WorldWideScience

Sample records for al-doped zno thin

  1. Semiconducting properties of Al doped ZnO thin films.

    Science.gov (United States)

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future.

  2. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  3. Al-doped and in-doped ZnO thin films in heterojunctions with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chabane, L.; Zebbar, N.; Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32-16111, Algiers (Algeria); Aida, M.S. [LCMet Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32-16111 Algiers (Algeria)

    2016-04-30

    The undoped, Al-doped and In-doped ZnO thin films were deposited by ultrasonic spray pyrolysis technique, onto glass and p-Si substrates and the physical properties of the films were investigated. The X-ray diffraction, optical analysis and electrical characterisations, indicate that the films were polycrystalline with hexagonal würtzite type structure and revealed that the aluminium doping deteriorates the crystalline and optical properties and enhances the electrical conductivity whereas indium doping improves all properties. The transport mechanism controlling the conduction through the heterojunctions was studied. For the heterostructures, the temperature dependent current–voltage characteristics showed rectifying behaviour in the dark, but current transport mechanism is not the same for all heterojunctions. Therefore, the presence of the interface states and volume defects are identified as limiting factors for obtaining a high quality heterojunction interface. - Highlights: • Al-doped and In-doped ZnO thin films have been deposited onto Si. • In-doped ZnO/p-Si heterojunction showed poor rectifying behaviour. • Al-doped ZnO/p-Si heterojunction showed a good rectifying at room temperature. • The carriers transport mechanisms was controlled by interfacial and volume defects.

  4. Al-doped ZnO Thin Films for Ethanol Sensors

    Science.gov (United States)

    Nulhakim, Lukman; Nugraha; Nuruddin, Ahmad; Suyatman; Yuliarto, Brian

    2011-12-01

    Al doped ZnO (AZO) is done to understand the effect of Al dopant on ZnO. The sensor response condition will be analyzed for ethanol detection. Chemical Bath Deposition (CBD) method is used to fabrication pure ZnO and AZO thin films. Al dopant concentrations used in this study is 2.9 at% Al. The crystallinity, composition and morphology were investigated by using XRD, EDS and SEM. The ZnO and AZO gas sensors were exposed to different concentrations of ethanol at room temperature, 2.5%, 5% and 7.5% volume ethanol, respectively. The sensor response at low concentrations (2.5% V) for pure ZnO sample is 70.88% and 88.57% for high concentrations of ethanol (7.5% V). The highest sensor response for AZO sample is 95.29% at low concentrations (2.5% V) and 96.68% V at the high concentration (7.5% V).

  5. Sol-gel synthesis and characterization of undoped and Al-doped ZnO thin films for memristive application

    Directory of Open Access Journals (Sweden)

    Dawit G. Ayana

    2016-11-01

    Full Text Available The Sol-gel route is a versatile method to fabricate multi-layer, dense and homogeneous ZnO thin films with a controlled thickness and defects for a memristive application. In this work, sol-gel derived multi-layer undoped and Al-doped ZnO thin films were prepared by a spin-coating technique on SiO2/Ti/Pt and silica glass substrates. The effect of both Al doping and curing conditions on the structural and morphological features of ZnO films was investigated by complementary techniques, including electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction analysis. Electrical measurements were performed on SiO2/Ti/Pt/ZnO/Pt(dishes and SiO2/Ti/Pt/ZnO(Al/Pt(dishes fabricated memristive cells and preliminary current-voltage curves were acquired.

  6. Sol-gel synthesis and characterization of undoped and Al-doped ZnO thin films for memristive application

    Science.gov (United States)

    Ayana, Dawit G.; Prusakova, Valentina; Collini, Cristian; Nardi, Marco V.; Tatti, Roberta; Bortolotti, Mauro; Lorenzelli, Leandro; Chiappini, Andrea; Chiasera, Alessandro; Ferrari, Maurizio; Lunelli, Lorenzo; Dirè, Sandra

    2016-11-01

    The Sol-gel route is a versatile method to fabricate multi-layer, dense and homogeneous ZnO thin films with a controlled thickness and defects for a memristive application. In this work, sol-gel derived multi-layer undoped and Al-doped ZnO thin films were prepared by a spin-coating technique on SiO2/Ti/Pt and silica glass substrates. The effect of both Al doping and curing conditions on the structural and morphological features of ZnO films was investigated by complementary techniques, including electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction analysis. Electrical measurements were performed on SiO2/Ti/Pt/ZnO/Pt(dishes) and SiO2/Ti/Pt/ZnO(Al)/Pt(dishes) fabricated memristive cells and preliminary current-voltage curves were acquired.

