WorldWideScience

Sample records for al-si-cu hypereutectic alloys

  1. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  2. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidiifed slurry

    Institute of Scientific and Technical Information of China (English)

    Yoshiki Tsunekawa; Shinpei Suetsugu; Masahiro Okumiya; Naoki Nishikawa; Yoshikazu Genma

    2014-01-01

    For the wider applications, it is necessary to improve the ductility as wel as the strength and wear-resistance of hypereutectic Al-Si-Cu aloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modiifed wear-resistance of hypereutectic Al-Si-Cu aloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidiifcation, which is caled sono-solidiifcation, was carried out from its molten state to just above the eutectic temperature. The sono-solidiifed Al-17Si-4Cu aloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibriuma-Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidiifed slurry to shape a disk specimen. After the rheo-casting with modiifed sono-solidiifed slurry held for 45 s at 570 ºC, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of softa-Al phase. In contrast, there exist only 5 area% of primary silicon particles and noa-Al phase in rheo-cast specimen with normaly solidiifed slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normaly solidiifed slurry.

  3. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  4. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    International Nuclear Information System (INIS)

    Traldi, S. M.; Rossi, J. L.; Costa, I.

    2003-01-01

    Al-Si-Cu hypereutectic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. they the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties- mainly wear resistance at high temperatures. The corrosion s resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation hove been used to evaluate the corrosion resistance of a hyper eutectic Al-Si-Cu alloy in alcoholic environments. the EIS tests carried out in pure ethanol, and ethanol with small additions (1 mM) of acid an chloride to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium. (Author) 13 refs

  5. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    Science.gov (United States)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  6. Modification and aging precipitation behavior of hypereutectic Al-21wt.%Si alloy treated by P+Ce combination

    Directory of Open Access Journals (Sweden)

    Liu Pei

    2014-11-01

    Full Text Available In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as Al4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃.

  7. Effect of alumina on grain refinement of Al-Si hypereutectic alloys

    Science.gov (United States)

    Majhi, J.; Sahoo, S. K.; Patnaik, S. C.; Sarangi, B.; Sachan, N. K.

    2018-03-01

    The size, volume fraction and distribution of primary as well as eutectic silicon affect the mechanical properties of the Al-Si hypereutectic alloys. It is very difficult for the simultaneous refinement and modification of primary and secondary Si particles in hypereutectic Al-Si alloys through traditional processes. This paper explores the role of γ-Al2O3 nanoparticles on Si particles in the course of solidification in hypereutectic Al-Si alloys at particular pouring temperature. The present study involves incorporation of varying contents dispersed γ-Al2O3 nanoparticles into a molten base metal during stir casting and followed by solidification. It has been reported that the synthesized composites having good interfacial bonding (wetting) between the dispersed phase and the liquid matrix was achieved in order to provide improved mechanical properties of the composite. The cast product of hypereutectic Al-16Si alloy with the reinforcement of nanoparticles, illustrated a significant improvement in both wear behaviour and hardness. The dry sliding wear test has been performed on a group of specimens with varying parameters (different loads and sliding velocities) in a pin on disc wear testing machine. Moreover, the wear rate and specific wear rate also affected in different load and different sliding velocities. However in XRD analysis of the samples, the enhancement of wear resistance as well as hardness was due to the formation of brittle phases like SiO2, Al2O3 and Al-rich intermetallic compounds. The hardness value of the materials increases nearly 6% in addition to increase in the density of only 0.8%. As per literature, the large plate eutectic Si particles were modified in to the fine core particles and it acquires enough potential for various applications.

  8. Friction and wear behaviour of hypereutectic Al-Si alloy/steel tribopair under dry and lubricated conditions

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2017-12-01

    Full Text Available Dry and lubricated sliding tribological tests on hypereutectic Al-25Si alloy was performed using a ball- on- disk configuration at room temperature. Hypereutectic Al-25Si alloy were prepared by rapid solidification process under T6 condition. Friction coefficient (COF and wear rate of the alloy were measured under different applied loads ranging from 5–100 N. It is found that the friction coefficient varies with load, first declines (from 5-50 N, then increases (from 50-80 N and then again decreases (80-100 N. The wear rate of the samples of hypereutectic Al-25Si alloy, first increases and then decreases with increasing the applied normal load. Hypereutectic Al-25Si alloy presents higher wear rate at 50 N due to the participation of a large amount of needle-like precipitates, but shows low wear rate under high load of 100 N because of the work hardening layer. Worn surface morphologies were analyzed using optical and scanning electron microscope (SEM coupled with an energy dispersive spectrometer (EDS. The improvements in COF and wear rate were mainly attributed to morphology, size and distribution of Si particles due to its fabrication process. The dominant wear mechanism for hypereutectic Al-25Si alloy was adhesive wear, abrasive wear and plastic deformation.

  9. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  10. Effect of load on the tribological properties of hypereutectic Al-Si alloy under boundary lubrication conditions

    Science.gov (United States)

    Kumar, Parveen; Wani, M. F.

    2017-11-01

    Researchers reported that the IC engine components (piston, cylinder liner etc) fail due to the friction losses (~45%) and wear losses (~25-40%). So the demand of light weight, low friction and wear resistance alloys increases day by day, which reduces the emission and increases the efficiency of the IC engine. In this connection, tribological tests on hypereutectic Al-25Si alloy were performed using a ball-on-disk configuration under dry and lubricated sliding conditions. Hypereutectic Al-25Si alloy was prepared by rapid solidification process with T6 condition. T6 condition improves the friction, wear and mechanical properties of the alloy. Friction coefficient and wear rate of the alloy was measured under high loads ranging from 100 to 300 N. It was found that the friction coefficient (COF) and wear rate of hypereutectic Al-25Si alloy/steel tribo pair increased with increase in load. Significant reduction in COF and wear rate was accomplished with SAE20W50 engine oil and Si particles act as solid lubricant. Optical microscope, 3D surface profilometer and scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) were used for characterization the worn surface morphologies. The morphology, size and distribution of high Si particles due to its fabrication process caused the improvements in COF and wear rate under lubricated conditions. Adhesive wear, abrasive wear and plastic deformation acted as the dominant wear mechanism for hypereutectic Al-25Si alloy.

  11. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    Directory of Open Access Journals (Sweden)

    Traldi, S. M.

    2003-12-01

    Full Text Available Al-Si-Cu hypereutetic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties - mainly wear resistance at high temperatures. The corrosion resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS and potentiodynamic polarisation have been used to evaluate the corrosion resistance of a hypereutectic Al-Si-Cu alloy in alcoholic environments. The EIS tests were carried out in pure ethanol, and ethanol with small additions (1 mM of acid and chloride, to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium.

    Aleaciones hipereutécticas producidas por conformación por spray son muy empleadas en la industria automovilística, especialmente en los revestimientos de los cilindros. Tienen la ventaja de añadir menos peso con bajo coeficiente de expansión térmica y excelentes propiedades mecánicas, sobre todo resistencia al desgaste en altas temperaturas. Todavía, la resistencia a la corrosión de estas aleaciones en combustibles no es conocida. En este estudio fueron utilizadas las técnicas de espectroscopia de impedancia electroquímica y polarización potenciodinámica, para evaluar la resistencia a la corrosión de una aleación hipereutéctica Al-Si-Cu en medio alcohólico. Las pruebas fueron conducidas en etanol puro y etanol con pequeñas adiciones (1 mM de ácido y cloruro, con la finalidad de investigar el efecto de estos contaminantes en la resistencia a la corrosión. Hierro fundido gris, también fue

  12. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

    Science.gov (United States)

    Sediako, Dimitry G.; Kasprzak, Wojciech

    2015-09-01

    Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

  13. Statistical Assessment of the Effect of Chemical Composition on Mechanical Properties of Hypereutectic AlSi17CuNiMg Silumin

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2007-07-01

    Full Text Available The paper presents a statistical assessment of the effect of chemical composition on mechanical properties of hypereutectic AlSi17 silumin, which is expected to act as a counterpart of alloys used by automotive industry and aviation for casting of high-duty engine parts in West European countries and USA. The studies on the choice of chemical composition of silumins were preceded by analysis of the reference literature to state what effect some selected alloying elements and manufacturing technology may have on the mechanical properties (HB, Rm and A5 of these alloys. As alloying additives, Cu, Ni and Mg in proper combinations were used. The alloy after modification with phosphorus (CuF was cast into a metal mould. Basing on the results obtained, it has been reported that the developed silumin of hypereutectic composition is characterised by properties similar to its Western counterparts.

  14. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    Science.gov (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  15. Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B.

    Science.gov (United States)

    Gong, Chunjie; Tu, Hao; Wu, Changjun; Wang, Jianhua; Su, Xuping

    2018-03-20

    An hypereutectic Al-18Si alloy was modified via an Al-3B master alloy. The effect of the added Al-3B and the modification temperature on the microstructure, tensile fracture morphologies, and mechanical properties of the alloy were investigated using an optical microscope, Image-Pro Plus 6.0, a scanning electron microscope, and a universal testing machine. The results show that the size of the primary Si and its fraction decreased at first, and then increased as an additional amount of Al-3B was added. When the added Al-3B reached 0.2 wt %, the fraction of the primary Si in the Al-18Si alloy decreased with an increase in temperature. Compared with the unmodified Al-18Si alloy, the tensile strength and elongation of the alloy modified at 850 °C with 0.2 wt % Al-3B increased by 25% and 81%, respectively. The tensile fracture of the modified Al-18Si alloy exhibited partial ductile fracture characteristics, but there were more areas with ductile characteristics compared with that of the unmodified Al-18Si alloy.

  16. Assessment of circumferential cracks in hypereutectic Al-Si clutch housings

    Directory of Open Access Journals (Sweden)

    M. Haghshenas

    2017-04-01

    Full Text Available As in situ natural composites with silicon phase acting as the reinforcing phase, Al-Si alloys are among most commonly used aluminum alloys in automotive applications (i.e. engine component. Silicon contributes to the strength of Al-Si alloys through load transfer from the Al matrix to the hard (rigid Si phase in the microstructure (load-carrying capacity. Casting parameters (i.e. solidification rate, elemental segregation, secondary dendrite spacing… as well as the size and distribution of the microstructural constituents in Al-Si alloys (i.e. morphology of Si particles, intermetallic compounds, secondary dendrite spacing contribute directly to the mechanical response and failure (or fracture behavior of the alloy within the service. In hyper-eutectic Al-Si alloys (i.e. B390.0, distribution of coarse pre-eutectic Si particle mainly contribute to stress concentration, crack initiation and propagation during the actual service condition. In the present paper, the parameters contribution to the formation of the circumferential cracks in clutch housings made of die cast hyper-eutectics B390.0 Al-Si alloys are assessed through optical microscopy and scanning electron microscopy. Casting variable, cooling rate, their effect on the cracks as well some of the possible causes are also discussed in detail.

  17. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  18. Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available In this investigation the corrosion resistance of four Al-Si hypereutectic alloys in a solution typical of condensate from automotive fuel combustion products, and referred to here as synthetic condensed automotive solution, has been studied. Three commercial alloys that are used for cylinder liners, and a laboratory made alloy, were studied by electrochemical impedance spectroscopy and measurements were taken after increasing times of immersion in this solution. Comparison of the electrochemical response of the four alloys in the corrosive solution was carried out. Although the mechanisms by which the four alloys corroded were similar, the results indicated differences in corrosion resistances of these alloys, and these differences could be related to their microstructures. The laboratory prepared alloy showed increased susceptibility to pitting corrosion compared to the commercial alloys. The surfaces of the alloys were examined, before and after the corrosion test, by scanning electron microscopy and analyzed by energy dispersive spectroscopy. The results indicated preferential attack of the aluminium matrix phase in all the alloys. The alloy with higher copper content and prepared by spray forming was more susceptible to pitting compared to the other alloys. The EIS response at low frequencies indicated a diffusion-controlled process, probably that of oxygen to the alloy interface.

  19. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  20. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  1. Effect of Y2O3 on microstructure and mechanical properties of hypereutectic Al-20% Si alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-feng; XU Chang-lin; WANG Hui-yuan; LIU Chang; JIANG Qi-chuan

    2006-01-01

    The effect of Y2O3 on the microstructure and mechanical properties of the hypereutectic Al-20%Si(mass fraction) alloy was investigated. The results show that, with the addition of Y2O3 into the Al-P-Ti-TiC modifier, the average size of primary silicon in th.e Al-20%Si alloy modified by Al-P-Ti-TiC-Y2O3 modifier (approximately 15μm or less) is significantly reduced, and the morphology of eutectic silicon changes from coarse acicular and plate like to refined fibrous. The Brinell hardness (HB189) and tensile strength (301 MPa) of Al-20%Si alloy modified by the Al-P-Ti-TiC-Y2O3 increase by 11.6% and 10.7%, respectively, for the alloys afrer heat treatment.

  2. Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    Xiaogang Jian

    2013-03-01

    Full Text Available The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zone I, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zone II about 15 to 20 祄 from the ultrasonic probe/radiator. The bulk of the ingot is in zone III and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 祄 in zone I, 25 to 35 祄 in zone II, and 25 to 55 祄 in zone III. The morphology of the primary ?Al phase is also changed from dendritic (in untreated samples to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described.

  3. Influence of Ultrasonic Melt Treatment and Cooling Rates on the Microstructural Development and Elevated Temperature Mechanical Properties of a Hypereutectic Al-18Si-4Cu-3Ni Piston Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jea-Hee; Cho, Young-Hee; Jung, Jae-Gil; Lee, Jung-Moo [Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The influence of ultrasonic melt treatment (UST) combined with a change in cooling rates on the microstructure and elevated temperature mechanical properties of a hypereutectic Al-18Si-4Cu-3Ni piston alloy was investigated. Microstructural observation confirmed that UST effectively refined the sizes of primary Si and intermetallic compounds (e.g. ε-Al{sub 3}Ni) while promoting their homogeneous distribution. Besides the refinement of the constituent phases, the size of the dendrite arm spacing (DAS), which was hardly affected by UST, significantly deceased with increasing cooling rates. The refinement of the solidification structure in the alloy achieved through both UST and increased cooling rates resulted in an improvement in tensile properties, ultimate tensile strength and elongation in particular, after T5 heat treatment followed by overaging at 350 ℃. However, the elevated temperature yield strength of the alloy was not associated with the refinement, but was rather correlated with the 3-D interconnectivity, morphology and volume fraction of the primary Si.

  4. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  5. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys

    International Nuclear Information System (INIS)

    Li Chong; Wu Yaping; Li Hui; Wu Yuying; Liu Xiangfa

    2010-01-01

    Research highlights: → By the injection of rod-like NiAl 3 phase in Al-Mg 2 Si alloys, Al-Mg 2 Si binary eutectic structure gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic. → The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. → The mechanism of structural evolution was analyzed in terms of the detailed microstructural observations. → The high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structural evolution. - Abstract: The aim of this work is to investigate the eutectic structural evolution of hypereutectic Al-20% Mg 2 Si with Ni addition under a gravity casting process. Three-dimensional morphologies of eutectic phases were observed in detail using field emission scanning electron microscopy, after Al matrix was removed by deep etching or extraction. The results show that Al-Mg 2 Si binary eutectic gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic with the increase of Ni content, and flake-like eutectic Mg 2 Si transforms into rods. The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. Further, the high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structure evolution, and the mechanism of structural evolution was discussed and analyzed in terms of the detailed microstructural observations.

  6. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  7. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  8. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  9. Assessment of AlSi21CuNi Alloy’s Quality with Use of ATND Method

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2013-12-01

    Full Text Available Majority of combustion engines is produced (poured from Al-Si alloys with low thermal expansion coefficient, so called piston silumins. Hypereutectic alloys normally contain coarse, primary angular Si particles together with eutectic Si phase. The structure and mechanical properties of these alloys are highly dependent upon cooling rate, composition, modification and heat-treatment operations. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis and regression analysis to assessment of quality of the AlSi21CuNi alloy modified with Cu-P on stage of its preparation, in aspect of obtained mechanical properties (R0,02, Rm, A5, HB. Obtained dependencies enable prediction of mechanical properties of the investigated alloy in laboratory conditions, using values of characteristic points from curves of the ATND method.

  10. Mechanical properties of Al-Cu alloy-SiC composites

    Science.gov (United States)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  11. Mechanical properties of Al-Cu alloy-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, Indonesia 13220 and PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia); Handoko, E. [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, 13220 (Indonesia); Soegijono, B. [PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia)

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  12. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  13. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  14. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  16. Rare earth concentration in the primary Si crystal in rare earth added Al-21 wt. % Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.Y.; Kim, G.H. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Moon, I.G.; Choi, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Metallurgical Engineering

    1998-07-03

    Al-Si alloys containing more than about 12 wt. % Si exhibit a hypereutectic microstructure, normally consisting of a primary silicon phase in an eutectic matrix. The primary silicon in normal hypereutectic alloys is usually very coarse and thus leads to poor properties to these alloys. Therefore, alloys with a predominantly coarse primary silicon crystal must be modified to ensure adequate mechanical strength and ductility. Further improvement of mechanical properties of these alloys can be achieved by the modification of eutectic microstructure. Therefore, development of a modifier or refiner that can produce both fine primary and eutectic Si is a major factor which can lead to significant enhancement of mechanical properties in hypereutectic Al-Si alloys. Refinement of primary silicon is usually achieved by the addition of phosphor to the melt. On the other hand, it is reported that the rare earth (RE) elements are capable of modifying the eutectic structure of cast Al-Si alloys. According to the literature, Phosphor acts as a heterogeneous nucleation site of Si crystal by forming AlP intermetallic particles at high temperature, i.e., above liquidus temperature of Al-Si alloy. Unlike phosphor, RE was not known to form a stable compound with Al that can act as a nucleation site at high temperature. Therefore, the role of RE as a refiner should be considered by examining the behavior of RE as a solute in the melt. The distribution of RE within the primary Si and in the matrix of the alloy will provide a clue to the role of RE on the modification of primary Si during solidification.

  17. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  18. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yaping; Wang Shujun; Li Hui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2009-05-27

    The modification effect of a Si-P master alloy on Al-24%Si alloy was investigated by using electron probe micro-analyzer (EPMA) and optical microscopy (OM). The dissolution problem of the Si-P master alloys was solved by changing the sequence of addition. When the Si-P master alloy was added into Al melt before the addition of silicon, the best modification effect could be achieved. The modification parameters of the master alloy on Al-24%Si alloy were optimized through designing and analyzing the orthogonal experiment, and their influences on the modification effect were discussed. The results show that the influence of temperature on the modification effect is the greatest, followed by the addition level, and the holding time is the least. The optimized modification parameters are the modification temperature of 810 deg. C, the addition level of 0.35 wt.%, the holding time of 30 min + 50 min whose meaning is that the Si-P master alloy is added firstly to the molten Al, and silicon is added 30 min later, then holding another 50 min. In addition, the modification mechanism of the Si-P master alloy on Al-24%Si alloy was also discussed.

  19. Separation of primary solid phases from Al-Si alloy melts

    Directory of Open Access Journals (Sweden)

    Ki Young Kim

    2014-07-01

    Full Text Available The iron-rich solids formed during solidification of Al-Si alloys which are known to be detrimental to the mechanical, physical and chemical properties of the alloys should be removed. On the other hand, Al-Si hypereutectic alloys are used to extract the pure primary silicon which is suitable for photovoltaic cells in the solvent refining process. One of the important issues in iron removal and in solvent refining is the effective separation of the crystallized solids from the Al-Si alloy melts. This paper describes the separation methods of the primary solids from Al-Si alloy melts such as sedimentation, draining, filtration, electromagnetic separation and centrifugal separation, focused on the iron removal and on the separation of silicon in the solvent refining process.

  20. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  1. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  2. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  3. Effects of Eutectic Si and Secondary Dendrite Arm Spacing on the Mechanical Properties of Al-Si-Cu Cast Alloys

    International Nuclear Information System (INIS)

    Lee, Kyungmin; Kim, Yumi; Kim, Youngman; Hong, Sungkil; Choi, Seweon; Kim, Youngchan; Kang, Changseok

    2014-01-01

    The present study aims at investigating the effects of eutectic Si and Secondary dendrite arm spacing (SDAS) on mechanical properties of Al-Si-Cu alloy. Heat treatment and controlling of solidification rate affect to microstructure of Al-Si-Cu alloy. Al-Si-Cu alloy was dissolved in an electric furnace. The alloy cast in STD61 mold which had been pre-heated to 95 ℃ and 200 ℃. Eutectic Si and SDAS were finer as cooling rate increased. Image analysis technique has been utilized to examine the microstructure. Microstructure observation results showed that T6 heat treatment has a strong influence eutectic Si particle morphology. The mechanical properties, such as tensile strength, yield strength, elongation, were improved by ASTM E8 standard. Tensile properties of the Al-Si-Cu alloys prepared by different cooling rates were the same as each other by T6 heat treatment.

  4. Influence of secondary ageing temperature on hardening and residual elastic stresses in AlMgSi and AlMgSiCu alloys

    International Nuclear Information System (INIS)

    Milosavlevich, A.Ya.; Shiyachki-Zheravchich; Rogulin, M.Ya.; Milenkovich, V.M.; Prokich-Tsvetkovich, R.M.

    1993-01-01

    The investigations were conducted on samples of AlMgSi and AlMgSiCu alloys quenched, aged and cold worked with 20, 40, 60 and 85 % reduction in area. Secondary ageing was carried out at 200 and 250 deg C. Residual stresses wee determined by X-ray diffraction method. It was shown that cold deformation effect on hardness and residual stresses is dependent on alloy composition. The hardening due to secondary ageing is more pronounced for AlMgSi alloy at 200 deg C and for AlMgSiCu alloy at 250 deg C. Positive residual stresses increase with secondary ageing temperature

  5. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  6. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  7. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  9. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Roehling, John D.; Coughlin, Daniel R.; Gibbs, John W.; Baldwin, J. Kevin; Mertens, James C.E.; Campbell, Geoffrey H.; Clarke, Amy J.; McKeown, Joseph T.

    2017-01-01

    In situ dynamic transmission electron microscope (DTEM) imaging of Al-Si thin-film alloys was performed to investigate rapid solidification behavior. Solidification of alloys with compositions from 1 to 15 atomic percent Si was imaged during pulsed laser melting and subsequent solidification. Solely α-Al solidification was observed in Al-1Si and Al-3Si alloys, and solely kinetically modified eutectic growth was observed in Al-6Si and Al-9Si alloys. A transition in the solidification mode in eutectic and hypereutectic alloys (Al-12Si and Al-15Si) from nucleated α-Al dendrites at lower solidification velocities to planar eutectic growth at higher solidification velocities was observed, departing from trends previously seen in laser-track melting experiments. Comparisons of the growth modes and corresponding velocities are compared with previous solidification models, and implications regarding the models are discussed.

  10. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  11. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  12. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy

    DEFF Research Database (Denmark)

    Kapranos, P.; Kirkwood, D.H.; Atkinson, H.V.

    2003-01-01

    Hypereutectic aluminium–silicon alloys offer the possibility of an in situ natural composite (the silicon acting as the reinforcing phase) with properties that make them attractive for a number of automotive applications. However, conventional casting techniques result in excessive growth of the ...

  13. Construction and evaluation of multi-component Zn-Al based bearing alloys (Zn-Al-Si, Zn-Al-Cu)

    International Nuclear Information System (INIS)

    Shahmiri, M.; Shahin, K.

    2001-01-01

    Zn-Al based alloys, with excellent mechanical properties, are finding increasing applications in various industries, especially bearing and bushing fields. Observed dimensional instabilities, in their multicomponent systems, (e. g. Zn-Al-Si and, Zn-Al Si-Cu), is believed to be as the result of some kinds of phase transformation, due to the temperature variations, while in service. Profound understanding of the phase transformations due to the temperature variation, requires detailed evaluations of the isothermal sections of the multi-components phase diagrams of Zn-Al-Si and, Zn-Al-Si-Cu alloy systems. In the present article, the isothermal sections of the aforementioned ternary and quaternary systems in the solid state regions have been investigated and observed phase transitions have been critically evaluated

  14. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lipeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Zhang, Zhiqing; Sanders, Robert E.; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-03-11

    The natural aging and artificial aging behaviours of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were investigated using Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterisation. Excess Si and Cu additions enhanced the alloy hardening ability during natural (NA) and artificial aging (AA). Alloys with low Cu and high Si contents exhibited higher precipitation hardening than alloys rich in Mg during artificial aging. In contrast, the alloys with high amounts of Cu were less dependent on the Mg/Si ratio during precipitation hardening due to their similar aging kinetics. The main precipitate phases that contributed to the peak-aging hardness were the L, Q′ and β″ phases. In the over-aging conditions, the alloys rich in Mg and Cu had finer and more numerous precipitates than their Si-rich equivalents due to the preferential precipitation of the L phase. The combination of excess Mg and high Cu resulted in an alloy with a relatively low hardness in T4 temper and a relatively higher hardness after the paint baking cycle. Thus, this alloy has good potential for use in auto body panel applications.

  15. Microstructure of AlSi17Cu5 alloy after overheating over liquidus temperature

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-01-01

    Full Text Available The paper presents microstructure tests of alloy AlSi17Cu5. In order to disintegrate the primary grain of silicon the so-called time-temperature transformation TTT was applied which was based on overheating the liquid alloy way over the temperature Tliq., soaking in it for 30 minutes and casting it to a casting mould. It was found that such process causes the achievement of fine-crystalline structure and primary silicon crystals take up the form of pentahedra or frustums of pyramids. With the use of X-ray microanalysis and X-ray diffraction analysis the presence of intermetallic phases Al2Cu, Al4Cu9 which are the ingredients of eutectics α - AlCu - β and phase Al9Fe2Si which is a part of eutectic α - AlFeSi - β was confirmed.

  16. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  17. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  18. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  19. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Directory of Open Access Journals (Sweden)

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  20. Phase diagrams of aluminium alloys of Al-Cu-Mg, Al-Mg-Si-Cu, and Al-Mg-Li system

    International Nuclear Information System (INIS)

    Ber, L.B.; Kaputkin, E.Ya.

    2001-01-01

    Isothermal diagrams of phase transformations (DPT) and temperature-time charts (TTC) of variation of electric conductivity and of mechanical features at tension were plotted following thermal treatment according to the pattern of direct hardening and ageing and according to the pattern of normal aging for D16 commercial alloy, Al-Cu-Mg model alloy of the same system, AD37 commercial alloys of Al-Mg-Si-Cu and 1424 one of Al-Li-Mg system. Phase transformations were studied by means of fluorescence electron microscopy, micro-X-ray spectral analysis, X-ray phase analysis of single crystals and polycrystals and differential scanning calorimetry. For every alloy comparison of TTC and DPT enables to clarity the mechanism of phase composition effect on features and to optimize conditions of hardening cooling and ageing [ru

  1. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  2. Age hardening of a sintered Al-Cu-Mg-Si-(Sn) alloy

    International Nuclear Information System (INIS)

    Kent, D.; Schaffer, G.B.; Drennan, J.

