005-01-13

    Temperature programmed desorption, infrared spectroscopy, and (15)N solid state NMR spectroscopy were used to characterize the nature of the nitrate species formed on Al(2)O(3) and BaO/Al(2)O(3) NO(x) storage/reduction materials. Two distinctly different nitrate species were found: surface nitrates that are associated with a monolayer BaO on the alumina support, and a bulk-like nitrate that forms on this thin BaO layer. The surface nitrates desorb as NO(2) at lower temperatures than do the bulk-like nitrates, which decompose as NO+O(2) at higher temperatures. The amount of NO(x) stored in the monolayer nitrate is proportional to the surface area of the catalyst, while that in the bulk nitrate increases with BaO coverage.

  2. Band bending and alignment at the spinel/perovskite γ−Al2O3/SrTiO3 heterointerface

    DEFF Research Database (Denmark)

    Schütz, P.; Pfaff, F.; Scheiderer, P.;

    2015-01-01

    We present a comprehensive study of the band bending and alignment at the interface of γ -Al2O3/SrTiO3 heterostructures by hard x-ray photoelectron spectroscopy. Ourmeasurements find no signs for a potential gradient within the polar γ -Al2O3 film as predicted by the basic electronic reconstruction...

  3. Activity Enhancement of Pt/Ba/Al2O3 Mixed with Mn/Ba/Al2O3 for NOx Storage-reduction by Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Jian Hua XIAO; Xue Hui LI; Sha DENG; Fu Rong WANG; Le Fu WANG

    2006-01-01

    Mn/Ba/Al2O3 catalyst for NO oxidation-storage and Pt/Ba/Al2O3 catalyst mixed with Mn/Ba/Al2O3 for NOx storage-reduction by hydrogen were investigated. The results showed that Mn/Ba/Al2O3 had large nitrogen oxides storage capacity (397.9 μmolg-1) under lean bum condition.When Pt/Ba/Al2O3 catalyst was mixed with Mn/Ba/Al2O3 in equal weight proportion, the NOx conversion increased between 250 ℃ and 500 ℃ under the dynamic lean-rich bum conditions, and the maximum NOx conversion increased from 95.4% to 98.2%. Mn/Ba/Al2O3 has promoted NOx storing in the lean stage and improved NOx reduction efficiency in the rich stage, these might result in higher NOx conversion over the low Pt loading content catalyst.

  4. Al2O3-based nanofluids: a review.

    Science.gov (United States)

    Sridhara, Veeranna; Satapathy, Lakshmi Narayan

    2011-07-16

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

  5. Microstructure of the Al2O3/Al2O3 Joint Brazed with Cu-Zn-Ti Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Hongyuan FANG; Jianguo YANG; Xiuyu YU

    2001-01-01

    Microstructure and interface reactions of Al2O3 joints brazed by Cu-Zn-Ti alloy were studied by using SEM, EDS and XRD. The effects of brazing temperature and Ti content on interfacial reactions and microstructure were investigated, and the action of adding Zn into brazing alloy was also studied. TiO, Ti3Al and CuTi were formed at the interface of ceramics and the filler metal, while CuTi, Cu3Ti and α-Cu were found in the brazing. The thickness of the reaction layer increased with increasing of brazing temperature, under the same brazing process, the thickness increased with the Ti content.

  6. Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics

    Science.gov (United States)

    Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men

    2016-10-01

    Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).

  7. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    Science.gov (United States)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  8. Storage-Reduction of NOx over Combined Catalysts of Pt/Ba/Al2O3-Mn/Ba/Al2O3: Carbon Monoxide as Reductant

    Institute of Scientific and Technical Information of China (English)

    Sha Deng; Xuehui Li; Jianhua Xiao; Furong Wang; Lefu Wang

    2007-01-01

    Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%.Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.

  9. Characteristics of ethylene glycol-Al2O3 nanofluids prepared by utilizing Al2O3 nanoparticles synthesized from local bauxite

    Science.gov (United States)

    Syarif, D. G.

    2016-11-01

    Nanoparticles of Al2O3 have been synthesized from local bauxite mineral, and ethylene glycol (EG)-Al2O3 nanofluids have been prepared. Powder Al(OOH) was extracted from local bauxite using bayer process, and heated at 600°C for 3 hours to get Al2O3 nanoparticles. XRD analyses showed that the Al2O3 nanoparticles crystallizes in γ-Al2O3 with crystallite size of 4.12 nm. The specific surface area of the ACO3 nanoparticles was 296.72 m2/gr. Viscosity of the EG-Al2O3 nanofluids was temperature dependent, and decreased with increasing temperature. The viscosity of the nanofluids increased with the concentration of the Al2O3 nanoparticles. Meanwhile, Critical Heat Flux (CHF) enhancement of the nanofluids increased with the concentration of the Al2O3 nanoparticles. The largest CHF enhancement was 54% at Al2O3 concentration of 0.095 vol %.

  10. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI; Yanrong

    2004-01-01

    [1]Wang En′ge, Atomic-scales study of kinetics in film growth, Progress in Physics (in Chineses), 2003, 23(1): 1-61.[2]Harrison, N. M., First principles simulation of surfaces and interfaces, Computer Physics Communications, 2001, 137: 59-73.[3]Erwin, S. C., Lee, S. H., Scheffler, M., First principles study of nucleation, growth, and interface structure of Fe/GaAs, Phys. Rev., 2002, B65(10): 205422.[4]Yang, C., Li, Y. R., Computer simulation and modeling of thin film growth, Gongneng Cailiao, 2003, 34(3): 247-249.[5]Ohkubo, I., Matsumoto, Y., Ohtomo, A. et al., Investigation of ZnO/sapphire interface and formation of ZnO nanocrystalline by laser MBE, Appl. Surf. Sci., 2000, 159-160: 514-519.[6]Ohnishi, T., Ohtomo, A., Ohkuboa, I. et al., Coaxial impact-collision ion scattering spectroscopy analysis of ZnO thin films and single crystals, Materials Science and Engineering, 1998, B56: 256-262.[7]Millon, E., Albert, O., Loulergue, J. C. et al., Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition, J. App. Phys., 2000, 88: 6937-6939.[8]Ohkubo, I., Ohtomo, A., Ohnishi, T. et al., In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire, Surf. Sci., 1999, 443: L1043-L1048.[9]Yang, C., Li, Y. R., Xue, W. D. Et al., Study on the structure and energy of the (0001) surface of α- Al2O3(0001) substrate, Acta Phys. Sin. (in Chinese), 2003, 52(9): 2268-2273.[10]Robert, W. C., Melvin, A. J., William, B. H., CRC Handbook of Chemistry and Physics, Florida: CRC Press Inc., 1993, 95-100.[11]Hanchen, H., Gilmer, G. H., Multi-lattice Monte Carlo model of thin films, Journal of Computer-Aided Materials Design, 1999, 6: 117-127.[12]Car, R., Parrinello, M., Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 1985, 55: 2471-2474.[13]Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev., 1990, B41

  11. A study on Al2O3 passivation in GaN MOS-HEMT by pulsed stress

    Institute of Scientific and Technical Information of China (English)

    Yue Yuan-Zheng; Hao Yue; Zhang Jin-Cheng; Feng Qian; Ni Jin-Yu; Ma Xiao-Hua

    2008-01-01

    This paper studies systematically the drain current collapse in AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) by applying pulsed stress to the device. Low-temperature layer of Al2O3 ultrathin film used as both gate dielectric and surface paasivation layer was deposited by atomic layer deposition (ALD).For HEMT, gate turn-on pulses induced large current collapse. However, for MOS-HEMT, no significant current collapse was found in the gate turn-on pulsing mode with different pulse widths, indicating the good passivation effect of ALD Al2O3. A small increase in Id in the drain pulsing mode is due to the relieving of self-heating effect. The comparison of synchronously dynamic pulsed Id - Vds characteristics of HEMT and MOS-HEMT further demonstrated the good passivation effect of ALD Al2O3.

  12. Mechanical properties of thin film Parylene-metal-Parylene devices

    Directory of Open Access Journals (Sweden)

    Curtis Dixon Lee

    2015-09-01

    Full Text Available Structures and testing methods for measuring the adhesion strength, minimum bending diameter, and bending fatigue performance of thin film polymer electronic architectures were developed and applied to Parylene-metal-Parylene systems with and without the moisture barrier Al2O3 (deposited using atomic layer deposition (ALD. Parylene-metal-Parylene interfaces had the strongest average peel test strength and Parylene-Parylene interfaces had the weakest peel. Layers of ALD Al2O3 deposited within the device increased the average peel strength for Parylene-Parylene interfaces when combined with silane A-174, but did not increase the Parylene-metal-Parylene interface. Metal traces in the middle of 24 µm thick Parylene-metal-Parylene devices had a minimum bending diameter of ~130 µm before breaking and being measured as an open circuit. The addition of one layer of Al2O3 above the traces allowed them to be completely creased when bent away from the Al2O3 layer without producing an open circuit, but increased the minimum bending diameter to ~450 µm when bent away from the Al2O3. Although fatigue testing produced cracks in all devcies after 100k bends, the insulation of the Parylene-metal-Parylene devices without Al2O3 performed well with electrochemical impedance spectroscopy (EIS showing only small decreases in impedance magnitude and small increases of impedance phase at low frequencies. However, devices with Al2O3 failed during EIS due to Al2O3 being deteriorated by water.

  13. Ni/Al2O3 catalysts for CO methanation: Effect of Al2O3 supports calcined at different temperatures

    Institute of Scientific and Technical Information of China (English)

    Jiajian; Gao; Chunmiao; Jia; Jing; Li; Meiju; Zhang; Fangna; Gu; Guangwen; Xu; Ziyi; Zhong; Fabing; Su

    2013-01-01

    The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas(SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures(600–1200 C). CO methanation reaction was carried out in the temperature range of 300–600 C at different weight hourly space velocities(WHSV = 30000 and 120000 mL·g-1h-1) and pressures(0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 C(Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures(600, 800 and 1000 C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.

  14. Abrasive wear characteristics and mechanisms of Al2O3/PA1010 composite coatings

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2004-01-01

    The abrasive wear characteristics of Al2O3/PA1010 composite coatings on the surface of quenched and low-temperature temper steel 45 were tested on the mmplate abrasive wear testing machine and the same uncoated steel 45 was used as a reference material. Experimental results showed that the abrasive wear resistance of Al2O3//PAl010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PAl010 composite coatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA l010 composite coatings. By treating the surface of Al2O3 particles with a suitable bonding agent, the distribution of Al2O3 particles in matrix PAl010 is more homogeneous and the bonding state between Al2O3 particles and matrix PAl010 is better. Therefore, the ml2O3 particles in Al2O3/PA1010 composite coatings make the Al2O3/PAl010 composite coatings have better abrasive wear resistance than PA1010 coatings. The wear resistance of Al2O3/PA 1010 composite coatings is about 45% compared with that of steel 45.

  15. Influence of the Oxidant on the Chemical and Field-Effect Passivation of Si by ALD Al2O3

    NARCIS (Netherlands)

    Dingemans, G.; Terlinden, N. M.; Pierreux, D.; Profijt, H. B.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Differences in Si surface passivation by aluminum oxide (Al2O3) films synthesized using H2O and O-3-based thermal atomic layer deposition (ALD) and plasma ALD have been revealed. A low interface defect density of D-it = similar to 1011 eV(-1) cm(-2) was obtained after annealing, independent of the o

  16. Microstructural development of protective Al2O3 scales

    Science.gov (United States)

    Smialek, J. L.

    1984-01-01

    Microstructural characteristics of Al2O3 scales grown as protective coatings on NiCrAl alloys used in jet engines are described. The alloys were pure or doped with 0.3 percent Zr or Y and oxidized in 1 atm air at 1100 C for 0.1, 1 or 20.0 hr. The scales were then examined under a microscope. Transient epitaxial scales, formed during the 0.1 hr treatment and containing Ni, Cr and Al, consisted of a mosaic of subgrains and precipitates of different phases. The Y and Zr dopants had no effect on the nucleation site locations. The appearance of intergranular porosity at 0.1 hr was exacerbated after the 1 hr treatment. A bimodal void distribution appeared after 20 hr, when no porosity was evident. The detection of local areas of preferred orientation is taken as a spur to further studies of scale growth to gain control of the grain size or even to produce single crystal scales.

  17. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors

    Science.gov (United States)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y.

    2013-08-01

    In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO3 films with thin Al2O3 buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO3/ALD-Al2O3/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO3/ALD-Al2O3 structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO3 is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO3/ALD-Al2O3/H-diamond MOS diode is smaller than 10-8 A cm-2 at gate bias from -4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from -3.6 ± 0.1 to -5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are -7.5 mA mm-1 and 2.3 ± 0.1 mS mm-1, respectively. The enhancement mode SD-LaAlO3/ALD-Al2O3/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

  18. Effect of Al2O3 on Structure and Wearability of Composite Coating

    Institute of Scientific and Technical Information of China (English)

    DING Hong-yan; ZHANG Yue

    2004-01-01

    The composite coating was prepared by thermal spray welding after making composite powder, which is composed of Ni-based self-melted alloy and Al2O3 ceramic powder including nano, sub-micron and micron powders. The influences of contents and sizes of Al2O3 on the structure and wearability were investigated. The results show that the wear resistance of the coating would be increased greatly by adding Al2O3, but the spray weldability decreases with increasing Al2O3 content. So there is an optimal content of Al2O3 powder. The composite coating with Al2O3 nano or sub-micron powder of 0.5 % has the best abrasive resistance, while the optimal content of Al2O3 micron powder is 1%.

  19. Growth-Rate Induced Epitaxial Orientation of CeO2 on Al2O3(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Kuchibhatla, Satyanarayana V N T; Nachimuthu, Ponnusamy; Gao, Fei; Jiang, Weilin; Shutthanandan, V.; Engelhard, Mark H.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2009-05-19

    High-quality ceria (CeO2) films were grown on sapphire (Al2O3) (0001) substrates using oxygen plasma-assisted molecular beam epitaxy. The epitaxial orientation of the ceria films has been found to be (100) and (111) at low (< 8 Å/min) and higher growth rates (up to ~30 Å/min), respectively. Evidence shows that CeO2 (100) film grows as three-dimensional islands, while CeO2 (111) proceeds with layered growth. Three in-plane domains at 30° to each other are observed in the CeO2 (100), which is attributed to the close match of the oxygen sub-lattices in the film and substrate that has a three-fold symmetry. Molecular dynamic simulations have further confirmed that the CeO2 film retains (100) orientation on the Al2O3 (0001) substrate.

  20. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    Science.gov (United States)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  1. Dissolution mechanism of Al2O3 in refining slags containing Ce2O3

    Directory of Open Access Journals (Sweden)

    Wang L.J.

    2016-01-01

    Full Text Available In the present work, the rate of dissolution of Al2O3 rod in CaO-SiO2-Al2O3 and CaO-SiO2-Al2O3-Ce2O3 slags were carried out in the temperature range of 1793 K (1520ºC - 1853 K (1580ºC under static conditions. The cross section of the rod and the boundary layers were identified and analyzed by SEM-EDS. The dissolution of Al2O3 was favored with the increasing CaO/Al2O3 ratio, elevating temperatures as well as the addition of Ce2O3. An intermediate product 3CaO5Al2O3Ce2O3 was detected. The mechanism of dissolution of Al2O3 in the Ce2O3 containing slag were also proposed as three steps involved: 1 the formation of calcium aluminates CaO•Al2O3 at the interface 2 the formation of 3CaO5Al2O3Ce2O3 as the reaction progresses; and 3 the dissolution of 3CaO5Al2O3Ce2O3 into the slag.

  2. Directed laser processing of compacted powder mixtures Al2O3-TiO2-Y2O3

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2013-01-01

    Full Text Available The phase formation, microstructure and surface texture of laser treated ternary powder mixtures of Al2O3-TiO2-Y2O3 had been studied. Rapid high temperature heating and subsequent rapid cooling due to the directed movement of the laser beam forms concave ceramic tracks. Phase composition and microstructure of the tracks depends on the Al2O3 content and the TiO2/Y2O3 ratio of the initial mixtures. The main phases observed are Y3Al5O12, Y2Ti2O7, Al2O3 and Al2TiO5. Due to the temperature gradient in the heating zone, complex layered structures are formed. The tracks consist of three main layers: a thin surface layer, a layer of crystallization products of eutectic alloys, and a lower sintered layer. The thickness of the crystallization layer and the shrinkage of the irradiation zone depend on the amount of Y3Al5O12 and Al2O3 crystallized from the melt.

  3. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3

    Science.gov (United States)

    Hoex, B.; Gielis, J. J. H.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-12-01

    Al2O3 is a versatile high-κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Qf of up to 1013 cm-2 present in the Al2O3 film at the interface with the underlying Si substrate. The negative polarity of Qf in Al2O3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Qf2, the high Qf in Al2O3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes.

  4. Microstructures and properties of graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-hong; LIU Yong-bing; SONG Qi-fei; AN Jian

    2006-01-01

    Graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites were fabricated by perform squeeze-infiltration route. The effects of the volume of graphite particles on the microstructure, mechanical properties and tribological behavior were investigated under the conditions of constant size of graphite particle and volume of Al2O3 short fiber. The results reveal that the uniform distribution of the reinforced graphite particles and Al2O3 short fiber can be obtained by this technique, and they have strong bonding with the metal matrix. Increasing graphite volume results in decrease in hardness, the ultimate tensile strength whereas the Al2O3 short fiber makes contribution to the increase in hardness of the composite. The composite exhibits good wear resistance, small wear mass loss and low coefficient of friction as compared with the metal matrix. The wear mechanisms transit from oxidation wear, abrasion wear into delamination wear as the applied load is increased, and a film of lubricant covering almost entire surface of specimen, is found to be formed, which separates the wear surfaces from metal to metal contact and thus improves the tribological properties.

  5. AlGaN/GaN high electron mobility transistor with Al2O3+BCB passivation

    Institute of Scientific and Technical Information of China (English)

    张昇; 马晓华; 孙兵; 刘新宇; 魏珂; 余乐; 刘果果; 黄森; 王鑫华; 庞磊; 郑英奎; 李艳奎

    2015-01-01

    In this paper, A12O3 ultrathin film used as the surface passivation layer for AlGaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al2O3+BCB passivation. For the Al2O3+BCB passivated device with a 0.7 µm gate, the value of fmax reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The fmax/ft ratio (≥4) is also improved after Al2O3+BCB passivation. The capacitance–voltage (C–V ) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states (on the order of magnitude of 1010 cm−2) than that obtained at commonly studied SiN HEMT.

  6. A study of GaN MOSFETs with atomic-layer-deposited Al2O3 as the gate dielectric

    Institute of Scientific and Technical Information of China (English)

    Feng Qian; Xing Tao; Wang Qiang; Feng Qing; Li Qian; Bi Zhi-Wei; Zhang Jin-Cheng; Hao Yue

    2012-01-01

    Accumulation-type GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with atomic-layerdeposited Al2O3 gate dielectrics are fabricated.The device,with atomic-layer-deposited Al2O3 as the gate dielectric,presents a drain current of 260 mA/mm and a broad maximum transconductance of 34 mS/mm,which are better than those reported previously with Al2O3 as the gate dielectric.Furthermore,the device shows negligible current collapse in a wide range of bias voltages,owing to the effective passivation of the GaN surface by the Al2O3 film.The gate drain breakdown voltage is found to be about 59.5 V,and in addition the channel mobility of the n-GaN layer is about 380 cm2/Vs,which is consistent with the Hall result,and it is not degraded by atomic-layer-deposition Al2Oa growth and device fabrication.

  7. Low-temperature roll-to-roll atmospheric atomic layer deposition of Al₂O₃ thin films.

    Science.gov (United States)

    Ali, Kamran; Choi, Kyung-Hyun

    2014-12-02

    The Al2O3 thin films deposition through conventional ALD systems is a well-established process. The process under low temperatures has been studied by few research groups. In this paper, we report on the detailed study of low-temperature Al2O3 thin films deposited via a unique in-house built system of roll-to-roll atmospheric atomic layer deposition (R2R-AALD) using a multiple-slit gas source head. Al2O3 thin films have been grown on polyethylene terephthalate substrates under a very low-temperature zone of room temperature to 50 °C and working pressure of 750 Torr, which is very near to atmospheric pressure (760 Torr). Al2O3 thin films with superior properties were achieved in the temperature range of the ALD window. An appreciable growth rate of 0.97 Å/cycle was observed for the films deposited at 40 °C. The films have good morphological features with a very low average arithmetic roughness (Ra) of 0.90 nm. The films also showed good chemical, electrical, and optical characteristics. It was observed that the film characteristics improve with the increase in deposition temperature to the range of the ALD window. The fabrication of Al2O3 films was confirmed by X-ray photoelectron spectroscopy (XPS) analysis with the appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74, 119, and 531 eV, respectively. The chemical composition was also supported by the Fourier transform infrared spectroscopy (FTIR). The fabricated Al2O3 films demonstrate good insulating properties and optical transmittance of more than 85% in the visible region. The results state that Al2O3 thin films can be effectively fabricated through the R2R-AALD system at temperatures as low as 40 °C.

  8. Al2O3层状复合陶瓷的研究进展%PROGRESS IN RESEARCH ON LAMINATED Al2O3 CERAMIC MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    孙媛媛; 王芬; 周彦昭

    2004-01-01

    层状复合是目前增韧Al2O3陶瓷的有效途径,从层状复合材料的成型方法、增韧机制、结构设计等方面,论述了Al2O3体系层状复合陶瓷的研究进展及目前存在的问题.

  9. Sliding wear of ZrO2-Al2O3 composite ceramics

    NARCIS (Netherlands)

    He, Y.J.; Winnubst, A.J.A.; Burggraaf, A.J.; Verweij, H.; Varst, van de P.G.T.; With, de G.

    1997-01-01

    The friction and wear behaviour of two ZrO2-Al2O3 composite materials, ADZ (20 wt% Al2O3 dispersed in yttria-doped ZrO2 matrix) and ZTA (Al2O3-15 wt% ZrO2), were investigated. Sliding wear tests were carried out on these materials under dry conditions using a ball-on-plate configuration. The effects

  10. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    Science.gov (United States)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  11. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition

    Science.gov (United States)

    Cheng, Chih-Yi; Mao, Ming-Hua

    2016-08-01

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al2O3 thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al2O3 passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al2O3 protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  12. Cerium and Lanthanum Modified Pd/Al2O3 Catalysts for Methanol Decomposition

    Institute of Scientific and Technical Information of China (English)

    杨成; 任杰; 孙予罕

    2001-01-01

    CeO2 improves the activity and selectivity of Pd/Al2O3 catalyst for methanol decomposition. The interaction between Pd and CeO2 was then proposed to result in the promoting effect. The selectivity of CO and H2 is significantly improved by addition of La2O3 to either Pd/Al2O3 or Pd/CeO2/Al2O3 catalysts. Moreover, a synergistic promotion between CeO2 and La2O3 on γ-Al2O3 supported Pd catalysts was observed for the catalytic activity towards methanol decomposition into CO and H2.

  13. An Investigation of Laser Assisted Machining of Al_2O_3 Particle Reinforced Aluminum Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Al 2O 3 particles reinforced aluminum matrix composite (Al 2O 3p/Al) are more and more widely used for their excellent physical and chemical properties. However, their poor machinability leads to severe tool wear and bad machined surface. In this paper laser assisted machining is adopted in machining Al 2O 3p/Al composite and good result was obtained. The result of experiment shows in machining Al 2O 3p/Al composites the cutting force is reduced in 30%~50%, the tool wear is reduced in 20%~30% an...

  14. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)x(Al2O3)1-x as potential gate dielectrics for GaN/AlxGa1-xN/GaN high electron mobility transistors

    Science.gov (United States)

    Partida-Manzanera, T.; Roberts, J. W.; Bhat, T. N.; Zhang, Z.; Tan, H. R.; Dolmanan, S. B.; Sedghi, N.; Tripathy, S.; Potter, R. J.

    2016-01-01

    This paper describes a method to optimally combine wide band gap Al2O3 with high dielectric constant (high-κ) Ta2O5 for gate dielectric applications. (Ta2O5)x(Al2O3)1-x thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta2O5 molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al2O3 to 4.6 eV for pure Ta2O5. The dielectric constant calculated from capacitance-voltage measurements also increases linearly from 7.8 for Al2O3 up to 25.6 for Ta2O5. The effect of post-deposition annealing in N2 at 600 °C on the interfacial properties of undoped Al2O3 and Ta-doped (Ta2O5)0.12(Al2O3)0.88 films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al2O3/GaN-HEMT and (Ta2O5)0.16(Al2O3)0.84/GaN-HEMT samples increased by ˜1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al2O3 can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents.

  15. Pulsed laser deposition of permanent magnetic Nd2Fe14B thin films

    NARCIS (Netherlands)

    Geurtsen, A.J.M.; Kools, J.C.S.; Wit, L.; Lodder, J.C.