  7. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    Science.gov (United States)

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al.

  8. Laser induced photoconductivity in sol–gel derived Al doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari, F.; Ranjbar, M., E-mail: ranjbar@cc.iut.ac.ir; Kameli, P.; Salamati, H.

    2015-11-15

    In this paper Al doped ZnO (AZO) thin films with 0, 3, 6 and 12 at. % Al concentration were prepared by sol–gel method on glass substrates. The deposited films were annealed at different temperatures of 300, 350, 400, 450 and 500 °C for 1 h in air. X-ray diffraction (XRD) showed wurtzite crystalline structure for the films annealed above 400 °C. The films were subsequently irradiated by beams of excimer (KrF, λ = 248 nm) laser. The evolution of crystal structure, surface morphology and optical properties were studied using XRD, filed emission scanning electron microscope (FE-SEM) and UV–Vis spectrophotometer, respectively. Real-time measurement of electrical conductivity during laser irradiation showed a transient or persistent photoconductivity effect. The effect of laser energy on this photoconductivity was also investigated. Based on the observed photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), the observed photoconductivity effect was described. - Highlights: • AZO (0–12 at. % Al) films were prepared by sol–gel method and annealed at different temperatures. • Excimer laser (λ = 248 nm) irradiation leads to improvement of crystalline structure. • Average optical transmission doesn't change and optical gap decreases by irradiation. • Photoconductivity was investigated by real-time measurement of electrical resistance. • Sample of 6% Al annealed at 450–500 °C showed the best photoconductivity effect.

  9. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    Science.gov (United States)

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  10. Effect of annealing treatment on the structural, optical, and electrical properties of Al-doped ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    LI Li; FANG Liang; CHEN Ximing; LIU Gaobin; LIU Jun; YANG Fengfan; FU Guangzong; KONG Chunyang

    2007-01-01

    Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400 ℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as tering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.

  11. Structural, Morphological, and LPG Sensing Properties of Al-Doped ZnO Thin Film Prepared by SILAR

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2013-01-01

    Full Text Available Undoped and aluminum doped zinc oxide (AZO thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR technique from ammonium zincate complex. The thin films are characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM for their structural and morphological studies. Both undoped and Al-doped film show strong preferred c-axis orientation. The texture coefficient (TC of the film along (002 direction increases due to Al incorporation. SEM micrograph shows round shaped particles for pure ZnO. However AZO films show particles with off spherical shape and compact interconnected grains. Sensitivity of the film in presence of 80% LEL (lower explosive limit of LPG increases with temperature and is maximum at 325°C. Significantly high sensitivity of 87% with reasonably fast response was observed for 1% Al-doped ZnO (AZO film in presence of 1.6 vol% LPG at 325°C.

  12. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    Science.gov (United States)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  13. Chemical and electronic interface structure of spray pyrolysis deposited undoped and Al-doped ZnO thin films on a commercial Cz-Si solar cell substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gabas, M.; Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Lab. de Materiales y Superficies, Universidad de Malaga 29071 Malaga (Spain); Barrett, N.T. [CEA DSM/IRAMIS/SPCSI, CEA Saclay, 91191 Gif sur Yvette (France); Gota, S. [Laboratoire Leon Brillouin, UMR 012 CEA-CNRS CEA Saclay, 91191 Gif sur Yvette (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Americo Vespucio 49, 41092 Sevilla (Spain); Lopez-Escalante, M.C. [Isofoton S.A., Parque Tecnologico de Andalucia, Severo Ochoa, 50, 29590 Malaga (Spain)