    2005-01-01

    The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the β'or Q' phase, oriented along α directions and θ' plates lying on {0 0 1} α planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness

  3. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  4. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg) alloys

    OpenAIRE

    M. Kaczorowski; A. Krzyńska

    2007-01-01

    The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg) type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening ...

  5. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  6. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Directory of Open Access Journals (Sweden)

    Thomas Gietzelt

    2016-11-01

    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  7. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  8. Evaluation of Cracking Causes of AlSi5Cu3 Alloy Castings

    Directory of Open Access Journals (Sweden)

    Eperješi Š.

    2014-10-01

    Full Text Available Recently, the castings made from aluminum-silicon alloys by pressure die casting are increasingly used in the automotive industry. In practice, on these castings are high demands, mainly demands on quality of their structure, operating life and safety ensuring of their utilization. The AlSi5Cu3 alloy castings are widely used for production of car components. After the prescribed tests, the cracks and low mechanical properties have been identified for several castings of this alloy, which were produced by low pressure casting into a metal mould and subsequent they were heat treated. Therefore, analyses of the castings were realized to determine the causes of these defects. Evaluation of structure of the AlSi5Cu3 alloy and causes of failure were the subjects of investigation presented in this article.

  9. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  10. The impact of major alloying elements and refiner on the SDAS of Al-Si-Cu alloy; Der Einfluss von Hauptlegierungselementen und Kornfeinern auf den sekundaeren Dendritenarmabstand der Al-Si-Cu-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Mile; Byczynski, Glenn [Nemak Europe GmbH, Frankfurt am Main (Germany). Frankfurt Airport Center 1; Pavlovic, Jelena [Magdeburg Univ. (Germany). Inst. fuer Fertigungstechnik und Qualitaetssicherung

    2009-02-15

    This paper investigates the effect of some major alloying elements (silicon and copper) and the effect of grain refiner (titanium boride) on the size of the secondary dendrite arm spacing (SDAS) in series of Al-Si-Cu alloys. It has been shown that both silicon and copper have significant influence on this solidification parameter. The addition of grain refining master alloys to aluminium alloys is common practice in many commercial foundries aiming to reduce the grain size of Al-Si alloys. However, it was shown in the present paper that master alloy based on TiB had an unexpected impact on the SDAS, decreasing the size of SDAS. In addition, there is a minimum of SDAS corresponding to the presence of 0.12 wt% of titanium in Al-Si alloy. Such findings could have important implications for Al-Si alloys in particular, due to their wide spread applications in the automotive industry. (orig.)

  11. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    Science.gov (United States)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  12. HRTEM characterization of melt-spun Al-Si-Cu-Mg alloys solidified at different rates

    International Nuclear Information System (INIS)

    Alfonso, Ismeli; Maldonado, Cuauhtemoc; Medina, Ariosto; Gonzalez, Gonzalo; Bejar, Luis

    2006-01-01

    Six quaternary alloys Al-6Si-3Cu-xMg (x = 0.59, 3.80 and 6.78 wt.%) were produced by melt spinning using two different tangential speeds of the copper wheel (30 and 45 ms -1 ), and characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness. At 30 ms -1 , XRD and TEM investigations revealed the presence of Al 2 Cu (θ) for the alloy with 0.59%Mg and Al 5 Cu 2 Mg 8 Si 6 (Q) for the alloys with 3.80 and 6.78%Mg. The increase in microhardness of the alloys with higher Mg content is attributed to the presence of nanosized a-Al particles and a higher content of Q nanoparticles. At 45 ms -1 the alloying element content in solid solution is increased due to the fact that the quantity of free second phases (θ and Q nanoparticles) has decreased. For this rotation speed, amorphous regions of α -Al were observed, increasing microhardness compared to the 30 ms -1 ribbons

  13. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    Science.gov (United States)

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  14. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  15. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  16. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  17. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  18. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    Science.gov (United States)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  19. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    Science.gov (United States)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  20. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  1. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  2. Microstructure and mechanical properties of AC AlSi9CuX alloys

    OpenAIRE

    L.A. Dobrzański; R. Maniara; M. Krupiński; J.H. Sokołowski

    2007-01-01

    Purpose: In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure and mechanical properties. In this research, the effect of Cu content on the microstructure and mechanical properties of AC AlSi9CuX series alloys has been investigated.Design/methodology/approach: The experimental alloy ...

  3. Structure and Mechanical Properties of AlSiCuMg Alloy after Thermo Processing

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-03-01

    Full Text Available In the dissertation it has been shown, that so called „time-thermal treatment” (TTT of the alloy in liquid state, as overheating the metal with around 250°C above the Tliq. and detaining it in this temperature for around 30 minutes, improves the mechanical properties (HB, Rm, R0,2. It was ascertained, that overheating the AlSi17Cu5Mg alloy aids the modification, resulting with microcrystalline structure. Uniform arrangement of the Si primeval crystals in the warp, and α(Al solution type, supersaturated with alloying elements present in the base content (Cu, Mg assures not only increased durability in the ambient temperature, but also at elevated temperature (250°C, what is an advantage, especially due to the use in car industry.

  4. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  5. Spray cast Al-Si base alloys for stiffness and fatigue strength requirements

    International Nuclear Information System (INIS)

    Courbiere, M.; Mocellin, A.

    1993-01-01

    Hypereutectic AlSiFe spray-cast alloys exhibit properties similar to those of metal-matrix composite (MMC's) : high Young's modulus and a low coefficient of thermal expansion. These physical properties can be adjusted by changing the Si content of the alloy. The refinement of the microstructure is produced by formation of a large amount of nuclei in the spray. Consolidation done by extrusion (bars, tubes or profiles) and/or forging leads to high mechanical properties, especially very good dynamic properties. High fatigue properties coupled with high modulus, good high temperature behaviour and low thermal expansion, allow their use for applications in the automotive industry. In opposition to MMC's, these materials present the advantage of easy recycling and easy machinability as it is the case for the conventional AlSi alloys. The low oxygen content allows quality joining with conventional arc welding techniques. (orig.)

  6. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  7. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  8. TEM microstructural characterization of melt-spun aged Al-6Si-3Cu-xMg alloys

    International Nuclear Information System (INIS)

    Lopez, Ismeli Alfonso; Zepeda, Cuauhtemoc Maldonado; Gonzalez Reyes, Jose Gonzalo; Flores, Ariosto Medina; Rodriguez, Juan Serrato; Gomez, Luis Bejar

    2007-01-01

    Three Al-6Si-3Cu-xMg alloys (x = 0.59, 3.80 and 6.78 wt.%) were produced using melt-spinning. As-melt-spun ribbons were aged at 150, 180 and 210 deg. C for times between 0.05 and 100 h. Microstructural changes were examined using transmission electron microscopy (TEM) and microhardness was measured. TEM analysis of the as-melt-spun alloys revealed 5 nm nanoparticles and larger particles (50 nm) composed of Al 2 Cu (θ) for the 0.59% Mg alloy and Al 5 Cu 2 Mg 8 Si 6 (Q) for 3.80% and 6.78% Mg alloys. Silicon solid solubility was extended to 9.0 at.% and Mg in solid solution reached 6.7 at.%. After aging treatments the 6.78% Mg alloy exhibited the most significant increase in microhardness, reaching 260 kg/mm 2 . TEM analysis of aged specimens also showed θ and Q phase (5-20 nm nanoparticles and 35-40 nm particles). The combination of the volume fraction and size of the particles plays an important role in microhardness variation

  9. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    Science.gov (United States)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  10. The Mechanical Properties of AlSi17Cu5 Cast Alloy after Overheating and Modification of CuP Master Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2013-09-01

    Full Text Available The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10 on the resultingmechanical (HB, Rm, R0.2 and plastic (A5 and Z properties. It has been shown that, so-called, "timethermal treatment" (TTT of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C.

  11. Effect Of SiC Particles On Sinterability Of Al-Zn-Mg-Cu P/M Alloy

    Directory of Open Access Journals (Sweden)

    Rudianto H.

    2015-06-01

    Full Text Available Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

  12. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-01-01

    Full Text Available It is known that phosphorus can refine the primary silicon and heat treatment can spheroidize the eutectic silicon. This paper presents an optimal combination of heat treatment processes and P refinement on hypereutectic Al-Si alloy. The optimal P addition amount, and the solution and aging temperatures for Al-25%Si alloy were obtained through the orthogonal experiment, and their modification effects were discussed. The results show that P addition has the greatest modification effect, followed by aging temperature, and the modification effect of solution temperature is the least. The optimized modification parameters are: addition of 0.6% P, solution at 540 篊 and aging at 160 篊 . In addition, the cooling curve, superheating and hardness of the alloy were also analyzed.

  13. Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2015-06-01

    Full Text Available Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

  14. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  15. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  16. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  17. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  18. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  19. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  20. Influence of thermo-derivative analysis conditions on microstructure of the Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-04-01

    Full Text Available Microstructure change of the metals and alloys as a result of variable crystallisation conditions also by mind of cooling rate changeinfluence the mechanical properties. In this work there are presented the interdependences between the cooling rate, chemical compositionand microstructure of the cast aluminium alloy Al–Si–Cu as a result of the thermo-derivative analysis, using the UMSA (UniversalMetallurgical Simulator and Analyzer device. An important tool for the microstructure evaluation of the Al type AC-AlSi7Cu3Mg alloywas the light and electron scanning microscopy technique.

  1. A novel restraint spraying-Conform process for manufacturing hypereutectic Al-Si alloy with enhanced properties

    Science.gov (United States)

    Chen, Y. G.; Yang, H.; Zhang, B. Q.; Liu, Y. L.; Yin, J. C.; Wei, W.; Zhong, Y.

    2017-02-01

    A novel restraint spraying-Conform (RS-C) process, which directly combines spraying with Conform to process metals in one step, has been proposed. Al-20Si alloy selected as experimental material was successfully fabricated by the RS-C process. The microstructures were dominated with fine and uniform primary silicon phases. The tensile strength and elongation to failure of the Al-20Si alloy were 204 MPa and 7.2% respectively after the RS-C process. The wear resistance of the processed Al-20Si alloy was increased significantly, about 1.7 times over the as-cast ingot. The experimental results indicate that RS-C is a promising near net shape forming technology.

  2. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  3. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Man, Jin; Jing, Li; Jie, Shao Guang

    2007-01-01

    The effects of Cu addition on the microstructure and thermal stability of 6082 Al-Mg-Si alloys were investigated. The results show the Q' precipitates are formed when aged at 170 o C for 4 h in 6082 alloy with 0.6% Cu addition. The hardness value of the alloy with 0.6% Cu is always distinctly higher than that of the alloy without Cu during isothermal treatment at 250 o C. Based on the TEM and three-dimensional atom probe (3DAP) results, the thermal stability of the 6082 alloys with Cu addition is discussed with respect to the distribution of Cu

  4. Comportamiento a tracción a temperaturas ambiente y elevadas de nuevos composites basados en aleaciones hipereutécticas de Al-Si

    Directory of Open Access Journals (Sweden)

    Valer, J.

    1997-02-01

    Full Text Available This work shows the improvement obtained on tensile stress at room and high temperatures of hypereutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusión and thixoforming process, in comparison with conventional casting alloys. Al-25%Si-5%Cu, Al- 25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si, Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes.

    En este trabajo se muestra la mejora obtenida en la resistencia a la tracción a temperatura ambiente y a elevadas temperaturas de aleaciones hipereutécticas de Al-Si producidas por una combinación de un proceso de solidificación rápida y del conformado en estado semisólido, en comparación con aleaciones obtenidas por procedimientos convencionales de inyección en estado líquido. Se han estudiado las aleaciones Al-25%Si-5%Cu, Al-25%Si-5%Cu-2%Mg y Al-30%Si-5%Cu, relacionando sus parámetros microestructurales con las resistencias a tracción obtenidas, y se han comparado con las aleaciones binarias Al-20%Si, Al-36%Si y Al-50%Si. La aleación Al-25%Si-5%Cu se ha ensayado antes y después del conformado en estado semisólido, lo que ha permitido conocer la diferencia en el comportamiento de la aleación como consecuencia de la distinta microestructura. También se comparan las propiedades obtenidas en estas aleaciones con las que presentan composites de aleaciones de aluminio reforzados con partículas de SiC y procesados por métodos similares.

  5. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  6. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl

    International Nuclear Information System (INIS)

    Vieira, A.C.; Pinto, A.M.; Rocha, L.A.; Mischler, S.

    2011-01-01

    Research highlights: → Influence of the size distribution of Al-Cu phases on the electrochemical behaviour of well defined alloys under controlled mass transport conditions (RDE). → Oxygen reduction occurs only the Al 2 Cu phases. → Thinner Al-Cu grains the oxygen reduction current deviates at high rotation rates from the Levich behaviour. - Abstract: The electrochemical behaviour of age-hardened Al-Si-Cu-Mg alloys was investigated in a 0.05 M NaCl solution under controlled mass transport conditions using a rotating disk electrode. This work aimed at getting better understanding of the effect of the alloy microstructure, in particular the size distribution of Al 2 Cu phase, on the corrosion behaviour of the alloy. Three different size distributions of the Al 2 Cu phase were obtained through appropriate heat treatments. The cathodic reduction of oxygen was found to occur mainly on the Al 2 Cu phases acting as preferential cathodes. Small sized Al 2 Cu phases were found to promote at high rotation rates a transition from a 4 electron to a 2 electron dominated oxygen reduction mechanisms.

  7. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    Science.gov (United States)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-08-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  8. Microstructure analysis of the automotive Al-Si-Cu castings

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2008-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters.Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. In this work the AC-AlSi7Cu3Mg alloy structure was investigated, of this alloy samples were cut of for structure analysis of the cylinder part as well of crankshaft of a fuel engine. The investigation shows a difference in the (phase structure morphology as a result of cast cooling rate.

  9. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    Science.gov (United States)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  10. Study of Bending Fatigue Properties of Al-Si Cast Alloy

    Directory of Open Access Journals (Sweden)

    Tillová E.

    2017-09-01

    Full Text Available Fatigue properties of casting Al-alloys are very sensitive to the microstructural features of the alloy (e.g. size and morphology of the eutectic Si, secondary dendrite arm spacing - SDAS, intermetallics, grain size and casting defects (porosity and oxides. Experimental study of bending fatigue properties of secondary cast alloys have shown that: fatigue tests up to 106-107cycles show mean fatigue limits of approx. 30-49 MPa (AlSi9Cu3 alloy - as cast state, approx. 65-76 MPa (AlSi9Cu3 alloy after solution treatment and 60-70 MPa (self-hardened AlZn10Si8Mg alloy in the tested casting condition; whenever large pore is present at or near the specimen’s surface, it will be the dominant cause of fatigue crack initiation; in the absence of large casting defects, the influence of microstructural features (Si morphology; Fe-rich phases on the fatigue performance becomes more pronounced.

  11. Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys

    Science.gov (United States)

    Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Holmestad, Randi

    Transmission electron microscopy (TEM) studies were performed on two Al-Mg-Si alloys with low Cu additions (0.01 and 0.10 wt%) in order to investigate the effect of Cu and 10% pre-deformation on precipitate microstructure and its connection to mechanical properties. After 300 minutes aging at 190°C, fine microstructures associated with high hardness were observed in the alloy with 0.10% Cu. Pre-deformation led to heterogeneous distributions of precipitates along dislocations, causing microstructure coarsening. This effect was less pronounced in the alloy with the higher Cu amount.

  12. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  13. Thermal description of hypoeutectic Al-Si-Cu alloys using silicon equivalency

    Directory of Open Access Journals (Sweden)

    Mile B. Đurđević

    2012-01-01

    Full Text Available The modeling of casting processes has remained a topic of active interest for several decades, and availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer a multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system. The new Silicon Equivalency (SiEQ algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an 'equivalent' amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This lends the model the ability to make predictions of solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate characteristic solidification temperatures of the multi-component hypoeutectic Al-Si-Cu alloys as well as their latent heats. SA statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations.

  14. Characterization of cylinder liners produced with hypereutectic Al-Si alloys and investigation of corrosion behaviour in synthetic automotive condensed solution

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    2006-01-01

    In the present study four hypereutectic Al-Si alloys, three produced by spray forming and one by casting, were characterized for microhardness, roughness, microstructure, texture and corrosion resistance in a synthetic automotive condensed solution (SACS). Two of the spray formed alloys tested were obtained from cylinder liners and the other was laboratory made. Spray forming involves alloy atomization and droplets deposition on a substrate, previous to the solidification of all of the droplets. This process favours the production of materials with a fine microstructure free of macrosegregation that is related to improved hot workability. The microstructure characterization of the four alloys revealed the presence of porosities in the laboratory made alloy. All the three alloys produced by spray forming showed a homogeneous distribution of primary precipitates. The microstructure of one of the alloys showed eutectic microstructure, indicating that this alloy was fabricated by casting. In the cylinder liners, the surface roughness was measured and the microhardness of all the alloys was also evaluated. Furthermore, the laboratory made alloy was hot and cold rolled. Texture determinations were carried out to investigate the correlation between the alloy type and their fabrication process. The texture investigation indicated that the fine distribution of primary silicon phase in the alloy hindered the development of texture typical of aluminium alloys deformation, even after severe mechanical work, such as those used in the conversion of pre-formed in cylinder liners. The surface roughness results indicated typical characteristics of the surface finishing used, honing or chemical etching. The microhardness results were dependent on the fabrication process used, with higher microhardness associated to the eutectic alloy comparatively to the spray formed ones. All hypereutectic alloys were tested for corrosion resistance using electrochemical impedance spectroscopy in

  15. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  16. Secondary precipitation in an Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K.

    2007-01-01

    Interruption of a conventional T6 heat treatment at 177 deg. C for the Al-Mg-Si-Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 deg. C), promotes secondary precipitation of Guinier-Preston (GP) zones. As a consequence, a much greater number of precursors to the β'' precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg-Si(-Cu)-vacancy co-clusters formed during the initial ageing at 177 deg. C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry

  17. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  18. Use of thermodynamic calculation to predict the effect of Si on the ageing behavior of Al-Mg-Si-Cu alloys

    International Nuclear Information System (INIS)

    Ji, Yanli; Zhong, Hao; Hu, Ping; Guo, Fuan

    2011-01-01

    Research highlights: → Thermodynamic calculation can predict the ageing behavior of 6xxx alloys. → The hardness level of the alloys depends on the Si content in as-quenched matrix. → The precipitation strengthening effect depends on the Mg 2 Si level of the alloys. -- Abstract: Thermodynamic calculation was employed to predict the influence of Si content on the ageing behavior of Al-Mg-Si-Cu alloys. In addition, experiments were carried out to verify the predictions. The results show that thermodynamic calculation can predict the effect of Si content on the ageing behavior of the studied alloys. This study further proposes that the hardness level of alloys during ageing is directly related to the Si content in the as-quenched supersaturated solution, while the precipitation strengthening effect is directly related to the Mg 2 Si level of the alloys.

  19. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    Science.gov (United States)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  20. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    Directory of Open Access Journals (Sweden)

    D. Medlen

    2012-01-01

    Full Text Available The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eutectic phase particle shape and improve the mechanical properties of the final cast products and Al-Si alloys cast properties.

  1. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    Science.gov (United States)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  2. Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Juan Vargas-Martínez

    2018-05-01

    Full Text Available Through free corrosion, a new low cost porous material was successfully fabricated by removing a single phase of a binary aluminum-copper alloy. This selective phase dissolution was carried out an Al-Al2Cu eutectic alloy of the Al-Cu binary system and additionally for two hypereutectic compositions. The porosity of the material depends on the microstructure formed upon solidification. For this reason, several solidification methods were studied to define the most convenient in terms of uniformity and refinement of the average pore and ligament sizes. The samples were corroded in a 10% v/v NaOH aqueous solution, which demonstrated to be the most convenient in terms of time involved and resulting porosity conditions after the corrosion process. The porosity was measured through analysis of secondary electron images. The effectiveness of the process was verified using X-ray diffraction, which showed that, under the proposed methodology, there was complete removal of one of the phases, namely the aluminum one.

  3. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  4. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  5. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  6. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys

    Directory of Open Access Journals (Sweden)

    J.B. Ferguson

    2016-02-01

    Full Text Available Because the mechanical performance of precipitation-hardened alloys can be significantly altered with temperature changes, understanding and predicting the effects of temperatures on various mechanical properties for these alloys are important. In the present work, an analytical model has been developed to predict the elastic modulus, the yield stress, the failure stress, and the failure strain taking into consideration the effect of temperatures for precipitation-hardenable Al-Mg-Cu-Si Alloys (Al-A319 alloys. In addition, other important mechanical properties of Al-A319 alloys including the strain hardening exponent, the strength coefficient, and the ductility parameter can be estimated using the current model. It is demonstrated that the prediction results based on the proposed model are in good agreement with those obtained experimentally in Al-A319 alloys in the as-cast condition and after W and T7 heat treatments.

  7. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  8. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  9. TEM Nanostructural Study of Al-6Si-3Cu-Mg Melt-Spun Ribbons

    Directory of Open Access Journals (Sweden)

    Ismeli Alfonso López

    2008-01-01

    Full Text Available Three quaternary Al-6Si-3Cu-xMg (x = 0.59, 3.80, and 6.78 wt.% alloys were produced by melt-spun and characterized using X-ray diffractometry (XRD, transmission electron microscopy (TEM, and microhardness techniques. Obtained second phases were Al2Cu( for the alloy with 0.59% Mg and Al5Cu2Mg8Si6 (Q for the alloys with 3.80 and 6.78% Mg. These phases are present as 30–50 nm or as 5–10 nm nanoparticles. Alloying elements content in solid solution increased, mainly for Si and Mg. The high alloying elements content in solid solution and the small -Al cell size for melt-spun alloys leads to microhardness values about 2 times higher than those of ingot counterparts. The microhardness increase for melt-spun alloys with 3.80 and 6.78% Mg depends on Mg content in solid solution.

  10. Determination of Reliability Index and Weibull Modulus as a Measure of Hypereutectic Silumins Survival

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2007-07-01

    Full Text Available The first part of the study describes the methods used to determine Weibull modulus and the related reliability index of hypereutectic silumins containing about 17% Si, assigned for manufacture of high-duty castings to be used in automotive applications and aviation. The second part of the study discusses the importance of chemical composition, including the additions of 3% Cu, 1,5% Ni and 1,5% Mg, while in the third part attention was focussed on the effect of process history, including mould type (sand or metal as well as the inoculation process and heat treatment (solutioning and ageing applied to the cast AlSi17Cu3Mg1,5Ni1,5 alloy, on the run of Weibull distribution function and reliability index calculated for the tensile strength Rm of the investigated alloys.

  11. Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys

    Directory of Open Access Journals (Sweden)

    Lorella Ceschini

    2018-04-01

    Full Text Available Al-Si-Cu alloys are the most widely used materials for high-pressure die casting processes. In such alloys, Fe content is generally high to avoid die soldering issues, but it is considered an impurity since it generates acicular intermetallics (β-Fe which are detrimental to the mechanical behavior of the alloys. Mn and Cr may act as modifiers, leading to the formation of other Fe-bearing particles which are characterized by less harmful morphologies, and which tend to settle on the bottom of furnaces and crucibles (usually referred to as sludge. This work is aimed at evaluating the influence of sludge intermetallics on the fatigue behavior of A380 Al-Si-Cu alloy. Four alloys were produced by adding different Fe, Mn and Cr contents to A380 alloy; samples were remelted by directional solidification equipment to obtain a fixed secondary dendrite arm spacing (SDAS value (~10 μm, then subjected to hot isostatic pressing (HIP. Rotating bending fatigue tests showed that, at room temperature, sludge particles play a detrimental role on fatigue behavior of T6 alloys, diminishing fatigue strength. At elevated temperatures (200 °C and after overaging, the influence of sludge is less relevant, probably due to a softening of the α-Al matrix and a reduction of stress concentration related to Fe-bearing intermetallics.

  12. Possibilities of Fe-RICH phases elimination with using heat treatment in secondary Al-Si-Cu cast alloy

    Directory of Open Access Journals (Sweden)

    L. Hurtalová

    2015-01-01

    Full Text Available The mechanical properties of Al-Si-Cu cast alloy are strongly dependent upon the morphologies, type and distribution of the second phases. The skeleton like – Al15(FeMn 3Si2 and needles - Al5FeSi phases were observed in experimental material AlSi9Cu3. The Fe-rich phases morphology was affected with applying two types of heat treatment, T4 and T6, which caused positive changes of mechanical properties especially ultimate tensile strength, gives that for as cast state was Rm = 211 MPa, than at optimum T4 (515 °C/ 4 hours was Rm = 273 MPa and at optimum T6 (515 °C/ 4 hours with artificial aging 170 °C/ 16 hours was Rm = 311 MPa.

  13. Synthesis and mechanical properties of conventionally cast icosahedral particle-reinforced Al-Mn(-Cu)-Be-Si alloys

    International Nuclear Information System (INIS)

    Fleury, E.; Chang, H.J.; Kim, D.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The microstructure of the Al-Mn(-Cu)-Be-Si alloys analyzed by X-ray diffraction and TEM consisted of icosahedral (i) quasicrystal particles embedded in α Al matrix. The conjoint addition of Si and Be elements enabled the i-phase formation in diameter 10 mm specimens prepared by conventional casting technique. The size, volume fraction and stability of the i-phase were found to be dependent on the Mn content. The addition of 2 at.% Cu did not affect the formation and stability of the i-phase but contributed significantly to the enhancement of the mechanical properties. (orig.)

  14. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    Wagiyo, H.; Dani, Muhammad; Sulistioso, G.S.; Pardede, Elman; Handayani, Ari; Teguh, Yulius S.P.P.