    1996-01-01

    Pulsed Laser Deposition (PLD) is applied to deposit thin (thickness typically 100 nm) films of Nd2Fe14B. It is shown that films can be grown which have the desired composition and phase. Nd2Fe14B grows with the c-axis along the film normal on 110 Al2O3 single crystal substrates covered with a Ta lay

  16. Surface Oxidation of Al2O3/SiC Nanocomposite: Phase Transformation and Microstructure

    Institute of Scientific and Technical Information of China (English)

    Cai Shu; Peng Zhenzhen; Feng Jie; Lu Feng

    2005-01-01

    The surface oxidation behavior of pressureless sintered Al2O3/SiC nanocomposite was studied from 1000 to 1400 ℃ for more than 10 h in air. Weight gain during the process of heat treatment was measured by TG analysis. Phase transformation and microstructure changes of these specimens due to oxidation were investigated with X-ray diffraction (XRD), SEM and EDX technology. Thermogravimetric analysis show that the weight gain as a result of oxidation of SiC become significant above 1200 ℃. In the range of 1000~1300 ℃, the SiC grits are usually coated with a layer of amorphous silica after oxidation. Above 1300 ℃, the amorphous silica reacted with alumina matrix and formed mullite or crystallized into cristobalite. The rate of oxidation depends on the formation of dense cristobalite film. Large amount of needle-like mullite and alumina crystals are formed on the surface after oxidation at 1400 ℃.

  17. MgAl2O4–-Al2O3 solid solution interaction: mathematical framework and phase separation of -Al2O3 at high temperature

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2011-07-01

    Although existence of MgAl2O4–-Al2O3 solid solution has been reported in the past, the detailed interactions have not been explored completely. For the first time, we report here a mathematical framework for the detailed solid solution interactions of -Al2O3 in MgAl2O4 (spinel). To investigate the solid solubility of -Al2O3 in MgAl2O4, Mg–Al spinel (MgO–Al2O3; = 1, 1.5, 3, 4.5 and an arbitrary high value 30) precursors have been heat treated at 1000°C. Presence of only non-stoichiometric MgAl2O4 phase up to = 4.5 at 1000°C indicates that alumina (as -Al2O3) present beyond stoichiometry gets completely accommodated in MgAl2O4 in the form of solid solution. → alumina phase transformation and its subsequent separation from MgAl2O4 has been observed in the Mg–Al spinel powders ( > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution interactions (substitution of Mg2+ ions by Al3+ ions) with -Al2O3. It is suggested that combination of unit cells of MgAl2O4 takes part in the interactions when > 5 (MgO–Al2O3).

  18. Oxidation of Al2O3-30%TiCN-0.2%Y2O3 Composite

    Institute of Scientific and Technical Information of China (English)

    Li Xikun; Qiu Guanming; Xiu Zhimeng; Sun Xudong; Yan Changhao; Dai Shaojun

    2005-01-01

    The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.

  19. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Science.gov (United States)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  20. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Directory of Open Access Journals (Sweden)

    Michail eTsampas

    2013-08-01

    Full Text Available A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  1. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  2. Integrated Al2O3:Er3+ amplifiers: The impact of fast spectroscopic quenching processes

    NARCIS (Netherlands)

    Agazzi, L.; Bradley, J.D.B.; Wörhoff, K.; Pollnau, M.

    2011-01-01

    We report a number of recently demonstrated integrated Al2O3:Er3+ devices and present spectroscopic investigations revealing the presence of a fast quenching mechanism – undetected in typical luminescence decay measurements – which limits the Al2O3:Er3+ amplifier performance.

  3. Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC

    Institute of Scientific and Technical Information of China (English)

    Wang Yi-Yu; Shen Hua-Jun; Bai Yun; Tang Yi-Dan; Liu Ke-An; Li Cheng-Zhan; Liu Xin-Yu

    2013-01-01

    High-temperature annealing of the atomic layer deposition (ALD) of Al2O3 films on 4H-SiC in O2 atmosphere is studied with temperature ranging from 800 ℃ to 1000 ℃.It is observed that the surface morphology of Al2O3 films annealed at 800 ℃ and 900 ℃ is pretty good,while the surface of the sample annealed at 1000 ℃ becomes bumpy.Grazing incidence X-ray diffraction (GIXRD) measurements demonstrate that the as-grown films are amorphous and begin to crystallize at 900 ℃.Furthermore,C-V measurements exhibit improved interface characterization after annealing,especially for samples annealed at 900 ℃ and 1000 ℃.It is indicated that high-temperature annealing in O2 atmosphere can improve the interface of Al2O3/SiC and annealing at 900 ℃ would be an optimum condition for surface morphology,dielectric quality,and interface states.

  4. Investigation of a 4H-SiC metal-insulation-semiconductor structure with an Al2O3/SiO2 stacked dielectric

    Institute of Scientific and Technical Information of China (English)

    Tang Xiao-Yan; Song Qing-Wen; Zhang Yu-Ming; Zhang Yi-Men; Jia Ren-Xu; Lü Hong-Liang; Wang Yue-Hu

    2012-01-01

    Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as a high-k gate dielectric grown on 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper.The metal-insulation-semiconductor (MIS) capacitors,respectively with different gate dielectric stacks (Al2O3/SiO2,Al2O3,and SiO2) are fabricated and compared with each other.The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field (≥12 MV/cm)comparable to SiO2,and a relatively low gate leakage current of 1 × 10-7 A/cm2 at an electric field of 4 MV/cm comparable to Al2O3.The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage,indicating a less effective charge and slow-trap density near the interface.

  5. Microstructure of Al2O3/SiO2 ceramic core nano-composites

    Institute of Scientific and Technical Information of China (English)

    赵红亮; 翁康荣; 关绍康; 楼琅洪; 李英敖; 赵惠田; 胡壮麒

    2004-01-01

    Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.

  6. Photochemistry of the α-Al2O3-PETN Interface

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12 and a wide band gap aluminum oxide (α-Al2O3 substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surface—PETN transitions. We predict the low energy α-Al2O3 F0-center—PETN transition, producing the excited triplet state, and α-Al2O3 F0-center—PETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. The feasible mechanism of the photodecomposition is proposed.

  7. Microstructure and Properties of SCE-Al2O3/PES-MBAE Composite

    Directory of Open Access Journals (Sweden)

    Yufei Chen

    2014-01-01

    Full Text Available SCE-Al2O3 was the nano-Al2O3 modified by supercritical ethanol and the surface of SCE-Al2O3 was coated with active group. 4,4′-diaminodiphenylmethane bismaleimide (MBMI was used as matrix; 3,3′-diallyl bisphenol A (BBA and bisphenol-A diallyl ether (BBE were used as reactive diluent, polyethersulfone (PES as toughening agent, and SCE-Al2O3 as modifier; SCE-Al2O3/PES-MBAE nanocomposite was prepared through in situ sol-gel method. The mechanism of composite toughened by PES was observed and analyzed. FTIR indicated that the reaction between MBMI and allyl compound occurred and SCE-Al2O3 had doped into the polymer matrix. SEM showed that PES particle was inlaid in matrix and presented as a two-phase structure in matrix. The heat resistance, dielectric properties, and mechanical properties of SCE-Al2O3/PES-MBAE nanocomposites were evaluated. The results showed that with the incorporation of PES, although the toughness of the material improved, the heat resistance and dielectric properties of material declined, meanwhile. The adulteration of SCE-Al2O3 could remedy the harmful effect caused by PES, while the content of SCE-Al2O3 was reasonable. The decomposition temperature, dielectric constant, and dielectric loss of composite were 441.23°C, 3.63 (100 Hz, and 1.52 × 10−3 (100 Hz; the bending strength and impact strength were 129.22 MPa and 13.19 kJ/mm2, respectively, when the content of SCE-Al2O3 was 3 wt% and PES was 5 wt%.

  8. Robust Low Voltage Program-Erasable Cobalt-Nanocrystal Memory Capacitors with Multistacked Al2O3/HfO2/Al2O3 Tunnel Barrier

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhong-Wei; GOU Hong-Yan; HUANG Yue; SUN Qing-Qing; DING Shi-Jin; ZHANG Wei; ZHANG Shi-Li

    2009-01-01

    An atomic-layer-deposited Al2O3/HfO2/Al2O3 (A/H/A) tunnel barrier is investigated for Co nanocrystal memory capacitors. Compared to a single Al2O3 tunnel barrier, the A/H/A barrier can significantly increase the hysteresis window, i.e., an increase by 9 V for ±12 V sweep range. This is attributed to a marked decrease in the energy barriers of charge injections for the A/H/A tunnel barrier. Further, the Co-nanocrystal memory capacitor with the A/H/A tunnel barrier exhibits a memory window as large as 4.1 V for 100 /us program/erase at a low voltage of ±7 V, which is due to fast charge injection rates, i.e., about 2.4 × 1016 cm-2s-1 for electrons and 1.9×1016 cm-2s-1 for holes.

  9. Passivation of Al2O3 / TiO2 on monocrystalline Si with relatively low reflectance

    Science.gov (United States)

    Lu, Chun-Ti; Huang, Yu-Shiang; Liu, C. W.

    2016-06-01

    Al2O3/TiO2 stack layers deposited by the plasma-enhanced atomic layer deposition enhance photoluminescence intensity by reducing effective surface recombination velocities on both n-type and p-type monocrystalline Si. The field effect of negative oxide charges in the dielectrics is responsible for the low effective surface recombination velocity. The dependence of the effective surface recombination velocity on the photoluminescence intensity is investigated by the 2D numerical simulation. The bilayer stacks without texture also reduce the AM1.5-weighted front side reflectance to 11.8%. The field-effect passivation of Al2O3/TiO2 films is further improved by a forming gas annealing due to the additional increase of the negative oxide charge density.

  10. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

    Directory of Open Access Journals (Sweden)

    Gema López

    2013-11-01

    Full Text Available The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx stacks on both p-type and n-type crystalline silicon (c-Si substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD to form anti-reflection coating (ARC stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300–1200 nm without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (Seff,max was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm.

  11. Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and α-Si layers were deposited by magnetron sputtering respectively and annealed at 480°C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between γ-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of γ-Al2O3, which was formed at the early stage of annealing.

  12. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  13. Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study.

    Science.gov (United States)

    Zhu, Hui; McDonnell, Stephen; Qin, Xiaoye; Azcatl, Angelica; Cheng, Lanxia; Addou, Rafik; Kim, Jiyoung; Ye, Peide D; Wallace, Robert M

    2015-06-17

    In situ "half cycle" atomic layer deposition (ALD) of Al2O3 was carried out on black phosphorus ("black-P") surfaces with modified phosphorus oxide concentrations. X-ray photoelectron spectroscopy is employed to investigate the interfacial chemistry and the nucleation of the Al2O3 on black-P surfaces. This work suggests that exposing a sample that is initially free of phosphorus oxide to the ALD precursors does not result in detectable oxidation. However, when the phosphorus oxide is formed on the surface prior to deposition, the black-P can react with both the surface adventitious oxygen contamination and the H2O precursor at a deposition temperature of 200 °C. As a result, the concentration of the phosphorus oxide increases after both annealing and the atomic layer deposition process. The nucleation rate of Al2O3 on black-P is correlated with the amount of oxygen on samples prior to the deposition. The growth of Al2O3 follows a "substrate inhibited growth" behavior where an incubation period is required. Ex situ atomic force microscopy is also used to investigate the deposited Al2O3 morphologies on black-P where the Al2O3 tends to form islands on the exfoliated black-P samples. Therefore, surface functionalization may be needed to get a conformal coverage of Al2O3 on the phosphorus oxide free samples.

  14. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima

    2012-01-31

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  15. 高耐用性轻质Al_2O_3-MgO-C砖

    Institute of Scientific and Technical Information of China (English)

    王振良; 吕冰; 王守权

    2011-01-01

    Al2O3-MgO-C砖广泛用于钢包内衬的金属线。品川白耐火材料有限公司开发出了一种高耐用性轻质Al2O3-MgO-C砖——CALEAD。CALEAD的质量比普通Al2O3-MgO-C砖低10%,导热系数和体积密度均低于普通产品,其他性能基本相同。

  16. Finite element analysis of WC-Al2O3 composites

    Science.gov (United States)

    Patel, Satyanarayan; Vaish, Rahul

    2014-02-01

    Object oriented finite element analysis (OOF2) is used to estimate the thermal and mechanical properties of WC-Al2O3 composites. In the present work, five compositions of 10%, 20%, 30%, 40% and 50% Al2O3 (by volume) are studied. Young's modulus, thermal conductivity and thermal expansion coefficient are estimated using OOF2 and compared with other known analytical methods. Stress and strain contours are plotted to study the thermal and mechanical behavior of composites. It is found that the stresses are largely concentrated at the interfaces of the WC-Al2O3 phases.

  17. Proactive control of the metal-ceramic interface behavior of thermal barrier coatings using an artificial alpha-Al2O 3 layer

    Science.gov (United States)

    Su, Yi-Feng

    The reliability and life of thermal barrier coatings (TBCs) used in the hottest sections of advanced aircraft engines and power generation systems are largely dictated by: (1) the ability of a metallic bond coating to form an adherent thermally grown oxide (TGO) at the metal-ceramic interface and (2) the rate at which the TGO grows upon oxidation. It is postulated that a thin alpha-Al2O3 layer, if it could be directly deposited on a Ni-based alloy, will guide the alloy surface to form a TGO that is more tenacious and slower growing than what is attainable with state-of-the-art bond coatings. A chemical vapor deposition (CVD) process was used to directly deposit an alpha-Al2O3 layer on the surface of a single crystal Ni-bases superalloy. The layer was 150 nm thick, and consisted of small columnar grains (˜100 to 200 nm) with alpha-Al2O 3 as the major phase with a minute amount of theta-Al2O 3. Within 0.5 h of oxidation at 1150°C, the resulting TGO formed on the alloy surface underwent significant lateral grain growth. Consequently, within this time scale, the columnar nature of the TGO became well established. After 50 h, a network of ridges was clearly observed on the TGO surface instead of equiaxed grains typically observed on uncoated alloy surface. Comparison of the TGO morphologies observed with and without the CVD-Al2O 3 layer suggested that the transient oxidation of the alloy surface was considerably reduced. The alloy coated with the CVD-Al2O 3 layer also produced a much more adherent and slow growing TGO in comparison to that formed on the uncoated alloy surface. The CVD-Al2O 3 layer also improved its spallation resistance. Without the CVD-Al 2O3 layer, more than 50% of the TGO spalled off the alloy surface after 500 h in oxidation with significant wrinkling of the TGO that remained on the alloy surface. In contrast, the TGO remained intact with the CVD-Al2O3 layer after the 500 h exposure. Furthermore, the CVD layer significantly reduced the degree of

  18. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    Science.gov (United States)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  19. The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al2O3

    Science.gov (United States)

    Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram

    2013-01-01

    The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.

  20. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  1. Excitation quenching in Er3-doped Al2O3 amplifiers

    NARCIS (Netherlands)

    Agazzi, L.; Wörhoff, K.; Pollnau, M.

    2011-01-01

    Spectroscopic investigations in Al2O3:Er waveguides demonstrate that fast quenching of a fraction of ions - undetected in typical lumescence decay measurements - limits the amplifier performance. With optimized parameters 3 dB/cm net gain is feasible.

  2. Preparation and Mechanical Properties of Al2O3/Al Laminated Ceramic Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    HUANG Kangming; LI Weixin; XIE Binhuan; RAO Pinggen; PENG Cheng; CHEN Dabo; WU Jianqing

    2011-01-01

    Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.

  3. Preparation and formation mechanism of Al2O3 nanoparticles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    HUANG Ke-long; YIN Liang-guo; LIU Su-qin; LI Chao-jian

    2007-01-01

    Al2O3 nanoparticles were prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/cyclohexane/ water W/O reverse microemulsion. The proper calcination temperature was determined at 1 150 ℃ by thermal analysis of the precursor products. The structures and morphologies of Al2O3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectra. The influences of mole ratio of water to surfactant on the morphologies and the sizes of the Al2O3 nanoparticles were studied. With the increase of surfactant content, the particles size becomes larger. The agglomeration of nanoparticles was solved successfully. And the formation mechanisms of Al2O3 nanoparticles in the reverse microemulsion were also discussed.

  4. Sintering densification and properties of Al2O3/PSZ(3Y) ceramic composites

    Institute of Scientific and Technical Information of China (English)

    马伟民; 修稚萌; 闻雷; 孙旭东; 铁维麟

    2004-01-01

    The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2 O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2 O3, after vacuum sintering for 2h at 1 550 ℃, the fracture toughness and bending strength of the Al2O3/PSZ(3Y) ceramic composite reaches 8.2properties was investigated. The change of rn-ZrO2 and t-ZrO2 phases content before and after fracture was measured by X-ray diffraction quantitative phase analysis. It is confirmed that improvement in bending strength and fracture toughness of the Al2O3/PSZ(3Y) ceramic composite is due to the phase transformation toughening mechanism of PSZ(3Y).

  5. PREPARATION OF CUO/γ-Al2O3 CATALYSTS FOR CATALYTIC COMBUSTION VOCS VIA PLASMA

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CuO/γ-Al2O3 catalysts were prepared by plasma treatment and conventional impregnation methods. The catalytic combustion of two kinds of volatile organic compounds (VOCs), toluene and benzene, were carried out over these CuO/γ-Al2O3 catalysts. The surface properties of these catalysts were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The experimental results showed that in catalytic combustion the activity of the CuO/γ-Al2O3 catalyst prepared via plasma was much higher than that of the CuO/γ-Al2O3 catalyst prepared by conventional impregnation method. XRD results showed that an enhanced dispersion had been achieved with the plasma treatment. SEM results indicated that the size became much smaller and the surface became more uniform with the plasma treatment.

  6. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  7. Research on Surface Modification of 96 Al2O3 by Ni Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hong; SUN Zhi; ZHU Xin; WANG Zhen-zhong

    2006-01-01

    A matrix of 96 Al2O3 ceramics was implanted with Ni ion of different dosages and energies using a MEVVA implanter. Then metallic structures of copper were made on the implanted ceramics, by using selective electroless copper plating. In addition, the characteristics and microstructure of the implanted layer were studied by using the SEM, RBS and XPS. The results show that: 1) the implanted Ni exits as Ni0 , Ni2+, and Ni3+ in the surface of Al2O3 and metal Ni particles precipitate on ceramics during implantation; 2) the concentration of Ni submits to the Gauss distribution along the direction of implantation on the surface of Al2O3 and high Ni concentration on the surface can be obtained if the Ni is implanted with low energy and a high dosage and 3) Ni ion implantation can activate the surface of Al2O3 and induce electroless copper plating on the ceramics.

  8. Synthesis of Al2O3/WC powder by aluminothermic reduction and carbonization method

    Institute of Scientific and Technical Information of China (English)

    韩兵强; 李楠

    2004-01-01

    Al2O3/WC powder was synthesized by means of aluminothermic reduction-carbonization with metallic Al powder, yellow tungsten oxide and carbon black or graphite as raw materials under the protection of coke granules.The effects of Al2O3 content, temperature, C/WO3 molar ratio, and atmosphere on the synthesis of Al2O3/WC powder were studied. The results show that the relative content of WC and W2C is strongly influenced by the factors mentioned-above. Carbon black has higher reactivity than graphite. Al2O3-WC composite is easier to obtain under the protection of coke granules than under argon atmosphere. The CO in the coke layer can easily react with tungsten to form WC and to transfer from W2 C to WC.

  9. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    Science.gov (United States)

    Terlinden, N. M.; Dingemans, G.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2010-03-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ˜5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical passivation through the measurement of the electric field in the c-Si space-charge region. It is demonstrated that this electric field—and hence the negative fixed charge density—is virtually unaffected by the Al2O3 thickness between 2 and 20 nm indicating that a decrease in chemical passivation causes the reduced passivation performance for <5 nm thick Al2O3 films.

  10. Equivalent oxide thickness scaling of Al2O3/Ge metal-oxide-semiconductor capacitors with ozone post oxidation

    Institute of Scientific and Technical Information of China (English)

    Sun Jia-Bao; Yang Zhou-Wei; Geng Yang; Lu Hong-Liang; Wu Wang-Ran; Ye Xiang-Dong; David Zhang Wei

    2013-01-01

    Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere.No additional interracial layer was detected by the high-resolution cross-sectional transmission electron microscopy and X-ray photoelectron spectroscopy measurements made after the ozone post oxidation (OPO) treatment.Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed.Furthermore,a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time.The results can be attributed to the film quality having been improved by the OPO treatment.

  11. Al2O3:Er3+ waveguide amplifiers at 1.5 μm

    NARCIS (Netherlands)

    Agazzi, L.; Bradley, J.D.B.; Ay, F.; Wörhoff, K.; Pollnau, M.

    2010-01-01

    We report optical amplification in Al2O3:Er3+ with a gain bandwidth of 80 nm and peak gain of 2.0 dB/cm at 1533 nm, data transmission at 170 Gbit/s without added bit-error penalty and monolithic integration of these active Al2O3:Er3+ waveguides with passive silicon-on-insulator waveguides.

  12. Influence of Al2O3 content and heat treatment temperature on corrosion resistance of Al2O3-SiO2 castables to molten aluminum%Al2O3含量及热处理温度对Al2O3-SiO2系浇注料抗铝液侵蚀性的影响

    Institute of Scientific and Technical Information of China (English)

    张三华; 王战民; 胡书禾; 李少飞; 石会营; 曹喜营; 喻枫

    2010-01-01

    采用坩埚法和浸泡法研究了不同Al2O3含量(质量分数分别为80%~85%、65%~70%、40%~45%、25%~30%)及不同温度(分别为110、800、1 100和1 400 ℃)热处理后的Al2O3-SiO2系浇注料的抗铝液侵蚀性,借助电镜和能谱分析研究了被850 ℃铝液侵蚀后试样的显微结构.结果表明:(1)随着Al2O3含量的增加,Al2O3-SiO2系浇注料的抗铝液侵蚀性增强;(2)在1 100 ℃热处理后,浇注料的抗铝液侵蚀性最差;(3)铝液渗入浇注料内部后,铝液中的Al和Mg与浇注料中的石英和莫来石相发生反应,将SiO2还原成Si,Al和Mg则氧化成Al2O3和MgO,MgO进而与Al2O3反应生成尖晶石,破坏试样的结构;(4)对于Al2O3含量较高的Al2O3-SiO2浇注料,尖晶石富集层较致密,可阻止铝液继续向浇注料内部渗透.

  13. Methane Coupling Using Hydrogen Plasma and Pt/γ-Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/γ-Al2O3 catalyst. Experimental results showed that Pt/γ-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.

  14. Preparation of ultrafine a-Al2O3 using precipitation-azeotropic distillation method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ammonium aluminum carbonate hydroxide (AACH) was prepared by a precipitation-azeotropic distillation method,which uses aluminum sulfate as the Al source and ammonium carbonate as the precipitant.Then,AACH was calcined into ultrafine α-Al2O3 powder.The factors that influence the dispersion property of ultrafine α-Al2O3 powder are discussed in this paper,such as the methods of adding materials,surfactant,and drying methods.The changes of the structure and property of ultrafine alumina in the thermal treatment process are also studied.The morphological structure and properties of AACH are characterized by DTA/TGA,SEM,XRD,and ICP measurements.The results show that ultrafine α-Al2O3 powder with a uniform particle size and well-distributed property can be synthesized only after aluminum sulfate atomizes into ammonium carbonate,proper amount of PEG1000 is added as the dispersant,and the product is treated by azeotropic distillation.The phase transformation of alumina during the calcination process can be described as amorphous Al2O3→γ-Al2O3→θ-Al2O3→α-Al2O3.The crystal grain size and density of ultrafine alumina powder increase with the increase of the calcination temperature.After AACH has been calcined at 1200℃ for 2 h,the ultrafine α-Al2O3 with uniform particle size,spherical shape,and more than 99.97% purity is obtained and its powder is well dispersed.

  15. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  16. Synthesis of highly porous Al2O3-YAG composite ceramics

    Directory of Open Access Journals (Sweden)

    Egelja Adela

    2016-01-01

    Full Text Available Al2O3-YAG composite was obtained by sintering of porous Al2O3 preforms infiltrated with water solution of aluminium nitrate nonahydrate, Al(NO33•9H2O and yttrium nitrate hexahydrate, Y(NO33•6H2O. Al2O3 preforms with porosity varying from 26 to 50% were obtained after sintering at temperature ranging from 1100 to 1500°C. Sintering of the infiltrated Al2O3 preforms led to formation of YAG particles due to reaction between Y2O3 and Al2O3 at high temperature. It was found that variation of porosity of alumina preforms and sintering temperature is an effective way to fabricate Al2O3-YAG composite with an unusual combination of properties. Open porosity was in the range 15-35%, specific surface was 0.6-6.1 m2/g, pore size was 150-900 nm whereas compressive strength was from 50 to 250 MPa. The effect of sintering temperature on YAG formation and phase composition were investigated using X-ray diffractometry whereas microstructure of the composite was analysed by scanning electron microscopy. [Projekat Ministartsva nauke Republike Srbije, br. 45012

  17. Characteristic evaluation of Al2O3/CNTs hybrid materials for micro-electrical discharge machining

    Institute of Scientific and Technical Information of China (English)

    Hyun-Seok TAK; Chang-Seung HA; Ho-Jun LEE; Hyung-Woo LEE; Young-Keun JEONG; Myung-Chang KANG

    2011-01-01

    The characteristic evaluation of aluminum oxide (Al2O3)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. Al2O3 composites with different CNT concentrations were synthesized. The electrical characteristic of Al2O3/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% Al2O3 (volume fraction). In the machining accuracy, many tangles of CNT in Al2O3/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of Al2O3/CNTs hybrid composites.