    2009-08-15

    We have studied differences in the interface between undoped and Al-doped ZnO thin films deposited on commercial Si solar cell substrates. The undoped ZnO film is significantly thicker than the Al-doped film for the same deposition time. An extended silicate-like interface is present in both samples. Transmission electron microscopy (TEM) and photoelectron spectroscopy (PES) probe the presence of a zinc silicate and several Si oxides in both cases. Although Al doping improves the conductivity of ZnO, we present evidence for Al segregation at the interface during deposition on the Si substrate and suggest the presence of considerable fixed charge near the oxidized Si interface layer. The induced distortion in the valence band, compared to that of undoped ZnO, could be responsible for considerable reduction in the solar cell performance. (author)

  14. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  15. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition

    Science.gov (United States)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-09-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  16. Effect of Annealing Conditions on Properties of Sol-Gel Derived Al-Doped ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    GAO Mei-Zhen; ZHANG Feng; LIU Jing; SUN Hui-Na

    2009-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films are prepared on normal glass substrates by the sol-gel spin coating method.The effects of drying conditions,annealing temperature and cooling rate on the structural,electrical and optical properties of AZO films are investigated by x-ray diffraction,scanning electron microscopy,the four-point probe method and UV- VIS spectrophotometry,respectively.The deposited films show a hexagonal wurtzite structure and high preferential c-axis orientation.As the drying temperature increases from 100℃ to 300℃ the resistivity of AZO films decreases dramatically.In contrast to the annealed films cooled in a furnace and in air,the resistivity of the annealed film which is cooled at -15℃ is greatly reduced.Increasing the cooling rate dramatically increases the electrical conductivity of AZO films.

  17. Al doped ZnO thin films - microstructure, physical and sensor properties

    Science.gov (United States)

    Starbov, N.; Balabanov, S.; Bineva, I.; Rachkova, A.; Krumov, E.; Starbova, K.

    2012-12-01

    Thin ZnO films doped with Al are deposited by spray pyrolysis onto glass substrates using starting solution of Zn-acetate + n.AlCl (where 0.1 detection of noxious gases is checked via resistivity measurements under saturated vapours of ethanol, acetone, ammonia, dimethylamine and formalin at room temperature. Finally the results obtained are discussed concerning the application of the ZnO:Al films studied in the field of sensor technique.

  18. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Coman, Tudor [Faculty of Physics, “Al. I. Cuza” University, 11 Carol I Blvd., Iasi 700506 (Romania); Ursu, Elena Laura [Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi 700487 (Romania); Nica, Valentin; Tiron, Vasile [Faculty of Physics, “Al. I. Cuza” University, 11 Carol I Blvd., Iasi 700506 (Romania); Olaru, Mihaela; Cotofana, Corneliu [Polymer Materials Physics Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, Iasi 700487 (Romania); Dobromir, Marius [Faculty of Physics, “Al. I. Cuza” University, 11 Carol I Blvd., Iasi 700506 (Romania); Coroaba, Adina [Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi 700487 (Romania); Dragos, Oana-Georgiana; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., Iasi 700050 (Romania); Caltun, Ovidiu Florin [Faculty of Physics, “Al. I. Cuza” University, 11 Carol I Blvd., Iasi 700506 (Romania); Ursu, Cristian, E-mail: cristian.ursu@icmpp.ro [Polymer Materials Physics Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, Iasi 700487 (Romania)