    2001-01-01

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm 2 obtained at aging temperature of 210 o C for hours with homogenous dendritic microstructure

  15. Characterization of precipitates in a hot-deformed hypereutectic Al–Si alloy

    International Nuclear Information System (INIS)

    He Kezhun; Yu Fuxiao; Zhao Dazhi; Zuo Liang

    2012-01-01

    Highlights: ► Produce direct chill cast billet of Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy with fine structure. ► Direct chill cast Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloys could be hot-deformed. ► The hot-deformed Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy exhibit superior mechanical properties. ► Offer HRTEM images and lattice parameters of θ″/θ′ (Al, Cu) and Q″/ Q′ (Al, Cu, Mg, Si) phases. - Abstract: The mechanical properties and precipitates of a hot-deformed Al–17.5Si–4.5Cu–1Zn–0.7Mg–0.5Ni alloy have been investigated by examining samples aged for periods of 4–16 h at temperatures of 120, 150 and 180 °C. The ultimate tensile strength of the alloy aged at 150 °C increases with the increase of aging time and achieves peak value of 396 MPa after 16 h of aging. High resolution transmission electron microscopy (HRTEM) observation and energy dispersive spectroscopy (EDS) were carried out to investigate the morphologies and compositions of the precipitates. It is proposed that the precipitation sequences of the alloy are likely to be as follows: supersaturated solid solution → GP zones → θ″ phase → θ′ phase → θ phase; supersaturated solid solution → GP zones → Q″ phase → Q′ phase → Q phase. The appearance of peak-strengthening can be attributed to the homogeneously distribution of the fine plate-shaped θ″ phase within the matrix.

  16. RESEARCH OF FATIGUE AND MECHANICAL PROPERTIES AlMg1SiCu ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2015-11-01

    Full Text Available The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu, reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.

  17. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Anesh; Dwivedi, D.K.

    2007-01-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T 6 ) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism

  18. The Effect of Technological Parameters on the Microstructure and Mechanical Properties of AlSi17Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Jaroslaw PIĄTKOWSKI

    2016-09-01

    Full Text Available The mechanical properties (HB, HV, R0.2, Rm and plastic properties (A5, Z of AlSi17Cu4 alloy when exposed to chosen technological processes, such as modification, overheating and rapid cooling, are presented in this paper. The best combination of properties was noticed in alloy overheated for 40 minutes at 920 oC and casted into a metallic mould submerged in liquid nitrogen. Moreover, the technological stability and homogeneity of alloys were evaluated based on spread of results, expressed by standard deviation. It was proven, based on microstructure analysis, that the best effect of refinement was achieved by intensive cooling of alloy preceded by its overheating. The XRD analysis indicated that the intermetallic phases, mainly θ(Al2Cu and γ1(Al4Cu9 caused hardening of the solution, improvement in mechanical properties and technological stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8490

  19. The Effect of Water Mist Cooling of Casting Die on the Solidification, Microstructure and Properties of AlSi20 Alloy

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2017-03-01

    Full Text Available Unmodified AlSi20 alloy were casted at the research station, allowing for sequential multipoint cooling using a dedicated computer- controlled program. This method allows for the formation of the microstructure of hypereutectic AlSi20 alloy and also increases hardness. Primary silicon dendrites were found in the microstructure of cooled samples. Based on these dendrites, the formation of primary silicon particles is explained. Cooling of casting die with a water mist stream causes changes in solidification, which leads to expansion of the boundary layer with columnar crystals and shrinkage of the core zone with equiaxed crystals. It also causes more regular hardness distribution around pre-eutectic Si crystals, which can lead to tensile strength and machinability improvement.

  20. First-principles study on the elastic properties of B′ and Q phase in Al-Mg-Si (-Cu) alloys

    International Nuclear Information System (INIS)

    Pan, Rong-Kai; Ma Li; Bian Nan; Wang Minghui; Li Pengbo; Tang Biyu; Peng Liming; Ding Wenjiang

    2013-01-01

    First-principles calculations within the density functional theory have been carried out to study the structural, elastic and electronic properties of B′ and Q phases in Al-Mg-Si (-Cu) alloys. The obtained lattice constant a is reduced while c is increased with the addition of Cu into B′ phase Al 3 Mg 9 Si 7 . The lower formation enthalpy of Q phase Al 3 Cu 2 Mg 9 Si 7 shows that the structural stability is improved after the addition of Cu into the B′ phase. The calculated elastic constants C ij with the exception of C 13 for Q phase are larger than for B′ phase. In addition, the derived bulk, shear, Young's modulus and Debye temperature except Poisson's ratio are also significantly increased with Cu addition, indicating that Q phase has a favorable improvement of hardness. The elastic anisotropies of the two phases are discussed in detail using several criteria, showing that the anisotropy degree of B′ phase is larger than of Q phase. The electronic structures show that the two phases possess a mixed bonding character of covalent and ionic, and Cu-Si bonding is beneficial in stabilizing the Q phase due to the hybridization of Cu 3d and Si 3p orbits.

  1. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  2. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe diecasting alloy

    Directory of Open Access Journals (Sweden)

    Vončina M.

    2017-01-01

    Full Text Available The microstructure features and hardness of AlSi9Cu3(Fe die casting alloy was investigated in the presence of Zr addition. The cast alloys were undergone the solutionizing treatment 2 h at 500°C followed by artificial aging at 180°C for 5 h. Optical microscopy and electron micro-analyzer were used to study the formation of different intermetallic phases. The hardness was tested for all samples at 25°C. The results revealed that the intermetallic phase, based on (Al,Si(Zr,Ti, forms when Zr is added in the investigated alloy, while the T6 heat treatment does not influence on the formation of Zr-bearing phase. Results also indicate that the hardness slightly increases in the AlSi9Cu3 alloy in as-cast state when Zr is added, while after T6 heat treatment increases by 50% in the alloy without Zr and by 61% in the alloy with Zr addition.

  3. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  4. The Influence of Remelting on the Properties of AlSi6Cu4 Alloy Modified by Antimony

    OpenAIRE

    Medlen D.; Bolibruchova D.

    2012-01-01

    The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eut...

  5. Debinding and Sintering of an Injection-Moulded Hypereutectic Al⁻Si Alloy.

    Science.gov (United States)

    Ni, Jiaqi; Yu, Muhuo; Han, Keqing

    2018-05-16

    Hypereutectic Al⁻Si (20 wt.%) alloy parts were fabricated by employing a powder injection moulding (PIM) technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%), carnauba wax (62 wt.%) and stearic acid (3 wt.%). The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  6. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    Science.gov (United States)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  7. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    OpenAIRE

    He Kezhun; Yu Fuxiao; Zhao Dazhi

    2011-01-01

    Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC) cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si p...

  8. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid

    2017-03-01

    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  9. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  10. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  11. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  12. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    International Nuclear Information System (INIS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei

    2015-01-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points

  13. On the performance of a novel grain refiner in hyper-eutectic Al-Si cast alloys

    OpenAIRE

    Bolzoni, L; Nowak, M; Hari Babu, N

    2014-01-01

    The stringent requirements for pollution reduction are pushing the automotive industry towards the employment of lightweight structures and, therefore, aluminium and its alloys play a remarkable role. Al-Si casting alloy with eutectic or hyper- eutectic compositions are, normally, employed for the production of high performance automotive products such as pistons and engine blocks which have to withstand critical loading conditions (i.e. high temperature, high pressure and corrosive exhaust g...

  14. Study of an Al-Si-Cu HPDC alloy with high Zn content for the production of components requiring high ductility and tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, Iban; Egizabal, Pedro; Galarraga, Haize; Plaza, Luis Maria; Crespo, Inigo [Fundacion Tecnalia Research and Innovation, Donostia-San Sebastien (Spain). Dept. of foundry processes

    2013-04-15

    Conventional high-pressure die casting aluminium components present certain limitations in terms of mechanical properties attainable due to the intrinsic porosity of the castings as well as the presence of iron-based brittle intermetallic phases. The present work approaches the increase in ductility and tensile strength through the analysis of the effect of the alloying elements of AlSi alloys used for high-pressure die casting. The combination of alloying elements providing the best results in terms of ductility and tensile strength were eventually selected to produce a batch of components that were thoroughly tested. The final alloy had a composition of Si 8.21, Fe 0.78, Cu 1.53, Mn 0.64, Mg 0.46, Ni 0.07, Zn 3.37, Pb 0.34, Sn 0.27, Ti 0.18 and Cr 0.04wt.%. The selected alloy performance was compared to that of the commercial AlSi9Cu3 and Silafont {sup registered} 36 alloys.

  15. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  16. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  17. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yi, E-mail: yimonmy@sina.com; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  18. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    International Nuclear Information System (INIS)

    Meng, Yi; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-01-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al 3 Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al 3 Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al 3 Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1 2 Al 3 Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1 2 and DO 22 Al 3 Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005

  19. Influence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy

    Directory of Open Access Journals (Sweden)

    Liu Zhixue

    2013-11-01

    Full Text Available Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength Al-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the Al-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of α phase, undissolved θ phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of α phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.

  20. HPDL Remelting of Anodised Al-Si-Cu Cast Alloys Surfaces

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available The results of the investigations of the laser remelting of the AlSi9Cu4 cast aluminium alloy with the anodised and non-anodised surfacelayer and hardness changes have been presented in this paper. The surface layer of the tested aluminium samples was remelted with thelaser of a continuous work. The power density was from 8,17•103 W/cm2 to 1,63•104 W/cm2. The metallographic tests were conducted inform of light microscope investigations of the received surface layer. The main goal of the investigation was to find the relation betweenthe laser beam power and its power density falling on a material, evaluating the shape and geometry of the remelted layers and theirhardness. As the substrate material two types of surfaces of the casted AlSi9Cu4 alloy were applied – the non–treated as cast surface aswell the anodized surface. As a device for this type of surface laser treatment the High Power Diode Laser was applied with a maximumpower of 2.2 kW and the dimensions of the laser beam focus of 1.8 x 6.8 mm. By mind of such treatment it is also possible to increasehardness as well eliminate porosity and develop metallurgical bonding at the coating-substrate interface. Suitable operating conditions forHPDL laser treatment were finally determined, ranging from 1.0 to 2.0 kW. Under such conditions, taking into account the absorptionvalue, the effects of laser remelting on the surface shape and roughness were studied. The results show that surface roughness is reducedwith increasing laser power by the remelting process only for the non-anodised samples, and high porosity can be found in the with highpower remelted areas. The laser influence increases with the heat input of the laser processing as well with the anodisation of the surface,because of the absorption enhancement ensured through the obtained alumina layer.

  1. Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy

    Directory of Open Access Journals (Sweden)

    Jiaqi Ni

    2018-05-01

    Full Text Available Hypereutectic Al–Si (20 wt.% alloy parts were fabricated by employing a powder injection moulding (PIM technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%, carnauba wax (62 wt.% and stearic acid (3 wt.%. The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  2. Tribological Properties of AlSi17Cu5Mg Alloy Modified with CuP Master Alloy with Various Speeds of Friction

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-03-01

    Full Text Available The paper presents the influence of modification with phosphorus (CuP10 on the tribological properties of the alloy AlSi17Cu5Mg coupled abrasively with cast-iron EN GJL-350. Tests of coefficient of friction and wear of mass were conducted on tribological tester T-01. An important aspect in the assessment of the tribological properties is the analysis of initial material microstructure in reference to silumin which underwent modification with phosphorus. It was found that the difference in structure of tested materials, mainly sizes of primary silicon crystals significantly influences the tribological properties whereas the speed change of the friction knot does not have such big influence.

  3. First-principle study of the AlP/Si interfacial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Dai Hongshang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Du Jing [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Wang Li; Peng Chuanxiao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Shandong Binzhou Bohai Piston Co. Ltd., Binzhou 256602, Shandong (China)

    2010-01-15

    AlP is heterogeneous nucleation substrate of primary Si in hypereutectic Al-Si alloys, while studies on the nucleation mechanism at atomic level are absent. The pseudopotential-based DFT calculations have been carried out to investigate the atomic and electronic structure, bonding and adhesion of the AlP/Si interface. In total, eight geometries have been investigated, in which the interfacial stacking sequence is different. The favorable interfaces can be deduced for the reason that adhesive interface energies (W{sub ad}) are different, which cannot be obtained from the traditional mismatch theory. The interfacial density of states and Mulliken population are also investigated. It is found that the main bond between AlP and Si is covalent Al-Si or P-Si bond, accompanying some ionic characteristic.

  4. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  5. Study of polarization curves from AlSi12, AlSi5Mg and AlMg5 alloys due to corrosion problems in telecomunication equipment

    International Nuclear Information System (INIS)

    Silva, J.R.A. da

    1984-01-01

    The corrosion behaviour of three aluminium based alloys (AlSi 12, AlMg5 and AlSi 5Mg) when exposed to aqueous media containing chloride is investigated; these alloys are used in the manufacturing of telecomunication equipment. Accelerated corrosion testing and salt spray tests were carried out. The results include polarization curves obtained with three kinds of aqueous solutions (the first containing only 3% NaCl and the others, 3% NaCl and small amounts of Fe 3+ and Cu 2+ ions). (C.L.B.) [pt

  6. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  7. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University (Egypt)]. E-mail: gaberaf@acc.aun.edu.eg; Ali, A. Mossad [Physics Department, Faculty of Science, Assiut University (Egypt); Matsuda, K. [Faculty of Engineering, University of Toyama (Japan); Kawabata, T. [Faculty of Engineering, University of Toyama (Japan); Yamazaki, T. [Faculty of Engineering, University of Toyama (Japan); Ikeno, S. [Faculty of Engineering, University of Toyama (Japan)

    2007-04-25

    Heat treatable Al-Mg-Si containing Cu alloys can be strengthened by the precipitation of the nano-scale metastable precipitates. In order to follow the precipitation sequence in balanced Al-1 mass%Mg{sub 2}Si containing 0.5 mass%Cu during continuous heating, differential scanning calorimetry (DSC) was performed. Analysis of non-isothermal DSC scans at various heating rates were carried out to evaluate the overall activation energies associated with the precipitation processes and, therefore, the mechanism of the developed precipitates has been characterized. The most important developed precipitates that assist the strength of the alloy are random, Q' and {beta}' precipitates. According to the obtained activation energies, the kinetics of the evolved Q'-precipitates could be controlled by the diffusion of Mg, Si and Cu in the crystal lattice of the alloy. Both conventional and high resolution transmission electron microscopy (HRTEM) were utilized to confirm the obtained results.

  8. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    Directory of Open Access Journals (Sweden)

    Liu Guanglei

    2013-11-01

    Full Text Available In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS increases significantly and the mechanical properties decrease steadily. The elongation is more sensitive to the cooling rate than the tensile strength. No obvious trend of the effect of wall thickness on hardness of the alloy was found. When the cooling rate is at its greatest, the microstructures and mechanical properties are the best when using chromite sand. The improvement of the properties is mainly attributed to the decrease of the DAS, the grain refinement and the metamorphic effect. Each of the three has a strong impact on the microstructures. Furthermore, a series of fitting models was established based on the data of the DAS to predict the mechanical properties of the multivariate sand-cast Al-7.5Si-4Cu alloy.

  9. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  10. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  11. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  12. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy

    Science.gov (United States)

    Kaiser, Md. Salim

    2018-04-01

    The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.

  13. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  14. Microstructure and Mechanical Property of 3003 Aluminum Alloy Joint Brazed with Al-Si-Cu-Zn Filler Metal

    Directory of Open Access Journals (Sweden)

    LI Xiao-qiang

    2016-09-01

    Full Text Available Al-Si-Cu-Zn filler metal was developed to braze 3003 aluminum alloy. The microstructure and fracture surface of the joint were analyzed by XRD, SEM and EDS, and the effects of brazing temperature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540-580℃ for 10min. The brazed joint consists of α(Al solid solution, θ(Al2Cu intermetallic compound, fine silicon phase and AlCuFeMn+Si phase in the central zone of brazed seam, and α(Al solid solution and element diffusion layers at both the sides of brazed seam, and the base metal. The room temperature (RT shear fracture of the joint occurs at the interface between the teeth shape α(Al in the diffusion layer and the center zone of brazed seam, which is mainly characterized as brittle cleavage. As the brazing temperature increases, α(Al solid solution crystals in the diffusion zone grow up, and the interfacial bonding of the joint is in the form of interdigitation. Brazing at 560℃ for 10min, the RT shear strength of the joint reaches the maximum value of 92.3MPa, which is about 62.7% of the base material.

  15. Corrosion behaviour of the AlSi6Cu4 alloy and cast AlSi6Cu4-graphite particles composite

    Directory of Open Access Journals (Sweden)

    S. Holecek

    2009-04-01

    Full Text Available The corrosion behaviour of the AlSi6Cu4 alloy as a composite matrix and of composites with 8% vol. of graphite particles was investigated. The corrosion experiments were performed over a range of elevated temperatures and were carried out in sea water (3.5%NaCl solution. We have focused our attention to the determination of the mode of corrosion attack and to the determination of the rate ofcorrosion and other corrosion characteristics. Both as-cast and annealed matrix and composite specimens were tested, as well as the99.9% as-cast aluminium for comparison. Corrosion behaviour of the materials was assessed by the corrosion potential (Ec and bypotentiodynamic (polarization curves. As expected, composite is less corrosion resistant than the matrix alloy. In addition to pitting,a severe galvanic corrosion occurs as a result of galvanic couple aluminium/graphite formation. Corrosion potentials imply that examinedmaterials would be sufficiently resistant in non or slightly oxidizing solutions without dissolved oxygen. All studied materials corrode very slowly at potentials negative to corrosion potential, while at potentials positive to corrosion potential the corrosion rate goes up by 1 or 2 orders.

  16. Effect of dispersion hardening on impact resistance of EN AC-AlSi12Cu2Fe silumin

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-04-01

    Full Text Available Development of modern technology have generated supply of better and better, more resistant structural materials not attainable earlier.Weight of metal structures is of a great importance, and as a consequence, also weight of materials used for a given structure. More often, for metal structures are used lightweight metals and their alloys, from which aluminum and its alloys have become the most widespread. These alloys, based on Al-Si equilibrium system, contain additional constituents (e.g.: Mg, Cu enabling, except modification,improvement of mechanical properties obtained in result of heat treatment. The paper presents an effect of modification process and heat treatment on impact resistance of EN AC-AlSi12Cu2Fe alloy. Solutioning and ageing temperatures were selected on base of registered curves of the ATD method. For the neareutectic EN AC-AlSi12Cu2Fe silumin one obtained growth of the impact resistance both due to performed modification treatment and performed heat treatments of the alloy.

  17. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  18. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  19. Morphology transition of the primary silicon particles in a hypereutectic A390 alloy in high pressure die casting.

    Science.gov (United States)

    Wang, J; Guo, Z; Song, J L; Hu, W X; Li, J C; Xiong, S M

    2017-11-03

    The microstructure of a high-pressure die-cast hypereutectic A390 alloy, including PSPs, pores, α-Al grains and Cu-rich phases, was characterized using synchrotron X-ray tomography, together with SEM, TEM and EBSD. The Cu-rich phases exhibited a net morphology and distributed at the boundaries of the α-Al grains, which in turn surrounded the PSPs. Statistical analysis of the reconstructed 1000 PSPs showed that both equivalent diameter and shape factor of the PSPs exhibited a unimodal distribution with peaks corresponding to 25 μm and 0.78, respectively.) PSPs morphology with multiple twinning were observed and morphological or growth transition of the PSPs from regular octahedral shape (with a shape factor of 0.85 was mainly caused by the constraint of the Cu-rich phases. In particular, the presence of the Cu-rich phases restricted the growth of the α-Al grains, inducing stress on the internal silicon particles, which caused multiple twinning occurrence with higher growth potential and consequently led to growth transitions of the PSPs.

  20. Microstructure and mechanical properties of spray deposited hypoeutectic Al-Si alloy

    International Nuclear Information System (INIS)

    Ferrarini, C.F.; Bolfarini, C.; Kiminami, C.S.; Botta F, W.J.

    2004-01-01

    The microstructure and the tensile properties of an Al-8.9 wt.% Si-3.2 wt.% Cu-0.9 wt.% Fe-0.8% Zn alloy processed by spray forming was investigated. The alloy was gas atomized with argon and deposited onto a copper substrate. The microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Small faceted dispersoids observed surrounding equiaxial α-Al matrix were identified by SEM-EDS as silicon particles. Sand cast samples with the same composition showed a columnar dendritic α-Al matrix, Al-Si eutectic, polyhedric α-AlFeSi and needle-like β-AlFeSi intermetallics. In the spray formed material the formation of the Al-Si eutetic was suppressed, and the formation of the α-AlFeSi and β-AlFeSi intermetallics was strongly reduced. The fine and homogeneous microstructure showed an aluminium matrix with grain size ranging from 30 to 40 μm, and particle size of the silicon dispersoids having a mean size of 12 μm. Room temperature tensile tests of the spray formed alloy showed relative increasing of strength and elongation when compared with the values observed for the conventionally cast counterparts. These results can be ascribed to the refined microstructure and the scarce presence of intermetallics of the spray formed material

  1. Ostwald ripening of faceted Si particles in an Al-Si-Cu melt

    International Nuclear Information System (INIS)

    Shahani, A. J.; Xiao, X.; Skinner, K.; Peters, M.; Voorhees, P. W.

    2016-01-01

    The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, we find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.

  2. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  3. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin [Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, So-Ra; Park, Jong-Wan, E-mail: jwpark@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  4. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    International Nuclear Information System (INIS)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-01

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H 2 plasma, while Al was deposited using trimethylaluminum as the precursor and H 2 plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO 2 dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects

  5. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    International Nuclear Information System (INIS)

    Shah, K.B.; Kumar, Sandeep; Dwivedi, D.K.

    2007-01-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T 6 ) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism

  6. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  7. Spheroidization of primary Mg{sub 2}Si in Al-20Mg{sub 2}Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong-Chen; Wang, Hui-Yuan, E-mail: wanghuiyuan@jlu.edu.cn; Chen, Lei; Zha, Min, E-mail: minzha@jlu.edu.cn; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan

    2017-02-08

    The morphology evolution of primary Mg{sub 2}Si particles in a Al-20Mg{sub 2}Si-4.5Cu alloy both unmodified and modified with 0.5 wt% Ca-Sb prepared by hot-extrusion followed by T6 heat treatment was investigated in the present study. Interestingly, we found that the combination of hot-extrusion and T6 heat treatment was efficient in transforming truncated octahedral primary Mg{sub 2}Si into sphere in the modified alloy. In contrast, the primary Mg{sub 2}Si particles still kept dentritic in the unmodified alloy. It suggested that the formation of truncated octahedral primary Mg{sub 2}Si particles in as-cast state, the fragmentation of particles by hot-extrusion and the enhanced solid-state diffusion of Si and/or Mg atoms during heat treatment were responsible for the spheroidization of primary Mg{sub 2}Si. Moreover, the existence of fine (~10–20 µm) spherical primary Mg{sub 2}Si played an important role in strengthening the alloy, i.e., the ultimate tensile strength (UTS) increased from ~227 MPa in the unmodified alloy to ~303 MPa in the modified one. It is because the fine spherical primary Mg{sub 2}Si particles can provide a higher fracture stress and strength of the matrix/particle interface. Our study offered a simple methodology to prepare spherical primary Mg{sub 2}Si in an Al-high Mg{sub 2}Si alloy, which is beneficial to design novel light-weight Al-Mg-Si alloys with improved mechanical properties.

  8. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  9. Heat treatment of EN AC-AlSi13Cu2Fe silumin and its effect on change of hardness of the alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-01-01

    Full Text Available Wide application of aluminum casting alloys is connected with their very good physical and technical properties. Within such group of alloys, silumins play important role in automotive and aviation industry, as well as in another branches of technique, because the silumins enable casting of complicated shapes. The most important parameters which predetermine mechanical properties of a material in aspects of suitability for castings of machinery components are: tensile strength (Rm, elongation and hardness. Alloys based on equilibrium system of Al-Si comprise additional constituents (e.g.: Mg, Cu enabling, except modification, improvement of mechanical properties, obtained in result of heat treatment. In the paper are presented results of investigations concerning effect of the heat treatment on change of hardness (HB of the EN AC-AlSi12Cu2Fe alloy. Investigated alloy was melted in an electric resistance furnace. Run of the crystallization was presented with use of the thermal-derivative method (ATD. This method was also implemented to determination of heat treatments temperature range of the alloy. Performed heat treatment gave effect in change of the hardness. Performed investigations have enabled determination of heat treatment parameters range, which conditions suitable hardness of the investigated alloy.

  10. The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    M. B. Djurdjevič

    2012-01-01

    Full Text Available A comprehensive understanding of melt quality is of paramount importance for the control and prediction of actual casting characteristics. Among many phenomenons that occur during the solidification of castings, there are four that control structure and consequently mechanical properties: chemical composition, liquid metal treatment, cooling rate and temperature gradient. The cooling rate and alloy composition are among them most important. This paper investigates the effect of some major alloying elements (silicon and copper of Al-Si-Cu alloys on the size of the secondary dendrite arm spacing. It has been shown that both alloying elements have reasonable influence on the refinement of this solidification parameter.

  11. Formation of AlFeSi phase in AlSi12 alloy with Ce addition

    Directory of Open Access Journals (Sweden)

    S. Kores

    2012-04-01

    Full Text Available The influence of cerium addition on the solidification sequence and microstructure constituents of the Al-Si alloys with 12,6 mass % Si was examined. The solidification was analyzed by a simple thermal analysis. The microstructures were examined with conventional light and scanning electron microscopy. Ternary AlSiCe phase was formed in the Al-Si alloys with added cerium during the solidification process. AlSiCe and β-AlFeSi phases solidified together in the region that solidified the last. Cerium addition influenced on the morphology of the α-AlFeSi phase solidification.

  12. A study on the composition optimization and mechanical properties of Al-Mg-Si cast alloys

    International Nuclear Information System (INIS)

    Zhang, X.H.; Su, G.C.; Han, Y.Y.; Ai, X.H.; Yan, W.L.

    2010-01-01

    The mechanical properties of Al-Mg-Si cast alloys with different chemical compositions were investigated using an orthogonal test method. The optimized chemical compositions of Al alloy are given in wt% as follows: 7.0%Si-0.35%Mg-2.0%Cu-0.2%Mn-0.2%Ni-0.1%V-0.8%RE-89.35%Al. The optimized Al-Mg-Si alloy with metal mold casting had excellent mechanical properties. The softening resistance of the optimized alloy was better than that of ZL101 at elevated temperatures. The scanning electron microscopy fractographs of the tensile samples of ZL101 and optimized Al alloy at different magnifications revealed that all the specimens were fractured in a ductile manner, consisting of well-developed dimples over the entire surface. The alloys failed in a mixed-mode fracture, comprised predominantly of transgranular shears and a small amount of quasi-cleavages.