  18. Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery

    Science.gov (United States)

    Lim, Yu-Jeong; An, Yu-Ha; Jo, Nam-Ju

    2012-01-01

    In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view, polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt. Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3 composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic conductivity of 9.78 × 10-5 Scm-1 at room temperature.

  19. Preparation and Photocatalytic Properties of TiO2-Al2O3 Composite Loaded Catalysts

    Directory of Open Access Journals (Sweden)

    Jianzhong Pei

    2015-01-01

    Full Text Available This paper presents an experimental approach to study catalytic effects of Fe3+ modified nanometer titanium dioxide (TiO2 loaded on aluminium oxide (Al2O3. Sol-gel method was used to prepare modified TiO2 loaded on carrier. Purification tests were conducted in a self-developed instrument to study catalytic effects of TiO2 loaded on Al2O3 with different contents through degradation rate. The modification mechanism was studied by scanning electron microscope (SEM. Results showed that loading on Al2O3 improved photocatalytic effect of TiO2 modified with Fe3+. The best photocatalytic effect was achieved under catalytic action of Al2O3 loaded with 10% TiO2 composite; the degradation rates were 6.9%, 13.8%, 21.4%, and 49.2%, respectively, 0.7%, 3.9%, 1.3%, and 15.1% larger than unloaded TiO2. SEM results of four catalysts showed that nanometer TiO2 was coated in form of grain on the surface of Al2O3. The optimal loading content was 10% at which the nanometer TiO2 grains were coated on the surface of Al2O3 uniformly.

  20. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    Science.gov (United States)

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-09

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  1. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates.

    Science.gov (United States)

    Yan, Baojun; Liu, Shulin; Heng, Yuekun

    2015-01-01

    Microchannel plate (MCP) as a key part is a kind of electron multiplied device applied in many scientific fields. Oxide thin films such as zinc oxide doped with aluminum oxide (ZnO:Al2O3) as conductive layer and pure aluminum oxide (Al2O3) as secondary electron emission (SEE) layer were prepared in the pores of MCP via atomic layer deposition (ALD) which is a method that can precisely control thin film thickness on a substrate with a high aspect ratio structure. In this paper, nano-oxide thin films ZnO:Al2O3 and Al2O3 were prepared onto varied kinds of substrates by ALD technique, and the morphology, element distribution, structure, and surface chemical states of samples were systematically investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS), respectively. Finally, electrical properties of an MCP device as a function of nano-oxide thin film thickness were firstly studied, and the electrical measurement results showed that the average gain of MCP was greater than 2,000 at DC 800 V with nano-oxide thin film thickness approximately 122 nm. During electrical measurement, current jitter was observed, and possible reasons were preliminarily proposed to explain the observed experimental phenomenon.

  2. FAST TRACK COMMUNICATION: Self-patterned aluminium interconnects and ring electrodes for arrays of microcavity plasma devices encapsulated in Al2O3

    Science.gov (United States)

    Kim, K. S.; Park, S.-J.; Eden, J. G.

    2008-01-01

    Automatic formation of Al interconnects and ring electrodes, fully encapsulated by alumina, in planar arrays of Al2O3/Al/Al2O3 microcavity plasma devices has been accomplished by electrochemical processing of Al foil. Following the fabrication of cylindrical microcavities (50-350 µm in diameter) in 127 µm thick Al foil, virtually complete anodization of the foil yields azimuthally symmetric Al electrodes surrounding each cavity and interconnects between adjacent microcavities that are produced and simultaneously buried within a transparent Al2O3 film without the need for conventional patterning techniques. The diameter and pitch of the microcavities prior to anodization, as well as the anodization process parameters, determine which of the microcavity plasma devices in a one- or two-dimensional array are connected electrically. Data presented for 200 µm diameter cavities with a pitch of 150-225 µm illustrate the patterning of the interconnects and electrode connectivity after 4-10 h of anodization in oxalic acid. Self-patterned, linear arrays comprising 25 dielectric barrier devices have been excited by a sinusoidal or bipolar pulse voltage waveform and operated in 400-700 Torr of rare gas. Owing to the electrochemical conversion of most of the Al foil into Al2O3, the self-formed arrays exhibit an areal capacitance ~82% lower than that characteristic of previous Al/Al2O3 device arrays (Park et al 2006 J. Appl. Phys. 99 026107).

  3. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    Science.gov (United States)

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  4. Electrical properties and interfacial issues of high-k/Si MIS capacitors characterized by the thickness of Al2O3 interlayer

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2016-06-01

    Full Text Available A thin Al2O3 interlayer deposited between La2O3 layer and Si substrate was used to scavenge the interfacial layer (IL by blocking the out-diffusion of substrate Si. Some advantages and disadvantages of this method were discussed in detail. Evident IL reduction corroborated by the transmission electron microscopy results suggested the feasibility of this method in IL scavenging. Significant improvements in oxygen vacancy and leakage current characteristics were achieved as the thickness of Al2O3 interlayer increase. Meanwhile, some disadvantages such as the degradations in interface trap and oxide trapped charge characteristics were also observed.

  5. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures

    Science.gov (United States)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-09-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high- k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high- k multilayer stack.

  6. Pressure-Induced Shifts of Energy Spectra of α-Al2O3:Mn4+

    Institute of Scientific and Technical Information of China (English)

    MA Dong-Ping,; CHEN Ju-Rong; MA Ning

    2002-01-01

    By making use of the diagonalization of the complete d3 energy matrix in a trigonally distorted cubic-field and the theory of pressure-induced shifts (PS) of energy spectra, the whole energy spectrum of α-Al2 O3 :Mn4+ and PS of levels have been calculated. All the calculated results are in excellent agreement with the experimental data. The comparison between the results ofα-AlO3:Mn4+ and ruby has been made. It is found that on one hand, R1-line and R2line PS of α-Al2O3:Mn4+ and ruby are linear in pressure over 0 ~ 100 kbar, and their values of the principal parameter for PS are very close to each other. On the other hand, the sensitivities of R1-line and R2-line PS of α-Al2O3:Mn4+are higher than those of ruby respectively, which comes mainly from the difference between the values of parameters at normal pressure of two crystals; moreover, the expansion ofd-electron wavefunctions of α-Al2 O3 :Mn4+ with compression is slightly larger than the one of ruby, and the effective charge experienced by d-electrons of α-Al2O3:Mn4+ decreases with compression more rapidly than the one of ruby. In the final analysis, all these can be explained in terms of the facts that the two crystals are doped α-Al2O3 with two isoelectronic ions; the strengths of the crystal field and covalency of α-Al2O3 :Mn4+ are larger than those of ruby respectively, due to the charge of Mn4+ to be larger than that of Cr3+.

  7. Mechanical Properties and Electrical Conductivity of TiN-Al2O3 Composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    TIN-Al2O3 composite powders with different TiN contents (0,10 vol%,20 vol%,30 vol% and 40 vol%) were prepared with micrometer TiN and α-Al2O3 powder (their purities were 99%) as starting materials by wet ball milling for 5 h.TiN-Al2O3 com-posite were then prepared by pressing the above composite powders,drying at 200 ℃ for 12 h and firing at 1 800 ℃ for 3 h in nitrogen atmosphere in hot-pressing furnace.The influences of TiN content on mechanical properties and electrical conductivity of TiN-Al2O3 com-posites were studied.The results showed that the me-chanical properties of the composite increased with TiN content increasing,while the resistivity of composites de-creased.A composite with 40% TiN had 498 MPa ben-ding strength,4.285 MPa·m1/2 fracture toughness,1.34×10-3 Ω·cm resistivity.The SEM analysis showed that the fine TiN crystals distributed among the crystal boundary of Al2O3 matrix.They bonded together forming a net-like structure which played a role of re-straining Al2O3 grains from growing up,toughening and strengthening,so the mechanical properties of TIN -Al2O3 composite were enhanced.

  8. A comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars;

    2008-01-01

    Radioluminescence (RL) from aluminium oxide (Al2O3:C) crystals and organic scintillators such as the blue-emitting BCF-12 can be used for precise real-time dose rate measurements during radiation therapy of cancer patients. Attaching the dosimeters to thin light-guiding fiber cables enables in vivo...... can be circumvented for pulsed beams due to the long life-time of the main luminescence center. In contrast, chromatic removal seems to be the most effective method for organic scintillators, but is found to yield some experimental complexities. In this paper, we report on dose rate measurements using...

  9. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  10. Tunneling planer Hall effect in Ni81Fe19/Al2O3/Nix Fe1-x junction

    Institute of Scientific and Technical Information of China (English)

    陈慧余; 冯永嘉; 熊曹水

    1999-01-01

    Tunneling planer Hall (TPH) effect in Ni81Fe19/Al2O3/NixFe1-x trilayer junction is different from general planer Hall effect in single-layer film or two-layer junction. This effect concerns the spin-polarized transport, so that the TPH voltage depends on the angle between magnetic vectors of two ferromagnetic layers. The TPH effect is reported to be influenced by composition and magnetic properties of FM layers and the thickness of the insulating layer.

  11. Controlling the fixed charge and passivation properties of Si(100)/Al(2)O(3) interfaces using ultrathin SiO(2) interlayers synthesized by atomic layer deposition

    NARCIS (Netherlands)

    Dingemans, G.; Terlinden, N. M.; Verheijen, M. A.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Al(2)O(3) synthesized by atomic layer deposition (ALD) on H-terminated Si(100) exhibits a very thin (similar to 1 nm) interfacial SiO(x) layer. At this interface, a high fixed negative charge density, Q(f), is present after annealing which contributes to ultralow surface recombination velocities sim

  12. Effect of fluoride additives on production and characterization of nano--Al2O3 particles

    Indian Academy of Sciences (India)

    F Mirjalili

    2014-12-01

    Nano--Al2O3 particles were synthesized by a sol–gel method using aqueous solutions of aluminum isopropoxide and 0.5 Maluminum nitrate. Sodium dodecylbenzenesulfonate (SDBS) was used as surfactant stabilizing agents. The solution was stirred for 48 h at 60 °C. The microstructural observation showed that surfactant with 48 h stirring time nanoscale -Al2O3 powder was produced at 1200 °C in the range of 20–30 nm in the presence of SDBS as a surfactant with 48 h stirring time. Temperature reduction of -Al2O3 formation has been achieved by introducing fluoride in the alumina precursor. The effects of ZnF2 additive and milling on the phase transformation as well as micrograph of the prepared -Al2O3 particles were investigated. The samples were characterized by different techniques such as X-ray diffraction, thermogravimetry analysis, differential scanning calorimetry, Fourier transform infrared spectra, scanning electron microscopy and transmission electron microscopy. Results indicated that using zinc fluoride (ZnF2) additive accompanied by milling led to retardation of the transformation temperature and modification of the alumina particle shape. The finest size for nonagglomerated nano-plate-like -Al2O3 particles (15–20 nm) was achieved at 950 °C.

  13. Influence of mechanical activation of AL2O3 on synthesis of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Zhihui Zhang

    2004-01-01

    Full Text Available Magnesium aluminate (MA spinel is synthesized by reaction sintering from alumina and magnesia. The effects of mechanical activation of Al2O3 on reaction sintering were investigated. Non-milled a - Al2O3 and a - Al2O3 high-energy ball milled for 12h, 24h and 36h were mixed with a MgO analytical reagent according to the stoichiometric MA ratio, respectively and pressed into billets with diameters of 20mm and height of 15mm. The green-body billets were then sintered at high temperature in an air atmosphere. The results show that bulk density, relative content of MA and grain size of MA increase with increasing high-energy ball milling time of Al2O3. However prolonged milling time over 24h has a small beneficial effect on the densification of MA. Bulk density and grain size of a sample of a- Al2O3 milled for 24h are 3.30g/cm3 and 4-5 mm, respectively.

  14. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chang-bin; SHI Xiao-yan; GAO Hong-wei; HE Hong

    2005-01-01

    Catalytic elimination of formaldehyde(HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface.With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD)showed that HCHO was completely oxidized into HCOOH over Cu-Al2 O3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO2 over the catalyst surface, and the deactivated Cu-Al2 O3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al2 O3, Cu dramatically lowered the decomposition temperature of HCOOH into CO2. It was shown that Cu-Al2 O3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.

  15. PVDF- g-PSSA and Al 2O 3 composite proton exchange membranes

    Science.gov (United States)

    Shen, Yi; Qiu, Xinping; Shen, Juan; Xi, Jingyu; Zhu, Wentao

    Poly(vinylidene fluoride) grafted polystyrene sulfonated acid (PVDF- g-PSSA) membranes doped with different amount of Al 2O 3 (PVDF/Al 2O 3- g-PSSA) were prepared based on the solution-grafting technique. The microstructure of the membranes was characterized by IR-spectra and scanning electron microscope (SEM). The thermal stability was measured by thermal gravity analysis (TGA). The degree of grafting, water-uptake, proton conductivity and methanol permeability were measured. The results show that the PVDF- g-PSSA membrane doped with 10% Al 2O 3 has a lower methanol permeability of 6.6 × 10 -8 cm 2 s -1, which is almost one-fortieth of that of Nafion-117, and this membrane has moderate proton conductivity of 4.5 × 10 -2 S cm -1. Tests on cells show that a DMFC with the PVDF/10%Al 2O 3- g-PSSA has a better performance than Nafion-117. Although Al 2O 3 has some influence on the stability of the membrane, it can still be used in direct methanol fuel cells in the moderate temperature.

  16. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    Science.gov (United States)

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites.

  17. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  18. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.

    Science.gov (United States)

    Zhang, Chang-Bin; Shi, Xiao-Yan; Gao, Hong-Wei; He, Hong

    2005-01-01

    Catalytic elimination of formaldehyde (HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD) showed that HCHO was completely oxidized into HCOOH over Cu-Al2O3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO2 over the catalyst surface, and the deactivated Cu-Al2O3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al2O3, Cu dramatically lowered the decomposition temperature of HCOOH into CO2. It was shown that Cu-Al2O3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.

  19. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  20. Sensitivity enhancement of metal oxide thin film transistor with back gate biasing

    NARCIS (Netherlands)

    Dam, V.A.T.; Blauw, M.A.; Brongersma, S.H.; Crego-Calama, M.

    2011-01-01

    In this work, a room-temperature sensing device for detecting carbon monoxide using a ZnO thin film is presented. The ZnO layer (thickness close to the Debye length), which has a polycrystalline structure, is deposited with atomic-layer deposition (ALD) on an Al2O3/Si substrate. The operating princi

  1. Laser micromachining of CNT/Fe/Al2O3 nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Kwang-Ryul KIM; Byoung-Deog CHOI; Jun-Sin YI; Sung-Hak CHO; Yong-Ho CHOA; Dong-Soo SHIN; Dong-Ho BAE; Myung-Chang KANG; Young-Keun JEONG

    2009-01-01

    CNT/Fe/Al2O3 mixed powders were synthesized from Fe/Al2O3 nanopowders using thermal CVD for the homogeneous dispersion of carbon nanotubes CNTs. CNTs consisted of MWNT, and the diameter was approximately 20-30 nm. After sintering, CNTs were homogenously located throughout Al2O3 grain boundary and were buckled. A femto-second laser installed with special optical systems was used for micromachining of the nanocomposites. The relationship between material ablation rate and energy fluence was theoretically investigated and compared with experimental results from cross-sectional SEM analysis. The nanocomposites which have higher content of CNT show a fairly good machining result due to its higher thermal conductivity and smaller grain size as well as lower light transmittance.

  2. Electrical conductivity studies on CuBr containing Al2O3 particles

    Science.gov (United States)

    Dubec, P. M.; Wagner, J. B., Jr.

    1984-01-01

    The conductivity of CuBr was studied and the role of a second phase, Al2O3, dispersed in CuBr was tested. CuBr melts at 493 C and exhibits three phases in the solid state. CuBr is a good ionic conductor with a transport number for copper ions of virtually unity with weighed proportions of the appropriate chemicals used. The CuBr materials were heated above melting point of CuBr, and the samples were sandwiched between copper electrodes. The ac conductivity, was determined at 1 kHz between 25 and 440 C depending on the sample. It was shown that at low temperatures, the conductivity for CuBr (Al2O3) increased by as much as 100, whereas in the beta phase the conductivity of CuBr containing Al2O3 decreased. The electrical conductivity studies are in agreement with earlier data.

  3. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI

    Science.gov (United States)

    Shahi, K.; Wagner, J. B., Jr.

    1981-01-01

    Ionic and electronic conductivities, and thermoelectric power have been measured for AgI and AgI containing a dispersion of submicron size Al2O3 particles. While the dispersion of Al2O3 enhances the ionic conductivity significantly, it does not affect the electronic properties of the matrix. The enhancement is a strong function of the size and concentration of the dispersoid. Various models have been tested to account for the enhanced conduction. However, the complex behavior of the present results points out the need for more sophisticated theoretical models. Ionic conduction and thermoelectric power data suggest that the dispersed Al2O3 generates an excess of cation vacancies and thereby enhances the conductivity and suppresses the thermoelectric power of the matrix. The individual heats of transport of cation interstitials and vacancies have been estimated and compared to their respective migration energies.

  4. FABRICATION OF Al/Al2O3 FGM ROTATING DISC

    Directory of Open Access Journals (Sweden)

    A. B. Sanuddin

    2012-06-01

    Full Text Available This study presents a method of fabricating a disc made of Al/Al2O3 functionally graded materials (FGM, using a powder metallurgy manufacturing process. The aim is to develop a processing method for a rotating disc made of FGM, by stacking the slurry, layer by layer in a radial direction. A three-layer functionally graded material of Al/Al2O3 is fabricated with compositions of 10, 20, 30 vol.% Al2O3. The ceramic composition increases from the discs inner (centre to the outer. The combination of these materials can offer the ability to withstand high temperature conditions whilst maintaining strength in extreme environments.

  5. Mechanochemical Synthesis and Rapid Consolidation of Nanocrystalline 3NiAl-Al2O3 Composites

    Directory of Open Access Journals (Sweden)

    In-Jin Shon

    2011-01-01

    Full Text Available Nanopowders of 3NiAl and Al2O3 were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3 reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3 and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2 and 7.5 MPa⋅m1/2, respectively.

  6. Synthesis of -Al2O3 nanowires through a boehmite precursor route

    Indian Academy of Sciences (India)

    Qi Yang

    2011-04-01

    Crystalline -Al2O3 nanowires with diameter, 20–40 nm, length above 600 nm and aspect ratio above 30 have been successfully synthesized by thermal decomposition of boehmite (-AlOOH) precursors obtained via hydrothermal route by using AlCl3, NaOH and NH3 as starting materials. Thermogravimetric analysis (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED) and high resolution transmission electron microscope (HRTEM) were used to characterize the features of the as-made -Al2O3 nanowires and their -AlOOH precursors. The pH value of the solution and the mixed precipitant play important roles in the formation of -AlOOH nanowires. After calcination at 500°C for 2 h, the orthorhombic -AlOOH transforms to cubic -Al2O3 and retains nanowire morphology.

  7. Preparation and Properties of Plasma Spraying Cu-Al2O3 Gradient Coatings

    Institute of Scientific and Technical Information of China (English)

    Ali LEI; Nan DONG; Lajun FENG

    2007-01-01

    In order to overcome the limitations of low adhesion strength and poor thermal-shock resistance of pure ceramic coatings, Cu-Al2O3 gradient coatings were fabricated by plasma spraying. The microstructure and distribution of Cu-Al2O3 gradient coatings were analyzed. The adhesion strength, thermal-shock resistance and porosity of the coatings were tested. The results show that the composition of the gradient coatings has a gradient distribution along the thickness of coatings. As copper has a relatively low melting point and the molten copper has good wettability on the surface of Al2O3, it can be melted sufficiently and could fill the interstices and pores among the spraying particles effectively, thus improves the adhesion strength, thermal shock resistance and reduces the porosity. The adhesion strength of the gradient coating is 15.2 MPa which is two times of that of the double-layer structure coating.

  8. Corrosion behavior of Zn-Ni-Al2O3 composite coating

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huanyu; AN Maozhong; LU Junfeng

    2006-01-01

    The corrosion behavior and anti-corrosion mechanism of the Zn-Ni-Al2O3 composite coating were investigated by SEM, EDS and XPS.The results indicate that the corrosion type of the Zn-Ni-Al2O3 coatings in neutral 5 wt.% NaCl solution is uniform corrosion.The presence of compact and uniformly dispersed nano alumina particles substantially inhibits the corrosion of Zn-Ni-Al2O3 composite coatings.In the initial corrosion stage, the corrosive products of Zn-Ni matrix form a compact ZnCl2·4Zn(OH)2 layer.With the development of corrosion, some nano alumina particles are embedded and form a Ni enrichment layer.In Ni enrichment layer, Ni presents as Ni and NiO.

  9. Laser assembly nanostructured Al2O3/TiO2 coating on cast aluminum surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; DAI Jian-qiang; WANG Hui-ping; YAN Min-jie; XI Wen-long; ZOU Chang-gu; GE Da-fang

    2004-01-01

    CO2 laser quick assembly technology is adopted on the surface of cast aluminum ZL104 to form a dense ceramic coating containing a great deal of nanometer Al2O3/TiO2 particles which eliminate cracks and porosities.The major phases of the coating are α-Al2O3 andβ-TiO2. The micro-hardness distribution of the coating is 1 813,1 504, 1 485 and 1 232 (HV0.05). The bonding strength of the coating LC1 is 11.4 N, which is 7.26 times higher than that of the conventional hot-spraying Al2O3/TiO2 coating. It has been proved by analysis that the bonding strength is achieved because of the effects of both super-quick laser consolidation and the nanometer effect of nanometer ceramic material.

  10. Structural and dynamic properties of LiNO3 + Al2O3 nanocomposites

    Science.gov (United States)

    Gafurov, M. M.; Rabadanov, K. Sh.; Ataev, M. B.; Amirov, A. M.; Kubataev, Z. Yu.; Kakagasanov, M. G.

    2015-10-01

    The structural and dynamic properties of lithium nitrate LiNO3 and its heterogeneous composites with a nanopowder of aluminum oxide Al2O3 at different temperatures, phase states, and concentrations of the Al2O3 nanopowder have been investigated using Raman scattering, differential thermal analysis, and X-ray diffraction. It has been shown that, in the (1- x)LiNO3 + xAl2O3 composites, an amorphous phase (for x ≥ 0.5) is formed, whose thermal effect is observed at 185°C. The calculations of the dynamic characteristics of vibrations of the nitrate ion, as well as the differential thermal and X-ray diffraction analyses, have demonstrated that the nanocomposite can be represented as a highly disordered "quasilattice" in which "sites" are occupied by nanoparticles with amorphous lithium nitrate shells and spaces between them (conventionally "interstitial sites") become channels of a facilitated flow of the ion current.

  11. 氧化铝钝化在晶体硅太阳电池中的应用%Al2O3 Passivation for Crystalline Silicon Solar Cells

    Institute of Scientific and Technical Information of China (English)

    吴大卫; 贾锐; 武德起; 丁武昌; 陈伟; 陈晨; 岳会会; 刘新宇; 陈宝钦

    2011-01-01

    Firstly, the development of the aluminum oxide (Al2O3) passivation technology is reviewed, and the preparation methods are summarized. Then, the material properties and passivation mechanisms of the Al2O3 films are described in detail. It is pointed out that the Al2O3 films have excellent field-effect passivation property and chemical passivation property. Thus, the Al2O3 films can be well applied to the passivation of lowly doped and highly doped p-type silicon surfaces. Besides that, the Al2O3 films are of good heat stability, satisfying the requirement of screen-printed solar cells. Finally, the latest studies of the Al2O3 films passivation technology applied to crystalline silicon solar cells are presented, the application problems of Al2O3 films for the industry production are pointed out, and some effective solutions are proposed in the light of these problems.%首先,回顾了氧化铝钝化技术的发展历程,对制备氧化铝钝化薄膜的手段进行了总结,并且详细描述了氧化铝的材料性质和钝化的机理.其次,指出氧化铝薄膜的优点在于优异的场效应钝化特性和良好的化学钝化性质,因此可以应用于低掺和高掺p型硅表面的钝化.此外,氧化铝薄膜及其叠层还具有良好的热稳定性,符合丝网印刷太阳电池的要求.最后,总结了氧化铝薄膜钝化技术在晶体硅太阳电池中的最新研究动态,指出氧化铝钝化薄膜用于工业生产中存在的问题,并针对这些问题提出了有效的解决方案.