    2014-11-28

    High quality Al-doped ZnO (AZO) films with uncommon (110) orientation are obtained on amorphous substrate by using Sequential Pulsed Laser Deposition technique. The dependence of the structural, optical and electrical properties with dopant concentration and oxygen deposition pressure was investigated systematically. We note a transition from the (002) preferential orientation of crystallites to an uncommon (110) orientation due to a combined effect of doping concentration and deposition pressure decreasing. For constant deposition pressure of 5 Pa the film crystallinity is changed from preferential (002) to polycrystalline when increasing dopant concentration. For the maximum dopant concentration that we have investigated (i.e., 4.4% at.) structural properties of AZO films are changed from a polycrystalline phase to a (110) preferential orientation when the deposition pressure decreases. This uncommon growth mode is accompanied by a change of the morphology from a densely packed granular structure to a more rarefied one. Moreover, the band gap widens up to 3.88 eV and the electrical resistivity drops to 5.4 × 10{sup −2} Ω cm. The structural changes were attributed to two mechanisms: a first one, responsible for the (002) phase suppression as a consequence of aluminum ion bombardment during the doping process and, a second one, in charge with (110) phase growth as the diffusion rates of zinc and oxygen atoms are affected by the dopant incorporation and by the decrease of deposition pressure. - Highlights: • Sequential PLD (SPLD) of (110) Al-doped ZnO thin films on amorphous substrate • Highly c-axis oriented films with high transparency and low resistivity • Fine tuning of the dopant concentration through SPLD method.

  19. Effect of Al Doping on Structural, Electrical, Optical and Photoluminescence Properties of Nano-Structural ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    M. Mozibur Rahman; M.K.R. Khan; M. Rafiqul Islam; M.A. Halim; M. Shahjahan; M.A. Hakim; Dilip Kumar Saha; Jasim Uddin Khan

    2012-01-01

    The nano-structural Al-doped ZnO thin films of different morphologies deposited on glass substrate were successfully fabricated at substrate temperature of 350 ℃ by an inexpensive spray pyrolysis method. The structural, electrical, optical and photoluminescence properties were investigated. X-ray diffraction study revealed the crystalline wurtzite (hexagonal) structure of the films with nano-grains. Scanning electron microscopy (SEM) micrographs indicated the formation of a large variety of nano-structures during film growth. The spectral absorption of the films occurred at the absorption edge of -410 nm. In the present study, the optical band gap energy 3.28 eV of ZnO decreased gradually to 3.05 eV for 4 mol% of AI doping. The deep level activation energy decreased and carrier concentrations increased substantially with increasing doping. Exciting with the energy 3.543 eV (A=350 nm), a narrow and a broad characteristic photoluminescence peaks that correspond to the near band edge (NBE) and deep level emissions (DLE), respectively emerged.

  20. Effect of aging under ambient conditions on the optical properties of Al-doped ZnO thin films deposited by direct current sputtering

    Science.gov (United States)

    Barhoumi, A.; Leroy, G.; Duponchel, B.; Gest, J.; Guermazi, S.

    2017-01-01

    Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on a glass substrate by direct current sputtering. In a previous study, we noted the influence of time on structural and electrical characteristics of films. In the present paper, the effect of a two-year aging under ambient conditions on the optical properties was investigated. A global improvement of the optical properties of AZO thin films was observed. The optical transmittance spectra revealed a high transmittance more than 90% in the Vis-NIR regions and a high absorption in the ultraviolet range. It is assumed that the crystallinity segregation leads to the decrease of optical scattering. The results from the optical measurements showed a reorganization of the structure leading to the degradation of the structural homogeneity. Nevertheless, the evolution of the figure of merit shows that Al-doped ZnO is a good candidate for the manufacturing and the commercialization of transparent conducting oxide devices.

  1. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    Science.gov (United States)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  2. Absorption Measurement of Zn Atom Density during ICP-assisted Magnetron Sputter-deposition of Al-doped ZnO Thin Films

    OpenAIRE

    2009-01-01

    This paper reports the outlines of hollow cathode (HCD) lamp absorption system for the density measurement of sputtered metal atoms in the inductively coupled plasma (ICP) assisted sputter-deposition process of Al doped ZnO thin films. As a result, absorbance of about 6.5% was obtained, which corresponds to the Zn atom density of 1.5×1012 cm-3.

  3. Structural, Morphological, and LPG Sensing Properties of Al-Doped ZnO Thin Film Prepared by SILAR

    OpenAIRE

    Shampa Mondal; Shatabda Bhattacharya; Mitra, P.

    2013-01-01

    Undoped and aluminum doped zinc oxide (AZO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) technique from ammonium zincate complex. The thin films are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their structural and morphological studies. Both undoped and Al-doped film show strong preferred c-axis orientation. The texture coefficient (TC) of the film along (002) direction increases due to Al incorpo...