  13. Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2016-03-01

    Full Text Available In order to improve the properties of Ni-rich (2.5wt.% Al-Si piston alloy, electric pulse modification was applied in fabricating the Ni-rich Al-Si piston alloy in this study. The effect of electric pulse modification on the mechanical properties of the Ni-rich Al-Si piston alloy was studied using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, microhardness measurement and tensile strength testing. The results showed that the microstructures of Ni-rich Al-Si piston alloy treated by electric pulse modification were refined, the solid solubility of Cu, Ni, Si, etc. in α-Al matrix was improved, and furthermore, the microhardness and high-temperature tensile strength were increased by 9.41% and 17.5%, respectively. The distribution of second phases was also more uniform compared with that of a non-modified sample.

  14. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    Science.gov (United States)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  15. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  16. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    International Nuclear Information System (INIS)

    Liang, S M; Schmid-Fetzer, R

    2016-01-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented. (paper)

  17. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  18. Effect of Si addition on glass-forming ability and mechanical properties of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Zhang, W.; Seyedein, S.H.; Gholamipour, R.; Makino, A.; Inoue, A.

    2010-01-01

    Research highlights: The Cu 50 Zr 43 Al 7 alloy has a surprising GFA, and the glassy rods with diameter of 10 mm have been produced in this research. It has not been reported that the Cu-based glassy rods (Cu ≥ 50 at.%) to be produced with the critical diameter greater than 10 mm. The novelty of this research is that the glass formation has been improved and the critical diameter increased to 12 mm for the alloy having x = 1 with the addition of Si. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. - Abstract: The effect of Si addition on the glass-forming ability (GFA) and mechanical properties of (Cu 50 Zr 43 Al 7 ) 100-x Si x (x = 0, 0.5, 1, 1.5 and 2 at.%) alloys were investigated. The GFA of Cu 50 Zr 43 Al 7 alloy is improved by addition of a small amount of Si, and the critical diameter for glass formation increases from 10 mm for the alloy with x = 0-12 mm for the alloy with x = 1 when prepared using copper mold casting. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. In the uniaxial compression, the bulk glassy alloys exhibit a limited plastic strain of less than 1%, but the compressive fracture strength and Young's modulus were obtained in high values of 1969-2129 MPa and 101-144 GPa, respectively. Fracture surface and shear bands of samples were studied by using scanning electron microscopy (SEM).

  19. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  20. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  1. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    Science.gov (United States)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  2. Characterization of cylinder liners produced with hypereutectic Al-Si alloys and investigation of corrosion behaviour in synthetic automotive condensed solution; Caracterizacao de camisas de cilindro em ligas Al-Si hipereuteticas e investigacao do comportamento de corrosao em meio de condensado sintetico automotivo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Hamilta de Oliveira

    2006-07-01

    In the present study four hypereutectic Al-Si alloys, three produced by spray forming and one by casting, were characterized for microhardness, roughness, microstructure, texture and corrosion resistance in a synthetic automotive condensed solution (SACS). Two of the spray formed alloys tested were obtained from cylinder liners and the other was laboratory made. Spray forming involves alloy atomization and droplets deposition on a substrate, previous to the solidification of all of the droplets. This process favours the production of materials with a fine microstructure free of macrosegregation that is related to improved hot workability. The microstructure characterization of the four alloys revealed the presence of porosities in the laboratory made alloy. All the three alloys produced by spray forming showed a homogeneous distribution of primary precipitates. The microstructure of one of the alloys showed eutectic microstructure, indicating that this alloy was fabricated by casting. In the cylinder liners, the surface roughness was measured and the microhardness of all the alloys was also evaluated. Furthermore, the laboratory made alloy was hot and cold rolled. Texture determinations were carried out to investigate the correlation between the alloy type and their fabrication process. The texture investigation indicated that the fine distribution of primary silicon phase in the alloy hindered the development of texture typical of aluminium alloys deformation, even after severe mechanical work, such as those used in the conversion of pre-formed in cylinder liners. The surface roughness results indicated typical characteristics of the surface finishing used, honing or chemical etching. The microhardness results were dependent on the fabrication process used, with higher microhardness associated to the eutectic alloy comparatively to the spray formed ones. All hypereutectic alloys were tested for corrosion resistance using electrochemical impedance spectroscopy in

  3. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  4. Study of the precipitation hardening process in recycled Al-Si-Cu cast alloys

    Directory of Open Access Journals (Sweden)

    Kuchariková L.

    2017-03-01

    Full Text Available The formation of extremely small uniformly dispersed particles of a second phase within the original phase matrix during heat treatment changed material properties. Therefore the characterization of precipitation had been investigated using high resolution transmission electron microscopy (TEM and electron diffraction of thin foils for an AlSi9Cu3 cast alloy. For investigation the hardening effect onto mechanical properties of aluminium cast was used heat treatment, which consisted from solution treatment at 515°C / 4 hours (h, followed by quenching into water with temperature 50°C and artificial aging using different temperatures 170°C and 190°C with different holding time 2, 4, 8, 16, and 32 hours. The observations of microstructure and substructure reveals that precipitation hardening has caused great changes in size, morphology and distributions of structural components, the formation of precipitates of Cu phases, and the change of mechanical properties as well.

  5. Influence of copper content on microstructure development of AlSi9Cu3 alloy

    Directory of Open Access Journals (Sweden)

    Brodarac Zovko Z.

    2014-01-01

    Full Text Available Microstructure development and possible interaction of present elements have been determined in charge material of EN AlSi9Cu3 quality. Literature review enables prediction of solidification sequence. Modelling of equilibrium phase diagram for examined chemical composition has been performed, which enables determination of equilibrium solidification sequence. Microstructural investigation indicated distribution and morphology of particular phase. Metallographic analysis tools enable exact determination of microstructural constituents: matrix αAl, eutectic αAl+βSi, iron base intermetallic phase - Al5FeSi, Alx(Fe,MnyCuuSiw and/or Alx(Fe,MnyMgzCuuSiw and copper base phases in ternary eutectic morphology Al-Al2Cu-Si and in complex intermetallic ramified morphology Alx(Fe,MnyMgzSiuCuw. Microstructure development examination reveals potential differences due to copper content which is prerequisite for high values of final mechanical, physical and technological properties of cast products.

  6. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  7. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  8. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  9. Influence of Sr, Fe and Mn content and casting process on the microstructures and mechanical properties of AlSi7Cu3 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zaidao [Laboratoire de Mécanique de Lille (LML), FRE 3723, Ecole Centrale de Lille, 59651 Villeneuve d' Ascq (France); Unité Matériaux et Transformations, UMR CNRS 8207, Univ. Lille 1, 59655 Villeneuve d' Ascq (France); Limodin, Nathalie; Tandjaoui, Amina; Quaegebeur, Philippe [Laboratoire de Mécanique de Lille (LML), FRE 3723, Ecole Centrale de Lille, 59651 Villeneuve d' Ascq (France); Osmond, Pierre [PSA Peugeot Citröen, Direction de la Recherche et de l' Innovation Automobile, Route de Gisy-78943, Vélizy-Villacoublay Cedex (France); Balloy, David [Unité Matériaux et Transformations, UMR CNRS 8207, Univ. Lille 1, 59655 Villeneuve d' Ascq (France)

    2017-03-24

    The effects of Strontium (Sr), Iron (Fe) and Manganese (Mn) additions, casting process (i.e., cooling rate) on the microstructures and mechanical properties of AlSi7Cu3 alloy were investigated. 2D and 3D metallographic and image analysis have been performed to measure the microstructural changes occurring at different Sr, Fe and Mn levels and casting process. The evolution of mechanical properties of the alloys has been monitored by Brinell and Vickers hardness measurement and tensile tests. Addition of Sr slightly refines the eutectic silicon particles but it also introduces more pores. The combined addition of Fe and Mn induces an increase of Fe-rich intermetallic compounds which include both α-Al{sub 15}(Fe,Mn){sub 3}Si{sub 2} and β-Al{sub 5}FeSi phase, while the volume fraction of porosity decreases with the Fe and Mn content increase. The secondary dendrite arm spacing slightly decreases with the addition of Sr, Fe and Mn alloying elements.

  10. Positron annihilation studies of icosahedral quasicrystals and their approximants in the Al-Cu-Ru-(Si) alloy systems

    International Nuclear Information System (INIS)

    Uchiyama, H; Takahashi, T; Arinuma, K; Sato, K; Kanazawa, I; Hamada, E; Suzuki, T; Kirihara, K; Kimura, K

    2004-01-01

    The positron lifetimes for the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its cubic approximants (1/ 1-Al 58 Cu 31.5 Ru 10.5 , 1/ 1-Al 68 Cu 7 Ru 17 Si 8 , and 1/0-Al 55 Cu 15 Ru 20 Si 10 ), two-detector coincident Doppler broadening for the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its 1/ 1-Al 68 Cu 7 Ru 17 Si 8 cubic approximant, and the Doppler broadening obtained by making use of a slow positron beam for the 1/ 1-Al 58 Cu 31.5 Ru 10.5 cubic approximant have been measured. Structurally intrinsic trapping sites giving rise to saturation trapping were detected by lifetime measurements. The chemical environments of the trapping sites in the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and the 1/ 1-Al 68 Cu 7 Ru 17 Si 8 cubic approximant were determined by coincident Doppler broadening techniques to be dominantly surrounded by Al atoms. The positron diffusion length in the 1/ 1-Al 58 Cu 31.5 Ru 10.5 cubic approximant derived from the measured S parameter measured by means of a slow positron beam was ∼ 180 A, which is clearly too short, probably due to the high concentration of trapping sites as described above. The atomic structures of the icosahedral quasicrystal Al 62.4 Cu 25.4 Ru 12.2 and its variety of approximants are discussed and compared to the present proposed model

  11. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  12. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  13. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  14. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  15. Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy

    Science.gov (United States)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.

  16. New Quality Assessment Criterion of AlSi5Cu1 Alloy

    Directory of Open Access Journals (Sweden)

    M. Wierzbińska

    2007-07-01

    Full Text Available The paper presents the discussion of the results of mechanical testing for aluminium foundry alloy AlSi5Cu1Mg for high-loaded machine elements. Values of yield strength (Rp0.2, tensile strength (Rm, elongation(A5 and hardness (HB are usually considered as the primary quality assessment criterion for a manufacturing process. It was concluded, that this criterion, A5 index particularly, is unsatisfactory to estimate the plasticity of the alloy and its crack resistance in the presence of sharp-pointed stress concentrators or microcracks. More adequate parameter is plane strain fracture toughness KIc. However, size of the samples appeared to be twice as large as would be needed to fulfill requirements of test conditions, and the test itself is laborious and time-consuming that it becomes impractical as a acceptance test. Therefore, substitute test for quality assessment – determination of tensile strength in the presence of a sharp notch kmR was applied. The comparative analysis of kmR/Rp0.2 ratio, as a more enhanced fatigue resistance criterion than kmR and plane strain fracture toughness KIc of the alloy was performed. It was assumed that kmR/Rp0.2 parameter has good correlation with the critical stress intensity factor KIc Thus, under manufacturing process conditions, being unable to carry out KIc test, it may be successfully replaced by kmR test.

  17. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.

    2017-01-01

    The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

  18. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  19. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    Science.gov (United States)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  20. Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation

    International Nuclear Information System (INIS)

    Chang, Keke; Liu, Shuhong; Zhao, Dongdong; Du, Yong; Zhou, Liangcai; Chen, Li

    2011-01-01

    By means of the first-principles calculations, the enthalpy of formation for the quaternary phase in the Al-Cu-Mg-Si system was computed. A set of self-consistent thermodynamic parameters for the Al-Cu-Mg-Si and Al-Cu-Mn-Si systems was then obtained using CALPHAD approach taking into account the reliable experimental data and the first-principles calculations. The thermodynamic database for the Al-Cu-Mg-Mn-Si system was developed based on the constituent binary, ternary, and quaternary systems. Comprehensive comparisons between the calculated and measured phase diagrams and invariant reactions showed that the experimental information was satisfactorily accounted for by the present thermodynamic description. The obtained database was used to describe the solidification behavior of Al alloys B319.1 (90.2Al-6Si-3.5Cu-0.3Mg, in wt.%) and B319.1 + xMn (x = 0.5-2, in wt.%) under Gulliver-Scheil non-equilibrium condition. The reliability of the present thermodynamic database was also verified by the good agreement between calculation and experiment for Gulliver-Scheil non-equilibrium solidification.

  1. Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al--Mg--Si alloys

    International Nuclear Information System (INIS)

    Kim, JaeHwang; Daniel Marioara, Calin; Holmestad, Randi; Kobayashi, Equo; Sato, Tatsuo

    2013-01-01

    Low Cu and Ag additions (≤0.10 at%) were found to strongly affect the age-hardening behavior in Al--Mg--Si alloys with Mg+Si>1.5 at%. The hardness increased during aging at 170 °C and the formation of β ″ precipitates was kinetically accelerated. The activation energy of the formation of the β ″ phase was calculated to 127, 105, 108 and 99 KJmol −1 in the base, Cu-added, Ag-added and Cu--Ag-added alloys, respectively using the Kissinger method. The negative effect of two-step aging caused by the formation of Cluster (1) during natural aging was not overcome by the addition of microalloying elements. However, it was suppressed by the formation of Cluster (2) through a pre-aging at 100 °C. Quantitative analysis of the precipitate microstructure was performed using a transmission electron microscope equipped with a parallel electron energy loss spectrometer for the determination of specimen thickness. The formation of Cluster (2) was found to increase the number density of β ″ precipitates, whereas the formation of Cluster (1) decreased the number density and increased the needle length. The effects of low Cu and Ag additions in combination with multi-step aging are discussed based on microstructure observations and hardness and resistivity measurements.

  2. Effect of Annealing Heat Treatment to Characteristics of AlDC8 (Al-Si-Cu) Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyung Man; Lee, Sung-Yul; Lee, Myeong Hoon; Jeong, Jae-Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-12-15

    ALDC8 (Al-Si-Cu) alloy has been often corroded with pattern of intergranular corrosion in corrosive environments. Thus, in order to improve its corrosion resistance, the effect of annealing heat treatment to corrosion resistance and hardness was investigated with parameters of heating temperatures such as 100 ℃, 200 ℃, 300 ℃, 400 ℃ and 500 ℃ for 1hr. The hardness was varied with annealing temperature and slightly decreased with annealing heat treatment. However, the relation between annealing temperature and hardness agreed not well each other. Corrosion potential was shifted to noble direction and corrosion current density was also decreased with increasing annealing temperature. Moreover, both AC impedance at 10 mHz and polarization resistance on the cyclic voltammogram curve were also increased with increasing annealing temperature. Furthermore, intergranular corrosion was somewhat observed in non heat treatment as well as annealing temperatures at 100 ℃, 200 ℃ and 300 ℃, while, intergranular corrosion was not nearly observed at annealing temperature of 400 ℃, 500 ℃. Consequently, it is considered that the annealing heat treatment of ALDC8 alloy may be an available method not only to inhibit its intergranular corrosion but also to improve its corrosion resistance.

  3. Computer aided cooling curve analysis for Al-5Si and Al-11Si alloys ...

    African Journals Online (AJOL)

    The effect of grain refiner, modifier, and combination of grain refiner cum modifier was studied on Al-5Si and Al-11Si alloys using computer aided cooling curve analysis. For combined grain refinement and modification effect, Al-Ti-B-Sr single master alloy was developed that acted as both grain refiner and modifier.

  4. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    International Nuclear Information System (INIS)

    Fabrizi, A; Timelli, G

    2016-01-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al 15 (Fe,Mn,Cr) 3 Si 2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al 5 (Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates. (paper)

  5. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.

    2009-01-01

    The continuing quest for aluminum castings with enhanced mechanical properties for applications in the automotive industries has intensified the interest in aluminum-silicon alloys. In Al-Si alloys, the properties are influenced by the shape and distribution of the eutectic silicon particles in the matrix, as also by the iron intermetallics and copper phases that occur upon solidification. The detailed microstructure and tensile properties of as-cast and heat-treated new experimental alloy belonging to cast Al-Si near-eutectic alloys have been investigated as a function of Fe, Mn, Cu, and Mg content. Microstructural examination was carried out using optical microscopy, image analysis, and electron probe microanalysis (EPMA), wavelength dispersive spectroscopic (WDS) analysis facilities. Tensile properties upon artificial aging in the temperature range of 155-240 o C for 5 h were also investigated. The results show that the volume fraction of Fe-intermetallics increases as the iron or manganese contents increase. Compact polygonal or star-like particles form when the sludge factor is greater than 2.1. The Al 2 Cu phase was observed to dissolve almost completely during solution heat treatment of all the alloys studied, especially those containing high levels of Mg and Fe, while Al 5 Cu 2 Mg 8 Si 6 , sludge, and α-Fe phases were found to persist after solution heat treatment. The β-Al 5 (Fe,Mn)Si phase dissolved partially in Sr-modified alloys, and its dissolution became more pronounced after solution heat treatment. At 0.5% Mn, the β-Fe phase forms when the Fe content is above 0.75%, causing the tensile properties to decrease drastically. The same results are obtained when the levels of both Fe and Mn are increased beyond 0.75%, because of sludge formation. On the other hand, the tensile properties of the Cu-containing alloys are affected slightly at high levels of Mg as a result of the formation of Al 5 Cu 2 Mg 8 Si 6 which decreases the amount of free Mg

  6. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  7. Stress evolution during and after sputter deposition of thin Cu Al alloy films

    Science.gov (United States)

    Pletea, M.; Wendrock, H.; Kaltofen, R.; Schmidt, O. G.; Koch, R.

    2008-06-01

    The stress evolution during and after sputter deposition of thin Cu-Al alloy films containing 1 and 2 at.% Al onto oxidized Si(100) substrates has been studied up to thicknesses of 300 nm by means of in situ substrate curvature measurements. In order to correlate stress and morphology, the microstructure was investigated by focused ion beam microscopy, scanning electron microscopy, and atomic force microscopy. The evolution of the stress and microstructure of the Cu-Al alloy films is similar to that for sputtered pure Cu films. Film growth proceeds in the Volmer-Weber mode, typical for high mobility metals. It is characterized by nucleation, island, percolation, and channel stages before the films become continuous, as well as lateral grain growth in the compact films. With increasing Al content the overall atom mobility and, thus, the average grain size of the alloy films are reduced. Increase of the sputter pressure from 0.5 to 2 Pa leads to films with larger grain size, rougher surface morphology and higher electrical resistivity.

  8. Microstructure features and mechanical properties of a UFG Al-Mg-Si alloy produced via SPD

    International Nuclear Information System (INIS)

    Bobruk, E; Kazykhanov, V; Valiev, R; Murashkin, M; Sabirov, I

    2014-01-01

    The effect of equal channel angular pressing in parallel channels (ECAP-PC) and subsequient artificial ageing on the microstructure and room temperature mechanical properties of the commercial aluminum alloys 6063 (Al-0.6Mg-0.5Si, wt.%) and 6010 (Al-0.8Mg-1.0Si-0.15Cu-0.25Mn, wt.%) was investigated. It was shown that mechanical strength of the ECAP-PC processed Al alloys is higher compared to that achieved in these alloys after conventional thermo-mechanical processing. Prior ECAP- PC solution treatment and post-ECAP-PC artificial aging can additionally increase the mechanical strength of both Al alloys. Under optimal artificial ageing conditions, the yield strength (YS) of 299 MPa and ultimate tensile strength (UTS) of 308 MPa was achieved in the 6063 alloy, whereas YS of 423 MPa and UTS of 436 MPa was achieved in the 6010 alloy

  9. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  10. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    Science.gov (United States)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  11. Study of properties of Cu-Y and Cu-Y-Al system alloys

    International Nuclear Information System (INIS)

    Shparo, N.B.; Nikolaev, A.K.; Rozenberg, V.M.

    1978-01-01

    Investigated were the strength properties of alloys Cu(0-1.2)% Y and Cu-(10-0.5)% Al-(0-0.5)% Y after being treated under various heat conditions and tested at temperatures of 20, 400 and 600 deg C. Yttrium additions raise the temperature of recrystallization of copper and of copper-aluminium alloys. Small additions of yttrium (0.05%) increase considerably strength of Cu-Al alloys without increasing their electric resistance. Optimum properties are attained after hardening, deformation and ageing at 400 deg C

  12. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    OpenAIRE

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hystere...

  13. Description of hypo eutectic Al-Si-Cu alloys based on their known chemical compositions

    International Nuclear Information System (INIS)

    Djurdjevic, M. B.; Vicario, I.

    2013-01-01

    The modeling of casting processes has remained a topic of active interest for several decades, and the availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are directly read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system). The new Silicon Equivalency (SiEQ) algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an equivalent amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This provides to the model the capacity to predict the solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid quality problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate the characteristic solidification temperatures of the multicomponent Al-Si alloys as well as their latent heats and growth restriction factor. Statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations. The same mathematical approach might be applied for other metallic systems such as iron and magnesium, using carbon equivalency for ferrous systems and aluminum equivalency for magnesium multi-component alloys. (Author)

  14. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  15. Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano

    2014-02-01

    The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.

  16. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  17. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  18. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  19. Origin of the modified orientation relationship for S(S'')-phase in Al-Mg-Cu alloys

    International Nuclear Information System (INIS)

    Kovarik, L.; Miller, M.K.; Court, S.A.; Mills, M.J.

    2006-01-01

    The formation of S-phase with a modified orientation relationship (OR) has been previously observed in several Al-Cu-Mg alloys. In this paper, high-resolution transmission electron microscopy and Z-contrast imaging have been used to study the origin of the modified OR in an alloy with low Cu/Mg ratio and small Si addition. Based on the observations, and supported by ab initio simulations, the formation is governed by coherency at the (0 2 1) S //(0 1 4) Al S-phase/matrix interface, which is shown to coexist with the more commonly reported (0 0 1) S //(0 2 1) Al interface. This new (0 2 1) S //(0 1 4) Al S-phase/matrix interface explanation is compared with previously published explanations based on the invariant line concept and establishment of a different S-phase/matrix interface. Energy dispersive X-ray spectroscopy and atom probe tomography indicate that the S-phase is slightly enriched in Si. The role of Si as well as the overall alloy composition is discussed. Because of the similarities between our results and the early work of Bagaryatsky, the S''-phase notation is adopted for this early-forming, strained version of the S-phase

  20. The Effect of Si Morphology on Machinability of Al-Si Alloys

    Directory of Open Access Journals (Sweden)

    Muhammet Uludağ

    2015-12-01

    Full Text Available Many of the cast parts require some sort of machining like milling, drilling to be used as a finished product. In order to improve the wear properties of Al alloys, Si is added. The solubility of Si in Al is quite low and it has a crystallite type structure. It behaves as particulate metal matrix composite which makes it an attractive element. Thus, the wear and machinability properties of these type of alloys depend on the morphology of Si in the matrix. In this work, Sr was added to alter the morphology of Si in Al-7Si and Al-12Si. Cylindrical shaped samples were cast and machinability characteristics of Sr addition was studied. The relationship between microstructure and machinability was evaluated.

  1. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  2. INFLUENCE OF THE HOMOGENIZATION TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF AlSi10CuNiMgMn ALLOY

    Directory of Open Access Journals (Sweden)

    Jaromir Cais

    2017-03-01

    Full Text Available The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management.

  3. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingfei, E-mail: lingfei.cao@monash.edu [ARC Centre of Excellence for Design in Light Metals, Monash University, G68, Building 27, Welling Road, Clayton, Vic 3800 (Australia); Rometsch, Paul A.; Couper, Malcolm J. [ARC Centre of Excellence for Design in Light Metals, Monash University, G68, Building 27, Welling Road, Clayton, Vic 3800 (Australia)

    2013-01-01

    The clustering behaviour in an Al-Mg-Si-Cu alloy in the T4 and T61 tempers has been investigated by hardness and electrical conductivity testing, along with nanostructural characterisation using 3-D atom probe (3DAP) analysis. The selection of parameters for the PoSAP and IVAS cluster analysis software tools is discussed. The results show that the T4 hardness increases significantly within one day of natural ageing, and then reaches a plateau after about a week. A contingency table analysis reveals that clustering between Mg and Si atoms already exists in the T4 condition with only 1.1 h of natural ageing. In the T61 condition (after 0.5 h at 170 Degree-Sign C), the hardness is greatest in samples aged immediately after quenching, and decreases very rapidly with increasing prior natural ageing times of up to 3 h. The initial hardness drop in the T61 condition is associated with decreases in the volume fraction, average size and maximum size of solute aggregates. Longer prior natural ageing times inhibit the formation of larger solute aggregates (with more than 75 detected Mg+Si+Cu atoms) and thus result in low levels of T61 hardness.

  4. Changes in Structural Characteristics of Hypoeutectic Al-Si Cast Alloy after Age Hardening

    Directory of Open Access Journals (Sweden)

    Lenka HURTALOVÁ

    2012-09-01

    Full Text Available The contribution describes influence of the age-hardening consist of solution treatment at 515 °C with holding time 4 hours, water quenching at 40 °C and artificial aging at different temperature 150 °C, 170 °C and 190 °C with different holding time 2, 4, 8, 16 and 32 hours on mechanical properties (tensile strength and Brinell hardness and changes in morphology of eutectic Si, Fe-rich and Cu-rich intermetallic phases in secondary (recycled AlSi9Cu3 cast alloy. A combination of different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy (SEM upon deep etching and energy dispersive X-ray analysis (EDX were therefore been used for the identification of the various phases. Quantitative study of changes in morphology of eutectic Si, Cu-rich and Fe-rich phases was carried out using Image Analyzer software NIS-Elements. Mechanical properties were measured in line with EN ISO. Age-hardening led to changes in microstructure include the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe- rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu further increase in the hardness and tensile strength in the alloy.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2430

  5. Changes in Structural Characteristics of Hypoeutectic Al-Si Cast Alloy after Age Hardening

    OpenAIRE

    Lenka HURTALOVÁ; Juraj BELAN; Eva TILLOVÁ; Mária CHALUPOVÁ

    2012-01-01

    The contribution describes influence of the age-hardening consist of solution treatment at 515 °C with holding time 4 hours, water quenching at 40 °C and artificial aging at different temperature 150 °C, 170 °C and 190 °C with different holding time 2, 4, 8, 16 and 32 hours on mechanical properties (tensile strength and Brinell hardness) and changes in morphology of eutectic Si, Fe-rich and Cu-rich intermetallic phases in secondary (recycled) AlSi9Cu3 cast alloy. A combination of different an...