  12. Preparation of ZrO2-Al2O3 micro-laminated coatings on stainless steel and their high temperature oxidation resistance

    Institute of Scientific and Technical Information of China (English)

    YAO Ming-ming; HE Ye-dong; GOU Ying-jun; GAO Wei

    2005-01-01

    Micro-laminated ZrO2-Al2O3 coatings were prepared by electrochemical depositing ZrO2 film and Al2O3 film alternatively in ethanol solutions containing aluminum nitrate and zirconium nitrate, with small amounts of yttrium nitrate added respectively into both solutions. The micro-laminated ZrO2-Al2O3 coating is of nanostructure. FE-SEM analyses show that the cross section of the micro-laminated coatings has alternate six-layer films of ZrO2 and Al2O3, with the thickness of each layer in the range of nanometer or submicron. The surface of the micro-laminated coatings is composed of nano-particles. SEM, XRD and mass gain measurement were adopted to study the oxidation resistance of coatings on stainless steel. It has been found that all the coatings are effective in protecting the substrate from oxidation, and micro-laminated coatings exhibit more excellent protectiveness performance. Mechanisms accounting for such effects have been discussed.

  13. Narrow in-gap states in doped Al 2 O 3

    KAUST Repository

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  14. Study of The Pd-B/γ-Al2O3 Amorphous Alloy Catalyst

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Pd-B/γ-Al2O3 amorphous alloy catalyst and Pd/γ-Al2O3 crystalline metal catalyst were prepared by KBH4 reduction and routine impregnation, respectively. Pd-B/γ-A12O3 and Pd/γ-A12O3 catalysts were characterized by XRD and SEM. It was found that the catalytic activity of the Pd-B/γ-A12O3 amorphous alloy catalyst was higher than that of the Pd/γ-A12O3crystalline metal catalyst in the anthraquinone hydrogenation.

  15. Surface passivation of gallium nitride by ultrathin RF-magnetron sputtered Al2O3 gate.

    Science.gov (United States)

    Quah, Hock Jin; Cheong, Kuan Yew

    2013-08-14

    An ultrathin RF-magnetron sputtered Al2O3 gate on GaN subjected to postdeposition annealing at 800 °C in O2 ambient was systematically investigated. A cross-sectional energy-filtered transmission electron microscopy revealed formation of crystalline Al2O3 gate, which was supported by X-ray diffraction analysis. Various current conduction mechanisms contributing to leakage current of the investigated sample were discussed and correlated with metal-oxide-semiconductor characteristics of this sample.

  16. Effects of Additives on Properties of Unburned MgO—Al2O3 Refractory

    Institute of Scientific and Technical Information of China (English)

    LIFang; TANLihua

    1999-01-01

    The influences of four kinds of additives added into the matrix of MgO-Al2O3 unbuned products were investigated,The results show that samples with proper MgO/Al2O3 ration and proper addition of Cr2O3(2%- 4%) have good thermal shock resistance and slag corrosion resistance as well,XRD and SEM determination results indicate that a kind of compound spinel(Mg,Al, Cr) O4 was formed and the microstucture of the samples are denser.

  17. Studies on the Structure and Properties of Multiphase Al2O3 Abrasion-resistant Ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Ren-Ping; YU Yan; RUAN Yu-Zhong

    2006-01-01

    The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD,SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3grain in grain boundary, and improve the integral property of the material.

  18. Study of the KNO3-Al2O3 system by differential scanning calorimetry

    Science.gov (United States)

    Amirov, A. M.; Gafurov, M. M.; Rabadanov, K. Sh.

    2016-09-01

    The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1- x)KNO3- x Al2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.

  19. The Evolution of Al2O3 Content in Ancient Chinese Glasses

    Directory of Open Access Journals (Sweden)

    Wang Cheng-yu

    2016-01-01

    Full Text Available Based on the evidence from museums, collectors, the dug out of the grave, the evolution of Al2O3 content in Chinese glasses from Western Zhou to Qing dynasty was documented in this paper in detail. It was found that Al2O3 contents in ancient Chinese glasses were relatively higher than those of outside of China in the world. This is the character of the ancient Chinese glasses which is caused by not only the high Al contents in the raw materials but also by the Chinese people’s preference of the milky glasses similar to jade

  20. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    Science.gov (United States)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  1. Effect of Nd-doping on the Thermal Stability and Pore-structure of Al2O3 Membranes

    Institute of Scientific and Technical Information of China (English)

    YU Jian-Chang; XU Wei-Jun; HUANG Qing-Ming; HU Sheng-Wei

    2005-01-01

    Unsupported Nd-doped Al2O3 membranes have been prepared with a sol-gel treatnt by using aluminium isopropoxide and Nd(NO3)3 as the main raw materials. The properties of Nd-doped Al2O3 membranes were characterized by XRD, DTA-TG, IR and N2 adsorption. The effects of Nd-doping on the phase composition, thermal stability as well as applications of pore- structure of Nd-doped Al2O3 membranes at high temperature were discussed. The results show that Nd-doping can raise the transition temperature rom γ-Al2O3 to α-Al2O3, enhance the thermal stability of Al2O3 membranes, and evidently improve the pore-structural parameters of Al2O3 mem- branes applied at higher temperatures.

  2. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    Science.gov (United States)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  3. Wettability of silicon carbide ceramic by Al2O3/Dy2O3 and Al2O3/Yb2O3 systems

    Institute of Scientific and Technical Information of China (English)

    J.A.da Silva; B.M.Moreschi; G.C.R.Garcia; S.Ribeiro

    2013-01-01

    Wettability is an important phenomenon in the liquid phase sintering of silicon carbide (SiC) ceramics.This work involved a study of the wetting of SiC ceramics by two oxide systems,Al2O3/Dy2O3 and Al2O3/Yb2O3,which have so far not been studied for application in the sintering of SiC ceramics.Five mixtures of each system were prepared,with different compositions close to their respective eutectic ones.Samples of the mixtures were pressed into cylindrical specimens,which were placed on a SiC plate and subjected to temperatures above their melting points using a graphite resistance furnace.The behavior of the melted mixtures on the SiC plate was observed by means of an imaging system using a CCD camera and the sessile drop method was employed to determine the contact angle,the parameter that measures the degree of wettability.The results of variation in the contact angle as a function of temperature were plotted in graphic form which showed that the curves displayed a fast decline and good spreading.All the samples of the two systems presented final contact angles of 40° to 10° indicating their good wetting on SiC in the argon atmosphere.The melted/solidified area and interface between SiC and melted/solidified phase were evaluated by scanning electron microscopy (SEM) and their crystalline phases were identified by X-ray diffraction (DRX).The DRX analysis showed that Al2O3 and RE2O3 reacted and formed the Dy3Al5O12 (DyAg) and Yb3Al5O12 (YbAg) phases.The results indicated that the two systems had a promising potential as additives for the sintering of SiC ceramics.

  4. Study on AgCuTi Brazing Al2O3/Nb%AgCuTi钎焊Al2O3/Nb的研究

    Institute of Scientific and Technical Information of China (English)

    吴铭方; 于治水

    2000-01-01

    在钎焊温度1 043~1 393 K、钎焊时间3~60 min条件下,对Al2O3/(Ag72Cu28)97Ti3/Nb接头进行了钎焊试验.经SEM、EDS、XRD检测,界面产物为TiO、Ti2O.在1 093 K、15 min条件下,接头剪切强度最高可达223 MPa.

  5. The electrical characteristics of a 4H-silicon carbide metal-insulator-semiconductor structure with Al2O3 as the gate dielectric

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Yang Yin-Tang; Ma Xiao-Hua

    2011-01-01

    A 4H-silicon carbide metal-insulator-semiconductor structure with ultra-thin Al2O3 as the gate dielectric,deposited by atomic layer deposition on the epitaxial layer of a 4H-SiC (0001) 8(0)N-/N+ substrate,has been fabricated.The experimental results indicate that the prepared ultra-thin Al2O3 gate dielectric exhibits good physical and electrical characteristics,including a high breakdown electrical field of 25 MV/cm,excellent interface properties (1 × 1014 cm-2)and low gate-leakage current (IG =1 × 10-3 A/cm-2(o)Eox =8 MV/cm).Analysis of the current conduction mechanism on the deposited Al2O3 gate dielectric was also systematically performed.The confirmed conduction mechanisms consisted of Fowler-Nordheim (FN) tunneling,the Frenkel-Poole mechanism,direct tunneling and Schottky emission,and the dominant current conduction mechanism depends on the applied electrical field.When the gate leakage current mechanism is dominated by FN tunneling,the barrier height of SiC/Al2O3 is 1.4 eV,which can meet the requirements of silicon carbide metal-insulator-semiconductor transistor devices.

  6. Annealing behaviour of structure and morphology and its effects on the optical gain of Er3+/Yb3+ co-doped Al2O3 planar waveguide amplifier

    Institute of Scientific and Technical Information of China (English)

    Tan Na; Zhang Qing-Yu

    2006-01-01

    Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped Al2O3 films in the temperature range from 600℃-900℃. Bycomparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology,a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.

  7. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers.

    Science.gov (United States)

    Kim, Mingyeong; Lee, Lyungyu; Jung, Yongju; Kim, Seok

    2013-12-01

    In this paper, composite polymer electrolytes were prepared by a blend of poly(ethylene oxide) (PEO) and poly(acrylonitrile) (PAN) as a polymer matrix, ethylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of nano-sized Al2O3. The composite films were prepared by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was investigated using X-ray diffraction (XRD) and AC impedance method, respectively. The morphology of composite polymer electrolyte film was analyzed by SEM method. From the experimental results, by increasing the Al2O3 content, the crystallinity of PEO was reduced, and the ionic conductivity was increased. In particular, by a doping of 15 wt.% Al2O3 in PEO/PAN polymer blend, the CPEs showed the superior ionic conductivity. However, when Al2O3 content exceeds 15 wt.%, the ionic conductivity was decreased. From the surface morphology, it was concluded that the ionic conductivity was decreased because the CPEs showed a heterogenous morphology due to immiscibility or aggregation of the ceramic filler within the polymer matrix.

  8. Role of Al2O3 fiber in eutectic Al-Si alloy composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of Al2O3 fiber on wear characteristics of eutectic Al-Si alloy composites were studied using a pin-on-disk tester under dry sliding condition. The results show that the Al2O3 fiber can make matrix grain be fine, specially the eutectic Si be finer and prevent the plastic flow of matrix and prohibit the crack propagation in the wear layer, thereby it can remarkably improve the mechanical property and the wear resistance of the MMCs. Since Al2O3 fiber plays a role of certain framework in protecting the matrix against crash, it can eliminate the severe wear of MMCs with higher φf of fiber from the beginning of test. At mild stage, when φf is in the range of 8%~10%, the wear rates are the lowest. With increasing φf of Al2O3 fiber, the wear mechanism of MMCs can be transformed from adhesive delamination to brittle breakaway.

  9. Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane

    Science.gov (United States)

    Yamazaki, Hirohito; Ito, Shintaro; Esashika, Keiko; Taguchi, Yoshihiro; Saiki, Toshiharu

    2016-03-01

    Nanopore sensors are being developed as a platform for analyzing single DNA, RNA, and protein. In nanopore sensors, ionic current measurement is widely used and proof-of-concept of nanopore DNA sequencing by it has been demonstrated by previous studies. Recently, we proposed an alternative platform of nanopore DNA sequencing that incorporates ultraviolet light and porous silicon membrane to perform high-throughput measurement. In the development of our DNA sequencing platform, controlling nanopore size in porous silicon membrane is essential but remains a challenge. Here, we report on observation of DNA translocation through Al2O3 sputtered silicon nanopores (Al2O3 nanopores) by our optical scheme. Electromagnetic wave simulation was performed to analyze the excitation volume on Al2O3 nanopores generated by focused ultraviolet light. In the experiment, DNA translocation time through Al2O3 nanopores was compared with that of silicon nanopores and we examined the effect of nanopore density and thickness of membrane by supplementing the static electric field simulation.

  10. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto

    2003-09-01

    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  11. Classical Bahavior of Alumina (Al2O3) Nanofluids in Antifrogen N with Experimental Evidence

    NARCIS (Netherlands)

    Saleemi, M.; Vanapalli, S.; Nikkam, N.; Toprak, M.S.; Muhammed, M.

    2015-01-01

    A nanofluid is a suspension containing nanoparticles in conventional heat transfer fluids. This paper reports on an investigation of alumina (Al2O3) nanoparticles in Antifrogen N, also called AFN, which is a popular antifreeze coolant consisting primarily of ethylene glycol and other additives to im

  12. In-situ RHEED and characterization of ALD Al2O3 gate dielectrics

    NARCIS (Netherlands)

    Bankras, Radko Gerard

    2006-01-01

    In-situ RHEED en karakterisatie van ALD Al2O3 gate diëlektrica Sinds de introductie van de MOSFET transistor (metaal-oxide-silicium veldeffecttransistor) in 1960, heeft de halfgeleidertechnologie een snelle ontwikkeling doorgemaakt. Deze vooruitgang bestond hoofdzakelijk uit de mogelijkheid om trans

  13. Focused ion beam nano-structuring of photonic Bragg gratings in $Al_2O_3$ waveguides

    NARCIS (Netherlands)

    Uranga, Amaia; Ay, Feridun; Bradley, Jonathan D.B.; Ridder, de René M.; Wörhoff, Kerstin; Pollnau, Markus; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaart, P.; Leijtens, X.

    2007-01-01

    Focused ion beam (FIB) etching is receiving increasing attention for the fabrication of active integrated optical components such as waveguide amplifiers and lasers. Si-technology compatible low-loss $Al_2O_3$ channel waveguides grown on thermally oxidized silicon substrates have been reported recen

  14. Focused ion beam nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides

    NARCIS (Netherlands)

    Ay, Feridun; Uranga, Amaia; Bradley, Jonathan D.B.; Wörhoff, Kerstin; Ridder, de René M.; Pollnau, Markus; Ridder, de R.M.; Ay, F.; Kauppinen, L.J.

    2008-01-01

    We report our recent results on an optimization study of focused ion beam (FIB) nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides. By optimizing FIB milling parameters such as ion current, dwell time, loop repetitions, scanning strategy, and applying a top metal layer for reducing c

  15. Widely wavelength-selective Al2O3:Er3+ ring laser

    NARCIS (Netherlands)

    Bradley, J.D.B.; Agazzi, L.; Ay, F.; Wörhoff, K.; Pollnau, M.; Stoffer, R.

    2010-01-01

    Integrated Al2O3:Er3+ channel waveguide ring lasers were realized on thermally oxidized silicon substrates. High pump power coupling into- and low output power coupling from the ring is achieved in a straightforward design. Wavelength selection in the range 1532 to 1557 nm was demonstrated by varyin

  16. Energy-transfer processes in $Al_2O_3:Er^{3+}$ waveguide amplifiers

    NARCIS (Netherlands)

    Agazzi, L.; Wörhoff, K.; Pollnau, M.

    2012-01-01

    The influence of migration-accelerated energy-transfer upconversion and fast luminescence quenching on $Al_2O_3:Er^{3+}$ waveguide amplifiers is investigated. Results indicate that the latter has the stronger impact on the amplifier small-signal gain.

  17. Preliminary Study on MgO· Al2O3 Spinel Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Daoyuan; GUO Xinrong; ZHONG Xiangchong

    2004-01-01

    MgO· Al2O3 spinel fibers may be obtained by thermal treatment of pressed specimens composed of Mg-Al-O materials with appropriate oxide-metal ratio at high temperature under controlled atmosphere. Their phase composition and microstructure have been examined.

  18. Preparation and catalytic behavior of CeO2 nanoparticles on Al2O3 crystal

    Science.gov (United States)

    Hattori, Takashi; Kobayashi, Katsutoshi; Ozawa, Masakuni

    2017-01-01

    In this work, we examined the preparation, morphology, and catalytic behavior of CeO2 nanoparticles (NPs) on Al2O3(0001) crystal substrates. A CeO2 NP layer was prepared by the dipping method using a CeO2 nanocrystal colloid solution. Even after heat treatment at 1000 °C, the CeO2 NP layer maintained the granular morphology of CeO2 with a grain diameter of less than 40 nm. CeO2 NPs on an Al2O3 crystal showed higher oxidation activity for gaseous hydrogen at moderate temperatures and enhanced oxygen release properties of CeO2, compared with CeO2 powder. This was due to the highly dispersed CeO2 NPs and the interaction between CeO2 NPs and Al2O3; this clarified the importance of the Al2O3 support for the CeO2 catalyst.

  19. Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Dongyan Xu; Lin Zhao; Ping Dai; Shengfu Ji

    2012-01-01

    Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH4) for hydrogen generation.At solution temperature of 0℃,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for apphcations under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH3)4.The catalytic activity of Co/Al2O3 towards NaBH4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.

  20. Theory of Al2O3 incorporation in SiO2

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2002-01-01

    Different possible forms of Al2O3 units in a SiO2 network are studied theoretically within the framework of density-functional theory. Total-energy differences between the various configurations are obtained, and simple thermodynamical arguments are used to provide an estimate of their relative i...

  1. Transmission of 18 kev negative ions Cl- through nanocapillariesin Al2O3 membrane

    Institute of Scientific and Technical Information of China (English)

    Lü Xue-Yang; Yin Yong-Zhi; Wang Hong-Wei; Ji Ming-Chao; Chen Lin; Chen Xi-Meng; Jia Juan-Juan; Zhou Peng; Zhou Chun-Lin; Qiu Xi-Yu; Shao Jian-Xiong; Cui Ying

    2011-01-01

    We investigate the angular distribution of the transmitted 18kev negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10μm in length. Elastic scattering ions and inelastic scattering ions are obtained simultaneonsly. The experimental result is partially consistent with the guiding effect. We can qualitatively explain our experimental result through a dynamic process.

  2. MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    Science.gov (United States)

    Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...

  3. Gas-phase dehydration of glycerol over commercial Pt/γ-Al2O3 catalysts

    Institute of Scientific and Technical Information of China (English)

    Sergey Danov; Anton Esipovich; Artem Belousov; Anton Rogozhin

    2015-01-01

    Gas-phase dehydration of glycerol to produce acrolein was investigated over commercial catalysts based onγ-Al2O3, viz. A-64, A-56, I-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl−anions, HCl-impregnated sup-ports have been investigated in the dehydration reaction of glycerol at 375 °C. For comparison, various H-zeolites were also examined. It was found that the glycerol conversion over the solid acid catalysts was strongly dependent on their acidity and surface area. And the relationship between the catalytic activity and the acidity of the catalysts was discussed. The outstanding properties of Pt/γ-Al2O3 catalyst systems for the dehydration of glycerol were revealed. Pt/γ-Al2O3 catalyst (AP-64) showed the highest catalytic activity after 50 h of reaction with an acrolein selectivity of 65%at a conversion of glycerol of 90%. Based on these results, catalysts based onγ-Al2O3 appear to be most promising for gas phase dehydration of glycerol.

  4. Analysis of the residual stress in Al2O3-SiC nanocomposites

    Institute of Scientific and Technical Information of China (English)

    王宏志; 高濂; 郭景坤

    1999-01-01

    The residual stress in Al2O3-SiC nanocomposites was measured by the X-ray diffraction method. A mode was established to calculate the residual stress, which accorded with the results measured by the XRD method. The strengthening and toughening mechanism was also discussed.

  5. Al2O3/Silicon NanoISFET with Near Ideal Nernstian Response

    NARCIS (Netherlands)

    Chen, Songyue; Bomer, Johan G.; Carlen, Edwin T.; Berg, van den Albert

    2011-01-01

    Nanoscale ISFET (ion sensitive field-effect transistor) pH sensors are presented that produce the well-known sub-Nernstian pH-response for silicon dioxide (SiO2) surfaces and near ideal Nernstian sensitivity for alumina (Al2O3) surfaces. Titration experiments of SiO2 surfaces resulted in a varying p

  6. Thermally stimulated conductivity and thermoluminescence from Al2O3 : C

    DEFF Research Database (Denmark)

    Agersnap Larsen, N.; Bøtter-Jensen, L.; McKeever, S.W.S.

    1999-01-01

    Simultaneous measurements of thermoluminescence (TL) and thermally stimulated conductivity (TSC) are reported on single-crystal dosimetry-quality Al2O3:C following gamma irradiation at room temperature. Analysis of the data reveals a superposition of several first-order TL and TSC peaks caused...

  7. Guiding of low-energy electrons by highly ordered Al2 O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Víkor, G.; Pešić, Z.D.;

    2007-01-01

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al2 O3 nanocapillaries with large aspect ratio (140 nm diameter and 15 μm length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization proc...

  8. Al2O3-SiC-C Bricks for Hot Metal Pretreatment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the classification,techni-cal requirements,test methods,inspection rules,packing,marking,transportation,storage and quality certificate of Al2O3-SiC-C bricks for hot metal pre-treatment.

  9. Al2O3 SiC-C Bricks for Hot Metal Pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Peng Xigao

    2010-01-01

    @@ 1 Scope This standard specifies the classification,shape and dimensions,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of Al2O3SiC-C bricks for hot metal pretreatment.

  10. Preparation and Properties of Crystallizable Glass/Al2O3 Composites for LTCC Material

    Institute of Scientific and Technical Information of China (English)

    SHAO Hui; ZHOU Hongling; ZHU Haihui; SHEN Xiaodong

    2011-01-01

    The investigated low temperature Co fired ceramics(LTCC) composite of 60wt% CaO-Al2O3-B2O3-SiO2 glass and 40wt% α-Al2O3 as a filler is a non-reactive system,which is a critical part of the low temperature Co fired ceramics process.Through a study on densification process,the phase transformation and microstructure can be revealed.Its composites typically consist of CaO-Al2O3-B2O3-SiO2 glass and α-Al2O3 powders of average particle size (D50=3.49 μm).The sintering behavior,phase evaluation,sintered morphology,and microwave dielectric properties were investigated.In the fire range of 800 to 900 ℃,the composites were crystallized after completion of densification.It is found that the composites start to densify at 825 ℃,simultaneously,the dielectric constant (εr) reaches its maximum.With increasing heat-treatment temperatures,due to the loose microstmcture of the material,tanδ increases slightly.The last of the sintered samples were identified as partly Anorthite at 850 ℃.At that temperature it has εr of 7.9 and tanδ less than 1 x 10-3,and can be used as a promising LTCC material.

  11. Erbium-ion implantation into various crystallographic cuts of Al2O3

    Science.gov (United States)

    Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A.

    2015-12-01

    This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al2O3 implanted with Er+ ions at 190 keV and with a fluence of 1.0 × 1016 cm-2. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70-80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al2O3 crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440-1650 nm for all samples. As-implanted Al2O3 samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the cut of Al2O3. The annealing procedure significantly improved the luminescent properties.

  12. Optical spectroscopic study of Al2O3:Ti3+ under hydrostatic pressure

    NARCIS (Netherlands)

    García-Revilla, S.; Rodríguez, F.; Hernández, I.; Valiente, R.; Pollnau, M.

    2002-01-01

    This work investigates the effect of hydrostatic pressure on the excitation, emission and lifetime of Ti3+-doped Al2O3 in the 0–110 kbar range. The application of pressure induces band shifts that are correlated with the corresponding local structural changes undergone by the TiO6 complex. The incre

  13. Electrochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3 Coatings

    Science.gov (United States)

    Liu, Zhe; Chu, Zhenhua; Chen, Xueguang; Dong, Yanchun; Yang, Yong; Li, Yingzhen; Yan, Dianran

    2015-06-01

    In this paper, the tribocorrosion of plasma-sprayed Al2O3 coatings in simulated seawater was investigated by electrochemical impedance spectroscopy (EIS) technique, complemented by scanning electron microscopy to observe the morphology of the tribocorrosion attack. Base on EIS of plasma-sprayed Al2O3 coatings undergoing long-time immersion in simulated seawater, the corrosion process of Al2O3 coatings can be divided into the earlier stage of immersion (up to 20 h) and the later stage (beyond 20 h). Then, the wear tests were carried out on the surface of Al2O3 coating undergoing different times of immersion to investigate the influence of wear on corrosion at different stages. The coexistence of wear and corrosion condition had been created by a boron nitride grinding head rotating on the surface of coatings corroded in simulated seawater. The measured EIS and the values of the fitting circuit elements showed that wear accelerated corrosion at the later stage, meanwhile, corrosion accelerated wear with the immersion time increasing.