  4. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    Science.gov (United States)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  5. Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis

    Science.gov (United States)

    Hung-Chun Lai, Henry; Basheer, Tahseen; Kuznetsov, Vladimir L.; Egdell, Russell G.; Jacobs, Robert M. J.; Pepper, Michael; Edwards, Peter P.

    2012-10-01

    A series of 1 at. % Al-doped ZnO (AZO) films were deposited onto glass substrates by a spray pyrolysis technique. We find that the observed blue shift in the optical bandgap of 1% AZO films is dominated by the Burstein Moss effect. The Fermi level for an 807 nm thick AZO film rose by some 0.16 eV with respect to the edge of the conduction band. By controlling the film thickness, all AZO films exhibit the same lattice strain values. The influence of strain-induced bandgap shift was excluded by selecting films with nearly the same level of bandgap volume-deformation potentials, and the differences in out-plain strain and in-plain stress remained effectively constant.

  6. Effect of the RF sputtering power on microstructural, optical and electrical properties of Al doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Spadoni, A.; Addonizio, M.L., E-mail: marialuisa.addonizio@enea.it

    2015-08-31

    ZnO:Al (AZO) thin films have been deposited by radio frequency (RF) magnetron sputtering and RF power applied to the target has been varied in the range 600–1200 W. RF power effect on structural, electrical and optical properties was investigated and the relationship existing between these properties and the film lattice defect distribution was discussed. At the increasing of the RF power it was found that AZO films, having a preferential growth orientation along (002) direction, showed a decrease of the lattice distance indicating a less defected structure. Furthermore, at the increase of the RF power a higher optical absorption by free carriers, coupled with an increase of the band gap value, was observed. Resistivity varied from 1.1 × 10{sup −3} Ω cm at 600 W down to a minimum value of 5.6 × 10{sup −4} Ω cm at 1200 W, whereas the carrier density increased up to 1 × 10{sup 21} cm{sup −3}. Lattice defect variation of AZO films was analyzed by photoluminescence (PL) measurements. Presence and amount of different lattice defects were evaluated for AZO films deposited at different RF powers. At 600 W the film structure was dominated by zinc vacancies (V{sub Zn}), whereas for higher RF power the PL band associated with V{sub Zn} decreased and interstitial oxygen (O{sub i}) band remarkably increased. PL analysis revealed that extrinsic Al doping is the dominant effect on the conductivity enhancement. It was hypothesized that at higher RF power a more effective diffusion phenomenon can give more effective Al doping and less amount of zinc vacancies. As a consequence, Al atoms are more effectively trapped into the structure. - Highlights: • ZnO:Al thin films have been deposited by RF sputtering technique. • The effect of the sputtering power on film properties has been investigated. • Electrical, optical and structural characterization has been carried out. • PL analysis revealed lattice defect chemistry variation at the increase of RF power.

  7. Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction

    Indian Academy of Sciences (India)

    S Mondal; S R Bhattacharyya; P Mitra

    2013-02-01

    Thin films of pure and aluminum-doped zinc oxide (AZO) were deposited on glass substrates from ammonium zincate bath following a chemical dipping technique called successive ion layer adsorption and reaction (SILAR). Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-rays (EDX) were used to investigate the effect of Al doping on the microstructure of AZO films. Particle size analysis using X-ray line broadening shows marginally increasing trend with increasing Al impurity. The average particle size for pure ZnO is 22.75 nm. It increases to 24.26 nm for 1% AZO film and 25.13 nm for 2% AZO film. Incorporation of Al was confirmed from elemental analysis using EDX. SEM micrograph shows that pure ZnO particles are spherical shaped. However, AZO films show particles with off-spherical shape with compact interconnected grains. The value of band gap for pure ZnO is 3.229 eV and it increases to 3.29 eV for 1% AZO indicating a blue-shift for 1% AZO film. However, for 2% AZO film, a decrease in band gap compared to pure ZnO is observed indicating a red-shift of fundamental absorption edge. Electrical resistance shows an initial decrease with increasing Al content. With further enhancement of Al incorporation, the resistance increases.