  6. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    Science.gov (United States)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  7. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alsrayheen, Enam, E-mail: ealsrayh@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); McLeod, Eric, E-mail: hmolero@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Rateick, Richard, E-mail: richard.rateick@honeywell.com [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Molero, Hebert, E-mail: Eric.McLeod@stmu.ab.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Birss, Viola, E-mail: birss@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada)

    2011-07-01

    An ac/dc spark anodization method was used to deposit an oxide film (6 {+-} 3 {mu}m in thickness) on the Al-Cu alloy AA2219. The oxide films were formed at 10 mA/cm{sup 2} for 30 min in an alkaline silicate solution, showing three main stages of growth. Scanning electron microscopy and electron microprobe analysis revealed that the oxide films are not uniform and consist of three main layers, an inner Al-rich barrier layer ({approx}1 {mu}m), an intermediate Al-Si mixed oxide layer ({approx}2 {+-} 1 {mu}m), and an outer porous Si-rich layer ({approx}3 {+-} 3 {mu}m). In addition, microscopic analysis showed that the Al{sub 2}Cu intermetallics present in the alloy have not been excessively oxidized during the anodization process and thus are retained beneath the oxide film, as desired. The coating passivity and corrosion resistance, evaluated using linear sweep voltammetry (LSV) in pH 7 borate buffer solution and electrochemical impedance spectroscopy (EIS) in 0.86 M NaCl solution, respectively, were both significantly improved after spark-anodization.

  8. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  9. Solidifying incongruently melting intermetallic phases as bulk single phases using the example of Al{sub 2}Cu and Q-phase in the Al-Mg-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andrea [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Groebner, Joachim; Hampl, Milan [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Engelhardt, Hannes [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Rettenmayr, Markus, E-mail: M.Rettenmayr@uni-jena.de [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Samples consisting of pure Al{sub 2}Cu and 95% Q-phase respectively were prepared. Black-Right-Pointing-Pointer The Q-phase composition is Al{sub 17}Cu{sub 9}Mg{sub 44}Si{sub 30}, its solubility range is negligible. Black-Right-Pointing-Pointer The Q-phase peritectic temperature was determined by DSC measurements as 703 Degree-Sign C. Black-Right-Pointing-Pointer A new thermodynamic dataset for the Q-phase has been assessed. - Abstract: Plane front directional solidification experiments were carried out for preparing incongruently melting intermetallic phases in the quaternary alloy system Al-Cu-Mg-Si, particularly the binary Al{sub 2}Cu phase and the quaternary phase ('Q-phase'). By this method, bulk samples that consist of only a single phase are generated. Sample sections consisting of 100% single phase Al{sub 2}Cu and of 95% Q-phase, respectively, were obtained. The composition of the Q-phase was measured by Energy Dispersive X-ray Spectroscopy (EDX). The measured concentrations are close to the Al{sub 3}Cu{sub 2}Mg{sub 9}Si{sub 7} composition that has recently been predicted as most stable by ab initio calculations. A peritectic temperature of 703 Degree-Sign C for the reaction Q {yields} L + Mg{sub 2}Si + (Si) was determined by differential scanning calorimetry (DSC). An optimization of the Calphad database was performed considering the measured composition and peritectic temperature. For validating the optimized database, Scheil calculations were performed and compared with the experimentally determined sequence of solidifying phases.

  10. Determination of melting and solidification enthalpy of hypereutectic silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2008-04-01

    Full Text Available The study was related with determination of the values of enthalpy of melting and solidification of hypereutectic AlSi18, AlSi21 and AlSi24 silumins modified with phosphorus in the form of Cu-P. The calorimetry, preceded by thermal analysis and derivative thermal analysis (TA and DTA, respectively was carried out on a high-temperature scanning calorimeter, model MHTC-96, made by SETARAM, applying the method of direct determination of parameters of the high-temperature process, and in particular of the enthalpy of phase transformations. Modern control and measuring instruments coupled with PC computer provide a very precise tool for determination of these transformations. An additional advantage was development of appropriate software called „SETSOFT”, owing to which it was possible to determine in an easy way the enthalpy of the investigated phase transformations. Moreover, an additional thermal effect, related most probably with pre-eutectic crystallization of primary silicon, was observed and confirmed by calorimetric examinations.

  11. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Science.gov (United States)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  12. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  13. Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

    Science.gov (United States)

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-03-04

    This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr-Sb.

  14. Evolution of Iron-containing Compounds in Al-Cu Alloys during Heat Treatment

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2016-01-01

    Full Text Available The evolution of iron-containing compounds in Al-Cu 206 cast alloy during solution treatment has been investigated. Results show that platelet β-Fe and Chinese script α-Fe are the two iron-containing compounds in as-cast condition. Little change is observed on β-Fe during solution treatment. However, fine blocky post β-Fe begins to form on α-Fe when solution treated at 520°C for 8hrs. When soaking time is extended to 24 hrs, α–Fe is found to decompose to fine branches while post β-Fe present as clusters on these branches. Al-Cu-Mg-Si Q phase is observed to form at the edge of decomposed α-Fe, possibly the result of Si from decomposed α-Fe.

  15. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    Science.gov (United States)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001} and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  16. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  17. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  18. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  19. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  20. Electromagnetic Stirring versus ECAP: Morphological Comparison of Al-Si-Cu Alloys to Make the Microstructural Refinement for Use in SSM Processing

    Directory of Open Access Journals (Sweden)

    Luis Vanderlei Torres

    2016-01-01

    Full Text Available This work evaluates the morphological evolution at the semisolid state of the Al-4.0wt%Si-2.5wt%Cu alloy produced by direct chill casting under electromagnetic stirring (EMS and by one equal channel angular pressing (ECAP pass. The ECAP emerged as a promising technique capable of reduction and homogeneous metals microstructure imposing large deformations occurs in a matrix that contains two channels of the same cross-sectional area and forms an angle of 120°. The materials were submitted to reheating treatment in condition of 60% solid fraction at treatment times of 0, 30, and 90 s. Comparing the two cases, we have the presented ECAP process that had an excellent response to the recovery and recrystallization mechanisms, and refined microstructures ideal for thixoforming were produced. Primary particle sizes of about 45 μm and grain sizes of about 75 μm and a circularity shape factor of more than 0.60 were obtained. The low silicon alloy, Al-4.0wt%Si-2.5wt%Cu, presented excellent refinement when processed via equal channel angular pressing, presenting good morphological stability at the semisolid state, without significant changes in size or shape of the solid particles. This fully globular structure is favourable for thixoforming processes.

  1. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  2. Diffusivities and atomic mobilities in Cu-rich fcc Al-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming; Du, Yong; Cui, Senlin; Xu, Honghui; Liu, Shuhong [Central South Univ., Changsha (China). State Key Laboratory of Powder Metallurgy; Zhang, Lijun [Bochum Univ. (DE). Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

    2012-07-15

    Via solid-solid diffusion couples, electron probe microanalysis and the Whittle and Green method, interdiffusivities in fcc Al-Cu-Mn alloys at 1 123 K were measured. The reliability of the obtained diffusivities is validated by comparing the computed diffusivities with literature data plus constraints among the diffusivities. Through assessments of experimentally determined diffusion coefficients by means of a diffusion-controlled transformations simulation package, the atomic mobilities of Al, Cu, and Mn in fcc Al-Cu-Mn alloys are obtained. Comprehensive comparisons between the model-predicted and the experimental data indicate that the presently obtained atomic mobilities can reproduce most of the diffusivities, concentration profiles, and diffusion paths reasonably. (orig.)

  3. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  4. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  6. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  7. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    Science.gov (United States)

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  9. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    International Nuclear Information System (INIS)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-01-01

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results from a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods

  10. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  12. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Tash

    2016-06-01

    Full Text Available In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15% into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  13. Description of hypoeutectic Al-Si-Cu alloys based on their known chemical compositions

    Directory of Open Access Journals (Sweden)

    Djurdjevic, M. B.

    2013-10-01

    Full Text Available The modeling of casting processes has remained a topic of active interest for several decades, and the availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are directly read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system. The new Silicon Equivalency (SiEQ algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an “equivalent” amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This provides to the model the capacity to predict the solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid quality problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate the characteristic solidification temperatures of the multicomponent Al-Si alloys as well as their latent heats and growth restriction factor. Statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations. The same mathematical approach might be applied for other metallic systems such as iron and magnesium, using carbon equivalency for ferrous systems and aluminum equivalency for magnesium multi-component alloys.La modelización de los procesos de fundición ha sido un tópico de

  14. Effect of Cooling Rate and Chemical Modification on the Tensile Properties of Mg-5wt% Si Alloy

    Science.gov (United States)

    Mirshahi, Farshid; Meratian, Mahmood; Zahrani, Mohsen Mohammadi; Zahrani, Ehsan Mohammadi

    Hypereutectic Mg-Si alloys are a new class of light materials usable for aerospace and other advanced engineering applications. In this study, the effects of both cooling rate and bismuth modification on the micro structure and tensile properties of hypereutectic Mg-5wt% Si alloy were investigated. It was found that the addition of 0.5% Bi, altered the morphology of primary Mg2Si particles from bulky to polygonal shape and reduced their mean size from more than 70 μm to about 30 (am. Also, the tensile strength and elongation of the modified alloy increased about 10% and 20%, respectively, which should be ascribed to the modification of Mg2Si morphology and more uniform distribution of the primary particles. Moreover, an increase in tensile strength value with increase in cooling rate were observed which is attributed to finer micro structure of alloy in higher cooling rates. It was observed that Bi addition is significantly more effective in refining the morphology of primary Mg2Si particles than applying faster cooling rates.

  15. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  16. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  17. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  18. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    Directory of Open Access Journals (Sweden)

    Mohamed F. Ibrahim

    2016-01-01

    Full Text Available The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be, where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt% Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  19. Elemental separation in nanocrystalline Cu-Al alloys

    Science.gov (United States)

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  20. Influence of the Si content on the microstructure and mechanical properties of Ti-Ni-Cu-Si-Sn nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fornell, J., E-mail: Jordinafornell@gmail.com [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Van Steenberge, N. [OCAS N.V., Pres. J.F. Kennedylaan 3, BE-9060 Zelzate (Belgium); Surinach, S.; Baro, M.D. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Sort, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institucio Catalana de Recerca i Estudis Avancats (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We study the effects of Si addition of Ti-Ni-Cu-Si-Sn alloy. Black-Right-Pointing-Pointer The microstructure evolution is correlated with the obtained mechanical and elastic properties. Black-Right-Pointing-Pointer Higher Young's modulus and larger hardness values are obtained in samples with higher Si contents. - Abstract: (Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4}){sub 100-x}Si{sub x} (x = 0, 2, 4 and 6) alloys were prepared by levitation melting mixtures of the high purity elements in an Ar atmosphere. Rods of 3 mm in diameter were obtained from the melt by copper mould casting. The effects of Si addition on the microstructure, elastic and mechanical properties of the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy were investigated by scanning electron microscopy, X-ray diffraction, acoustic measurements and nanoindentation. The main phases composing the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy are B2 NiTi, B19 Prime NiTi and tetragonal Ti{sub 2}Ni. Additional phases, like Ti{sub 5}Si{sub 3} or Ni{sub 2}Ti{sub 2}Si, become clearly visible in samples with higher Si contents. The microstructure evolution is correlated with the obtained mechanical and elastic properties. These alloys exhibit very high hardness values, which increase with the Si content, from 9 GPa (for x = 0) to around 10.5 GPa (for x = 6). The Young's modulus of Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} (around 115 GPa) also increases significantly with Si addition, up to 160 GPa for x = 6.

  1. Effect of Fe content and microstructural features on the tensile and fatigue properties of the Al–Si10–Cu2 alloy

    International Nuclear Information System (INIS)

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Seifeddine, Salem; Svensson, Ingvar L.

    2012-01-01

    Highlights: ► The effect of different amounts of Fe and Mn on fatigue behaviour of the Al–Si10–Cu2 alloy was studied. ► Fatigue specimens were subjected to HIP to eliminate the internal pores. ► The effect of microstructural features on the fatigue propagation was studied. ► The presence of β-Al 5 FeSi induced only a slight increase on the fatigue resistance. ► The presence of the α-Al 15 (Fe,Mn) 3 Si increased the fatigue resistance of the alloy. -- Abstract: As the automotive industry has to meet the requirements of fuel efficiency and environmental concerns, the use of aluminium alloys is steadily increasing. A number of papers have been published about the correlation between microstructure and mechanical properties of the widely used A356/A357 aluminium alloys, while relatively few data are available on others hypoeutectic Al–Si alloys, such as Al–Si–Cu alloys with higher Si content. In this work the effect of different amounts of Fe and Mn on the tensile and fatigue behaviour of the Al–Si10–Cu2 casting alloy was studied. The reason of this study comes from the fact that cast components are mostly made by secondary Al alloys that inevitably contain Fe, which in turn forms intermetallic compounds, negatively affecting the mechanical behaviour of the alloy. Fatigue specimens were subjected to hot isostatic pressing (HIP) before tests, in order to eliminate the internal pores (gas pores and interdendritic shrinkages) and therefore to solely investigate the effect of microstructural features, rather than solidification defects, on the fatigue propagation stage. The microstructural characterisation of the alloy was carried out by optical and scanning electron microscopy. Proof and ultimate tensile strength, as well as fatigue life of the investigated alloy were greatly enhanced by high Fe and Mn content, which reduced the micro-crack propagation rate; on the contrary Fe, without Mn, negatively affected the elongation to failure.

  2. Neural network potential for Al-Mg-Si alloys

    Science.gov (United States)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  3. Influence of Al addition on the thermal stability and mechanical properties of Fe76.5-xCu1Si13.5b9Alx amorphous alloys

    Directory of Open Access Journals (Sweden)

    Sun Y.Y.

    2012-01-01

    Full Text Available This paper fabricated Fe76.5-xCu1Si13.5B9Alx (x=0,1,2,3,5,7 at.% amorphous ribbons using singleroller melt-spinning method. The effect of Al content on the thermal stability and mechanical properties was investigated. The results indicated that Al addition have little effect on the amorphous formation ability of the alloys. On the other hand, increasing the Al content can substantially increase Tx2, which corresponds to the crystallization of Fe borides. Nanoindentation tests indicated that hardness of the alloys increase slightly with increasing the Al content, and Young’s modulus has a complicated relationship with the Al content.

  4. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    International Nuclear Information System (INIS)

    Klinter, Andreas J.; Leon-Patino, Carlos A.; Drew, Robin A.L.

    2010-01-01

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions θ transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl 2 O 4 for Al-7Cu and Al 2 O 3 for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl 2 O 4 under CuAl 2 drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl 2 O 4 causes the reduced σ sl and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in θ with higher copper contents is the increasing σ lv of the alloy.

  5. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  6. Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System

    Science.gov (United States)

    Ovchinnikov, S. V.; Pinzhin, Yu. P.

    2016-10-01

    Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.

  7. The Study of Phase Transformations of AlSi9Cu3 Alloy by DSC Method

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available With the use of differential scanning calorimetry (DSC, the characteristic temperatures and enthalpy of phase transformations were defined for commercial AlSi9Cu3 cast alloy (EN AC-46000 that is being used for example for pressurized castings for automotive industry. During the heating with the speed of 10°C·min−1 two endothermic effects has been observed. The first appears at the temperature between 495 °C and 534 °C, and the other between 555 °C and 631 °C. With these reactions the phase transformation enthalpy comes up as +6 J g−1 and +327 J g−1. During the cooling with the same speed, three endothermic reactions were observed at the temperatures between 584 °C and 471 °C. The total enthalpy of the transitions is – 348 J g−1.

  8. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  9. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    Science.gov (United States)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  10. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  11. EFFECT OF SILICON CONTENT ON MACHINABILITY OF Al-Si ALLOYS

    Directory of Open Access Journals (Sweden)

    Birol Akyüz

    2016-09-01

    Full Text Available In this study the effect of the change in the amount of Silicon (Si occuring in Al-Si alloys on mechanical and machinability properties of the alloy was investigated. The change in mechanical properties and microstructure, which depends on the increase in Si percentage, and the effects of this change on Flank Build-up (FBU, wear on the cutting edge, surface roughness, and machinability were also studied. Alloys in different ratios of Si (i.e. 2 to 12 wt %, were employed in the study. The specimens for tests were obtained by casting into metal moulds. The results obtained from experimental studies indicate improved mechanical properties and machinability, depending on the rise in Si percentage in Al-Si alloys. It is also observed that the increase in Si percentage enhanced surface quality.

  12. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  13. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  14. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  15. CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2011-04-01

    Full Text Available Using recycled aluminium cast alloys is profitable in many aspects. Requiring only 5 % of the energy to produce secondary metal as compared to primary metal and generates only 5 % of the green house gas emissions, the recycling of aluminium is therefore beneficial of both environmental and economical point of view. Secondary AlZn10Si8Mg (UNIFONT® - 90 cast alloy are used for engine and vehicle constructions, hydraulic unit and mouldmaking without heat treatment. Properties include good castability, very good mechanical strength and elongation, light weight, good wear resistance, low thermal expansion and very good machining. Improved mechanical properties are strongly dependent upon the morphologies, type and distribution of the secondary phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements as Mg, Mn, Fe, or Cu allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, Mg2Si, Al2CuMg and AlFeMn phases, all of which may have some solubility for additional elements. Phase’s identification in aluminium alloys is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy (SEM upon deep etching, energy dispersive X-ray analysis (EDX and HV 0.01 microhardness measurement were therefore been used for the identification of the various phase.

  16. Thermodynamic aspects of grain refinement of Al-Si alloys using Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Mirkovic, Djordje [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2005-03-25

    A thermodynamic assessment of ternary Al-Si-Ti phases was performed. Published datasets for the other subsystems were checked and adapted. Based on that, a consistent thermodynamic description of quaternary Al-Si-Ti-B alloys was generated. This was applied in a calculation of Al-Si-Ti-B phase diagram sections for practically relevant temperatures and compositions of Al-Si alloys from Al-rich to typical Al-Si foundry alloys. These stable and metastable phase diagrams could be correlated to many detailed aspects of possible reactions observed or suggested in experimental studies of grain refining. Understanding the mechanisms of grain refining of Al wrought alloys and Al-Si foundry alloys using titanium and boron requires a fundamental knowledge of both thermodynamic and kinetic aspects of this complex process. This work focuses exclusively on the thermodynamic aspects and the phase diagrams, which were not available for the quaternary alloys and partly incomplete and inconsistent for the ternary subsystems.

  17. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  18. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  19. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  20. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys

    Science.gov (United States)

    Kim, Hyung Giun; Lee, Taeg Woo; Kim, Sang Min; Han, Seung Zeon; Euh, Kwangjun; Kim, Won Yong; Lim, Sung Hwan

    2013-01-01

    The mechanical and electrical properties of Cu-5.98Ni-1.43Si and Cu-5.98Ni-1.29Si-0.24Ti alloys under heat treatment at 400 and 500 °C after hot- and cold-rolling were investigated, and a microstructural analysis using transmission electron microscopy was performed. Cu-5.98Ni-1.29Si-0.24Ti alloy displayed the combined Vickers hardness/electrical conductivity value of 315.9 Hv/57.1%IACS. This was attributed to a decrease of the solution solubility of Ni and Si in the Cu matrix by the formation of smaller and denser δ-Ni2Si precipitates. Meanwhile, the alloyed Ti was detected in the coarse Ni-Si-Ti phase particles, along with other large Ni-Si phase particles, in Cu-5.98Ni-1.29Si-0.24Ti.

  1. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    International Nuclear Information System (INIS)

    Lei, Q.; Li, Z.; Dai, C.; Wang, J.; Chen, X.; Xie, J.M.; Yang, W.W.; Chen, D.L.

    2013-01-01

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni 3 Si and δ-Ni 2 Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar ) Cu (01-bar 1-bar ) β (010) δ , [100] Cu [100] β [001] δ ; (111-bar ) Cu (111-bar ) β (02-bar 1) δ , [112] Cu [112] β [012] δ . Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy

  2. Development of an efficient grain refiner for Al-7Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-03-15

    The response of Al-7Si alloy towards grain refinement by Al-Ti-B master alloys (with different Ti-B ratios) at different addition levels has been studied in detail. The results indicate that high B-containing master alloys are powerful grain refiners when compared to conventional grain refiners like Al-5Ti-lB master alloys. In the present study, indigenously developed master alloys have been used for the grain refinement of alloys Al-7Si and LM-25. Significant improvements in mechanical properties have been obtained with a combination of grain refiner and Sr as modifier. (orig.)

  3. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Klinter, Andreas J., E-mail: andreas.klinter@mail.mcgill.ca [Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 University Street, Montreal, QC, H3A 2B2 (Canada); Leon-Patino, Carlos A. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Apdo. Postal 888, CP 58000 Morelia, Michoacan (Mexico); Drew, Robin A.L. [Faculty of Engineering and Computer Science, Concordia University, 1455 Maisonneuve Blvd, EV 2.169, Montreal, QC, H3G 1M8 (Canada)

    2010-02-15

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions {theta} transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl{sub 2}O{sub 4} for Al-7Cu and Al{sub 2}O{sub 3} for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl{sub 2}O{sub 4} under CuAl{sub 2} drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl{sub 2}O{sub 4} causes the reduced {sigma}{sub sl} and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in {theta} with higher copper contents is the increasing {sigma}{sub lv} of the alloy.

  4. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys

    International Nuclear Information System (INIS)

    Soria, S.R.; Tolley, A.; Sánchez, E.A.

    2015-01-01

    The influence of microstructure and composition on the effects of ion irradiation in Al alloys was studied combining Atomic Force Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy. For this purpose, irradiation experiments with 20 keV He + ions at room temperature were carried out in Al, an Al–4Cu (wt%) supersaturated solid solution, and an Al-5.6Cu-0.5Si-0.5Ge (wt.%) alloy with a very high density of precipitates, and the results were compared. In Al and Al–4Cu, He bubbles were found with an average size in between 1 nm and 2 nm that was independent of fluence. The critical fluence for bubble formation was higher in Al–4Cu than in Al. He bubbles were also observed below the critical fluence after post irradiation annealing in Al–4Cu. The incoherent interfaces between the equilibrium θ phase and the Al matrix were found to be favorable sites for the formation of He bubbles. Instead, no bubbles were observed in the precipitate rich Al-5.6Cu-0.5Si-0.5Ge alloy. In all alloys, blistering was observed, leading to surface erosion by exfoliation. The blistering effects were more severe in the Al-5.6Cu-0.5Si-0.5Ge alloy, and they were enhanced by increasing the fluence rate. - Highlights: • In Al and Al–4Cu, He bubbles were formed, but no bubbles were observed in Al-5.6Cu-0.5Si-0.5Ge. • Bubble formation was enhanced at incoherent matrix/precipitate interfaces in Al–4Cu. • The bubble size was insensitive to displacement rate in pure Al. • In Al and Al-5.6Cu-0.5Si-0.5Ge blistering was observed, which was more severe in the alloy. • Blistering effects were enhanced by increasing the displacement rate in Al and Al–4Cu.

  5. The improvement of the superconducting Y-Ba-Cu-O magnet characteristics through shape recovery strain of Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Shimpo, Y.; Seki, H.; Wongsatanawarid, A.; Taniguchi, S.; Maruyama, T.; Kurita, T.; Murakami, M.

    2010-01-01

    Since bulk Y-Ba-Cu-O superconductors are brittle ceramics, reinforcement of mechanical properties is important for practical applications. It has been reported that bulk Y-Ba-Cu-O can be reinforced with Al or Fe based alloy ring, in that compression force acts on bulk Y-Ba-Cu-O due to a difference in thermal expansion coefficients. However, the shrinkage of the metal ring was not so large, and therefore careful adjustment of the circumference of the bulk and the metal rings was necessary. In this study, we employed Fe-Mn-Si shape memory alloy rings to reinforce bulk Y-Ba-Cu-O. The advantage of the shape memory alloy is that the shrinkage can take place on heating, and furthermore, the alloy shrinks and compresses the bulk body on cooling. Bulk Y-Ba-Cu-O superconductor 22.8 mm in diameter was inserted in a Fe-Mn-Si ring 23.0 mm in inner diameter at room temperature. Beforehand, the Fe-Mn-Si ring was expanded by 12% strain at room temperature. Then the composite was heated to 673 K. At room temperature, the Fe-Mn-Si ring firmly gripped the bulk superconductor. We then measured trapped fields before and after the ring reinforcement, and found that the trapped field was improved through the treatment.

  6. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  7. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  8. Role of aluminium concentration on the structure behaviour of Cu-Al alloys

    International Nuclear Information System (INIS)

    Nassar, A.M.; Taha, A.S.; Ragab, K.A.; El-Mossalamy, S.

    1988-06-01

    Effect of Al(5, 10, 15 and 20)% on the structure behaviour of Cu-Al alloys was investigated by both microhardness measurements and optical microscopic investigations. Pure Cu was used for comparison. The analysis of the hardness-temperature curve shows a type of dependence which obeys an empirical exponential law, but consists of several distinguishable regions. For Cu 20% Al, one region is observed, and two regions for pure Cu, while for alloys of 5 and 10% Al concentration three regions were observed. The activation energy varies between 0.03 and 0.9 ev. for these regions, depending on the Al-concentration as well as the annealing temperature. The recrystallization temperature was found to increase with increasing Al-concentration. It was also observed that Cu-20% Al alloy is very hard and brittle owing to the formation of γ2 phase, and also to phase separation as being detected from optical microscopic investigations. (author). 22 refs, 3 figs

  9. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  10. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  11. Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy

    Science.gov (United States)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting wear test on pin on disc wear testing machine. Wear test parameters such as the load and the speed were varied by keeping one constant and varying the other respectively. It was observed that the coefficient of friction is high for as cast condition due to the brittle microstructure. After T6 heat treatment the precipitates formed such as the Chinese scripts and the Mg2Si blocks got modified that lead to improvement in the hardness and the wear resistance. This reduces the coefficient of friction.

  12. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  13. Structure and mechanical properties of nanostructured Al-0.3%Cu alloy

    DEFF Research Database (Denmark)

    Wakeel, Aneela; Huang, Tianlin; Wu, Guilin

    2014-01-01

    An Al-0.3%Cu alloy has been produced using extremely high purity (99.9996%) Al and OFHC Cu.The alloy was cold rolled to 98% thickness reduction, forming a stable lamellar structure that has a lamellar boundary spacing of about 200nm and a tensile strength of 225MPa. During recovery annealing at t...

  14. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  15. Some aspects of the metal purity in high strength Al-alloys

    International Nuclear Information System (INIS)

    Banizs, K.; Csernay-Balint, J.; Voeroes, G.