  14. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    Science.gov (United States)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  15. Al2O3 Extraction Technologies from Fly Ash on the Properties of Modified PP Resin%粉煤灰提取Al2O3工艺对PP改性性能的影响

    Institute of Scientific and Technical Information of China (English)

    董金虎

    2012-01-01

    Extract Al2O3 was extracted from fly ash using alkali high-temperature calcinations, obtain two different structures' Al2O3 were obtained by two different technologies at the phase of Al(OH), separated out,and two different A12O3 were used to modify PP resin. The results showed that, the tensile strength of PP modified by sheet Al2O3, was better than the PP modified by flocculent Al2O3, and the elongation and impact strength of PP modified by the two different Al2O3 could have the same modification effect, and the content of sheet AlO3 litter than flocculent Al2O3 when obtained the same modification effect. And when the content of Al2O3 was about 2% , the comprehensive performance of PP modified by sheet Al2O3 was better,and the tensile strength increased about 13 % , and the elongation increased about 18 % , and the impact strength increased 15 % .%采用碱焙烧法从粉煤灰中提取Al2O3,在Al(OH)3析出过程中采用两种不同的工艺方法,可以形成两种结构的Al2O3,并分别将两种Al2O3用于改性PP树脂.结果表明:片状Al2O3改性PP的拉伸强度好于絮状Al2O3,而两种Al2O3改性PP的断裂伸长率、冲击强度可以获得相当的改性效果,且片状Al2O3的用量少于絮状Al2O3.片状Al2O3用量为2%左右时,改性PP的综合性能较好,拉伸强度提高约13%,断裂伸长率提高约18%,冲击强度提高约15%.

  16. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  17. Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure

    Science.gov (United States)

    Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed

    2016-07-01

    Nano size polycrystalline samples of the core@shell heterostructure of SnO2 @ xAl2O3 (x = 0, 25, 50, 75 wt.%) were synthesized by sol-gel technique. The resulting samples were characterized with fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and X-ray powder diffraction (XRD). The XRD patterns manifest diffraction peaks of SnO2 as main phase with weak peaks corresponding to Al2O3 phase. The formation of core@ shell structure is confirmed by TEM images and Rietveld quantitative phase analysis which revealed that small part of Al2O3 is incorporated into the SnO2 lattice while the main part (shell) remains as a separate phase segregated on the grain boundary surface of SnO2 (core). It is found that the grain size of the mixed oxides SnO2 @ xAl2O3 is below 10 nm while for pure SnO2 it is over 41 nm, indicating that alumina can effectively prevent SnO2 from further growing up in the process of calcination. This is confirmed by the large increase in the specific surface area for mixed oxide samples. The PL emission showed great dependence on the structure properties analyzed by XRD and FTIR. The PL results recommend Al2O3@SnO2 core@shell heterostructure to be a promising short-wavelength luminescent optoelectronic devices for blue, UV, and laser light-emitting diodes.

  18. An Experimental Study of Sintered (Ni-Cr-xAl2O3 Composites

    Directory of Open Access Journals (Sweden)

    Alaa Abdulhasan Atiyah

    2016-09-01

    Full Text Available This paper deals with the (Ni-Cr- xAl2O3 metallic composites (MCCs. Restraining of of thermal expansion at adequate mechanical and corrosion properties is the main objective of this work. Composites are fabricated with four weight percentages of (x = 1, 2, 5 and 10% Al2O3. Compacting and sintering has accomplished at (636 MPa and 1250oC for 7 hrs. All sintered compacts were examined for phases and microstructure featuring. Results have indicated, the incorporation of Al2O3 with the matrix is due to the efficient sintering conditions, that diminishing the grain growth and increasing the softening temperature from 850°C to become 1350°C. Volume expansion appeared in the base sintered composites (NiCr-xAl2O3 due to pores evolution according to SEM observation. As, the Al2O3 has increased, the microhardness and corrosion resistance have improved. DSC results show a clear one exothermic and one endothermic reaction were occurred during the heating cycle. Corrosion behavior of fabricated composites was estimated by polarization curves using Potentiostat at scan rate 3 mV.sec-1. Potential-time measurements showed the formation of protective layer on surface composites compared with Ni-Cr base composite through an obtaining of the nobler open circuit potentials for composites. Corrosion parameters were estimated by the Tafel extrapolation method, these parameters indicated that the corrosion potential shifted toward a positive direction in addition to get lower corrosion current density especially for Ni-Cr/5%Alumina composite.

  19. Solution-Processed Indium Oxide Based Thin-Film Transistors

    Science.gov (United States)

    Xu, Wangying

    Oxide thin-film transistors (TFTs) have attracted considerable attention over the past decade due to their high carrier mobility and excellent uniformity. However, most of these oxide TFTs are usually fabricated using costly vacuum-based techniques. Recently, the solution processes have been developed due to the possibility of low-cost and large-area fabrication. In this thesis, we have carried out a detailed and systematic study of solution-processed oxide thin films and TFTs. At first, we demonstrated a passivation method to overcome the water susceptibility of solution-processed InZnO TFTs by utilizing octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs). The unpassivated InZnO TFTs exhibited large hysteresis in their electrical characteristics due to the adsorbed water at the semiconductor surface. Formation of a SAM of ODPA on the top of InZnO removed water molecules weakly absorbed at the back channel and prevented water diffusion from the surroundings. Therefore the passivated devices exhibited significantly reduced hysteretic characteristics. Secondly, we developed a simple spin-coating approach for high- k dielectrics (Al2O3, ZrO2, Y 2O3 and TiO2). These materials were used as gate dielectrics for solution-processed In2O3 or InZnO TFTs. Among the high-k dielectrics, the Al2O3-based devices showed the best performance, which is attributed to the smooth dielectric/semiconductor interface and the low interface trap density besides its good insulating property. Thirdly, the formation and properties of Al2O3 thin films under various annealing temperatures were intensively studied, revealing that the sol-gel-derived Al2O3 thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide. Besides, the Al2O 3 film was used as gate dielectric for solution-processed oxide TFTs, resulting in high mobility and low operating voltage. Finally, we proposed a green route for

  20. Swift ion irradiation effect on high-k ZrO2- and Al2O3-based MOS devices

    Science.gov (United States)

    Rao, Ashwath; Chaurasia, Priyanka; Singh, B. R.

    2016-03-01

    This paper describes the heavy ion-induced effects on the electrical characteristics of reactively sputtered ZrO2 and Al2O3 high-k gate oxides deposited in argon plus nitrogen containing plasma. Radiation-induced degradation of sputtered high-k dielectric ZrO2/Si and Al2O3/Si interface was studied using 45 MeV Li3+ ions. The devices were irradiated with Li3+ ions at various fluences ranging from 5 × 109 to 5 × 1012 ions/cm2. Capacitance-voltage and current-voltage characteristics were used for electrical characterization. Shift in flat band voltage towards negative value was observed in devices after exposure to ion radiation. Post-deposition annealing effect on the electrical behavior of high-k/Si interface was also investigated. The annealed devices showed better electrical and reliability characteristics. Different device parameters such as flat band voltage, leakage current, interface defect density and oxide-trapped charge have been extracted.The surface morphology and roughness values for films deposited in nitrogen containing plasma before and after ion radiation are extracted from Atomic Force Microscopy.

  1. Superconducting MgB2 Thin Films with Tc ≈ 39 K Grown by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 戴守愚; 周岳亮; 陈正豪; 崔大复; 许佳迪; 何萌; 吕惠宾; 杨国桢

    2001-01-01

    Superconducting MgB2 thin films were fabricated on Al2 O3 (0001) substrates under ex situ processing conditions.Boron thin films were deposited by pulsed laser deposition followed by a post-annealing process. Resistance measurements of the deposited MgB2 films show Tc of ~39 K, while scanning electron microscopy and x-ray vdiffraction analysis indicate that the films consist of well-crystallized grains with a highly c-axis-oriented structure.

  2. Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, J; Zhang, Ji-Guang; Wang, Chong-Min

    2016-02-09

    Surface coating has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin coating layer, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration-corrected scanning transmission electron microscopy and high-efficiency spectroscopy to probe the delicate functioning mechanism of an Al2O3 coating layer on a Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between the cathode and the electrolyte during battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore preventing the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will be initiated from the particle surface and propagate toward the interior of the particle with the progression of battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight into the optimized design of a coating layer on a cathode to enhance the battery properties.

  3. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    Science.gov (United States)

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  4. Initial Processes of Atomic Layer Deposition of Al2O3 on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance

    Directory of Open Access Journals (Sweden)

    Shinichi Takagi

    2012-03-01

    Full Text Available Interface-formation processes in atomic layer deposition (ALD of Al2O3 on InGaAs surfaces were investigated using on-line Auger electron spectroscopy. Al2O3 ALD was carried out by repeating a cycle of Al(CH33 (trimethylaluminum, TMA adsorption and oxidation by H2O. The first two ALD cycles increased the Al KLL signal, whereas they did not increase the O KLL signal. Al2O3 bulk-film growth started from the third cycle. These observations indicated that the Al2O3/InGaAs interface was formed by reduction of the surface oxides with TMA. In order to investigate the effect of surface-oxide reduction on metal-insulator-semiconductor (MIS properties, capacitors and field-effect transistors (FETs were fabricated by changing the TMA dosage during the interface formation stage. The frequency dispersion of the capacitance-voltage characteristics was reduced by employing a high TMA dosage. The high TMA dosage, however, induced fixed negative charges at the MIS interface and degraded channel mobility.

  5. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Science.gov (United States)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  6. Growth and characterization of highly oriented gadolinia-doped ceria (111) thin films on zirconia (111)/sapphire (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Debasis; Kuchibhatla, Satyanarayana V N T; Azad, Samina; Saraf, Laxmikant V.; Wang, Chong M.; Shutthanandan, V.; Nachimuthu, Ponnusamy; Mccready, David E.; Engelhard, Mark H.; Marina, Olga A.; Baer, Donald R.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2008-07-31

    Highly-oriented pure and gadolinia-doped ceria thin films have been grown on pure and ZrO2 (111)-buffered Al2O3 (0001) substrates using oxygen plasma-assisted molecular beam epitaxy (OPA-MBE) to understand the oxygen ionic transport processes in ceria based oxide thin films. Gadolinia-doped ceria films grown on pure Al2O3(0001) substrate show polycrystalline features due to structural deformations resulting from the large lattice mismatch between the Al2O3(0001) substrate and the films. However, the films, grown on a thin layer of ZrO2(111) buffered Al2O3 (0001) substrate, appears to be highly oriented. These films were characterized using high resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS) depth profiling. Oxygen ionic conductivity in gadolinia-doped ceria films was measured as a function of Gd concentration and these results were compared with the ion conductance data of the polycrystalline and single crystalline yttria-stabilized zirconia (YSZ).

  7. Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-09-01

    Al2O3-ZrO2 coatings were deposited by the suspension plasma spray (SPS) molecularly mixed amorphous powder and the conventional air plasma spray (APS) Al2O3-ZrO2 crystalline powder. The amorphous powder was produced by heat treatment of molecularly mixed chemical solution precursors below their crystallization temperatures. Phase composition and microstructure of the as-synthesized and heat-treated SPS and APS coatings were characterized by XRD and SEM. XRD analysis shows that the as-sprayed SPS coating is composed of α-Al2O3 and tetragonal ZrO2 phases, while the as-sprayed APS coating consists of tetragonal ZrO2, α-Al2O3, and γ-Al2O3 phases. Microstructure characterization revealed that the Al2O3 and ZrO2 phase distribution in SPS coatings is much more homogeneous than that of APS coatings.

  8. Effects of Al2O3-Particulate-Contained Composite Filler Materials on the Shear Strength of Alumina Joints

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    All2O3/Al2O3 joints were brazed with a new kind of filler materials, which were formed by adding Al2O3 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(Al2O3p 0 vol. pct) to 135.32 MPa(Al2O3p 15 vol. pct).

  9. Effects of a second phase on the tribological properties of Al2O3 and ZrO2 ceramics

    NARCIS (Netherlands)

    He, Y.J.; Winnubst, A.J.A.; Schipper, D.J.; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    The tribological properties of four different materials are investigated, tetragonal zirconia (Y-ZTP), Al2O3 dispersed in Y-TZP (ADZ), ZrO2 dispersed in Al2O3 (ZTA) and Al2O3 (with 300 ppm MgO). These materials are used as a cylinder sliding against a plate of Y-TZP (TZ-3Y)). Compared to Y-TZP, the

  10. Development and Application of Al2O3 - Si3N4 Refractories Used in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Xianming; LI Yong; KANG Huarong; DONG Shengying; XUE Wendong; SONG Wen

    2008-01-01

    Newly developed Al2O3-Si3N4 composite refracto-ries used for blast furnace is introduced in this work.Al2O3-Si3N4 composite refractories attacked by alkali vapor and blast Jhrnace slag was investigated. High per-formance Al2O3 -Si3N4 composite refractories was pro-duced and used at both 2 560 m3 blast furnaces of Tan-gsteel and No. 5 blast furnace of Shaosteel.

  11. Study on Interface between Sub-micron Particles and Matrix n Al2O3p/Al Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructural characteristic of 1070Al matrix composites reinforced by 0.15 μm Al2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and Al2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.

  12. Effect of Al2O3 Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Hai-Jun Wan; Bao-Shan Wu; Xia An; Ting-Zhen Li; Zhi-Chao Tao; Hong-Wei Xiang; Yong-Wang Li

    2007-01-01

    A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and M(o)ssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.

  13. Electrical Discharge Machining of Al/7.5% Al2O3 MMCs Using Rotary Tool and Al2O3 Powder

    Science.gov (United States)

    Daneshmand, Saeed; Masoudi, Behnam; Monfared, Vahid

    Nowadays, composites are used in different parts of industries and it is one of the most important subjects. The most widely used reinforcements in metal matrix composites are Al2O3 and SiC fibers and particles which may be used in cutting-edge functional and structural applications of aerospace, defense, and automobile industries. Depending on the type of powder used, composite materials are difficult to machine by conventional cutting tools and methods. The most appropriate way for machining of these composites is electro discharge. For the reason of improving the surface quality, tool wear rate and material removal rate and reducing the cracks on the surface, Al2O3 powder was used. In this study, the effect of input parameters of EDM such as voltage, pulse current, pulse on-time and pulse off-time on output parameters like material removal rate, tool wear rate and surface roughness in both conditions of the rotary tool with powder mixed dielectric EDM and the stationary tool excluding powder mixed dielectric were investigated. The critical parameters were identified by variance analysis, while the optimum machining parameter settings were achieved via Taguchi method. Results show that using of powder mixed dielectric and rotary tool reduce the tool wear rate, surface roughness and the cracks on the surface significantly. It is found also that using of powder mixed dielectric and rotary tool improve the material removal rate due to improved flushing action and sparking efficiency. The analysis of variance showed that the pulse current and pulse on-time affected highly the MRR, TWR, surface roughness and surface cracks.

  14. Probing the Physical Conditions of Supernova Ejecta with the Measured Sizes of Presolar Al2O3 Grains

    OpenAIRE

    2015-01-01

    A few particles of presolar Al2O3 grains with sizes above 0.5 mum are believed to have been produced in the ejecta of core-collapse supernovae (SNe). In order to clarify the formation condition of such large Al2O3 grains, we investigate the condensation of Al2O3 grains for wide ranges of the gas density and cooling rate. We first show that the average radius and condensation efficiency of newly formed Al2O3 grains are successfully described by a non-dimensional quantity "Lambda_on" defined as...

  15. Effects of Surface Treatments on the Performances of Al2 O3 Nano-Particle/Polyimide adhesive

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; ZHANG Shi-tang; QIAO Yu-lin

    2004-01-01

    The nano-Al2O3/polyimide composite adhesive was prepared by high-energy chemical and mechanical handing in this paper. The thermally curing process was preliminary determined, furthermore, the effects of n-Al2 O3 on the performance of polyimide adhesive were investigated using SEM. The results were showed that n-Al2 O3 particles were segregated from adhesive to the interface, especially bulk structural defect, which may be the reason why the performance of n-Al2O3/PI adhesive becomes better. However, the detailed mechanism is still to be discussed.

  16. Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Shaorong Lu

    2012-01-01

    Full Text Available Liquid crystalline polyurethane (LCPU/Al2O3/epoxy resin composites were prepared by using LCPU as modifier. The mechanical properties, thermal stability, and electrical properties of the LCPU/Al2O3/epoxy resin composites were investigated systematically. The thermal oxidation analysis indicated that LCPU/Al2O3/epoxy resin composites can sustain higher thermal decomposition temperature. Meanwhile, coefficient of thermal expansion (CTE was also found to decrease with addition of LCPU and nano-Al2O3.

  17. Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2016-01-01

    Full Text Available The catalysts Ni/Al2O3 and CaO modified Ni/Al2O3 were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2 adsorption/desorption, temperature-programmed reduction of H2 (H2-TPR, X-ray diffraction (XRD, and temperature-programmed desorption of CO2 and H2 (CO2-TPD and H2-TPD techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2 and H2 adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3 showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3 showed high CO2 conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4 was very close to 1. The high CO2 conversion over Ni/CaO-Al2O3 was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3 surface.

  18. The role of the spray pyrolysed Al2O3 barrier layer in achieving high efficiency solar cells on flexible steel substrates

    Science.gov (United States)

    Gledhill, Sophie E.; Zykov, Anton; Rissom, Thorsten; Caballero, Raquel; Kaufmann, Christian A.; Fischer, Christian-Herbert; Lux-Steiner, Martha; Efimova, Varvara; Hoffmann, Volker; Oswald, Steffen

    2011-07-01

    Thin film chalcopyrite solar cells grown on light-weight, flexible steel substrates are poised to enter the photovoltaic market. To guarantee good solar cell performance, the diffusion of iron from the steel into the CIGSe absorber material must be hindered during layer deposition. A barrier layer is thus required to isolate the solar module from the metal substrate, both electronically and chemically. Ideally the barrier layer would be deposited by a cheap roll-to-roll process suitable to coat flexible steel substrates. Aluminium oxide deposited by spray pyrolysis matches the criteria. The coating is homogeneous over rough substrates allowing comparatively thin barrier layers to be utilized. In this article, solar cell results are presented contrasting the device performance made with a barrier layer to that without a barrier layer. Secondary Ion Mass spectrometry (SIMS) measurements show that the spray pyrolysed barrier layer diminishes iron diffusion to the chalcopyrite absorber layer. The role of sodium, imperative for the growth of high efficiency chalcopyrite solar cells, and how it interacts with Al2O3 is discussed.

  19. Geant4 calculations for space radiation shielding material Al2O3

    Science.gov (United States)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  20. Geant4 calculations for space radiation shielding material Al2O3

    Directory of Open Access Journals (Sweden)

    Capali Veli

    2015-01-01

    Full Text Available Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV – 1 GeV using GEANT4 calculation code.

  1. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    Science.gov (United States)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10-70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV-visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470-640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680-720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  2. Preparation and Characterization of Fe2O3/Al2O3 Nano-composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Al2O3/Fe2O3 nano-composites were prepared by sol-gel route. The effect of Fe2O3 content on the structure, grain size and characterization of the composite were investigated through X-ray diffraction and M(o)ssbauer spectrum. The X-ray diffraction results show that Al2O3/Fe2O3 nano-composites with the Fe2O3, content of 40 wt% can be obtained after heat-treated at 900℃. The M(o)ssbauer effect results show that all samples exhibit clear super-paramagnetic phenomenon. Particles grow and defects reduce with the increasing of Fe2O3 conteni and some α-Fe2O3 stay magnetic order.

  3. Low Temperature Preparation and Cold Manufacturing Techniques for Femoral Head of Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The hip joint femoral head prosthesis was prepared using the Al2O3 material, which was synthesized by high purity alumina micro-powder and Mg- Zr- Y composite additives, the cold manufacturing techniques of lathe turning, grade polishing and the matching size correction of the sintered femoral head were studied. The results showed, after being pressed under 200 MPa cold isostatic pressure and being pre-sintered at 1 150 ℃, the biscuit' s strength can meet the demands of lathe turning; After being grade polished by SiC micro-powder and diamond abrading agent and being size corrected by special instruments, the femoral head prosthesis of Al2O3 ceramic has good surface degree of finish and articulates tightly with femoral handle.

  4. TEM study of a hot-pressed Al2O3-NbC composite material

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2005-03-01

    Full Text Available Alumina-based composites have been developed in order to improve the mechanical properties of the monolithic matrix and to replace the WC-Co material for cutting tool applications. Al2O3 reinforced with refractory carbides improves hardness, fracture toughness and wear resistance to values suitable for metalworking applications. Al2O3-NbC composites were uniaxially hot-pressed at 1650 °C in an inert atmosphere and their mechanical properties and microstructures were analyzed. Sintered density, average grain size, microhardness and fracture toughness measurements and microstructural features were evaluated. Results have shown that the mechanical properties of alumina-NbC are comparable to other carbide systems. Microstructural analysis has shown that the niobium carbide particles are mainly located at the grain boundaries of alumina grains, which is an evidence of the "pinning effect", produced by NbC particles.

  5. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik; Aznar, Marianne

    2008-01-01

    15th International Conference on Solid State Dosimetry Location: Delft Univ Technol, Delft, NETHERLANDS Date: JUL 08-13, 2007 Abstract: Carbon-doped aluminum oxide (Al2O3:C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically...... to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0. 1 s closely matched dose-rate changes monitored with in ionization chamber. (c) 2007 Elsevier Ltd. All rights reserved.......15th International Conference on Solid State Dosimetry Location: Delft Univ Technol, Delft, NETHERLANDS Date: JUL 08-13, 2007 Abstract: Carbon-doped aluminum oxide (Al2O3:C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically...

  6. Propane oxidation on Pt-WO3/g -AL2O3 catalytic systems

    Directory of Open Access Journals (Sweden)

    Silva M.A.Pereira da

    2003-01-01

    Full Text Available The oxidation of propane on was studied with Pt-xWO3/Al2O3 catalysts was studied ,by varying the concentration of tungsten sublayer. Thermal analysis and XRD in situ showed that the enrichment of tungsten at the surface is associated with the formation of HxWO3 bronze. FTIR results with C3H8 and O2 indicated that the catalyst surface properties and the interaction between W and Pt were modified. These modified surface complexes prevented the formation of acetates and formate species. The addition of W increased the activity of Pt/Al2O3 towards in C3H8 oxidation. Tungsten was the main responsible for the stability of the bimetallic catalysts in the presence of water.

  7. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x......(upsilon) almost-equal-to 0.25. The effect is ascribed to the production of single-domain magnetic grains. Mossbauer spectroscopy reveals the presence of iron oxide phases which could not be seen by x-ray and electron diffraction measurements....

  8. Effect of sulfur removal on Al2O3 scale adhesion

    Science.gov (United States)

    Smialek, James L.

    1991-01-01

    The effect of removing sulfur impurity on the adhesion of Al2O3 scale to NiCrAl was investigated in four experiments. It was found that removing sulfur to concentration less than 1 ppm per weight is sufficient to produce a very significant degree of alpha-Al2O3 scale adhesion to undoped NiCrAl alloys. Results of experiments show that repeated oxidation, and polishing after each oxidation cycle, of pure NiCrAl alloy lowered sulfur content from 10 to 2 ppm by weight (presumably by removing the segregated interfacial layer after each cycle); thinner samples became adherent after fewer oxidation-polishing cycles because of more limited supply of sulfur. It was found that spalling in subsequent cyclic oxidation tests was a direct function of the initial sulfur content. The transition between the adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  9. Adherent Al2O3 scales produced on undoped NiCrAl alloys

    Science.gov (United States)

    Smialek, James L.

    1986-01-01

    Repeated oxidation and polishing of high purity Ni-15Cr-13Al has dramatically changed its cyclic oxidation behavior from nonadherent to adherent. No apparent change in scale phase, morphology or interface structure occurred during this transition, dismissing any mechanism based on pegging, vacancy sink, or growth stress. The principle change that did occur was a reduction in the sulfur content from 10 ppmw to 3 ppmw after 25 cycles at 1120 C. These observations are used to support the model of Al2O3 scale adherence put forth by Smeggil et al. which claims that Al2O3 scale spallation occurs due to sulfur segregation and bond deterioration at the oxide-metal interface.

  10. Anormalous Optical Absorption in Porous Al_2O3 Host Matrix---Nano-Oxide Particle Nanocomposites

    Science.gov (United States)

    Zhang, Lide; Zhang, Biao; Mo, Chimei

    1996-03-01

    Porous Al_2O3 host matrix---nano-γ-Fe_2O3 particle composites (porous nanocomposite) were prepared by pyrolysis of Fe(NO_3)_39H_2O in porous nano- Al_2O3 matrix at 250^0C. Comparing with simple nanocomposites formed by mixing nano-γ-Fe_2O3 and compacting at room temperature, followed by annealing at 250^0C, the following anomalous optical behaviors were observed: for porous nanocomposite containing 5% Fe_2O_3, the aborption edge shifts obviously from 827nm to 543nm, and with increasing dopping amount of Fe_2O3 from 5% to 70%, blue shift phenomina decreases. Namely, the absorption edge moves from 543nm to 710nm. The mechanism of shift of the absorption edge is discussed.

  11. Versatile sputtering technology for Al2O3 gate insulators on graphene

    Directory of Open Access Journals (Sweden)

    Miriam Friedemann, Mirosław Woszczyna, André Müller, Stefan Wundrack, Thorsten Dziomba, Thomas Weimann and Franz J Ahlers

    2012-01-01

    Full Text Available We report a novel, sputtering-based fabrication method of Al2O3 gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered Al2O3 layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage. We observe a moderate carrier mobility of about 1000 cm2 V− 1 s−1 in monolayer graphene and 350 cm2 V− 1 s−1 in bilayer graphene, respectively. The mobility decrease can be attributed to the resonant scattering on atomic-scale defects, likely originating from the Al precursor layer evaporated prior to sputtering.

  12. Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter

    Institute of Scientific and Technical Information of China (English)

    Anmin Zhao; Weiyong Ying; Haitao Zhang; Hongfang Ma; Dingye Fang

    2012-01-01

    Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method.The catalysts were characterized by N2 physisorption,XRD,TPR,SEM and TEM.Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor.It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume,but decrease NiO crystallite size,leading to higher activity and stability.The effects of reaction temperature,pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied.High carbon oxides conversion,CH4 selectivity and formation rate were achieved at the reaction temperature range of 280-300 ℃.

  13. Protective Al2O3 scale formation on NbAl3-base alloys

    Science.gov (United States)

    Doychak, J.; Hebsur, M. G.

    1991-01-01

    The oxidation of NbAl3 with additions of Cr and Y was studied to determine the mechanisms of the beneficial effects of these elements upon oxidation. Cr additions to the binary NbAl3 alloy of up to 6.8 at. percent reduced the scale growth rates and promoted alpha-Al2O3 formation over much longer times relative to binary NbAl3. A major effect of Cr is to form a layer of AlNbCr at the metal/scale interface, which is inherently more oxidation-resistant than the matrix alloy in the long term. Yttrium additions to a Cr-containing alloy improved the scale growth rate and adherence and changed the scale microstructure to mimic that of a typical protective Al2O3 scale.

  14. Electrical characteristics of polycrystalline Si layers embedded into high- k Al 2O 3 gate layers

    Science.gov (United States)

    Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig

    2008-09-01

    The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high- k Al 2O 3 (alumina) gate layers are investigated in this work. The capacitance versus voltage ( C- V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C- V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al 2O 3 layers in the MASAS capacitor. Also, current versus voltage ( I- V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I- V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.

  15. Strength Properties and Microstructure of Diphase β—Sialon/Al2O3 Composites

    Institute of Scientific and Technical Information of China (English)

    LIYoufen; HONGYanruo; 等

    2000-01-01

    Study on modules of rupture and microstructure of xphase bearing diphase β-Sialon and diphase β-Sialon/Al2O3 composites shows that MOR increases with tempera-ture rise up to a maximum oint and then decreases,For diphase β-Sialon materials,the maximum strength reaches 130 MPa-170 MPa at 1200℃;whereas for diphase β-Sialon/Al2O3 composites,the maximum strength reaches 200MPa-300 MPa at 1000℃,In the microstructure of th composite ,oblong crystals of x-phase and hexagonal prismatic crystals of β-Sialon are interlaced in the skeleton structure of corundum.This struture creates a distinctly intensifying effect on the strength of the composite.

  16. Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix

    Science.gov (United States)

    El Mir, L.; Amlouk, A.; Barthou, C.

    2006-11-01

    This paper deals with the sol gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ˜30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400 600 and 700 900 nm in 78 300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400 600 and 700 900 nm, respectively.

  17. 聚乙烯醇缩丁醛溶液组分对Al2O3流延成型的影响%Effect of Characteristics of Polyvinyl Butyral on Al2O3 Tape Casting Slurry

    Institute of Scientific and Technical Information of China (English)

    涂从红; 吴黎; 朱丽慧; 黄清伟

    2011-01-01

    The effect of solubility, film-forming ability and the dispersion of polyvinyl butyral (PVB) on Al2O3 tape casting slurry were studied. The results show that the PVB polymer solution exhibits the lowest viscosity in the binary solvent(EtOH)/Xylene of 60% ethyl alcohol. The viscosity of slurry is 868 mPa ·s in the absence of dispersant whereas the viscosity decreases to 17 mpa·s with 0.5% PVB as the dispersant at the shear rate 50 s-1. When 8% PVB is added as the binder in the slurry, the slurry exhibits lower viscosity; the green tape shows better film-forming ability and has no obvious defaults.%研究了Al2O3流延浆料中聚乙烯醇缩丁醛(PVB)的溶解性、成膜性及其对氧化铝粉体的分散作用.实验结果表明,PVB溶解于二元混合溶剂乙醇/二甲苯,当乙醇含量为60%时,粘度最低,溶解性最佳;PVB用作分散剂,当用量为0.5%,剪切速率为50 s-1时,系统粘度从868 mPa·s降到17 mpa·s;PVB用作粘结剂,用量为8%时,流延生片无明显缺陷,流延浆料粘度较低,成膜性能好.

  18. Erbium and Al2O3 nanocrystals-doped silica optical fibers

    OpenAIRE

    2014-01-01

    Fibre lasers and inherently rare-earth-doped optical fibers nowadays pass through a new period of their progress aiming at high efficiency of systems and their high power. In this paper, we deal with the preparation of silica fibers doped with erbium and Al2O3 nanocrystals and the characterization of their optical properties. The fibers were prepared by the extended Modified Chemical Vapor Deposition (MCVD) method from starting chlorides or oxide nanopowders. Conventional as well as modified ...

  19. KINERJA KATALIS Ag/Al2O3 UNTUK REDUKSI NOx

    Directory of Open Access Journals (Sweden)

    Rakhman Sarwono

    2012-02-01

    Full Text Available NOx merupakan hasil samping dari suatu reaksi pembakaran. NOx merupakan gas yang beracun sangat berbahaya terhadap kesehatan manusia dan hewan bila terhirup pada waktu bernafas. Untuk mengurangi kadar NOx pada gas buang, banyak penelitian diarahkan pada reduksi NOx dengan katalis secara selektif dengan hidrokarbon dan oksigen berlebihan. Katalis yang digunakan adalah katalis alumina (Al2O3 yang didapat dari katalis komersial (AlO1-7 dan katalis hasil sintesa (ALOA. Katalis Ag/Al2O3 didapat dengan memasukkan logam Ag ke dalam alumina (Al2O3 dengan cara impregnasi dengan larutan perak nitrat. Katalis diuji aktifitasnya pada reaktor fixed bed yang diluarnya terdapat pemanas yang bisa diatur suhunya. Reaktan seperti gas NO, C2H4  dan oksigen dimasukkan kedalam reaktor dengan laju yang ditentukan. Hasil reaksi dianalisa dengan gas chromatography dan dicatat pada recorder, selanjutnya bisa ditentukan kuantitas dan prosentase konversinya. Katalis alumina  ALOA mempunyai kemampuan mereduksi NO dengan konversi  sekitar 40-45% gas NO menjadi N2. Loading logam perak (Ag kedalam Al2O3 sebesar 2-3% berat menambah daya reduksi NO menjadi sekitar 45-50% pada suhu 500oC. Pada umpan NO + C2H4  + O2  reaksi reduksi terjadi pada suhu 300oC, sedangkan pada umpan NO + C2H4   (tanpa oksigen reaksi reduksi baru terjadi pada suhu 450oC, dengan demikian adanya oksigen sangat berperan dalam proses reduksi NOx. Reaksi peruraian C2H4 menjadi COx berkebalikan dengan kinerja katalis pada proses reduksi NOx

  20. Modified Mechanism of Eutectic Silicon in Al2O3/Al-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Al2O3/Al-Si alloy composite was manufactured by squeeze casting. The morphology of the eutectic silicon in the composite was observed by scanning electronic microscope (SEM), and the modified mechanism of eutectic silicon in the composite was approached. The alumina fiber in the composite can trigger twin during the growth of Al-Si eutectic and lead to the modification of eutectic silicon near the fiber.

  1. The temperature dependence of optically stimulated luminescence from α-Al2O3:C

    DEFF Research Database (Denmark)

    Markey, B.G.; McKeever, S.W.S.; Akselrod, M.S.;

    1996-01-01

    The results of experimental measurements and computer simulations on optically stimulated luminescence (OSL) from alpha-Al2O3:C are described. The intensity of the OSL observed during illumination of irradiated specimens with visible light is temperature dependent. Optical stimulation is observed...... from the main dosimetric traps, and from deep traps. The temperature dependence appears to be due to the presence of shallow traps, with a possible additional contribution from thermally assisted optical excitation....

  2. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Andersen, Claus Erik

    2007-01-01

    is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals...... and detection wavelengths. The reported temperature dependence seems to be a general property of Al2O3:C. (C) 2006 Elsevier Ltd. All rights reserved....

  3. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    OpenAIRE

    Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad

    2011-01-01

    In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limita...

  4. 气相氟化四氯乙烯的ZnF_2/Al_2O_3催化剂%Study on ZnF_2/Al_2O_3 catalysts for the vapor phase hydrofluorination of tetrachloroethylene

    Institute of Scientific and Technical Information of China (English)

    程永香; 谢遵运; 彭小波; 罗孟飞

    2012-01-01

    ZnF2/Al2O3 catalysts were prepared by an impregnation method.The effect of the Al2O3 support calcination temperature on catalytic performance for the vapor phase hydrofluorination of tetrachloroethylene was studied.The catalysts were characterized by XRD,Raman,NH3-TPD and BET techniques.The results show that-Al2O3 started to transform to-Al2O3 and α-Al2O3 at 900 ℃.-Al2O3 reaches to its maximum at 1100℃.By further increasing the calcination temperature,all-Al2O3 transformed to α-Al2O3.The highest activity was obtained on a ZnF2/Al2O3 catalyst with the Al2O3 support calcined at 1110 ℃.The conversion of tetrachloroethylene was 45.7% and the selectivity to HCFC-123(2,2-dichloro-1,1,1-three ethyl fluoride) and HCFC-124(2-chloro-1,1,1,2-tetrafluoroethane) was 48.2% at a reaction temperature of 300 ℃.%采用浸渍法制备了ZnO/Al2O3催化剂,考察了载体Al2O3的焙烧温度对催化剂性能的影响。并对催化剂进行了X射线衍射(XRD)、Raman光谱、氨气程序升温脱附(NH3-TPD)和BET表征。结果表明:随着Al2O3焙烧温度升高,从900℃开始,-Al2O3逐渐向-Al2O3和α-Al2O3转变,1100℃焙烧样品中-Al2O3的XRD峰强度达到最大。当温度继续升高,-Al2O3将转变成α-Al2O3Al2O3载体经过1100℃焙烧制得的ZnF2/Al2O3催化剂催化性能最高,当反应温度为300℃时,四氯乙烯的转化率为45.7%,HCFC-123(2,2-二氯-1,1,1-三氟乙烷)和HCFC-124(2-氯-1,1,1,2-四氟乙烷)的总选择性为48.2%。

  5. Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films.

    Science.gov (United States)

    Göbel, Marcus C; Gregori, Giuliano; Guo, Xiangxin; Maier, Joachim

    2010-11-14

    Thin films of CeO(2) (both nominally pure and 10 mol% gadolinium-doped) grown via pulsed-laser deposition were studied. The electrical conductivity of the samples was measured as a function of thickness, temperature and oxygen partial pressure (pO(2)) using impedance spectroscopy. As expected, undoped CeO(2) exhibits electronic conductivity (with activation energy between 1.4 and 1.6 eV) whereas the highly doped samples are oxygen vacancy conductors (activation energy around 0.7 eV for epitaxial films). In order to investigate the influence of the nature of the substrate the thin films were grown on two different substrates, Al(2)O(3) (0001) and SiO(2) (0001), and compared. While the films grown on SiO(2) exhibit a microstructure characterized by columnar grains, the films grown on Al(2)O(3) are epitaxial. Notably, for films on both substrates the conductivity and activation energy vary with film thickness and exhibit remarkable differences when the films on different substrates are compared. In the case of the polycrystalline films (SiO(2) substrate), the space charge layer effects of the grain boundaries dominate over the substrate-film interface effect. In the case of the epitaxial films (Al(2)O(3) substrate), a small interface effect, probably due to a space charge layer or structural strain, is observed.

  6. Er3+–Al2O3 nanoparticles doping of borosilicate glass

    Indian Academy of Sciences (India)

    Jonathan Massera; Laeticia Petit; Joona Koponen; Benoit Glorieux; Leena Hupa; Mikko Hupa

    2015-09-01

    Novel borosilicate glasses were developed by adding in the glass batch Er3+–Al2O3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er3+–Al22O3 nanoparticle doping neither leads to an increase in the Er3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er3+ in the Er3+–Al2O3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al2O3 nanoparticles in the glasses after melting.

  7. KINETIKA HIDRODESULFURISASI DIBENZOTHIOPHENE (HDS DBT MENGGUNAKAN KATALIS NiMo/γ-Al2O3

    Directory of Open Access Journals (Sweden)

    Subagjo Subagjo

    2014-12-01

    Full Text Available Evaluasi kinetika reaksi hidrodesulfurisasi (HDS dibenzothiophene dan simulasi nafta hydrotreater yang berada di PT. PERTAMINA Refinery Unit II Dumai menggunakan katalis NiMo/Al2O3 hasil pengembangan telah dilakukan. Kinetika reaksi HDS DBT dilakukan dalan sistem reaktor batch dengan variasi temperatur 280-320oC dan tekanan 30 bar. Data kinetika diolah dengan persamaan hukum pangkat (law power dan persamaan kinetik mekanistik (Langmuir Hinshelwood, LH. Berdasarkan model hukum pangkat, kinetika HDS DBT menggunakan NiMo/Al2O3 hasil pengembangan merupakan  orde satu  terhadap DBT dengan konstanta Arhenius  sebesar 165633 detik-1 dan energi aktivasi 69017 J/mol (16,56 kkal/mol. Model LH yang cocok untuk reaksi HDS DBT menggunakan NiMo/Al2O3 hasil pengembangan adalah model LH yang mengilustrasikan adanya kompetisi antara reaktan DBT dan H2 pada tipe pusat aktif yang sama, dengan DBT teradsorb secara kuat sedangkan H2 teradsorpsi secara lemah. Energi aktifasi dan konstanta Arhenius berdasarkan model LH ini ini berturut-turut adalah 81409 J/mol (19,34 kkal/mol dan 1658133 s-1. Dengan menggunakan persamaan laju reaksi hukum pangkat, model memberikan hasil konversi sulfur yang sama dengan hasil keluaran reaktor nafta hydrotreater RU II-Dumai, yaitu mencapai 98%.

  8. Kinetic Adsorption of Cd onto Nanometer Al2O3/Carbon Fibre

    Institute of Scientific and Technical Information of China (English)

    LI Yu; WANG Yue; HAN Wei; LI Su-wen; ZHAO Hui; ZHU Chang-yun; WANG Heng

    2005-01-01

    A new nanometer material, nano-Al2O3 with carbon fibre as the carrier, was employed for the removal of Cd with low concentrations from polluted water. The characterization of the material was carried out by means of SEM and TEM. Batch adsorption and elution experiments were carried out to determine the adsorption properties of Cd on the new adsorbent. The classical Thomas model was applied to estimating the equilibrium coefficients of Cd adsorption and the saturated adsorption ability. The results show that the Thomas model is fit for describing the kinetic adsorption process, and the maximum adsorption capacity of the nanometer Al2O3/carbon is 69.29 mg/g. The resulting information also indicates that the desorption of Cd eluted with de-ionized water at a rate of 9.8 mL/min can be neglected. With the advantage of a high adsorption capacity for removing low concentration Cd, the Al2O3/carbon fibre possesses the potentiality to be an effective adsorbent for the removal of Cd from polluted water.

  9. Micro mechanical properties of n-Al2O3/Ni composite coating by nanoindentation

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-mei; XU Bin-shi; MA Shi-ning; DONG Shi-yun; LI Xiao-ying

    2004-01-01

    A new type of nano test system was introduced, the test principle and the indentation data analysis method were described. It was used to test the micro mechanical properties, such as hardness, elastic modulus and indentation creep property of n-Al2O3/Ni composite coating on steel prepared by brush plating, and the variety of mechanical properties with coating thickness was researched. The results show that the mechanical properties are basically identical within the whole coating, the hardness and modulus decrease in the defect fields, especially within the dendritic crystals, whereas the mechanical properties are not influenced greatly at the interspaces among dendritic crystals. The average hardness and elastic modulus of n-Al2O3/Ni coating are 6.34 GPa and 154 GPa respectively, and the hardness is 2.4 times higher than that of steel and the indentation creep curve of n-Al2O3/Ni coating is similar to that of the uniaxial compression creep, and the creep rate of steady-state is about 0. 104 nm/s. These results will supply useful data for process improvement, new type material development and application expansion.

  10. H2 assisted NH3-SCR over Ag/Al2O3 for automotive applications

    DEFF Research Database (Denmark)

    Fogel, Sebastian

    The up-coming strict emission legislation demands new and improved catalysts for diesel vehicle deNOx. The demand for low-temperature activity is especially challenging. H2-assisted NH3-SCR over Ag/Al2O3 has shown a very promising low-temperature activity and a combination of Ag/Al2O3 and Fe...... has been the preparation of monolithic catalyst bricks for the catalyst testing. A high SBET and higher Ag loading gave a high sulphur tolerance and activity. It was believed that the high SBET is needed to give a higher NH3 adsorption capacity, necessary for the SCR reaction. A higher Ag loading...... both in a sequential dual-bed layout and a dual-layer layout where the catalysts were coated on top of each other. The Ag/Al2O3 catalyst was also investigated with the aim of improving the sulphur tolerance and low-temperature activity by testing different alumina-supports. A large focus of this study...

  11. New technique of comprehensive utilization of spent Al2O3-based catalyst

    Institute of Scientific and Technical Information of China (English)

    FENG Qi-ming; CHEN Yun; SHAO Yan-hai; ZHANG Guo-fan; OU Le-ming; LU Yi-ping

    2006-01-01

    A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750 ℃ and roasting time of 30 min, molar ratio of Na2 O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2 %, 95.80% and 98. 9 %, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2 % and cobalt recovery over 98.5 % can be obtained under the experimental condition of 30 % H2 SO4, 80 ℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800 r/min.

  12. Effects of drying method on preparation of nanometer α-Al2O3

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; WAN Ye; DENG Hua; LI Jie; LIU Ye-xiang

    2007-01-01

    Ammonium aluminum carbonate hydroxide (AACH) precursor was synthesized by the precipitation reaction of aluminum sulfate and ammonium carbonate. Then the precursor was dealt with five drying methods including ordinary drying, alcohol exchange, vacuum freeze-drying, glycol distillation, n-butanol azeotropic distillation respectively and calcined at 1 200 ℃ for 2 h to get α-Al2O3. The effects of drying methods on preparation of nanometer α-Al2O3 were discussed, and the optimal drying method was confirmed. The structural properties of powders were characterized by XRD, SEM and BET measurements. The results show that vacuum freeze-drying, glycol distillation and n-butanol azeotropic distillation can prevent the powders from aggregating, and among them the n-butanol azeotropic distillation is the best method. The nanometer α-Al2O3 powder with non-aggregation can be manufactured using n-butanol azeotropic distillation and the average particle size is about 40 nm.

  13. Fabrication of Homogenous Dispersion TiB2-Al2O3 Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinyong; TANG Wenjun; FU Zhengyi; WANG Weiming; ZHANG Qingjie

    2011-01-01

    In order to get a homogenous mixture and compact of TiB2-A12O3,hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles.PE-wax particles were first coated onto TiB2 particles by hybridization,and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again.SEM,TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts.The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts.The compacts then were sintered by gas-pressing sintering(GPS).Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.

  14. Theoretical insight into Cobalt subnano-clusters adsorption on α-Al2O3 (0001)

    Science.gov (United States)

    Gao, Fen-e.; Ren, Jun; Wang, Qiang; Li, Debao; Hou, Bo; Jia, Litao; Cao, Duanlin

    2017-02-01

    The investigation on the structural stability, nucleation, growth and interaction of cobalt cluster Con(n=2-7) on the α-Al2O3(0001) surface by using density functional theory methods has been reported. Energetically, the most favorable adsorption sites were identified and the strongest adsorption energy cluster is the tetrahedral Co4 cluster. On the other hand, the nucleation of Con(n=2-7) clusters on the surface is exothermic and thermodynamically favorable. Moreover, even-odd alternation was found with respect to clusters nucleation as a function of the number of cobalt atoms (for n=1-7). Meanwhile, the Con clusters can be adsorbed on the surface stably owing to the charge transfer from Co atoms to Al and O atoms of the Al2O3 substrate. In addition, we establish the crucial importance of monomer, dimer and trimer diffusion on the surface. The diffusion of the monomer cobalt from Al(3) to O(5) or O(5) to Al(4) site is quite easy on the Al2O3(0001) surface, whereas the diffusion of the Co2 dimer is thermodynamically unfavorable by compared with that of the Co adatom and Co3 trimer.

  15. Insight into the effects of different ageing protocols on Rh/Al2O3 catalyst

    Science.gov (United States)

    Zhao, Baohuai; Ran, Rui; Cao, Yidan; Wu, Xiaodong; Weng, Duan; Fan, Jun; Wu, Xueyuan

    2014-07-01

    In this work, a catalyst of Rh loaded on Al2O3 was prepared by impregnating method with rhodium nitrate aqueous solution as the Rh precursor. The catalyst was aged under different protocols (lean, rich, inert and cyclic) to obtain several aged samples. All the Rh/Al2O3 samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, CO-chemisorption, H2-temperature programmed reduction (H2-TPR), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that a specific ageing treatment could strongly affect the catalytic activity. The N2 aged and the H2 aged samples had a better catalytic activity for CO + NO reaction than the fresh sample while the air aged and the cyclic aged samples exhibited much worse activity. More surface Rh content and better reducibility were obtained in the N2 and the H2 aged samples and the Rh particles existed with an appropriate size, which were all favorable to the catalytic reaction. However, the air and the cyclic ageing protocols induced a strong interaction between Rh species and the Al2O3 support, which resulted in a severe sintering of particles of Rh species and the loss of active sites. The structure evolution scheme of the catalysts aged in different protocols was also established in this paper.

  16. Effect of Nb on the Interfacial Wettability in Al2O3/Medium Mn Steel

    Institute of Scientific and Technical Information of China (English)

    Sirong YU; Yaohui LIU; Zhenming HE

    2003-01-01

    To develop medium Mn steel (MMS) matrix composites reinforced by Al2O3 particles, the effect of Nb on the interracial wettability of Al2O3/MMS and its mechanism were investigated in this paper. The results show that the wetting angle of the specimens with different Nb contents are bigger than that of the specimen without Nb at the first stage, and then decreases with time at 1450℃. At certain time, the wetting angle is lower than that of the specimen without Nb. At 1550 and 1600℃, the wetting angle of the specimens containing Nb decreases quickly with time at first stage. After 10 min, the wetting angle reaches a steady state, and hardly changes with time. The mechanisms of Nb to improve the wettability can be attributed to the enrichment of Nb at the interface and Nb serves as surface active agent of MMS at T<1550℃, and as catalyzer for the interfacial reaction of Al2O3/MMS at T≥1550℃, and reduces the interfacial energies.

  17. PREPARATION AND CHARACTERIZATION OF CHITOSAN-ZnO/Al2O3 COMPOSITE

    Directory of Open Access Journals (Sweden)

    Dina Kartika Maharani

    2015-11-01

    Full Text Available The purpose of this research was to prepare novel composite based on biopolymer and nontoxic inorganic materials that can be applied for many uses such as coating agent on textile for antibacterial purposes. In this research, Chitosan-ZnO/ Al2O3 composites were prepared by mixing chitosan solution with ZnO particles and Al2O3 (alumina sol produced by sol-gel method. The products were characterized with Fourier Transform Infra Red (FTIR Spectrophotometer and X-Ray Diffractometer (XRD. The result of this research showed that composites exist as transparent solution that was suitable for coating agent application. The result of FTIR Spectrophotometer analysis showed that there were interactions between chitosan, ZnO particles and Al2O3 particles which indicated from absorption bands in the region of wave number 3500-3400 cm-1, 1600-1500 cm-1 and 600-450 cm-1. It mean that chitosan interacted to ZnO particles and alumina particles . The XRD analysis of composites showed that there were change in the diffraction peak in the 2 theta value of 10o and 19o which indicated interaction of chitosan with ZnO particles and alumina particles

  18. Impact of Al2O3 on the aggregation and deposition of graphene oxide.

    Science.gov (United States)

    Ren, Xuemei; Li, Jiaxing; Tan, Xiaoli; Shi, Weiqun; Chen, Changlun; Shao, Dadong; Wen, Tao; Wang, Longfei; Zhao, Guixia; Sheng, Guoping; Wang, Xiangke

    2014-05-20

    To assess the environmental behavior and impact of graphene oxide (GO) on living organisms more accurately, the aggregation of GO and its deposition on Al2O3 particles were systematically investigated using batch experiments across a wide range of solution chemistries. The results indicated that the aggregation of GO and its deposition on Al2O3 depended on the solution pH and the types and concentrations of electrolytes. MgCl2 and CaCl2 destabilized GO because of their effective charge screening and neutralization, and the presence of NaH2PO4 and poly(acrylic acid) (PAA) improved the stability of GO with the increase in pH values as a result of electrostatic interactions and steric repulsion. Specifically, the dissolution of Al2O3 contributed to GO aggregation at relatively low pH or high pH values. Results from this study provide critical information for predicting the fate of GO in aquatic-terrestrial transition zones, where aluminum (hydro)oxides are present.