    1990-01-01

    The effect of Fe and Si on the properties of some high strength age-hardenable Al-alloys was investigated. It was found that a certain quantity (> 0.15 %) of Fe is advantageous to the formation of the cell-structure in the cast ingot both in the AlCuMg and AlZnMgCu alloys. An increased Fe-content causes a finer cell-structure. A higher Fe:Si ratio results in more homogeneous cell size distribution. Higher Si-content in the alloy decreases the favourable cast parameter range and increases the inclination to cracking of large diameter (> 270 mm) ingots. The reason of the correlation found between metal purity and mechanical properties is discussed

  16. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    Science.gov (United States)

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  17. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys

    Science.gov (United States)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1996-08-01

    Ductile shape memory (SM) alloys of the Cu-AI-Mn system have been developed by controlling the degree of order in the β phase. Additions of Mn to the binary Cu-Al alloy stabilize the β phase and widen the single-phase region to lower temperature and lower Al contents. It is shown that Cu-Al-Mn alloys with low Al contents have either the disordered A2 structure or the ordered L21 structure with a lower degree of order and that they exhibit excellent ductility. The disordered A2 phase martensitically transforms to the disordered Al phase with a high density of twins. The martensite phase formed from the ordered L21 phase has the 18R structure. The SM effect accompanies both the A2 → Al and L21 → 18R martensitic transformations. These alloys exhibit 15 pct strain to failure, 60 to 90 pct rolling reduction without cracking, and 80 to 90 pct recovery from bend test in the martensitic condition. Experimental results on the microstructure, crystal structure, mechanical properties, and shape memory behavior in the ductile Cu-AI-Mn alloys are presented and discussed.

  18. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesium-based casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.

  19. New investigation of phase equilibria in the system Al-Cu-Si.

    Science.gov (United States)

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  20. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  1. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  2. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Melo, Tadeu Antonio de A; Gomes, Rodinei M.; Lima, Severino Jackson G. de; Tavares, Joao Manuel R.S.

    2010-01-01

    Research highlights: → This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. → The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. → Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. → First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. → The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  3. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  4. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  5. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Changsha 410083 (China); Dai, C. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, J. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Chen, X.; Xie, J.M.; Yang, W.W.; Chen, D.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-06-10

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni{sub 3}Si and δ-Ni{sub 2}Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar ){sub Cu} (01-bar 1-bar ){sub β} (010){sub δ}, [100]{sub Cu} [100]{sub β} [001]{sub δ}; (111-bar ){sub Cu} (111-bar ){sub β} (02-bar 1){sub δ}, [112]{sub Cu} [112]{sub β} [012]{sub δ}. Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy.

  6. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  7. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  8. Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon

    International Nuclear Information System (INIS)

    Jang, Jason S.C.; Jian, S.R.; Chang, C.F.; Chang, L.J.; Huang, Y.C.; Li, T.H.; Huang, J.C.; Liu, C.T.

    2009-01-01

    The amorphous alloy rods of (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x (x = 0.25, 0.5, 0.75, 1) with a diameter of 2-6 mm were prepared by drop casting method in an Ar atmosphere. The thermal properties, including glass forming ability (GFA) and thermal stability during isothermal annealing of these amorphous alloys, and the mechanical properties have been systematic investigated by the combination of DSC, XRD, SEM, TEM, and compression test. The result of X-ray diffraction reveals that these entire (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy rods exhibit a typical amorphous diffraction pattern with only a broad maximum around 2θ around 40 degree. Both T g (glass transition temperature) and T x (crystallization temperature) of these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloys increase with the silicon addition. In addition, both the activation energy of crystallization and the incubation time of isothermal annealing these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x amorphous alloys indicate that the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 alloy possesses the best thermal stability in the (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy system. In parallel, the result of compression test shows that the yield strength increases with the addition of Si content and reaches to a maximum value about 1750 MPa with 3% plastic strain for the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 amorphous alloy.

  9. Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049

    Science.gov (United States)

    Ma, Bao-Tong; Pickens, Joseph R.

    1991-01-01

    Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.

  10. Effect of Al-5Ti-0.62C-0.2Ce Master Alloy on the Microstructure and Tensile Properties of Commercial Pure Al and Hypoeutectic Al-8Si Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding

    2017-06-01

    Full Text Available Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions of Al-5Ti-0.62C-0.2Ce master alloy were investigated. The results show that the Al-5Ti-0.62C-0.2Ce alloy was composed of α-Al, granular TiC, lump-like TiAl3 and block-like Ti2Al20Ce. Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min can significantly refine macro grains of commercial pure Al into tiny equiaxed grains. The Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 30 min still has a good refinement effect. The tensile strength and elongation of commercial pure Al modified by the Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min increased by roughly 19.26% and 61.83%, respectively. Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min can significantly refine both α-Al grains and eutectic Si of hypoeutectic Al-8Si alloy. The dendritic α-Al grains were significantly refined to tiny equiaxed grains. The morphology of the eutectic Si crystals was significantly refined from coarse needle-shape or lath-shape to short rod-like or grain-like eutectic Si. The tensile strength and elongation of hypoeutectic Al-8Si alloy modified by the Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min increased by roughly 20.53% and 50%, respectively. The change in mechanical properties corresponds to evolution of the microstructure.

  11. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  12. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  13. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    Science.gov (United States)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  14. Study of the properties of internal oxidized Cu - Al - Ti - Hf alloys

    International Nuclear Information System (INIS)

    Solopov, V.I.; Daneliya, E.P.; Daneliya, G.V.; Lebasova, O.P.

    1982-01-01

    Investigation results of mechanical properties and electric conductivity of rods of internally oxidized alloys Cu-Al-Ti-Hf depending on chemical composition, varying in the limits ensuring the formation of disperse enough and evenly distributed over the volume oxide phase. (0-1%Al, 0-0.5%Ti, 0-0.3%Hf, the restcopper), in the process of internal oxidation are presented. Internally oxidized alloys Cu-Al-Ti-Hf have increased strength properties with insignificant increase of specific electric resistance as compared with the known internally oxidized alloys Cu-Al. At that, the best combination of physicomechanical properties is achieved at small contents of titanium (0.01-0.05%) and hafnium (0.01-0.1%)

  15. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression

    International Nuclear Information System (INIS)

    Parimi, A.K.; Robi, P.S.; Dwivedy, S.K.

    2011-01-01

    Research highlights: → SPD of copper and Al-Cu alloy by multiple channel-die compression tests.→ Extensive grain refinement resulting in nano-sized grains after SPD. → Investigation of micro-structure using optical microscope and SEM. → Shear band formation as the failure mechanism in the two phase Al-Cu alloy. → Difficulty in obtaining SPD for Al-Cu alloy in this method. -- Abstract: Severe plastic deformation studies of copper and Al-Cu alloy by multiple channel-die compression tests were investigated. The materials were tested under plane strain condition by maintaining a constant strain rate of 0.001/s. Extensive grain refinement was observed resulting in nano-sized grains after severe plastic deformation with concomitant increase in flow stress and hardness. The microstructural investigation of the severely deformed materials was investigated using optical microscope and scanning electron microscope. Shear band formation was identified as the failure mechanism in the two phase Al-Cu alloy. The results indicate difficulty in obtaining severe plastic deformation for alloys having two phase micro-structure.

  16. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  17. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  18. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  19. L10 ordered structures in Al-Cu-(Mg) alloys at the early stages of elevated temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuzhong, X.; Mingpu, W.

    2016-07-01

    This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. %) alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg) alloys were characterized by Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HTREM). 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg) alloys during aging. (Author)

  20. L10 ordered structures in Al-Cu-(Mg) alloys at the early stages of elevated temperature aging

    International Nuclear Information System (INIS)

    Fuzhong, X.; Mingpu, W.

    2016-01-01

    This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. %) alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg) alloys were characterized by Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HTREM). 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg) alloys during aging. (Author)

  1. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  2. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  3. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  4. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  5. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  6. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  7. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  8. The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H2SO4

    International Nuclear Information System (INIS)

    Osorio, Wislei R.; Spinelli, Jose E.; Freire, Celia M.A.; Cardona, Margarita B.; Garcia, Amauri

    2007-01-01

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al 2 Cu fractions. The aim of this study was to investigate the influence of Al 2 Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al 2 Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al 2 Cu fraction

  9. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  10. Superconductivity in CeCu/sub 2/Si/sub 2/: dependence of Tsub(c) on alloying and stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Spille, H; Rauchschwalbe, U; Steglich, F [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Festkoerperphysik

    1938-01-01

    The authors have determined the transition temperatures of the alloy systems (Ce,M)Cu/sub 2/Si/sub 2/ with M = La, Y, Sc, Ce(Cu,T)/sub 2/Si/sub 2/ with T = Ag, Au, Mn, Ru, Rh, Pd and CeCu/sub 2/(Si,Ge)/sub 2/ as well as of CeCu/sub 2/Si/sub 2/ samples with varying stoichiometry. In each case, alloying is found to depress Tsub(c), the critical concentrations necessary to destroy superconductivity ranging between < 1 at.% and 10 at.%. Off-stoichiometry samples with a Cu- or Ce-deficiency of a few at.% are not superconducting, while samples prepared with a comparable excess of Cu or Ce show sharp transitions at Tsub(c) >approx. 600 mK. It is inferred that stoichiometric CeCu/sub 2/Si/sub 2/ contains substantial concentrations of Cu- and Ce-vacancies, which hinder superconductivity. First results on CeCu/sub 2/Si/sub 2/ single crystals, which exhibit bulk superconductivity, are also reported.

  11. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  12. Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    Directory of Open Access Journals (Sweden)

    Mathias Göken

    2011-11-01

    Full Text Available The formation of alloys by particle reinforcement during accumulative roll bonding (ARB, and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 µΩ∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 µΩ∙cm/at.% was obtained.

  13. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  14. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    Science.gov (United States)

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  15. Effect of Low-Temperature Thermomechanical Treatment on the Structure and Mechanical, Fatigue and Corrosion Characteristics of Sheets from an Alloy of the Al - Mg - Si - Cu - Zn System

    Science.gov (United States)

    Makhsidov, V. V.; Kolobnev, N. I.; Kochubey, A. Ya.; Fomina, M. A.; Zamyatin, V. M.; Pushin, V. G.

    2014-11-01

    The effect of deformation on the structure, strength and fatigue properties, stresses on the surface and sensitivity to intercrystalline corrosion of sheets from alloy 1370 of the Al -Mg - Si - Cu - Zn system with one-side cladding is investigated. Application of deformation to sheets of alloy 1370 between the stages of artificial aging lowers the depth of penetration of ICC (≤ 0.10 mm) and raises the fatigue characteristics (by up to a factor of 2) at a high level of mechanical properties.

  16. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  17. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  18. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    Science.gov (United States)

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  19. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  20. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    Directory of Open Access Journals (Sweden)

    Manasijević Ivana I.

    2016-01-01

    Full Text Available Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys they are additional alloyed with elements such as zinc, magnesium and others. In this work experimental and analytical examination of the impact of zinc on the microstructure and phase transformations of Al-Cu alloys was carried out. In order to determine the effect of the addition of zinc to the structure and phase transformations of Al-Cu alloys two alloys of Al-Cu-Zn system with selected compositions were prepared and then examined using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX. The experimental results were compared with the results of thermodynamic calculations of phase equilibria.

  1. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  2. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    International Nuclear Information System (INIS)

    Groebner, J.; Rokhlin, L.L.; Dobatkina, T.V.; Schmid-Fetzer, R.

    2007-01-01

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges

  3. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Rokhlin, L.L. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Dobatkina, T.V. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Schmid-Fetzer, R. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2007-05-16

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges.

  4. Effect of Different Variants of Heat Treatment on Mechanical Properties of the AlSi17CuNiMg Alloy

    Directory of Open Access Journals (Sweden)

    Jarco A.

    2016-06-01

    Full Text Available Dispersion hardening, as the main heat treatment of silumins having additions of copper and magnesium, results in considerable increase of tensile strength and hardness, with simultaneous decrease of ductility of the alloy. In the paper is presented an attempt of introduction of heat treatment operation consisting in homogenizing treatment prior operation of the dispersion hardening, to minimize negative effects of the T6 heat treatment on plastic properties of hypereutectoidal AlSi17CuNiMg alloy. Tests of the mechanical properties were performed on a test pieces poured in standardized metal moulds. Parameters of different variants of the heat treatment, i.e. temperature and time of soaking for individual operations were selected basing on the ATD (Thermal Derivation Analysis diagram and analysis of literature. The homogenizing treatment significantly improves ductility of the alloy, resulting in a threefold increase of the elongation and more than fourfold increase of the impact strength in comparison with initial state of the alloy. Moreover, the hardness and the tensile strength (Rm of the alloy decrease considerably. On the other hand, combination of the homogenizing and dispersion hardening enables increase of elongation with about 40%, and increase of the impact strength with about 25%, comparing with these values after the T6 treatment, maintaining high hardness and slight increase of the tensile strength, comparing with the alloy after the dispersion hardening.

  5. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  6. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  7. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  8. Influence of silicon concentration on linear contraction process of Al-Si binary alloy

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2008-12-01

    Full Text Available Investigations of shrinkage phenomena during solidification and cooling of aluminium and aluminium-silicon alloys (AlSi5, AlSi7, AlSi9, AlSi11, AlSi12.5, AlSi18, AlSi21 have been conducted. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. By constant cross-section a test channel mould was parted and allowed a constrained contraction to examine. No parted test channel mould was tapered and allowed an unconstrained contraction to investigate. In the experiments the dimensions changes of solidifying test bar and the test mould have been registered, what has allowed to explain a mechanism of pre-shrinkage extension of solidifying metals and alloys. Registered time dependence of the test bar and the test mould dimension changes have shown, that so-called pre-shrinkage extension has been by mould thermal extension caused. The investigation results have also shown that time- and temperature dependences of shrinkage of Al-Si alloys have been on silicon concentration depended.

  9. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    International Nuclear Information System (INIS)

    Liu Na; Li Zhou; Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan

    2011-01-01

    Highlights: → A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. → The size of dispersed particles with richer Te is 2-5 μm. → The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. → Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. → The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 μm. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  10. Centrifugally cast Zn-27Al-xMg-ySi alloys and their in situ (Mg2Si + Si)/ZA27 composites

    International Nuclear Information System (INIS)

    Wang Qudong; Chen Yongjun; Chen Wenzhou; Wei Yinhong; Zhai Chunquan; Ding Wenjiang

    2005-01-01

    Effects of composition, mold temperature, rotating rate and modification on microstructure of centrifugally cast Zn-27Al-xMg-ySi alloys have been investigated. In situ composites of Zn-27Al-6.3Mg-3.7Si and Zn-27Al-9.8Mg-5.2Si alloys were fabricated by centrifugal casting using heated permanent mold. These composites consist of three layers: inner layer segregates lots of blocky primary Mg 2 Si and a litter blocky primary Si, middle layer contains without primary Mg 2 Si and primary Si, outer layer contains primary Mg 2 Si and primary Si. The position, quantity and distribution of primary Mg 2 Si and primary Si in the composites are determined jointly by alloy composition, solidification velocity under the effect of centrifugal force and their floating velocity inward. Na salt modifier can refine grain and primary Mg 2 Si and make primary Mg 2 Si distribute more evenly and make primary Si nodular. For centrifugally cast Zn-27Al-3.2Mg-1.8Si alloy, the microstructures of inner layer, middle layer and outer layer are almost similar, single layer materials without primary Mg 2 Si and primary Si are obtained, and their grain sizes increased with the mold temperature increasing

  11. Microstructures and Properties Evolution of Al-Cu-Mn Alloy with Addition of Vanadium

    Directory of Open Access Journals (Sweden)

    Fansheng Meng

    2016-12-01

    Full Text Available The effect of the vanadium addition on the microstructure, the precipitation behavior, and the mechanical properties of the Al-5.0Cu-0.4Mn alloy has been studied. The as-cast Al-5.0Cu-0.4Mn alloy was produced by squeeze casting and the heat treatment was carried out following the standard T6 treatment. It is shown that, with the addition of V, grain refinement of aluminum occurred. During heat treatment, the addition of V accelerates the precipitation kinetics of θ′ (Al2Cu phase along the grain boundaries, and promotes the growth rate of the θ′ in the α(Al matrix. Meanwhile, the addition of V retards the precipitation of T (Al20Cu2Mn3 phase. The tensile strength of the Al-5.0Cu-0.4Mn alloy increases with the increase of V content, which can be explained by combined effects of the solid solution strengthening and precipitate strengthening. However, excessively high V addition deteriorates the mechanical properties by forming brittle coarse intermetallic phases.

  12. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  13. Effect of Recrystallization and Natural Aging on Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloys

    International Nuclear Information System (INIS)

    Yu, Min Kyu; Hong, Soon Hyung; Kwon, Oh Yeol; Lee, Yong Yeon

    2015-01-01

    In this study, the recrystallization volume fraction of the Al-Zn-Mg-Cu-Sc alloy after solid solution heat treatment varied with different temperatures (445℃ - 465℃). The highest elongation of the Al-Zn-Mg-Cu-Sc alloy was obtained at 465℃. Further, the hardness and strength of the solid solution heat treated Al-Zn-Mg-Cu-Sc alloy increased at room temperature due to G.P zone precipitates. The results confirmed that we can obtain advanced mechanical properties for the Al-Zn-Mg-Cu-Sc alloy from solid solution heat treatment and natural aging.

  14. Thermodynamic modelling and Gulliver-Scheil simulation of multi-component Al alloys

    International Nuclear Information System (INIS)

    Du Yong; Liu Shuhong; Chang, Keke; Hu Biao; Bu Mengjie; Jie Wanqi; Huang Weidong; Wang Jincheng

    2012-01-01

    Based on critical review for the available experimental phase diagram data of the Al-Cu-Fe-Mn, Al-Cu-Fe-Ni, Al-Cu-Fe-Si, Al-Fe-Mg-Si, Al-Fe-Mn-Si, and Al-Mg-Mn-Zn systems, a set of self-consistent thermodynamic parameters for these systems has been established using CALPHAD approach. In combination with the constituent binary, ternary, and quaternary systems, a thermodynamic database for the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system is developed. The calculated phase diagrams and invariant reactions agree well with the experimental data. The obtained database has been used to describe the solidification behaviour of Al alloys: Al365.1(91.95Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, in wt.%) and Al365.2 (92.77Al-0.08Fe-0.35Mg-6.8Si, in wt.%) under both equilibrium and Gulliver-Scheil non-equilibrium conditions. The reliability of the present thermodynamic database is verified by the good agreement between calculation and measurement for both equilibrium and Gulliver–Scheil non-equilibrium solidification.

  15. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    Science.gov (United States)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  16. a Calorimetric Study of the Precipitation Hardening Mechanisms in AN Al-Cu-Mg-Si Alloy

    Science.gov (United States)

    Hayoune, Abdelali

    2013-08-01

    The precipitation phenomena and the related hardening in an Al-Cu-Mg-Si alloy were studied by calorimetry, X-ray diffraction analysis and microhardness measurements. The main calorimetric peaks were identified to be due to β‧‧, θ‧ and Q‧ phases precipitation. The hardening during aging at room temperature and 160°C, was respectively, explained by atomic clusters and GP zones formation and by GP zones and β‧‧/θ‧ phases coprecipitation. Although the mechanical properties variation during aging at 200°C is simple, the corresponding microstructural evolution is complex: on the basis of the DSC results, the increasing of microhardness values, is mainly due to the coprecipitation of GP zones and β‧‧/θ‧ phases, however, the maximum hardening is explained by the coexistence of β‧‧/θ‧ and θ‧‧ phases. Another important conclusion is that during aging at 160°C and 200°C, the θ‧ phase is essentially developed from GP zones.

  17. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  18. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  19. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    Science.gov (United States)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  20. Defect investigations of micron sized precipitates in Al alloys

    Science.gov (United States)

    Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  1. Defect investigations of micron sized precipitates in Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B; Korff, B; Balarisi, O; Eich, P; Haaks, M; Kohlbach, I; Maier, K; Sottong, R [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, D-53115 Bonn (Germany); Staab, T E M, E-mail: klobes@hiskp.uni-bonn.de [Fraunhofer ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) in combination with the High Momentum Analysis (HMA). Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg{sub 2}Si and Al{sub 2}Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  2. Differential Scanning Calorimetry and Thermodynamic Predictions—A Comparative Study of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Gernot K.-H. Kolb

    2016-08-01

    Full Text Available Al-Zn-Mg-Cu alloys are widely used in aircraft applications because of their superior mechanical properties and strength/weight ratios. Commercial Al-Zn-Mg-Cu alloys have been intensively studied over the last few decades. However, well-considered thermodynamic calculations, via the CALPHAD approach, on a variation of alloying elements can guide the fine-tuning of known alloy systems and the development of optimized heat treatments. In this study, a comparison was made of the solidus temperatures of different Al-Zn-Mg-Cu alloys determined from thermodynamic predictions and differential scanning calorimetry (DSC measurements. A variation of the main alloying elements Zn, Mg, and Cu generated 38 experimentally produced alloys. An experimental determination of the solidus temperature via DSC was carried out according to a user-defined method, because the broad melting interval present in Al-Zn-Mg-Cu alloys does not allow the use of the classical onset method for pure substances. The software algorithms implemented in FactSage®, Pandat™, and MatCalc with corresponding commercially available databases were deployed for thermodynamic predictions. Based on these investigations, the predictive power of the commercially available CALPHAD databases and software packages was critically reviewed.

  3. Structure and phase composition of Al-Ce-Cu system alloys in range of quasi-binary Al-Al8CeCu4 section

    International Nuclear Information System (INIS)

    Belov, N.A.; Khvan, A.V.

    2007-01-01

    The phase diagram of the Al-Cu-Ce system in the quasibinary section area of Al-Al 8 CeCu 4 has been investigated by metallographic, thermal, micro-X-ray spectral and X-ray structural analyses. The parameters of the eutectic reaction L→(Al)+CeCu 4 Al 8 : T=610 Deg C were found out; the composition was 14% Cu and 7% Ce. This eutectics is of a disperse structure and the ternary compound contained is capable of fragmentation and spheroidizing in the heating process (starting from 540 Deg C). It was demonstrated that the area of optimal (Al)+CeCu 4 Al 8 eutectics-based alloy compositions was within the narrow limits. That is related to the fact that at a comparatively little variation of the Cu:Ce=2 ratio solidus sharply decreases and, as a result, the crystallization interval considerably extends [ru

  4. Electron-beam-induced structure transformation of the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy

    Science.gov (United States)

    Reyes-Gasga, J.; R. Garcia, G.; Jose-Yacaman, M.

    1995-02-01

    Some details on the phase transformation experienced by the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy under a 400 kV electron beam are given. The transition is observed in situ with a high resolution electron microscope and recorded on video tape. The results show that the electron beam radiation produces a sequence of changes similar to the ones observed in an ion-beam-induced amorphization process. Considering electron radiation damage analysis, the results agree well with the "flip-flop" model [Coddens, Bellisent, Calvayrac and Ambroise (1991) Europhys. Lett.16, 271] where the transition from a quasicrystalline phase to a crystalline phase is produced by atomic displacements but not in a cascade way.

  5. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  6. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys

    Science.gov (United States)

    An, X. H.; Han, W. Z.; Huang, C. X.; Zhang, P.; Yang, G.; Wu, S. D.; Zhang, Z. F.

    2008-05-01

    Lack of plasticity is the main drawback for nearly all ultrafine-grained (UFG) materials, which restricts their practical applications. Bulk UFG Cu-Al alloys have been fabricated by using equal channel angular pressing technique. Its ductility was improved to exceed the criteria for structural utility while maintaining a high strength by designing the microstructure via alloying. Factors resulting in the simultaneously enhanced strength and ductility of UFG Cu-Al alloys are the formation of deformation twins and their extensive intersections facilitating accumulation of dislocations.

  7. Pitting corrosion of Al and Al-Cu alloys by ClO4- ions in neutral sulphate solutions

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Abd El Rehim, Sayed S.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The influence of various concentrations of NaClO 4 , as a pitting corrosion agent, on the corrosion behaviour of pure Al, and two Al-Cu alloys, namely (Al + 2.5 wt% Cu) and (Al + 7 wt% Cu) alloys in 1.0 M Na 2 SO 4 solution was investigated by potentiodynamic polarization and potentiostatic techniques at 25 deg. C. Measurements were conducted under the influence of various experimental conditions, complemented by ex situ energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) examinations of the electrode surface. In free perchlorate sulphate solutions, for the three Al samples, the anodic polarization exhibits an active/passive transition. The active dissolution region involves an anodic peak (peak A) which is assigned to the formation of Al 2 O 3 passive film on the electrode surface. The passive region extends up to 1500 mV with almost constant current density (j pass ) without exhibiting a critical breakdown potential or showing any evidence of pitting attack. For the three Al samples, addition of ClO 4 - ions to the sulphate solution stimulates their active anodic dissolution and tends to induce pitting corrosion within the oxide passive region. Pitting corrosion was confirmed by SEM examination of the electrode surface. The pitting potential decreases with increasing ClO 4 - ion concentration indicating a decrease in pitting corrosion resistance. The susceptibility of the three Al samples towards pitting corrosion decreases in the order: Al > (Al + 2.5 wt% Cu) alloy > (Al + 7 wt% Cu) alloy. Potentiostatic measurements showed that the rate of pitting initiation increases with increasing ClO 4 - ion concentration and applied step anodic potential, while it decreases with increasing %Cu in the Al samples. The inhibitive effect of SO 4 2- ions was also discussed

  8. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2007-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  9. Study on the preparation of the SiCp/Al-20Si-3Cu functionally graded material using spray deposition

    International Nuclear Information System (INIS)

    Su, B.; Yan, H.G.; Chen, G.; Shi, J.L.; Chen, J.H.; Zeng, P.L.

    2010-01-01

    Research highlights: → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → In the experimental setup, the novel devices play an important role in adjusting the output of SiCp to prepare the FGM. → The experiment results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. → The fraction of SiC particles has no obvious influence on the phase constitutions of the SiCp/Al-20Si-3Cu FGM. - Abstract: The SiCp/Al-20Si-3Cu functionally gradient material (FGMs) was successfully prepared via the spray deposition technique accompanied with an automatic control system. The results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. The part with the higher SiCp weight fraction exhibits a relatively smaller density than that with the lower SiCp weight fraction. However, the microhardness and the porosity increase with the increasing SiCp weight fraction in the as-deposited preform. The X-ray diffraction results exhibit that the secondary phases in the regions with the different amount of SiC particles are the same such as Al 2 Cu and AlCuMg. The spray deposition technology is promising to produce a wide range of other FGMs.

  10. Quantitative TEM study of the precipitation microstructure in aluminium alloy Al(MgSiCu) 6056 T6

    International Nuclear Information System (INIS)

    Delmas, F.; Casanove, M.J.; Lours, P.; Couret, A.; Coujou, A.