  19. Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl4/Al2O3 Doped TiO2 Nanotube Array Photoelectrodes

    Directory of Open Access Journals (Sweden)

    Jin Soo Lee

    2015-01-01

    Full Text Available For various reasons, low cost, easy fabrication, and so forth, dye-sensitized solar cells (DSSCs have been consistently studied in many laboratories. To improve the DSSCs performance, using an aqueous solution of titanium tetrachloride (TiCl4 treatment is one of many processes. Before the treatment of TiCl4, nanoporous TiO2 nanotubes (TNTs are fabricated through a secondary anodization process. TiCl4 treatment on TNTs film enhanced short-circuit current density (JSC and aluminum oxide (Al2O3 posttreatment enhanced open-circuit voltage (VOC. As a result, Al2O3 posttreatment on TNTs film conversion efficiency of 8.65% is realized, which is 7% higher than TiCl4 treatment on TNTs film. In this work, we investigated that double dip-coating of TiCl4/Al2O3 treatment on TiO2 nanotubes film had an effect on enhancement of JSC and VOC due to improvement of electron transfer, increment of dye adsorption, and reduction of recombination rate of charge. Photoelectrode DSSCs with light-to-electric energy conversion efficiency were achieved under a simulated solar light irradiation of 100 mW·cm2 (AM 1.5.

  20. Magnetic and magnetoresistive properties of Al2O3-Sr2FeMoO6-δ-Al2O3 nanoheterostructures

    Science.gov (United States)

    Kalanda, N. A.; Gorokh, G. G.; Yarmolich, M. V.; Lozovenko, A. A.; Kanyukov, E. Yu.

    2016-02-01

    A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.

  1. Growth of Epitaxial gamma-Al2O3 Films on Rigid Single-Crystal Ceramic Substrates and Flexible, Single-Crystal-Like Metallic Substrates by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo [ORNL; Goyal, Amit [ORNL; Wee, Sung Hun [ORNL

    2009-01-01

    Epitaxial -Al2O3 thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of -Al2O3 films was confirmed by x-ray diffraction. SrTiO3 and MgO single crystal substrates were used to optimize the growth conditions for epitaxial -Al2O3 film. Under the optimized conditions, epitaxial -Al2O3 thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, -Al2O3 films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

  2. Preparation of Paraffin/γ-Al2O3Composites as Phase Change Energy Storage Materials%Preparation of Paraffin/γ-Al2O3 Composites as Phase Change Energy Storage Materials

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; MARuiying; MENG Xianglan; WANG Gang; FANG Xiangchen

    2011-01-01

    Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbingparaffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM) for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.

  3. The effect of precursors salts on surface state of Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts

    Directory of Open Access Journals (Sweden)

    André L. Guimarães

    2004-12-01

    Full Text Available The influence of the precursors on the promoting effect of ceria on Pd/Al2O3 catalyst, when ceria is coated over alumina was studied. The reaction of propane oxidation proceeded under different feed conditions and the surface active sites were characterized by X-ray photoelectron spectroscopy (XPS and in situ diffuse reflectance spectroscopy (DRS. XPS and DRS results show that PdO/Pd0 interface are the active sites independent of the precursor, while the catalysts containing CeO2 showed formation of palladium species in the highest oxidation state, probably PdO2 (338 eV after the oxidation of propane. Besides, the O/Al and O/Ce ratios evidenced the increase of oxygen storage in the presence of CeO2. In addition, the precursor acetylacetonate favors the oxygen storage in the lattice.Estudo da influência dos precursores sobre os catalisadores de Pd/Al2O3 promovidos com céria ancorado sobre a alumina. A oxidação do propano foi feita sob diferentes condições de alimentação sendo caracterizados os sítios superficiais por Espectroscopia Fotoeletrônica de raios X (XPS e por Refletância Difusa em ''situ''. Resultados de XPS e DRS mostraram a formação de interfaces de PdO/Pd0 como sendo os sítios ativos, independentes do precursor utilizado na preparação, enquanto que os catalisadores contendo CeO2 mostraram a formação de espécies de paládio com estado de oxidação mais altos, provavelmente PdO2 (338 eV após a oxidação do propano. Além disso, as razões O/Al e O/Ce evidenciaram um aumento de oxigênio armazenado na presença de CeO2. O precursor acetilacetonato favoreceu o armazenamento de oxigênio na rede.

  4. Influence of AlF3 and hydrothermal conditions on morphologies of α-Al2O3

    Institute of Scientific and Technical Information of China (English)

    FU Gao-feng; WANG Jing; KANG Jian

    2008-01-01

    Homogeneous α-Al2O3 platelets were synthesized by introducing AlF3 to alumina precursor.The effects of AlF3 additive on the phase transformation and morphology of the prepared α-Al2O3 platelets were investigated.The results show that a single phase of α-Al2O3 with an average particle size of 8μm can be obtained at 900℃ with 2% AlF3 additive.The transformation temperature decreasing IS attributed to introduction of Al3+ vacancy and to the formation of intermediate compound of AlOF,which is considered to accelerate the mass transportation from transitional Al2O3 to α-Al2O3.AlF3 concentration and hydrothermal temperature can also affect the morphology of α-Al2O3.When hydrothermal temperature is 120℃,the morphology of α-Al2O3 transforms from irregular to flat hexangular platelet with increasing AlF3 concentration.As hydrothermal temperature increases,the morphology of α-Al2O3 with 2% AlF3 additive changes from polyhedron to hexangular platelet and then to vermicular.

  5. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles

    Institute of Scientific and Technical Information of China (English)

    Shu-Huei Hsieh; Jao-Jia Horng

    2007-01-01

    Carbon nanotubes (CNTs) were grown on the surface of microsized Al2O3 particles in CH4 atmosphere at 700 ℃ under the catalysis of Fe-Ni nanoparticles.The CNTs on Al2O3 were used for adsorbing Pb2+,Cu2+,and Cd2+ from the solution and the results were compared with active carbon powders,commercial carbon nanotubes,and Al2O3 particles.The as-grown CNTs/Al2O3 have demonstrated extraordinary absorption capacity with further treatment or oxidation,as well as hydrophilic ability that other CNTs lacked.The adsorption capacity of CNTs on Al2O3 is superior to other adsorbents and the preference order of adsorption on composite Al2O3 is Pb2+>Cu2+>Cd2+.It seemed that the adsorption of those Pb2+,Cu2+,and Cd2+ did not change the surface properties of composite particles.The adsorption behaviors of Pb2+,Cu2+,and Cd2+ by CNTs on Al2O3 match well with the Langmuir isothermal adsorption model and the second order kinetic model.The calculated saturation amount adsorbed by 1 g of CNTs on Al2O3 are 67.11,26.59,and 8.89 mg/g for Pb2+,Cu2+,and Cd2+ in single adsorption test,respectively.

  6. Study on Sulfation of CeO2/γ-Al2O3 Sorbent in Simulated Flue Gas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sulfation of CeO2/γ-Al2O3 sorbent in simulated flue gas was studied. A series of CeO2/γ-Al2O3 sorbents with different CeO2 loadings were prepared by impregnation and characterized by X-ray diffraction. Thermogravimetric technique was used to study the sulfation of CeO2/γ-Al2O3 sorbents, mainly on the CeO2 loading, sulfation cycles, and intrinsic kinetics. The study revealed that monolayer coverage of CeO2 supported on γ-Al2O3 was 0.125 g CeO2/g (γ-Al2O3). Below monolayer coverage, CeO2 was highly dispersed on γ-Al2O3. The optimal CeO2 loading on sulfation was 0.03 g CeO2/g (γ-Al2O3). CeO2/γ-Al2O3 sorbent was recyclable by controlling sulfation time. Intrinsic kineticd equation was R=1.1394×10-4×exp (-1,508.39/T) mg·mg-1·s-1. Activation energy and reaction order were 12.54 kJ·mol-1 and first order, respectively.

  7. Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Hongqi Ye; Tianquan Lin; Tao Zhou

    2008-01-01

    In order to improve its dispersibility, superfine alumina (Al2O3) was encapsulated with poly (methyl methacrylate) (PMMA) by in situ emulsion polymerization. It was found that only when the concentration of sodium dodecyl sulfate (SDS) was much higher than its critical micelle concentration, could PMMA/Al2O3 composite particles with high percentage of grafting (PG) be prepared. The same results were obtained between the experimental and stoichiometric amounts of tris (dodecylbenzenesulfonate) isopropoxide (NDZ), indicating that single-molecule-layer adsorption had taken place between NDZ and Al2O3. Analysis using FTIR. TEM and XPS showed that PMMA/Al2O3 composite particles with core-shell structure had been successfully synthesized by in sire emulsion polymerization. Compared to Al2O3, thermal stability and dispersibility of the composite particles showed marked improvement.

  8. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHAI Lan-lan; LING Guo-ping

    2004-01-01

    The influence of nano-Al2O3 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  9. 铝基Al2O3纳米多孔表面大容积池沸腾实验%Experimental study on pool boiling of aluminum base Al2O3 nano-porous surface

    Institute of Scientific and Technical Information of China (English)

    左少华; 赵晓玥; 王杰阳; 魏峰; 史晓平; 陶金亮

    2015-01-01

    The problem of heat dissipation is the bottleneck for the further development of micro-devices because the high density,microminiaturization and functional systemic. In this paper, Nano-porous surfaces’ excellent phase change heat transfer characteristics were analyzed to solve this problem. An experimental study on the pool boiling heat transfer performance of the aluminum base Al2O3 nano-porous film was conducted with water under normal pressure. Experimental results showed that Al2O3 nano-porous surface improved the heat transfer coefficient of the aluminum heat transfer surfaces 2—5 times compared with the smooth-surfaced devices,and could maintain high heat transfer coefficient in a long time,because the intensive vaporized core could produce large amount of small bubbles. The surface temperature of microelectronic could be effectively decreased by 3—5℃,even by more than 30℃ in nucleate boiling stage with nano-porous surface as heat transfer surface.%目前微电子器件不断地向高密度、微型化、功能化方向发展,散热问题是制约技术进一步发展的瓶颈。本文拟利用纳米多孔表面优良的相变传热特性,解决电子器件微型化散热难的问题。文中以铝基Al2O3纳米多孔薄膜为传热表面,以去离子水为工质,常压下对其大容积池沸腾下的传热性能进行了实验研究。实验结果表明:与光滑表面相比,Al2O3纳米多孔表面在核态沸腾时汽化核心密集,产生汽泡体积小、数量多并能提高铝基传热表面的传热系数2~5倍,且能够在长时间内维持其较高的传热系数;以纳米多孔表面作为传热表面,可以有效降低微电子原件表面温度3~5℃,在核态沸腾阶段能够降低30℃以上,很好地起到了降低电子元件表面温度的作用。实验结果对微电子冷却有重要的参考作用。

  10. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  11. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    Science.gov (United States)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  12. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation

    Directory of Open Access Journals (Sweden)

    Jovanovic, M. T.

    2010-12-01

    Full Text Available The objective of the work is to study the effects of the high-energy milling on strengthening, thermal stability and electrical conductivity of Cu-Al2O3 composite. The prealloyed copper powders, atomized in inert gas and containing 3 wt. % Al, were milled up to 20 h in the planetary ball mill to oxidize in situ aluminium with oxygen from the air. Composite compacts were obtained by hot-pressing in an argon atmosphere at 800 °C for 3 h under the pressure of 35MPa. The microstructural characterization was performed by the optical microscope, scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction analysis (XRD. The microhardness, electrical conductivity and density measurements were also carried out. The effect of internal oxidation and high-energy milling on strengthening of Cu-Al2O3 composite was significant, The increase of the microhardness of composite compacts (292 HV is almost threefold comparing to compacts processed from the as-received Cu-3 wt. % Al powder (102 HV. The grain size of Cu-Al2O3 compacts processed from 5 and 20 h-milled powders was 75 and 45 nm, respectively. The small increase in the grain size and the small microhardness drop indicate the high thermal stability of Cu-Al2O3 composite during high-temperature exposure at 800 °C.El objetivo del trabajo es el estudio de los efectos de la pulverización con altas energías sobre la resistencia, estabilidad térmica y conductividad eléctrica del compuesto Cu-Al2O3. El polvo pre-aleado de cobre, obtenido a través de la atomización con gas inerte y con un contenido de 3wt. % Al, se molió durante 20 h en el molino planetario de bolas dando lugar a la oxidación in situ del aluminio con el oxígeno del aire. El compuesto compactado se ha obtenido mediante prensado en caliente en atmósfera de argón a 800 °C durante 3 h y a una presión de 35MPa. La caracterización microestructural se hizo a través de microscopia óptica, microscopia

  13. Oxide Charge Engineering of Atomic Layer Deposited AlOxNy/Al2O3 Gate Dielectrics: A Path to Enhancement Mode GaN Devices.

    Science.gov (United States)

    Negara, M A; Kitano, M; Long, R D; McIntyre, P C

    2016-08-17

    Nitrogen incorporation to produce negative fixed charge in Al2O3 gate insulator layers is investigated as a path to achieve enhancement mode GaN device operation. A uniform distribution of nitrogen across the resulting AlOxNy films is obtained using N2 plasma enhanced atomic layer deposition (ALD). The flat band voltage (Vfb) increases to a significantly more positive value with increasing nitrogen concentration. Insertion of a 2 nm thick Al2O3 interlayer greatly decreases the trap density of the insulator/GaN interface, and reduces the voltage hysteresis and frequency dispersion of gate capacitance compared to single-layer AlOxNy gate insulators in GaN MOSCAPs.

  14. PROPERTIES OF TiC-Al2O3/Fe COMPOSITES PREPARED BY SHS/PHIP%SHS/PHIP制备TiC-Al2O3/Fe复合材料的性能

    Institute of Scientific and Technical Information of China (English)

    张卫方; 韩杰才; 杜善义; 习年生; 陶春虎

    2001-01-01

    对SHS/PHIP技术制备出的TiC-Al2O3/Fe复合材料的性能进行了测试和分析.结果表明,TiC-Al2O3/Fe复合材料具有良好的综合力学性能.材料具有很高的比刚度.金属Fe相的加入,较大地提高了材料的抗弯强度和断裂韧性.TiC-Al2O3复相陶瓷为典型的脆性断裂;随着Fe含量的增加,材料具有明显韧性断裂的特征.%The influence of Fe content on the properties of TiC-Al2O3/Fe composites prepared by SHS/PHIP was studied. The results show that the TiC-Al2O3/Fe cermets prepared by SHS/PHIP possess high mechanical properties such as well-improved flexural strength and fracture toughness owing to the addition of Fe, and highly special stiffness. The TiC-Al2O3 ceramic exhibits the typical brittle fracture behavior. However, the TiC-Al2O3/Fe cermets exhibit obvious characteristic of tough fracture with Fe content increasing.

  15. ( Ni-P)-Al2O3纳米微粒复合镀层硬度和耐磨性测试%Hardness and Wear Resistance of (Ni-P)-Al2O3 Nanoparticle Composite Coating

    Institute of Scientific and Technical Information of China (English)

    常京龙; 吴庆利

    2011-01-01

    In order to improve the surface performance of steel, (Ni-P)-Al2O3 nanoparticle composite coating was prepared by composite plating technology on steel because of its unique physical and chemical properties. And the hardness and wear resistance of conventional Ni-P coating, (Ni-P)-Al2O3 nanoparticle composite coating before and after heat treatment were determined. The results show that the hardness and wear resistance of (Ni-P)-Al2O3 nanoparticle composite coating especially after heat treatment were greatly improved.%为了改进钢材表面性能,采用复合化学镀技术制备( Ni-P) -Al2O3纳米微粒复合镀层,由于纳米微粒独特的物理化学特性致使使得到的复合镀层具有多种优良性能.通过Ni-P合金镀层、(Ni-P) -Al2O3纳米微粒复合镀层和热处理后的(Ni-P) -Al2O3纳米微粒复合镀层硬度和耐磨性能测试,得出(Ni-P)-Al2O3纳米微粒复合镀层尤其是热处理后其硬度和耐磨性能得到很大的改善.

  16. Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering

    Institute of Scientific and Technical Information of China (English)

    Chen Huimin; Guo Fuqiang; Zhang Baohua

    2009-01-01

    CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.

  17. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Fangna Gu; Jiajian Gao; Huifang Li; Guangwen Xu∗; Fabing Su∗

    2014-01-01

    Highly coke-resisting ZrO2-decorated Ni/Al2O3 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-precipitation method (IM-DP). Nitrogen adsorption-desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, H2 temperature-programmed reduction and desorption, NH3 temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation (CI) and sequential impregnation (SI) methods, the Ni/Al2O3 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 mL·g−1·h−1. In a 80 h life time test under the condition of 300–600◦C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without ZrO2 reached 1.5 wt%after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of ZrO2 nanoparticles on the surface of NiO rather than Al2O3, which could be well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.

  18. Synthesis of γ-Al2O3 nanoparticles by chemical precipitation method

    Institute of Scientific and Technical Information of China (English)

    SONG Xiao-lan; QU Peng; YANG Hai-pin; HE Xi; QIU Guan-zhou

    2005-01-01

    Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor Al(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3 ·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024% (volume fraction) surfactant PEG600, and reacting at 40 ℃, 1 000 r/min stirring rate for 15 min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80 ℃ for 8 h, final calcined at 800 ℃ for 1 h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, O7H-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m2/g in BET specific surface area, 7-11 nm in pore diameter, and not lower than 99.93% in purity.

  19. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  20. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    Science.gov (United States)

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system.

  1. Pt-Rh/g Al2O3 Benzene Hydrogenation Reaction as a Characterization Technique

    Directory of Open Access Journals (Sweden)

    Fonseca N.M. da

    1998-01-01

    Full Text Available Pt-Rh/Al2O3 catalysts prepared by successive incipient impregnations and coimpregnation were characterized by H2 chemisorption, temperature programmed reduction and benzene hydrogenation reaction in the vapor phase. The results showed that Rh plays the role of Pt reducting agent, which is very different from the effects of metal-metal interaction which appear mainly in solids with the highest metal contents. The most important parameter that results in bimetallic particles in the catalyst prepared by successive impregnation is the sequence of metal addition.

  2. Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids.

    Science.gov (United States)

    Duan, Fei; Kwek, Dingtian; Crivoi, Alexandru

    2011-03-22

    An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication.

  3. Radioluminescence in Al2O3: C - analytical and numerical simulation results

    DEFF Research Database (Denmark)

    Pagonis, V.; Lawless, J.; Chen, R.

    2009-01-01

    The phenomenon of radioluminescence (RL) has been reported in a number of materials including Al2O3 : C, which is one of the main dosimetric materials. In this work, we study RL using a kinetic model involving two trapping states and two kinds of recombination centres. The model has been previously....... The set of differential equations is also solved analytically by assuming dynamic balance during sample irradiation. Analytical expressions are obtained for the concentrations of traps and centres in the material during irradiation with short irradiation pulses, by assuming that quasi-steady conditions...

  4. Lanthanum Modified Ni/γ-Al2O3 Catalysts for Partial Oxidation of Methane

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    La modified Ni/γ-Al2O3 catalysts prepared by co-precipitation method using NaOH-Na2CO3 as a precipitator show high activity and selectivity for the partial oxidation of methane (POM). Meanwhile, the addition of La is beneficial for the formation of an active component and stability of support. We investigated some factors including calcining temperature, nickel content, and space velocity, which turned out to have a strong influence on catalytic activity and selectivity. By XRD and TPR, it is concluded that Ni0 reduced from amorphous NiAl2O4 is the major active component for POM.

  5. Ultrasonic Al2O3 Ceramic Thermometry in High-Temperature Oxidation Environment

    Directory of Open Access Journals (Sweden)

    Yanlong Wei

    2016-11-01

    Full Text Available In this study, an ultrasonic temperature measurement system was designed with Al2O3 high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C–1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.

  6. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... with diameter 25-40 nm and specific surface area 27-43 m2/g. The crystallite size for both oxides, estimated from the XRD line broadening, is comparable to or slightly smaller than the primary particle diameter. The specific surface area increases and the primary particle size decreases with a decreasing flame...

  7. Temperature coefficients for in vivo RL and OSL dosimetry using Al2O3 : C

    DEFF Research Database (Denmark)

    Andersen, C.E.; Edmund, Jens Morgenthaler; Damkjaer, S.M.S.

    2008-01-01

    A radiotherapy dosimetry system based on radiolurninescence (RL) and optically stimulated luminescence (OSL) from small carbon-doped aluminum oxide (Al2O3:C) crystals attached to optical-fiber cables has been developed. To quantify the influence of temperature variations on clinical RL and OSL...... measurement results, we conducted an automated laboratory experiment involving threefold randomization of (1) irradiation temperature (10-45 degrees C), (2) stimulation temperature (10-45 degrees C), and (3) irradiation dose (0-4 Gy; 50 kV X-rays). We derived linear RL and OSL temperature coefficients using...

  8. Adherent Al2O3 scales formed on undoped NiCrAl alloys

    Science.gov (United States)

    Smialek, James L.

    1987-01-01

    Changes in the spalling behavior of Al2O3 scales formed on an undoped NiCrAl alloy are described. Two samples of Ni-15Cr-13Al (wt pct), one a control and the other sanded, were subjected to 25 oxidation cycles. It is observed that adherent scales formed on the sanded sample; however, the control sample had speckled, spalled scales. The data reveal that the adherent scales are caused by repeated removal of surface layers after each oxidation cycle. It is determined that interfacial segregation of sulfur influences spallation and sulfur removal increases bonding. The effect of moisture on scale adhesions is investigated.

  9. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    Science.gov (United States)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  10. Preparation of SiCp/Al2O3-Al Composites by Directed Metal Oxidation

    Institute of Scientific and Technical Information of China (English)

    LIN Ying; YANG Hai-bo; WANG Fen; ZHU Jian-feng

    2006-01-01

    SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.

  11. CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters

    DEFF Research Database (Denmark)

    Edmund, J.M.; Andersen, C.E.; Marckmann, C.J.

    2006-01-01

    A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm......) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre...

  12. CuO/Al2O3微弧氧化复合膜层的制备及催化性能%Preparation and catalysis property of CuO/Al2O3 micro-arc oxidation composite coating

    Institute of Scientific and Technical Information of China (English)

    刘东杰; 蒋百灵; 刘政; 王亚明; 葛延峰

    2013-01-01

    采用电解液修饰法,利用微弧氧化技术直接在铝基体上制备CuO/Al 2 O 3微弧氧化复合膜层,研究复合膜层表面元素的结合状态以及电参数对复合化膜层表面形貌和孔径的影响,探讨复合膜层对甲基橙溶液的催化降解作用。结果表明:利用微弧氧化技术可一步制备出CuO/A12 O 3复合膜层,且CuO晶格氧含量可达33.7%(质量分数);随着电压、占空比的增大和频率的减小,复合膜层表面微孔的孔径增加,孔数目减少,粗糙程度增加;复合膜层在常温常压下催化10 h可使甲基橙溶液降解率达到70%左右。%The micro-arc oxidation technology was employed to directly prepare a CuO/Al 2 O 3 composite coating film on an alunimium substrate, which was also modified by doping electrolyte. The properties of CuO/Al2O3 coating film were investigated focusing on the adhesion of different elements on the coating surface, the effect of electrical parameters on the surface morphologies and the pore diameter, and the catalytic degradation of methyl orange by CuO/Al2O3 composite film was also investigated. The results show that micro-arc oxidation technology can be introduced to prepare a CuO/Al 2 O 3 composite film. The content of oxygen reaches 33.7%in the CuO lattice. The pore diameter and number of the composite film are seriously influenced by the electrical parameters. With the increase of the voltage and the duty ratio (φ) and the decrease of the frequency, the surface pore diameter and roughness of the composite film increase, while the number of holes decrease. The degradation rate of methyl orange reaches 70% by the catalysis of the CuO/Al 2 O 3 composite coating film for 10 h at ordinary temperatures and pressures.