    2004-01-01

    The precipitate microstructure in the last-generation aluminium alloy 6056 T6 [AlMgSiCu] is investigated using three complementary techniques of transmission electron microscopy (TEM) with a special focus on the density and volume fraction of strengthening particles. High-resolution TEM allows the identification of the precipitates and the measurement of the precipitate sizes to be performed. Conventional TEM is used to evaluate the number of precipitates in the investigated area as well as their distribution in the matrix. In situ TEM straining, via the analysis of the dislocation slip traces, permits to determine precisely the thickness and the volume of the foil in the region where the precipitates are analysed. Taking into account the shape and the dimensions of precipitates with respect to the foil thickness, a novel methodology for measuring the volume density and the volume fraction of precipitates is proposed

  11. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  12. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    Science.gov (United States)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  13. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  14. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  15. Effect of high power ultrasound on mechanical properties of Al-Si alloys

    Science.gov (United States)

    Srivastava, N.; Gupta, R.; Chaudhari, G. P.

    2018-03-01

    Effect of high power ultrasonic treatment on the solidification microstructures of Al-Si alloys containing varying content of solute Si (1, 2, 3 and 5 wt %) is investigated. Large variation in microstructures is seen and refinement of primary α-Al grains is observed. It is observed that increasing the weight percentage of solute along with ultrasonic treatment resulted in finer primary phase. By increasing the solute content from 1% to 5 wt.% in Al-Si alloys, hardness increased by about 38% without and 48% with ultrasonic treatment. Tensile strength of the alloys with ultrasonic treatment is higher as compared to those without ultrasonic treated.

  16. Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys

    National Research Council Canada - National Science Library

    Di Russo, E; Conserva, M; Gatto, F

    1974-01-01

    An investigation was carried out to determine the metallurgical properties of Al-Zn-Mg and Al-Zn-Mg-Cu alloy products processed according to newly developed Final Thermomechanical Treatments (FTMT) of T-AHA type...

  17. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  18. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  19. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    Directory of Open Access Journals (Sweden)

    No Kookil

    2016-01-01

    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  20. Effect of Heat Treatments on the Microstructure, Hardness and Corrosion Behavior of Nondendritic AlSi9Cu3(Fe Cast Alloy

    Directory of Open Access Journals (Sweden)

    Nacer ZAZI

    2013-09-01

    Full Text Available In this paper we studied the influence of heat treatments on properties of AlSi9Cu3(Fe nondendritic cast alloy. Solution heat treatment, six hours at 520 °C, while making the grains more spherical modifies corrosion morphology into intergranular corrosion and corrosion surrounding spherical particles in 3 % NaCl solution. Past solution treatment, quenching at 520 °C after one hour with two weeks of natural aging transform the shape of grains into equiaxes form. Two weeks of natural aging and 30 minutes of aging at 150, 200, 250 °C after solution treatment and quenching give birth to the "Chinese script" form of the Al15(MnFe3Si intermetallic particles. The prolongation of the duration period of aging to one hour at 200 °C is sufficient to transform the morphology of corrosion into located corrosion by pitting, and a longer aging cancels the "Chinese script" form. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1397

  1. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  2. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Park, Jung-Soo; Jung, Yoon-Chul; Ahn, Jung-Ho; Yokoyama, Yoshihiko; Inoue, Akihisa

    2009-01-01

    The friction welding of three kinds of Zr-Cu-Al bulk glassy alloys (BGAs) which show eutectic or hypoeutectic compositions to similar and dissimilar BGAs and crystalline metals has been tried. The shape and volume of the protrusion formed at the weld interface were investigated. In order to characterize the friction welded interface, micrographic observation and X-ray diffraction analysis on the weld cross-section were carried out. A successful joining of Zr-Cu-Al bulk glassy alloys to similar and dissimilar BGAs was achieved without occurrence of crystallizations at the weld interface through the precise control of friction conditions. In addition, the joining of Zr 50 Cu 40 Al 10 BGA to crystalline alloys was tried, but it was only successful for specific material combinations. The residual strength after welding of dissimilar BGAs was evaluated by the four-point bending test.

  3. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  4. Tem Observation Of Precipitate Structures In Al-Zn-Mg Alloys With Additions Of Cu/Ag

    Directory of Open Access Journals (Sweden)

    Watanabe K.

    2015-06-01

    Full Text Available Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2at.% and the same as, respectively. Ag or Cu added alloy showed higher maximum hardness than base alloy. The particle shape and rod shape precipitates were observed in all alloys peak-aged at 423K. According to addition of Ag or Cu, the number density of the precipitates increased higher than that of base alloy.

  5. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    International Nuclear Information System (INIS)

    Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P.

    2009-01-01

    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 x 10 5 K/s and 5 x 10 7 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 deg. C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al-20Si-5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (∼ 1 μm), eutectic Al-Si phase with eutectic spacing of ∼ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5-7 at.% silicon and nanometric Si precipitates (20-40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al-20Si-5Fe alloy was noticed, particularly in the Ni-containing alloy.

  6. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  7. The roles of Al{sub 2}Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Spinelli, Jose E. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Freire, Celia M.A. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Cardona, Margarita B. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Garcia, Amauri [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)]. E-mail: amaurig@fem.unicamp.br

    2007-09-27

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al{sub 2}Cu fractions. The aim of this study was to investigate the influence of Al{sub 2}Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al{sub 2}Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al{sub 2}Cu fraction.

  8. Modeling of Precipitation Sequence and Ageing Kinetics in Al-Mg-Si Alloys

    NARCIS (Netherlands)

    Bahrami, A.

    2010-01-01

    Al-Mg-Si alloys are heat treatable alloys in which strength is obtained by precipitation hardening. Precipitates, formed from a supersaturated solid solution during ageing heat treatment, are GP-zones, B", B´ and B-Mg2Si. Precipitation kinetics and strength vary with alloy composition and process

  9. The effect of the T6 heat treatment on hardness and microstructure of the en AC-AlSi12CuNiMg alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2014-01-01

    Full Text Available Presented work discusses research results concerning the effect of the T6 heat treatment process, including soaking of the alloy near the solidus temperature, holding in this temperature and next cooling in cold water (20 oC, as well as exposing to the artificial ageing to check the change in HB hardness and microstructure of the EN AC-AlSi12Cu-NiMg (EN AC-48000 alloy modified with strontium and cast into metal moulds. The temperature range of solutioning and ageing treatments was selected on the basis of crystallization curves recorded with the use of thermal-derivative method. Performed investigations enabled to determine the optimal parameters (temperature and time of solutioning and ageing heat treatments and their effect on the change in alloy’s hardness.

  10. L10 ordered structures in Al-Cu-(Mg alloys at the early stages of elevated temperature aging

    Directory of Open Access Journals (Sweden)

    Fuzhong, Xia

    2016-09-01

    Full Text Available This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. % alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg alloys were characterized by Transmission Electron Microscopy (TEM and High Resolution Transmission Electron Microscopy (HTREM. 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg alloys during aging.En este trabajo se estudian las estructuras de precipitación en Al-3Cu y Al-3Cu-1,78Mg (% en peso en los estados iniciales de envejecimiento a temperatura elevada. Las aleaciones Al-3Cu y Al-3Cu-1.78 Mg fueron sometidas a un tratamiento térmico de solución de 2 h a 540 °C y 500 °C, respectivamente, y posteriormente envejecidas 2 min a 190 °C. Las estructuras de precipitación en Al-3Cu-(1.78Mg envejecido fueron caracterizadas por microscopía electrónica de transmisión (TEM y por microscopía electrónica de transmisión de alta resolución (HTREM. Los diagramas de difracción de electrones de área seleccionada indican que se forman estructuras ordenadas L10 en las dos aleaciones envejecidas. Experimentos de HRTEM revelan la presencia de dislocaciones parciales en las intercaras de las estructuras L10 ordenadas. Comparando estos resultados experimentales con la

  11. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  12. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    Science.gov (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  13. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  14. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  15. Gibbsian and radiation-induced segregation in Cu--Li and Al--Li alloys

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Susman, S.; Venugopalan, M.; Ron, M.

    1983-01-01

    Previous experiments on segregation in dilute alloys of lithium in aluminum have demonstrated rapid enrichment of lithium in the uppermost monolayer, as well as a slower buildup in the subsurface region as a result of radiation-induced segregation effects during sputtering. Surface and subsurface enrichment of lithium in copper and aluminum alloys has been observed by secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS). The activation energies for lithium diffusion in Cu and Al have been measured and segregation kinetics are compared for dilute alloys of Li in Cu and Al, and a high lithium content copper alloy. The results are interpreted in terms of both Gibbsian and radiation-induced segregation effects

  16. Recovery of the mechanical properties on the Al-4wt%Cu alloy

    International Nuclear Information System (INIS)

    Chemingui, M; Kassis, K; Khitouni, M; Masmoudi, J; Kolsi, A W

    2010-01-01

    The recovery of the mechanical properties on the Al-4%wtCu alloy was investigated by indentation after cold rolling. The microstructural evolution was performed using optical and scanning electron microscopies. The annealing at 200 deg. C of the quenched and rolled alloy gives higher mechanical qualities. At temperatures up to 200 deg. C, the alloy has no softening by recovery, but on the contrary a hardening behaviour was observed. This later is attributed to the presence of the intermediate θ'' and θ' phases. Nevertheless, the ageing in high temperature product the coalescence of iron particles and of Al 2 Cu precipitates. These phases are essentially localized in the grain boundaries, which caused the damage of the alloy.

  17. Microstructure and mechanical properties of Al-Si-X alloys fabricated by gas atomization and extrusion process

    International Nuclear Information System (INIS)

    Lee, T.H.; Hong, S.J.

    2009-01-01

    In order to develop good wear resistant and high-strength alloys, Al 81 Si 19 alloy was reinforced with transition elements such as Ni and Ce. The solubility of Si in aluminum was amplified, with increasing the Ni and Ce content in the rapidly solidified powders. The extruded bars consist of homogeneously dispersed fine Si particles along with Al 3 Ni and Al 3 Ce compounds (30-120 nm) in aluminum matrix (grain size below 500 nm). The tensile strength at room temperature for Al 81 Si 19 , Al 78 Si 19 Ni 2 Ce 0.5 and Al 76 Si 19 Ni 4 Ce 1 bars extruded at 400 deg. C was estimated as 281, 521, and 668 MPa, respectively. In addition, the maximum tensile strength of 730 MPa was attained in Al 73 Si 19 Ni 7 Ce 1 bulk alloy. The uniform dispersion of precipitates (Si, Al 3 Ni and Al 3 Ce particles) from the supersaturated Al matrix of ternary and quaternary alloys after extrusion was effective for enhanced mechanical properties.

  18. Simulation of spheroidisation of elongated Si-particle in Al-Si alloys by the phase-field model

    International Nuclear Information System (INIS)

    Kovacevic, I.

    2008-01-01

    The application of the phase-field model for spheroidisation of undissolvable particles during high-temperature treatment of alloys is pointed out. Modelling of the spheroidisation of elongated Si-particles during annealing of Al-Si alloy is elaborated in this paper. The driving force for spheroidisation is the minimization of the total free-energy of the system or the minimization of the ratio between the interface areas and the particle volumes. The spheroidisation kinetics of elongated Si-particle for binary Al-Si system during homogenisation of aluminium alloys simulated by the phase-field model is demonstrated. The influences of the interface energy and the homogenisation temperature on the spheroidisation kinetics is presented. The lack of knowledge of the interface energy anisotropy between Si-particle and the aluminium phase is the only reason for using isotropic interface energy in simulations. The thermodynamic driving force for the phase transformation of the silicon into the aluminium phase is computed from the data obtained from the JMatPro software for aluminium alloys

  19. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    Science.gov (United States)

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  20. Mechanical and microstructural properties of Cu-Al-Ni-Mn-Zr shape memory alloy processed by spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Cava, R.D.; Bolfarini, C.; Kiminami, C.S.; Mazzer, E.M.; Pedrosa, V.M.; Botta, W.J.; Gargarella, P. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Cu-based shape memory alloys (SMA) presents higher thermal and electrical conductivities, low material cost and combine good mechanical properties with a pronounced shape memory effect [1]. By using rapid solidification methods, their microstructure is refined and detrimental segregations can be avoided, which results in better mechanical properties. Additionally, the microalloying additions as Ti, B, Si and Zr can refine the grains and improve of mechanical and thermal properties of Cu-based SMA alloys [2-4]. In this investigation the Cu81.95Al11.35Ni3.2Mn3Zr0.5 (wt%) SMA alloy has been processed by spray forming in order to investigate the potential of achieving a deposit with adequate microstructure with goal to a SMA part production. The alloy was atomized with nitrogen gas at pressure of 0.5MPa. The microstructure of the deposit was characterized by optical and scanning electron microscopy and X-ray diffraction. The deposit presented homogeneous microstructure consisting of equiaxial grains with martensite microstructure and mean grain size of 30 ?m. The shape memory effect and the temperatures transformation have been evaluated by differential scanning calorimetric. The mechanical properties were evaluated by tensile and compression tests at room and at 220 deg C(T>Af) temperatures. [1] T. Waitz, et al., T, J. of the Mechanics and Physics of Solids, 55, 2007. [2] D. W. Roh, et al., Metall Trans. A, 21, 1990. [3] D. W. Roh, et al., Mat. Sci. and Eng. A136, 1991. (author)

  1. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  2. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  3. Generalized planar fault energies and twinning in Cu-Al alloys

    Science.gov (United States)

    Kibey, S.; Liu, J. B.; Johnson, D. D.; Sehitoglu, H.

    2006-11-01

    We report ab initio density functional theory calculations of generalized planar fault energies of fcc Cu -xAl (x =0, 5.0, and 8.3at.%) alloys. We investigate the effects of substitutional solute Al on the unstable intrinsic γus and twin γut stacking fault energies (SFEs). Our results reveal an increased tendency of Cu-Al to deform preferentially by twinning with increasing Al content, consistent with experiment. We attribute this mechanical behavior to appreciable lowering of the twinning barrier γut, along with the stable intrinsic and twin SFEs.

  4. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-05-15

    The grain refining response of Al and Al-7Si alloy has been studied with various Al-Ti, Al-B and Al-Ti-B master alloys at different addition levels. The results show that Al-B and B rich Al-Ti-B master alloys cannot grain refine Al, while they are efficient grain refiners to Al-7Si alloy. The level of grain refinement saturates after 0.03% of Ti or B for most of the master alloys studied both at short and long holding times. The grain refining efficiency of some elements other than Ti and B on Al-7Si alloy has also been studied. Interestingly, all the elements studied (B, Cr, Fe, Mg, Ni, Ti and Zr) have resulted in some grain refinement of Al-7Si alloy at short holding time and have shown fading/poisoning on long holding, which increased in the order of B (no poisoning), Ti, Cr, Ni, Fe, Mg, Zr. Sr (0.02%) has been found to provide complete modification of the eutectic in Al-7Si alloy within 2 min, which is not lost even after long holding up to 120 min. Significant improvements in the mechanical properties have been obtained by a combination of grain refinement and modification to an extent that was not possible by either of them alone. (orig.)

  5. Li-atoms-induced structure changes of Guinier–Preston–Bagaryatsky zones in AlCuLiMg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Duan, S.Y.; Le, Z.; Chen, Z.K.; Gao, Z. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, J.H., E-mail: jhchen123@hnu.edu.cn [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Advanced Research Center, Central South University, Changsha 410083 (China); Ming, W.Q.; Li, S.Y.; Wu, C.L. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Yan, N. [Advanced Research Center, Central South University, Changsha 410083 (China)

    2016-11-15

    Guinier–Preston–Bagaryatsky (GPB) zones are the well-known strengthening precipitates of AlCuMg alloys formed upon thermal ageing. Here we report that when formed in AlCuLiMg alloys the GPB zones can change significantly in morphology and structure. It is shown that though they do still consist of Al, Cu and Mg elements fundamentally, the GPB zones in AlCuLiMg alloys have a rather different structure due to a featured Li-segregation at their interfaces with the matrix and possible Li-replacement of partial Mg atoms in the structure. As such the Li-containing GPB zones often develop from one-dimensional to quasi-two-dimensional precipitates. - Highlights: • We observe Guinier–Preston–Bagaryatsky zone variants in AlCuLiMg alloys. • We obtain atomic-resolution images of the precipitates and model their structures. • Li-atoms play a key role in modifying the structure of these precipitate variants.

  6. Effects of La and Ce Addition on the Modification of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Elgallad

    2016-01-01

    Full Text Available This study focuses on the effects of the addition of rare earth metals (mainly lanthanum and cerium on the eutectic Si characteristics in Al-Si based alloys. Based on the solidification curves and microstructural examination of the corresponding alloys, it was found that addition of La or Ce increases the alloy melting temperature and the Al-Si eutectic temperature, with an Al-Si recalescence of 2-3°C, and the appearance of post-α-Al peaks attributed to precipitation of rare earth intermetallics. Addition of La or Ce to Al-(7–13% Si causes only partial modification of the eutectic Si particles. Lanthanum has a high affinity to react with Sr, which weakens the modification efficiency of the latter. Cerium, however, has a high affinity for Ti, forming a large amount of sludge. Due to the large difference in the length of the eutectic Si particles in the same sample, the normal use of standard deviation in this case is meaningless.

  7. Tensile Strength of the Al-9%Si Alloy Modified with Na, F and Cl Compounds

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2010-01-01

    Full Text Available The modification of the Al-9%Si alloy with the use of a complex modifier containing Na, F and Cl was investigated in the study. The modifier was composed of NaCl, Na3AlF6 and NaF compounds. The modifier and the liquid Al-Si alloy were kept in the crucible for 15 minutes. The modifier's effect relative to the weight of the processed alloy on its tensile strength was presented in graphic form. The results of the study indicate that the complex modifier altered the investigated properties of the eutectic Al-9%Si alloy.

  8. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  9. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  10. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  11. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  12. Ternary diffusion in Cu-rich fcc Cu–Al–Si alloys at 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Lijun [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Du, Yong, E-mail: yongducalphad@gmail.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Xu, Honghui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Jin, Zhanpeng [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2013-07-25

    Highlights: •Interdiffusivities in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined. •The present results were compared with experimental data in boundary binary systems. •The present results were validated by thermodynamic constraints and Fick’s law. •The sign of ternary cross diffusivities was predicted in terms of thermodynamics. -- Abstract: Utilizing six groups of bulk diffusion couples and with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined by the Matano-Kirkaldy method. Using a three-dimensional representation, the obtained main ternary diffusion coefficients were found to be consistent with the experimental data in boundary binaries available in the literature. The reliability of the obtained interdiffusivities was further validated by thermodynamic constraints as well as by Fick’s second law applied to numerical simulation. The sign of the ternary cross diffusivities in fcc Cu–Al–Si alloys, which shows a noticeable effect on microstructure, was also successfully predicted in terms of thermodynamics.

  13. Ternary diffusion in Cu-rich fcc Cu–Al–Si alloys at 1073 K

    International Nuclear Information System (INIS)

    Liu, Dandan; Zhang, Lijun; Du, Yong; Xu, Honghui; Jin, Zhanpeng

    2013-01-01

    Highlights: •Interdiffusivities in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined. •The present results were compared with experimental data in boundary binary systems. •The present results were validated by thermodynamic constraints and Fick’s law. •The sign of ternary cross diffusivities was predicted in terms of thermodynamics. -- Abstract: Utilizing six groups of bulk diffusion couples and with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined by the Matano-Kirkaldy method. Using a three-dimensional representation, the obtained main ternary diffusion coefficients were found to be consistent with the experimental data in boundary binaries available in the literature. The reliability of the obtained interdiffusivities was further validated by thermodynamic constraints as well as by Fick’s second law applied to numerical simulation. The sign of the ternary cross diffusivities in fcc Cu–Al–Si alloys, which shows a noticeable effect on microstructure, was also successfully predicted in terms of thermodynamics

  14. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  15. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  16. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  17. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy.

    Science.gov (United States)

    Timpel, M; Wanderka, N; Schlesiger, R; Yamamoto, T; Isheim, D; Schmitz, G; Matsumura, S; Banhart, J

    2013-09-01

    The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning". Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  19. Effects of Si on the microstructure, ordering transformation and properties of the Cu60Zn40 alloy

    International Nuclear Information System (INIS)

    Doostmohammadi, Hamid; Moridshahi, Hamid

    2015-01-01

    Highlights: • A duplex brass (Cu 60 Zn 40 ) was developed by additions of Si. • Phase fractions in the microstructure were changed and β phase was increased. • Microstructural changes were discussed by electron to atom ratio. • Dilatometric showed that Si increased the ordering temperature of β to β′. • The developed lead-free brass alloy can find application in machining. - Abstract: Effects of small additions of Si to Cu 60 Zn 40 on the properties, microstructure and phase transformation were investigated. It was found that Si promotes the formation of β′ phase and the microstructure of the alloys was changed from duplex α + β′ to single phase β′ brass. Electron to atom ratio was calculated and it was concluded that increment in this ratio led to a decrease in stacking fault energy which had an important role in reduction of the grain size as well microstructural variations in this study. The dilatomeric analysis showed that Si increased the ordering temperature of Cu 60 Zn 40 alloy. Finally, based on the properties, the Cu–Zn 40 –Si alloys are predicted to have the potential of being an alternative for free cutting leaded brass

  20. Marbled texture of sputtered Al/Si alloy thin film on Si

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M.G. [Physics Department and NIS Interdepartmental Center, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Muñoz-Tabares, J.A.; Chiodoni, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy); Sgorlon, C. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Para, I. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Carta, R.; Richieri, G. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Bejtka, K. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy); Merlin, L. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Vittone, E. [Physics Department and NIS Interdepartmental Center, University of Torino, via P. Giuria 1, 10125 Torino (Italy)

    2016-08-01

    DC magnetron sputtering is a commonly used technique for the fabrication of silicon based electronic devices, since it provides high deposition rates and uniform large area metallization. However, in addition to the thickness uniformity, coating optical uniformity is a crucial need for semiconductor industrial processes, due to the wide use of optical recognition tools. In the silicon-based technology, aluminum is one of the most used materials for the metal contact. Both the pre-deposition substrate cleaning and the sputtering conditions determine the quality and the crystalline properties of the final Al deposited film. In this paper is shown that not all the mentioned conditions lead to good quality and uniform Al films. In particular, it is shown that under certain standard process conditions, Al/Si alloy (1% Si) metallization on a [100] Si presents a non-uniform reflectivity, with a marbled texture caused by flakes with milky appearance. This optical inhomogeneity is found to be caused by the coexistence of randomly orient Al/Si crystal, with heteroepitaxial Al/Si crystals, both grown on Si substrate. Based on the microstructural analysis, some strategies to mitigate or suppress this marbled texture of the Al thin film are proposed and discussed. - Highlights: • Sputtered Al/Si layers deposited on Si present evident optical non-uniformity • It could be an issue for optical recognition tools used in semiconductor industries • Optical non-uniformity is due to randomly oriented growth of Al grains. • Substrate misorientation and process temperature can mitigate the problem.

  1. Study of the evolution of the microstructure and hardness of Cu-Al and Cu-Al-Ti alloys during their production by reactive milling and extrusion

    International Nuclear Information System (INIS)

    Figueroa, F; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    The microstructure and hardness of two alloys produced by reactive milling of elementary powders for 10, 20 and 30 hours and later hot extrusion were studied: a Cu-5 vol.% Al 2 O 3 binary and another Cu-2.5 vol.%TiC-2.5 vol.% Al 2 O 3 ternary. The microstructure of the alloys was characterized with a transmission electron microscope (TEM), X-ray diffraction (XRD) and different methods of chemical analysis. Then their hardness was evaluated before and after annealing at 873 K. The extruded binary alloy showed a micrometric grain structure, with nanometric subgrains (100 nm), together with the formation of nanometric dispersoids of semi-coherent Al 2 0 3 with the Cu matrix. The ternary alloy showed a microstructure very similar to the binary alloy, except that it also showed the formation of nanometric TiC dispersoids. The nanoparticles acted effectively as anchoring points for the movement of dislocations and grain growth. The microstructure was observed to be stable after annealing treatments for all the alloys. The milled ternary alloy was 32% harder (290 HV) than the hardest binary alloy (milled for 30 hours) (au)

  2. Phase relationship in AL-Cu-Sc alloys at 450-500 deg C

    International Nuclear Information System (INIS)

    Kharakterova, M.L.

    1991-01-01

    Al-Cu-Sc alloys containing up to 40% Cu and up to 6% Sc at 450 deg C and 500 deg C are studied using light microscopy, X-ray-spectral microanalysis, X-ray diffraction analysis, scanning electron microscopy, measurement of microhardness and electric resistance. It is determined, that in equilibrium with aluminium solid solution under the given temperature ther are Al 3 Sc, CuAl 2 phases of the respective binary systems and W (ScCu 6.6-4 Al 5.4-8 ) ternary phase. Isothermal cross sections of Al-Cu-Sc system at 450 and 500 deg C are plotted. Microhardness of equilibrium phases is measured. Combined solubility of copper and scandium in aluminium is determined

  3. Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Ebrahimi Z.

    2017-12-01

    Full Text Available We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

  4. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  5. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys

    International Nuclear Information System (INIS)

    Chemin, Aline; Marques, Denys; Bisanha, Leandro; Motheo, Artur de Jesus; Bose Filho, Waldek Wladimir; Ruchert, Cassius Olivio Figueiredo

    2014-01-01

    Highlights: • The corrosion on new aerospace aluminum alloy is studied. • Al 7 Cu 2 Fe precipitate was detected in the 7475-T7351 and 7081 T73511 alloy by scanning electron microscopy. • Al 7 Cu 2 Fe particles have different morphologies depending on the forming process. • Corrosion pitting occurs around Al 7 Cu 2 Fe precipitates in 7475-T7351 and 7081-T73511 alloys. - Abstract: The development of aluminum alloys of the Al–Zn–Mg–Cu system is the primary factor that enabled the evolution of aircraft. However, it has been shown that these alloys tend to undergo pitting corrosion due to the presence of elements such as iron, copper and silicon. Thus, the purpose of this study is to evaluate the behavior of the Al 7 Cu 2 Fe precipitate in 7475-T7351 and 7081-T73511 alloys based on microstructural characterization and polarization tests. The corrosion and pitting potentials were found to be very similar, and matrix dissolution occurred around the Al 7 Cu 2 Fe precipitate in both alloys, revealing the anodic behavior of the matrix

  6. Application of a grain refiner and modifier to an Al-12 Si cast alloy

    International Nuclear Information System (INIS)

    Haro R, Sergio; Goytia R, Rafael E; Santos B, Audel; Dwivedi, D.K

    2008-01-01

    The refining and modification of an alloy of cast aluminum Al-12Si was studied, using sample alloys of Al-5Ti-1B as a refiner and Al-10Sr as a modifier. Two levels of each one were tested and added separately. The results show that the addition of titanium as well as of strontium favored the improvement of the tension properties of the cast Al-12Si alloy, by modifying the microstructure. But the addition of 0.06% Sr in the form of a master alloy produced a more adequate microstructure and presented the best combination of mechanical properties (au)

  7. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    Science.gov (United States)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  8. Modification of Al-Si (13%) alloy using different modifiers

    International Nuclear Information System (INIS)

    Ikram, N.; Raza, M.R.; Ahmad, R.