  13. Microstructure and Wear Behaviors of In-situ Al2O3p/7075 Composites%原位Al2O3P/7075复合材料微观组织与磨损行为

    Institute of Scientific and Technical Information of China (English)

    刘慧敏; 杨树青; 许萍; 李进福

    2012-01-01

    采用原位反应近液相线铸造法制备具有不同质量分数的Al2O3P/7075复合材料,并对其进行干滑动磨损实验研究,通过OM,SEM,TEM等材料分析方法测试了材料的微观组织和磨损表面形貌.结果表明,原位Al2O3颗粒对7075铝合金的晶粒组织有明显细化效果,Al2O3P/7075复合材料的耐磨性比基体7075铝合金有明显的提高.原因是原位合成的复合材料界面结合良好,原位Al2O3颗粒在摩擦过程中起着抑制金属流动和支撑的双重作用.磨损表面形貌显示,原位Al2O3颗粒的加入,使磨损机制由黏着磨损变为磨粒磨损,从而改善了材料的耐磨性.%The Al2O3P/7075 Al composites were synthesized by in-situ reaction near-liquidus casting. The microstructure and dry sliding wear behavior of the prepared composites were analyzed using OM, SEM and TEM as well as wear friction testing. The results reveal that in-situ Al2O3 particle with average size of approximately <1μm is uniformly distributed in the matrix, which exhibits desirable refining effects on microstructure of 7075 Al alloy. The wear behavior of the composites is greatly superior to that of the matrix, which is attributed to the grain refining and formation of a compact interface of Al2O3P/7075 Al composites. In addition, in-situ Al2O3 particles exhibit coupling effects of inhibiting metal flow and bearing some load in process of friction. The wear mechanism of the matrix 7075A1 alloy is adhesive wear, while the wear surface of Al2O3p/7075 Al composites is superior to that of the matrix 7075 Al alloy. The wear mechanism of Al2O3P/7075 Al composites is abrasive wear, and wear resistance of Al2O3P/7075 Al is improved.

  14. ANTI-ELECTROLYTIC PROPERTIES OF PAA-PEO-α-Al2O3-H2O SUSPENSIONS%PAA-PEO-α-Al2O3-H2O悬浮液的抗电解质性能

    Institute of Scientific and Technical Information of China (English)

    张浩; 王晓莉; 郭露村

    2007-01-01

    The electrolytic effect on the rheological properties of a poly (acrylic acid) (PAA)-α-Al2O3-H2O suspension and the anti-electrolytic capability of a PAA-poly (ethylene oxide) (PEO)-α-Al2O3-H2O suspension were studied. The results show that the addition of an electrolyte (like NaCl or CaCl2) dramatically decreases the stability of PAA-α-Al2O3-H2O suspensions, and the influence of divalent ions (Ca2+) was more pronounced than that of univalent ions (Na+). The PAA-PEO-α-Al2O3-H2O systems can maintain inherent rheological properties in the presence of the electrolyte at same electrolytic concentrations. This behavior is attributed to the effective anti-electrolytic capability of PAA-PEO-α-Al2O3-H2O suspensions.%研究了电解质对聚丙烯酸[poly(acrylic acid),PAA]-α-Al2O3-H2O悬浮液流变性能的影响以及PAA-聚氧化乙烯[poly(ethylene oxide),PEO]-α-Al2O3-H2O悬浮液的抗电解质的性能.结果表明:PAA-α-Al2O3-H2O悬浮液的流变性能受NaCl和CaCl2等电解质的影响较大,并且二价盐CaCl2比一价盐NaCl对PAA-α-Al2O3悬浮液分散和稳定性的影响更明显,电解质造成Al2O3颗粒的絮凝,使浆料的稳定性能变差.在电解质浓度相同的条件下,PAA-PEO-α-Al2O3-H2O悬浮液基本不受电解质的影响,浆料始终保持稳定,PAA-PEO-α-Al2O3-H2O悬浮液具有很强的抗电解质能力.

  15. Fluência em filtros cerâmicos de Al2O3 Creep in Al2O3 ceramic filters

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2001-12-01

    Full Text Available O comportamento de fluência em materiais cerâmicos sólidos é afetado pela sua microestrutura. Fundamentalmente, são três os parâmetros que influenciam o comportamento de fluência nestes materiais: o constituinte mineralógico, a fase vítrea e a porosidade. Além destes fatores microestruturais, a fluência em cerâmicas celulares depende também da sua macroestrutura, constituída de um arranjo tridimensional de filamentos sólidos interligados. Assim, a análise dos resultados de fluência nestes materiais compreende duas etapas: na primeira deve-se identificar o modo de deformação dos filamentos cerâmicos (macroestrutura e na segunda, identificar o(s mecanismo(s de fluência da microestrutura através dos parâmetros n (expoente da tensão aplicada e Q (energia de ativação do processo. Neste trabalho avaliou-se a fluência em filtros cerâmicos de Al2O3 de 10 ppi sob compressão de 0,034; 0,051 e 0,068 MPa às temperaturas de 1500, 1550 e 1600 ºC ao ar. De acordo com os resultados obtidos, supõe-se que o modo de deformação por flambagem dos filamentos paralelos a carga aplicada é um dos principais fatores que contribui para o aumento da taxa de deformação do filtro e, portanto, dos valores de n e Q. Além do modo de deformação dos filamentos, observou-se que o tipo de ensaio de fluência (com ou sem troca de carga também influencia a determinação dos valores de n e Q.The creep behavior of solid ceramics is strongly affected by the microstructure. Fundamentally, there are three microstructural features which influence the creep behavior: the mineral content, the flux content and the apparent porosity. Additionally, the creep of cellular ceramics also depends on their macrostructure constituted by a tridimensional array of struts. Therefore, the creep analysis of these materials should consist of two stages. Firstly, identification of the macrostructure deformation mode and secondly, determination of the stress exponent

  16. Effect of polymorphism of Al2O3 on sintering and grain growth of magnesia aluminate spinel

    Directory of Open Access Journals (Sweden)

    Zhihui Z.

    2007-01-01

    Full Text Available The effect of polymorphism of Al2O3 on sintering and grain growth of magnesia aluminate spinel was studied. γ - Al2O3 and α - Al2O3 were mixed with MgO according to the stoichiometric MA ratio, respectively, and pressed into billets with a 20mm diameter and 15mm height, and then were sintered at temperature from 1250ºC to 1400ºC in air atmosphere. Bulk density, apparent porosity and grain size were measured. The results indicated that the grain size of MA with γ-Al2O3 is larger than the grain size of MA with α - Al2O3. This is because the activation energy of grain growth of magnesia aluminate spinel prepared by γ-Al2O3 is lower than that by α -Al2O3, the former is 159KJ/mol and the latter is 217KJ/mol.

  17. Structure and Mechanical Properties of Ni-P-Nano Al2O3 Composite Coatings Synthesized by Electroless Plating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guang-hong; DING Hong-yan; ZHOU Fei; ZHANG Yue

    2008-01-01

    Ni-P-nano Al2O3 composite coatings were deposited by electroless plating, and their microstructures were observed by SEM (scanning electron microscope). The microhardness and the wear resistance of the Ni-P-nano Al2O3 composite coatings were measured using microhardness tester and block-on-ring tribometer, respectively, and the comparison with those of Ni-P coatings or Ni-P-micro Al2O3 coating was given. The influences of aging temperature on their hardness and wear resistance were analyzed. The results showed that the nano Al2O3 particles were distributed uniformly in the Ni-P-Al2O3 coatings. Among three kinds of Ni-P based coatings, the hardness and wear resistance of Ni-P-nano Al2O3 coatings were largest, and the maximum values could be obtained at 400 ℃. This indicated that the precipitation of nano Al2O3 particles would improve the hardness and wear resistance of the Ni-P coatings.

  18. Fabrication and mechanical properties of WC-Co-Al2O3 nanocomposites by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    SHEN Jun; ZHANG Fa-ming; SUN Jian-fei

    2005-01-01

    Small amounts of nanocrystalline Al2 O3 particles were doped in WC-Co nanocrystalline powders to study their reinforcing effects, and spark plasma sintering technique was used to fabricate the WC-Co-Al2 O3 nanocomposites. Experimental results show that the use of Al2 O3 nanoparticles as dispersions to reinforce WC-Co composites can increase the hardness, especially the transverse rupture strength of the WC-Co hardmetal. With addition of 0.5%(mass fraction) Al2O3 nanoparticles, the spark plasma sintered WC-7Co-0.5Al2O3 nanocomposites exhibit hardness of 21.22 GPa and transverse rupture strength of 3 548 MPa. The fracture surface of the WC-7Co-0.5Al2O3 nanocomposites mainly fracture with transcrystalline rupture mode. The reinforcing mechanism is maybe related to the hindrance effect of microcracks propagation and the pinning effect for the dislocations movement, as well as the residual compressive strength due to the Al2 O3 nanoparticles doped.

  19. Selective Oxidation of CO in Excess H2 over Ru/Al2O3 Catalysts Modified with Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    Xirong Chen; Hanbo Zou; Shengzhou Chen; Xinfa Dong; Weiming Lin

    2007-01-01

    The RU/Al2O3 catalysts modified with metal oxide (K2O and La2Os) were prepared via incipient wetness impregnation method from RUCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts RU-K2O/Al2O3 and Ru-La2Oa/Al2O3 were lowered approximately 30 ℃ compared with pure RU/AI2O3, and the activity temperature range was widened. The conversion of CO on RU-K2O/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160 ℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of RU-K2O/AI2O3 in the active temperature range. Slight methanation reaction was detected at 220 ℃ and above.

  20. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Science.gov (United States)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  1. Effect of interface geometry on electron tunnelling in Al/Al2O3/Al junctions

    Science.gov (United States)

    Koberidze, M.; Feshchenko, A. V.; Puska, M. J.; Nieminen, R. M.; Pekola, J. P.

    2016-04-01

    We investigate how different interface geometries of an Al/Al2O3 junction, a common component of modern tunnel devices, affect electron transport through the tunnel barrier. We study six distinct Al/Al2O3 interfaces which differ in stacking sequences of the metal and the oxide surface atoms and the oxide termination. To construct model potential barrier profiles for each examined geometry, we rely on first-principles density-functional theory (DFT) calculations for the barrier heights and the shapes of the interface regions as well as on experimental data for the barrier widths. We show that even tiny variations in the atomic arrangement at the interface cause significant changes in the tunnel barrier parameters and, consequently, in electron transport properties. Especially, we find that variations in the crucial barrier heights and widths can be as large as 2 eV and 5 Å, respectively. Finally, to gain information about the average properties of the measured junction, we fit the conductance calculated within the Wentzel-Kramers-Brillouin approximation to the experimental data and interpret the fit parameters with the help of the DFT results.

  2. Separation of Fine Al2O3 Inclusion from Liquid Steel with Super Gravity

    Science.gov (United States)

    Li, Chong; Gao, Jintao; Wang, Zhe; Guo, Zhancheng

    2017-04-01

    An innovative approach of super gravity was proposed to separate fine Al2O3 inclusions from liquid steel in this study. To investigate the removal behaviors of inclusions, the effects of different gravity coefficients and time on separating the inclusions were studied. The results show that a large amount of Al2O3 inclusions gathered at the top of the sample obtained by super gravity, whereas there were almost no inclusions appearing at the bottom. The volume fraction and number density of inclusions presented a gradient distribution along the direction of the super gravity, which became steeper with increasing gravity coefficient and separating time. As a result of the collision between inclusions, a large amount of inclusions aggregated and grew during the moving process, which further decreased the removal time. The experimental required removal time of inclusions is close to the theoretical values calculated by Stokes law under gravity coefficient G ≤ 80, t ≤ 15 minutes, and the small deviation may be because the inclusion particles are not truly spherical. Under the condition of gravity coefficient G = 80, t = 15 minutes, the total oxygen content at the bottom of the sample (position of 5 cm) is only 8.4 ppm, and the removal rate is up to 95.6 pct compared with that under normal gravity.

  3. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lifei; ZHENG Minghui; ZHANG Bing; LIU Wenbin; GAO Lirong; BA Te; REN Zhiyuan; SU Guijin

    2008-01-01

    Decomposition of hexachlorobenzene (HCB) was investigated over several metal oxides (i.e., MgO, CaO, BaO, La2O3,CeO2, MnO2, Fe2O3 and Co3O4) supported on Al2O3, which was achieved in closed system at a temperature of 300℃. Catalysts were prepared by incipient wetness impregnation with different metal oxides loading and impregnating solvents. The decomposition efficiency of different catalysts for this reaction depends on the nature of the metal oxide used, and Al2O3 supported La2O3 was found to be the most active one. Pentachlorobenzene (PeCB), and all tetrachlorobenzene (TeCB), trichlorobenzene (TrCB), and dichlorobenzene (DCB) isomers were detected after the decomposition reaction, indicating that the decomposition was mainly a dechlorination process. The detection of all lower chlorinated beazenes suggested the complexity of decomposition and the presence of more than one dechlodnation pathway.

  4. Effect of Treated Graphite on Properties of Al2 O3-SiC-C Castables

    Institute of Scientific and Technical Information of China (English)

    SHI Huiying; ZHANG Yang; BU Xiangjuan; CAO Xiying; HE Jiasong; WANG Lei

    2009-01-01

    Al2O3-SiC-C castables with 2 % pitch or 2 %,4% and 6% treated graphite,respectively,were prepared based on the basic formulation of traditional Al2O3-SiC-C castables.The flowability of castables,and bulk density,volume stability,strength,oxidation resistance and slag resistance of specimens fired at 110 ℃,1 100 ℃ and 1 500 ℃ respectively were comparatively studied.The results showed that:(1) With carbon source changing from pitch to treated graphite and the increase of treated graphite addition,water addition of castables increased,bulk density of specimens fired at different temperatures increased firstly and then decreased,strength after drying decreased obviously,strength after firing and oxidation resistance changed slightly,hot modulus of rupture increased obviously;(2) Slag resistance of specimen with treated graphite was worse than that of specimen with the same amount of pitch,but the former was obviously improved with the increase of treated graphite addition.

  5. Chemical Quenching of Positronium in CUO/Al2O3 Catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Jun; LIU Zhe-Wen; CHEN Zhi-Quan; WANG Shao-Jie

    2011-01-01

    CuO/Al2O3 catalysts were prepared by mixing CuO and γ-Al2O3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ4 and its intensity I4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ4 (1/τ4) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting Jine is (1.83 ± 0.05) × 107 s-1.

  6. Structure and magnetism of granular Fe-Al 2O 3

    Science.gov (United States)

    Santos, A.; Ardisson, J. D.; Viegas, A. D. C.; Schmidt, J. E.; Persiano, A. I. C.; Macedo, W. A. A.

    2001-05-01

    The structural and magnetic properties of granular Fe-Al 2O 3 nanocomposite obtained starting from sol-gel processing are presented. Samples with nominal Fe content ranging from 20% to 62% in volume were prepared. The conversion of Fe oxides into metallic Fe was obtained by calcination at 800°C followed by reduction at 600°C for 2 h in H 2 atmosphere. After reduction, our results indicated up to 78% α-Fe, preserving the mean diameter of the metallic nanoparticles between 50 and 80 nm, ˜16% Fe oxides and ˜7% interstitial Fe 2+ and substitutional Fe 3+ cations in the Al 2O 3 lattice. Vibrating sample magnetometry at 300 K resulted in coercivity between 400 and 630 Oe and saturation magnetization between 40 and 134 emu/g. From transport measurements, the highest magnetoresistance, close to 2% at room temperature, was observed for samples with 25% α-Fe and 51 vol% total Fe.

  7. Spent wash decolourization using nano-Al2O3/kaolin photocatalyst: Taguchi and ANN approach

    Directory of Open Access Journals (Sweden)

    Charles David

    2015-09-01

    Full Text Available The intense colour of the spent wash effluent leads to crucial ecological issue when released untreated into the environment. The decolourization of distillery spent wash effluent is known to be a very challenging task. In this study, the degradation of organic pollutants in the form of colour was performed using nano photocatalyst prepared using aluminium oxide (Al2O3 nanoparticle and kaolin clay. As-synthesized nano-Al2O3/kaolin composites were used as photocatalyst for colour degradation of spent wash effluent. The process parameters such as dosage, pH, temperature and agitation were optimized to attain the maximum decolourization efficiency. The structural and the textural characteristics of the photocatalyst were analysed by X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET surface area analysis, High Resolution Scanning Electron Microscope (HRSEM and Energy Dispersive X-ray (EDAX. Optimization of the process parameters using Taguchi Orthogonal Array (OA design resulted in a maximum of 80% spent wash decolourization. Using Artificial Neural Network (ANN, a two layered feedforward backpropagation model resulted as the best performance and predictive model for spent wash decolourization. The experimental data were found to be in excellent agreement with the predicted results from the ANN model.

  8. Superficial modifications in TiO2 and Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Santos Flávio de Paula

    2003-01-01

    Full Text Available The properties of hydrophilicity or hydrophobicity of materials are defined mainly, though not exclusively, by their composition, morphology and surface energy. In this work, titanium dioxide (TiO2 and aluminum oxide-alumina (Al2O3 ceramics prepared by uniaxial pressing were studied in terms of surface energy. The surfaces of these ceramics were treated with nitrogen plasma, using a stainless steel reactor excited by a 13,6 MHz radio frequency operating at 50 W input power and 13 Pa nitrogen pressure. The surface morphology was investigated by scanning electron microscopy (SEM analysis. Surface energy and contact angle measurements were taken using a RAMÉ-HART goniometer. These measurements were taken as function of time, over a 21-day period. The contact angle and surface energy values were found to change by almost 34% in comparison to their initial values immediately following plasma treatment. Nonetheless, the hydrophilic character of the Al2O3 and TiO2 remained constant throughout the test period.

  9. Preparation of MWNTs/Al2O3 composites and their mechanical and electrical properties

    Institute of Scientific and Technical Information of China (English)

    FAN; Jinpeng; ZHAO; Daqing; XU; Zening; WU; Minsheng

    2005-01-01

    The mechanical and electrical properties of MWNTs/Al2O3 composite prepared fabricated by hot pressing are investigated. The relation between properties and microstructure of composites is also discussed. With 4wt% MWNTs as reinforcement, the fracture toughness of composite obtained reaches 5.55 Mpa·m1/2, which is 80% higher than that of pure Al2O3 obtained in the same conditions. The main toughening mechanism is CNTs' pinning alumina grain boundaries, and the pullout of CNTs takes effect also. Through adding 2wt% MWNTs and altering the mix method, the fracture toughness of the composite obtained is 3.97 Mpa·m1/2. Furthermore, the electrical resistivity is as low as 8.4×10-3Ω·m, decreasing by 14 orders of magnitude compared with pure alumina ceramics. The function of CNTs in composite is related to the distribution state of CNTs in composite, and the distribution state of CNTs in matrix is dependent on preparation procedures.

  10. Fractal analysis of crack paths in Al2O3-TiC-4%Co composites

    Institute of Scientific and Technical Information of China (English)

    LI Jing; YIN Yan-sheng; LIU Ying-cai; MA Lai-peng

    2006-01-01

    Al2O3-TiC-4%Co(volume fraction) composites(ATC) with high toughness (7.8±0.8 MPa·m1/2) and strength (782±60 MPa) were fabricated. In comparison with Al2O3-TiC composites(AT), the fracture toughness was significantly improved by 60%. The crack paths, generated by Vickers indentation on the polished surfaces of both composites, were analyzed from a fractal point of view to distinguish the possible toughening mechanisms involved. Quantitative evaluation of indentation cracks indicates that the crack deflection plays a more effective role. Cracks of the ATC composites show higher deflection angles and more deflections along the path. ATC composites present higher fractal dimension (D=1.07) than AT composites (D=1.02), which is directly related to the higher fracture toughness. A significant relationship between crack path and toughness is evident: the more irregular the geometry of the crack, the higher the fracture toughness.

  11. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    Science.gov (United States)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  12. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    Science.gov (United States)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  13. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  14. A light-scattering study of Al2O3 abrasives of various grit sizes

    Science.gov (United States)

    Heinson, Yuli W.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-09-01

    We report light scattering phase function measurements for irregularly shaped Al2O3 abrasive powders of various grit sizes. Q-space analysis is applied to the angular scattering to reveal a forward scattering regime, Guinier regime, power law regime with quantifiable exponents, and an enhanced backscattering regime. The exponents of the power laws for Al2O3 abrasives decrease with increasing internal coupling parameter ρ ‧ , which is in agreement with previous observations for other irregular particles. Unlike other dust particles previously studied showing single power laws under Q-space analysis, the largest three abrasives, for which ρ ‧ ≳ 100 , showed a kink in the power law, which is possibly due to the higher degree of symmetry for the abrasives than for all the particles studied previously. Direct comparison of the 1200, 1000, and 800 grit abrasive scattering to scattering by corresponding spheres shows that the scatterings approximately coincide at the spherical particle qR ≃ ρ ‧ crossover point. Furthermore, the scattering at the maximum qR = 2 kR by the irregularly shaped abrasives is close to the geometric centers of the glories of the spheres.

  15. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler

    2007-01-01

    ) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al2O3:C...... by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/ìm in water). Experimentally, we observed that the initial OSL signal provided...... that the initial OSL signal is, in general, not LET independent which makes Al2O3:C unsuitable for OSL proton dosimetry. The initial OSL signal can, however, be combined with the total OSL signal to provide an LET independent response for a given dose and LET interval. On the basis of TST, we estimate a so...

  16. Tribological properties of Cu based composite materials strengthened with Al2O3 particles

    Directory of Open Access Journals (Sweden)

    J. W. Kaczmar

    2012-12-01

    Full Text Available In the present work copper was strenghtened with 20 and 30 vol. % of alumina particles characterized by diameter of 3-6μm. The copperbased composite materials were manufactured by the squeeze casting method. Preheated preforms made from Al2O3 particles were placedin the desired place in the heated cast die and the squeeze casting process with liquid copper was performed applying the infiltrationpressure of 90MPa and pressure was kept for 10-15s until solidification was complete. The microstructure and physical properties: Brinell hardness (HBW and density were characterized. Metallografic examinations showed that alumina particles were uniformly distributed in the copper matrix. Hardness of 208 HBW for composite materials containing 30 vol.% of particles was achieved. Wear investigations were performed applying the tribological pin-on-disc tester. Friction forces between copper based composite materials containing 20 and 30 vol. % of Al2O3 particles and cast iron were registered and wear was determined on the base of the specimen mass loss after 1.0, 3.5 and 8.5 km friction distance.

  17. Dissolution Behavior of Indium in CaO-SiO2-Al2O3 Slag

    Science.gov (United States)

    Ko, Kyu Yeol; Park, Joo Hyun

    2011-12-01

    The solubility of indium in a molten CaO-SiO2-Al2O3 system was measured at 1773 K (1500 °C) to establish the dissolution mechanism of indium under a highly reducing atmosphere. The solubility of indium increases with increasing oxygen potential, whereas it decreases with increased activity of basic oxide. Therefore, a dissolution mechanism of indium can be constructed according to the following equation: {{In}}({{s}}) + 1/4{{O}}2 ({{g}}) = ({{In}}^{ + } ) + 1/2({{O}}^{2 - } ) The relationship between indium capacity and sulfide capacity shows a good correlation that is consistent with theoretical expectations. The enthalpy change of the indium dissolution reaction is negative, which indicates that the dissolution is an exothermic reaction. The heat of dissolution into high-silica melts is greater than that into low-silica melts. The solubility of indium is strongly dependent on the silica content. The activity coefficient, and thus the excess free energy of In2O, decreases linearly with increasing silica content, indicating that the In2O is believed to behave as a weak basic oxide in the current CaO-SiO2-Al2O3 ternary system under reducing conditions.

  18. Fabrication of Al2O3-W Functionally Graded Materials by Slipcasting Method

    Science.gov (United States)

    Katayama, Tomoyuki; Sukenaga, Sohei; Saito, Noritaka; Kagata, Hajime; Nakashima, Kunihiko

    2011-10-01

    We have successfully fabricated a functionally graded material (FGM) from tungsten and alumina powders by a slip-casting method. This FGM has applications as a sealing and conducting component for high-intensity discharge lamps (HiDLs) that have a translucent alumina envelope. Two types of W powder, with different oxidizing properties, were used as the raw powders for the Al2O3-W FGM. "Oxidized W" was prepared by heat-treatment at 200 °C for 180 min in air. Alumina and each of the W powders were mixed in ultrapure water by ultrasonic stirring. The slurry was then cast into a cylindrical acrylic mold, which had a base of porous alumina, under controlled pressure. The green compacts were subsequently dried, and then sintered using a vacuum furnace at 1600 °C for a fixed time. The microstructures of the FGMs were observed by scanning electron microscopy (SEM) of the polished section. The Al2O3-W FGM with the "oxidized W" powder resulted in a microscopic compositional gradient. However, the FGM with "as-received W" showed no compositional gradient. This result was mainly attributed to the difference between the ζ-potentials of the W powders with the different oxidizing conditions; basically "oxidized W" powder tends to disperse because of the larger ζ-potential of the oxide layer coated on the W powder core.

  19. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  20. Separation of Fine Al2O3 Inclusion from Liquid Steel with Super Gravity

    Science.gov (United States)

    Li, Chong; Gao, Jintao; Wang, Zhe; Guo, Zhancheng

    2017-01-01

    An innovative approach of super gravity was proposed to separate fine Al2O3 inclusions from liquid steel in this study. To investigate the removal behaviors of inclusions, the effects of different gravity coefficients and time on separating the inclusions were studied. The