    2007-01-01

    During present research work LM 13 aluminium silicon alloy was prepared using high purity aluminium ingot and various master alloys of AI-Si, AI-Cu, AI-Ni, AIFe, AI-Mn and AI-Mg. A gas fired crucible pit type furnace was used to prepare various heats of LM 13 alloy. Degassing procedure was carried out by using perforated bell type plunger using the degassing tablet. Modification was performed by plunging the modifier at the bottom of the crucible containing the molten metal. Three types of modifiers sodium salt, metallic sodium and strontium in the form of AI-Sr master alloy were used in order to evaluate the microstructure and tensile properties of the alloy. Degassed, unmodified and modified test samples for metallurgical testing purposes were prepared according to the standard procedures. (author)

  9. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  10. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  11. Microstructure and mechanical properties of Al-Cu-Mg-Mn-Zr alloy with trace amounts of Ag

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Pan Qinglin; Lu Congge; He Yunbin; Li Wenbin; Liang Wenjie

    2009-01-01

    The microstructure and mechanical properties of Al-Cu-Mg-(Ag)-Mn-Zr alloys were studied by means of tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that small additions of Ag to Al-Cu-Mg-Mn-Zr alloy can accelerate the hardening effect of the aged alloy and reduce the time to peak-aged. The mechanical properties can be improved both at room temperature and at elevated temperatures, which is attributed to the fine and uniform plate-like Ω precipitates. Meanwhile the ductility of the studied alloys remains at relatively high level. The major strengthening phases of the Ag-free alloy are θ' and less S', while that of Al-Cu-Mg-Mn-Zr alloy containing trace amounts of Ag are Ω and less θ'.

  12. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  13. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Misoriented dislocation substructures and the fracture of polycrystalline Cu-Al alloys

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.; Kozlov, E. V.

    2016-10-01

    The evolution of the dislocation substructure in polycrystalline Cu-Al alloys with various grain sizes is studied during deformation to failure. A relation between the fracture of the alloys and the forming misorientation dislocation substructures is revealed. Microcracks in the alloy are found to form along grain boundaries and the boundaries of misoriented dislocation cells and microtwins.

  15. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio

    International Nuclear Information System (INIS)

    Liu, L.; Chen, J.H.; Wang, S.B.; Liu, C.H.; Yang, S.S.; Wu, C.L.

    2014-01-01

    The precipitations in an Al–5.0Cu–0.3Mg (wt%) alloy and an Al–5.0Cu–0.3Mg–0.3Si (wt%) alloy have been systematically investigated by high-angle annular dark-field scanning transmission electron microscopy. The results are compared to clarify the effect of Si addition. The nucleation and growth process of θ′ (Al 2 Cu) phase in Si-containing alloy during isothermal ageing at 180 °C is revealed in detail. The formation of Q″-type precipitates, on which the θ′ precursors nucleate heterogeneously, contributes to the considerable increase in the ageing kinetics and higher strength at the early ageing stage. The thickening of the θ′ precipitate is largely confined due to the rather small size of fine Q″-type precipitate. As a result, a large proportion of θ′ phase precipitates possess a specific thickness of 2c θ′ and change slightly during the entire observed duration of ageing. The θ′ growth mechanism distinct from the Al–Cu–Mg alloy finally leads to a refined θ′ morphology regarding the thickness and aspect ratio (diameter/thickness). As is counterintuitive, the θ′ precipitate thickness distribution is demonstrated to have little effect on the mechanical property steadiness at the late ageing stage of the Al–Cu–Mg–(Si) alloys

  16. L-J phase in a Cu2.2Mn0.8Al alloy

    Science.gov (United States)

    Jeng, S. C.; Liu, T. F.

    1995-06-01

    A new type of precipitate (designated L-J phase) with two variants was observed within the (DO3 + L21) matrix in a Cu2.2Mn0.8Al alloy. Transmission electron microscopy examinations indicated that the L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254 nm and c = 0.728 nm. The orientation relationship between the L-J phase and the matrix is (100)L-J//(011) m , (010)L-J//(111) m and (001)L-J//(211) m . The rotation axis and rotation angle between two variants of the L-J phase are [021] and 90 deg. The L-J phase has never been observed in various Cu-Al, Cu-Mn, and Cu-Al-Mn alloy systems before.

  17. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  18. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  19. Ion beam mixing to produce disordered AlSi superconducting alloys

    International Nuclear Information System (INIS)

    Xi Xiaoxing; Ran Qize; Liu Jiarui; Guan Weiyan

    1987-01-01

    Multilayered Al/Si films were bombarded with Ar ions at LHe temperature and superconducting transition temperature Tsub(c) was measured in situ. The highest Tsub(c) thus obtained was 7.53 K. The systematic studies on samples with different compositions suggest that ion induced disorder might be the main reason for Tsub(c) enhancement in these AlSi alloys. (author)

  20. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  1. Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys

    Directory of Open Access Journals (Sweden)

    Holjevac-Grgurić T.

    2017-01-01

    Full Text Available Four Cu-rich alloys from the ternary Cu-Al-Mn system were prepared in the electric-arc furnace and casted in cylindrical moulds with dimensions: f=8 mm and length 12 mm. Microstructural investigations of the prepared samples were performed by using optical microscopy (OM and scanning electron microscopy, equipped by energy dispersive spectroscopy (SEM-EDS. Assignation of crystalline phases was confirmed by XRD analysis. Phase transition temperatures were determined using simultaneous thermal analyzer STA DSC/TG. Phase equilibria calculation of the ternary Cu-Al-Mn system was performed using optimized thermodynamic parameters from literature. Microstructure and phase transitions of the prepared as-cast alloys were investigated and experimental results were compared with the results of thermodynamic calculations.

  2. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    OpenAIRE

    Cui S.; Mishra R.; Jung I.-H.

    2018-01-01

    Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed...

  3. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  4. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  5. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    Science.gov (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  6. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  7. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  8. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  9. THE APPLICATION OF Ni FOR IMPROVEMENT OF Al-Si-Fe ALLOYS

    Directory of Open Access Journals (Sweden)

    Jozef Petrík

    2009-09-01

    Full Text Available Iron, often present in secondary material (scrap forms brittle and hard needles in Al-Si alloys.These particles decrease the mechanical properties of castings. A reliable and economic method of iron elimination from aluminium alloys has not been well-known yet in metallurgical practice. The influence of nickel as an iron corrector (up to 0.7 % and iron (up to 2.5 % on the fluidity, microstructure and mechanical properties of the Al alloy with 9.75 % Si, 0.2 % Mg was evaluated. The presence of Ni results in shortening of the needles, but the segmentation of ß needles was not observed. Improvement of mechanical properties was observed despite of low affecting of microstructure.

  10. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions

    International Nuclear Information System (INIS)

    Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W.

    2015-01-01

    Atom probe tomography (APT) analysis and hardness measurements have been used to characterise the early stages of precipitation in three Al–Mg–Si alloys with different Cu contents (Al–0.51 at.%Mg–0.94 at.%Si, with 0.01 at.%, 0.06 at.%, or 0.34 at.% Cu). A range of single and multi- stage heat treatments were chosen to evaluate the changes in precipitation processes. Three ageing temperatures were investigated, 298 K (natural ageing), 353 K (pre-ageing) and 453 K (automotive paint-bake conditions). The Cu content had significant effects on the microstructural evolution within the alloy. Formation of clusters which can act as precursors of elongated precipitates during paint-baking was found to be enhanced with increasing Cu content. This improved the paint-bake hardening response and mitigated the deleterious effects of natural ageing. Cu was present in all precipitates in the highest Cu-containing alloy. These precipitates were believed to be precursors to the Q′ phase. Mechanisms for the effects of Cu on precipitation kinetics are proposed.

  11. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  12. The constitution of alloys in the Al-rich corner of the Al-Si-Sm ternary system

    International Nuclear Information System (INIS)

    Markoli, B.; Spaic, S.; Zupanic, F.

    2001-01-01

    The constitution of alloys and the liquidus surface in the Al-rich corner of the Al-Si-Sm ternary system were determined by the examination of controlled heated and cooled specimens, as well as heat-treated specimens by means of optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential thermal analysis and X-ray diffraction. The Al-rich corner of the Al-Si-Sm ternary system comprises five regions of primary crystallisation (α Al , β Si , Al 3 Sm, Al 2 Si 2 Sm and AlSiSm) with following characteristic invariant reaction sequences: ternary eutectic reaction L → α Al + β Si + Al 2 Si 2 Sm, and two liquidus transition reactions, i. e., L + Al 3 Sm → α Al + AlSiSm, and L + AlSiSm → α Al + Al 2 Si 2 Sm. Along with the position of ternary eutectic and both interstitial points in the Al-rich corner of the Al-Si-Sm ternary system, the temperatures for each reaction were determined. (orig.)

  13. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  14. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    Science.gov (United States)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  15. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  16. Semisolid casting with ultrasonically melt-treated billets of Al-7mass%Si alloys

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2012-02-01

    Full Text Available The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements, such as iron accumulated from recycled scraps. It is strongly required that coarse plate-like iron compound of モ-Al5FeSi turns into harmless form without the need for applying refining additives or expensive virgin ingots. The microstructural modification of Al-7mass%Si alloy billets with different iron contents was examined by applying ultrasonic vibration during the solidification. Ultrasonically melt-treated billets were thixocast right after induction heating up to the semisolid temperature of 583 ìC, the microstructure and tensile properties were evaluated in the thixocast components. Globular primary メ-Al is required to fill up a thin cavity in thixocasting, so that the microstructural modification by ultrasonic melt-treatment was firstly confirmed in the billets. With ultrasonic melt-treatment in the temperature range of 630 ìC to 605 ìC, the primary メ-Al transforms itself from dendrite into fine globular in morphology. The coarse plate-like モ-Al5FeSi compound becomes markedly finer compared with those in non-treated billets. Semisolid soaking up to 583 ìC, does not appreciably affect the size of モ-Al5FeSi compounds; however, it affects the solid primary メ-Al morphology to be more globular, which is convenient for thixocasting. After thixocasting with preheated billets, eutectic silicon plates are extremely refined due to the rapid solidification arising from low casting temperature. The tensile strength of thixocast samples with different iron contents does not change much even at 2mass% of iron, when thixocast with ultrasonically melt-treated billets. However, thixocast Al-7mass%Si-2mass%Fe alloy with non-treated billets exhibits an inferior strength of 80 MPa, compared with 180 MPa with ultrasonically melt-treated billets. The elongation is also improved by about a factor of two in thixocastings with

  17. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  18. Effect of Thermomagnetic Treatment on Structure and Properties of Cu-Al-Mn Alloy.

    Science.gov (United States)

    Titenko, A N; Demchenko, L D; Perekos, A O; Gerasimov, O Yu

    2017-12-01

    The paper studies the influence of magnetic field on magnetic and mechanical properties of Cu-Mn-Al alloy under annealing. The comparative analysis of the magnetic field orientation impact on solid solution decomposition processes in a fixed annealing procedure is held using the methods of low-field magnetic susceptibility, specific magnetization, and microhardness test. The paper highlights changes in the magnetic and mechanical properties of Cu-Al-Mn alloy as the result of change in a critical size of forming precipitated ferromagnetic phase and determines correlation in the behavior of magnetic and mechanical properties of the alloy, depending on a critical nucleus size of forming precipitated ferromagnetic phase.

  19. Effect of processing variables on microstructure and properties of two Al-Li-Cu-Mg-Zr alloys

    International Nuclear Information System (INIS)

    Palmer, I.G.; Lewis, R.E.; Crooks, D.D.

    1984-01-01

    Two Al-Li-Cu-Mg-Zr alloys have been prepared in the form of both powder metallurgy (PM) and ingot metallurgy (IM) alloys. The compositions were selected to meet certain program goals based on the results of an alloy development phase, the details of which have been previously published. The target compositions were Al-3Li-1.5Cu-1Mg-0.2Zr and Al-3Cu-2Li-1Mg-0.2Zr. The PM alloys were prepared from chill cast remelt stock by centrifugal atomization in helium, followed by screening, degassing, and extrusion. The IM alloys were prepared by direct chill (DC) casting, homogenization and extrusion. Full details of the production of the alloys are given. The effects of various processing conditions on microstructure and properties were evaluated, including different heat treatments and stretching conditions. These effects are described in detail with particular emphasis on a comparison of the PM and IM alloys. 10 references

  20. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  1. Utilisation of mould temperature change in eliminating the Al5FeSi phases in secondary AlSi7Mg0.3 alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-03-01

    Full Text Available This article describes the impact of the metal mould temperature change in eliminating the adverse effect of iron in the AlSi7Mg0.3 alloy. The kind of phases based on iron to be formed in aluminium alloys is determined by the alloy chemical composition, the melt overheating temperature prior to casting, and the cooling rate during crystallisation. In the experiment, we used three various mould temperatures, and their impact on the possible change in the adverse Al5FeSi phase, excreted in a needle form to a more compact form of Chinese writing or skeleton units. The experimental part did not use melt overheat that would result in impairment of the melt, for example due to increased gassing of the melt, as well as in a greater load on the smelting unit, thus resulting in increased energy expenditure. We can conclude from the obtained results that the mould temperature change does not have an adequate effect in eliminating the adverse effect of iron in Al-Si-Mg alloys.

  2. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings...... of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer...... as a function of modification and Si content in sand- and chill-cast samples. Eutectic modification, Si content, and cooling conditions have a great impact on the distribution of porosity. Unmodified and Na-modified castings are more easily fed with porosity tending to congregate near the centerline...

  3. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  4. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  5. Phase stability of CuAlMn shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Novák, Václav

    2004-01-01

    Roč. 378, - (2004), s. 216-221 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z1010914 Keywords : CuAlMn * shape memory alloys * martensitic transformation * - stress -strain tests * tension-compression cycling * history dependent phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.445, year: 2004

  6. Effects of grain refinement on the rheological behaviors of semisolid hypoeutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Yan, M.; Luo, W.

    2007-01-01

    The paper experimentally investigated the effects of grain refinement on the rheological response of Al and hypoeutectic Al-Si alloys. Selected refiners included K 2 TiF 6 , K 2 TiF 6 plus graphite and Al-5Ti-B. The apparent viscosity of semisolid Al alloys was measured during solidification. Samples at different solid fractions were quenched to observe the microstructure. It was found that grain refinement drastically lowered the apparent viscosity of Al-Si alloys. Among selected refiners, the effect of Al-5Ti-B was the best. The effect of K 2 TiF 6 plus graphite was better than that of K 2 TiF 6 . Silicon contents in Al alloys affected the apparent viscosity. With increasing silicon content the apparent viscosity decreased, resulted from promotion of silicon to both refining effects of titanium and boron

  7. Porosity formation in Al-Si casting alloys: role of Sr oxide

    International Nuclear Information System (INIS)

    Liu, L.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The strength and quality of an Al-Si alloy casting are determined by its microstructure and the amount of porosity present in the casting. Modification is one of the processes used to improve the microstructural quality, where the addition of a modifying agent alters the shape of the eutectic Si from an acicular to a fibrous form that is extremely beneficial to the mechanical properties. Among various modifiers, strontium, although easy to handle and resistant to fading, also causes porosity formation in these alloys, attributed variously to an increase in the hydrogen level of the melt, feedability problems in the mushy zone, changes in the mode of eutectic nucleation, etc. The present study shows how the presence of oxides is responsible for the porosity formation, and that the difference in porosity characteristics with the addition of Sr depends on the amount of Sr oxides present the solidified structure. Both Sr and Al oxides are favourable sites for the nucleation of other microconstituents. A number of experimental (binary Al-Si) and industrial (319 and 356) alloys have been studied, to cover various alloy freezing ranges. Thermal analysis, optical microscopy, SEM/EDX and EPMA analyses were employed to obtain the results. (author)

  8. Effect of Si addition to Al-8Mg alloy on the microstructure and thermo-physical properties of SiCp/Al composites prepared by pressureless infiltration

    International Nuclear Information System (INIS)

    Ren Shubin; He Xinbo; Qu Xuanhui; Humail, Islam S.; Li Yan

    2007-01-01

    Fifty-five volume percentage of SiCp/Al composites were prepared by pressureless infiltration to investigate the effect of Si addition to Al-8Mg alloy from 0 wt% to 18 wt% on the interfacial reaction between Al and SiC and the thermo-physical properties of the prepared composites. TEM and X-ray analysis showed that the degree of interfacial reaction decreased as the Si content increased, and that it ceased at 1273 K when the Si addition to the aluminum was greater than 12 wt%. The Si addition to Al-8Mg alloy reduced the CTE of the composites and increased their thermal conductivity (TC), but Si beyond 12 wt% led to the reduction of TC, though the CTE was lower. This is attributable to the combined action of the Si on the wettability, interfacial reaction and the TC and CTE of the matrix itself

  9. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys

    International Nuclear Information System (INIS)

    Pogatscher, S.; Antrekowitsch, H.; Leitner, H.; Ebner, T.; Uggowitzer, P.J.

    2011-01-01

    Highlights: → Artificial aging of Al-Mg-Si alloys in the range of 150 and 250 deg. C. → We study precipitation kinetics caused by various thermal histories. → Natural pre-aging affects kinetics at low artificial aging temperatures. → Natural pre-aging promotes kinetics at high artificial aging temperatures. → A vacancy-prison mechanism explains the effect of natural pre-aging. - Abstract: In this study the artificial aging behavior of the Al-Mg-Si alloy AA 6061 was investigated in the temperature range 150-250 deg. C using atom probe tomography, hardness and resistivity measurements for various thermal histories. It was found that the precipitation kinetics and age-hardening response of artificial aging at temperatures below 210 deg. C are lowered by prior natural aging but enhanced above this temperature. An analysis of hardness data was used to evaluate the temperature dependence of precipitation kinetics and dissolution processes. Supported by theoretical considerations, it is assumed that artificial aging of Al-Mg-Si alloys is controlled via the concentration of mobile vacancies. The 'vacancy-prison mechanism' proposed determines the mobile vacancy concentration in the case of natural pre-aging by temperature-dependent dissolution of co-clusters and solute-vacancy interactions.

  10. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy

    International Nuclear Information System (INIS)

    Mei, Z.; Wang, W.Y.; Wang, A.H.

    2006-01-01

    Microstructure characterization is important for controlling the quality of laser cladding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the iron-based alloy laser-clad on Al-Si alloy and an unambiguous identification of phases in the coating was accomplished. It was found that there is austenite, Cr 7 C 3 and Cr 23 C 6 in the clad region; α-Al, NiAl 3 , Fe 2 Al 5 and FeAl 2 in the interface region; and α-Al and silicon in the heat-affected region. A brief discussion was given for their existence based on both kinetic and thermodynamic principles

  11. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  12. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlO{sub x}/TaO{sub x}/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Maikap, S., E-mail: sidhu@mail.cgu.edu.tw [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Sreekanth, G.; Dutta, M.; Jana, D. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Y.Y.; Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Cu:AlO{sub x} alloy is used for the first time to have defective TaO{sub x} film. • A relation in between formation voltage and RESET current has been developed. • A switching mechanism based on a thinner with dense Cu filament is demonstrated. • Good uniformity with yield of >90% and long cycles using 1 ms pulse are obtained. - Abstract: Improved resistive switching phenomena such as device-to-device uniformity, lower formation voltage (2.8 V) and RESET current, >500 program/erase cycles, longer read endurance of >10{sup 6} cycles with a program/erase pulse width of 1 μs, and data retention of >225 h under a low current compliance of 300 μA have been discussed by using Cu-Al alloy in Cu:AlO{sub x}/TaO{sub x}/TiN conductive bridging resistive random access memory (CBRAM) device for the first time. The switching mechanism is based on a thinner with dense Cu filament formation/dissolution through the defects in the Cu:AlO{sub x}/TaO{sub x}/TiN structure owing to enhance memory characteristics. These characteristics have been confirmed by measuring randomly picked 100 devices having via-hole size of 0.4 × 0.4 μm{sup 2}. The Cu-Al alloy becomes Cu:AlO{sub x} buffer layer and Ta{sub 2}O{sub 5} becomes TaO{sub x} switching layer owing to Gibbs free energy dependency. All layers and elements are observed by high-resolution transmission electron microscope (HRTEM) image and energy dispersive X-ray spectroscopy (EDX). By developing a numerical equation in between RESET current and formation voltage, it is found that a higher rate of Cu migration is observed owing to both the defective switching layer and larger size, which results a lower formation voltage and RESET current of the Cu:AlO{sub x}/TaO{sub x}/TiN structure, as compared to Cu/Ta{sub 2}O{sub 5}/TiN under external positive bias on the Cu electrode. This simple Cu:AlO{sub x}/TaO{sub x}/TiN CBRAM device is useful for future nanoscale non-volatile memory application.

  13. Mechanical properties of Fe-Mn-Cu-Al alloy systems and optimization of their composition

    International Nuclear Information System (INIS)

    Tkachenko, I.F.; Baranov, A.A.

    1981-01-01

    Studied is the separate and combined effect of Cu and Al on mechanical properties of the Fe-Mn-Al-Cu system alloys using a simplex- lattice method of experiment planning. Heat treated specimens in the form of plates have been subjected to mechanical tests. It is shown that mechanical properties of studied alloys change sufficiently in the result of tempering in heterogeneous (α+γ) region. Studied alloys have the most favourable conbination of characteristics of strength, plasticity and impact strength after tempering at 630 deg C during 2 hours. Diagrams are obtained which characterizes dependence of mechanical properties of alloys on their composition. They permit to select optimum compositions of alloys with the necessary combination of strength, plasticity and impact strength [ru

  14. The constitution of alloys in the Al-rich corner of the Al-Si-Sm ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Markoli, B.; Spaic, S. [Ljubljana Univ. (Slovenia). Faculty of Natural Science and Engineering; Zupanic, F. [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2001-09-01

    The constitution of alloys and the liquidus surface in the Al-rich corner of the Al-Si-Sm ternary system were determined by the examination of controlled heated and cooled specimens, as well as heat-treated specimens by means of optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential thermal analysis and X-ray diffraction. The Al-rich corner of the Al-Si-Sm ternary system comprises five regions of primary crystallisation ({alpha}{sub Al}, {beta}{sub Si}, Al{sub 3}Sm, Al{sub 2}Si{sub 2}Sm and AlSiSm) with following characteristic invariant reaction sequences: ternary eutectic reaction L {yields} {alpha}{sub Al} + {beta}{sub Si} + Al{sub 2}Si{sub 2}Sm, and two liquidus transition reactions, i. e., L + Al{sub 3}Sm {yields} {alpha}{sub Al} + AlSiSm, and L + AlSiSm {yields} {alpha}{sub Al} + Al{sub 2}Si{sub 2}Sm. Along with the position of ternary eutectic and both interstitial points in the Al-rich corner of the Al-Si-Sm ternary system, the temperatures for each reaction were determined. (orig.)

  15. Effect of compound field on horizontal continuous casting of Al-1wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Zhong-tao Zhang

    2015-03-01

    Full Text Available A travelling magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si alloy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single field can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best refinement and homogeneity of the Si element in the alloy, leading to the highest increase of tensile strength and elongation among the three applied fields. The mechanism of the action of external fields on the refinement of microstructures and homogeneity of the Si element is discussed and the compound field is considered to be an effective method to achieve high quality Al alloys.

  16. Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Arkady Finkelstein

    2017-07-01

    Full Text Available One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi7Fe1 casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals’ microstructural and mechanical properties are also described in the work. An Al10SiFe intermetallic complex compound was obtained as a preferable component to Al2O3 precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work.

  17. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  18. Superelastic behavior and damping capacity of CuAlBe alloys

    International Nuclear Information System (INIS)

    Montecinos, Susana; Moroni, Maria Ofelia; Sepulveda, Aquiles

    2006-01-01

    Shape memory alloys (SMAs) showing the superelastic effect, dissipate energy through hysteretic cycles up to large strain amplitudes, without remnant strains after unloading. This effect is associated with a reversible stress-induced martensitic transformation. In this paper, the behavior of copper-based SMAs is examined, with the perspective of potential applications in seismic-energy dissipative devices. In particular, two different compositions of CuAlBe are characterized using chemical analysis, differential scanning calorimetry (DSC), light and scanning electron microscopy and X-rays diffraction. Mechanical and hysteretic damping properties are determined from cyclic tensile and tension-compression tests, for different strain amplitudes and frequencies. Both alloys show superelastic behavior, although hysteresis loops differ, due to differences in the composition and transformation phase temperatures. Equivalent damping up to 5% was obtained for the largest strain imposed. Frequency, in the range of interest for seismic applications, had a small influence on the damping values. It is concluded that alloy Cu-11.8 wt.% Al-0.5 wt.% Be best exhibited properties for the application intended

  19. The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys

    International Nuclear Information System (INIS)

    Tao, G.H.; Liu, C.H.; Chen, J.H.; Lai, Y.X.; Ma, P.P.; Liu, L.M.

    2015-01-01

    The effects of natural aging (NA) on subsequent artificial aging (AA) at 180 °C in Al–Mg–Si–Cu alloys with varied Mg/Si ratios (0.5, 1 and 2) were systematically studied by Vickers micro-hardness measurements, differential scanning calorimetry and transmission electron microscopy (TEM). The alloy with large Mg/Si ratio possesses a significant negative NA effect on the maximum hardness achieved during AA preceded by an extended NA, while the alloy with small Mg/Si ratio shows a negligible negative NA effect. Though few lath-like Q''/L precipitates exist, needle-like β'' precipitates are the primary hardening precipitates in all the peak-aged alloys. The negative NA effect is demonstrated to be determined by precipitate coarsening, which is manifested microscopically as the broader precipitate length distributions (PLD) and shift of PLD toward larger length range, in AA with the prolonging of NA. Our results suggest the nature of NA clusters is quite different in Al–Mg–Si–Cu alloy varying in Mg/Si ratio. Only a small fraction of NA clusters in alloy with large Mg/Si ratio are stable and could induce preferential growth of precipitates to be considerably coarsened during AA. A large fraction of stable NA clusters in alloy with low Mg/Si ratio lead to synchronous growth of β'' precipitates, thus restricting the preferential growth

  20. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great