  8. Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hsiung; Chen, Chao-Hong [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chen, Dong-Hwang, E-mail: chendh@mail.ncku.edu.tw [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2013-03-25

    Highlights: ► AZO nanorod array thin film is used as a photoanode for solar water splitting. ► Hydrogen treatment and sensitization by PbS nanoparticles enhance photocurrent. ► A novel ITO/FTO-free composite photoelectrode is developed. ► The pre-fabrication and use of an extra TCO thin film substrate is unnecessary. -- Abstract: Al-doped ZnO (AZO) nanorod arrays thin film with hydrogen treatment is directly used as a photoelectrode for solar water splitting without an extra transparent conducting oxide (TCO) thin film because it possesses the functions of TCO thin film and photoactive 1-dimensional nanostructured semiconductor simultaneously. To enhance the absorption in the visible region, PbS nanoparticles decorated the AZO nanorods via successive ionic layer adsorption and reaction route. The PbS nanoparticles have a face-centered cubic structure and their decoration does not destroy the 1-dimensional morphology of AZO nanorod arrays. With increasing the cycle number of PbS nanoparticles decoration, the grain size and loading of PbS nanoparticles become larger gradually which leads to lower energy bandgap and stronger absorption. A maximum photocurrent density of 1.65 mW cm{sup −2} is obtained when the cycle number is 20, which is much higher than those without PbS nanoparticles sensitization or hydrogen treatment. This demonstrates that the AZO nanorod array thin film with hydrogen treatment can be directly used as a photoelectrode without an extra TCO thin film. Because the use of expensive metals can be avoided and the pre-fabrication of TCO thin film substrate is necessary no more, the fabrication of such a composite photoelectrode becomes simple and low-cost. So, it has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption.

  9. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    Science.gov (United States)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  10. Study of Electrical, Optical and Structural Properties of Al- Doped ZnO Thin Films on PEN Substrates

    Directory of Open Access Journals (Sweden)

    Mohit Agarwal

    2013-05-01

    Full Text Available Aluminum-doped zinc oxide (AZO, as one of the most promising transparent conducting oxide (TCO material, has now been widely used in thin film solar cells. Most of the study of AZO films till date has been done on glass substrates but nowadays there is a growing interest in replacing glass with polymer substrate for the thin-film solar cell technology and many other flexible optoelectronic devices. In this study, AZO thin films were deposited at room temperature by RF magnetron sputtering on flexible substrates from a 3 inch diameter target of 2 wt % Al2O3 in zinc oxide. The effect of RF power on the structural, optical and electrical properties of AZO films was investigated by X-ray Diffraction (XRD, Hall measurement, and UV-visible spectrophotometery. The XRD data indicates a preferential c-axis orientation for all the films. All films exhibit high transmittance ( 85% in visible region. Films deposited at 60 W power exhibit lowest resistivity of 1.2  10 – 3 Ωcm.

  11. Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Herrero, J.; Gutierrez, M.T. [Instituto de Energias Renovables CIEMAT, Madrid (Spain)

    1996-01-08

    The effect of the substrate temperature on the optoelectronic properties of ZnO-based thin films prepared by rf magnetron sputtering has been studied. Three different targets (Zn/Al 98/2 at%, ZnO:Al 98/2 at% and ZnO:Al{sub 2}O{sub 3} 98/2 wt%) have been investigated in order to compare resulting samples and try to reduce the substrate temperature down to room temperature. From the ZnO:Al{sub 2}O{sub 3} target, transparent conductive zinc oxide has been obtained at 25C with the average optical transmission in the 400-800 nm wavelength range, T=80-90% and resistivity, {rho}=3-5x10{sup -3} {Omega}cm. In Al:ZnO layers, the spatial distribution of the electrical properties across the substrate placed parallel to the target has been improved by depositing at high substrate temperatures, above 200C. Besides, owing to diffusion processes of CuInSe{sub 2} and CdS take place at 200C, an Al:ZnO/CdS/CuInSe{sub 2} polycrystalline solar cell made with the Al:ZnO deposited at 25C as the transparent conductive oxide, has shown a more efficient photovoltaic response, {eta}=6.8%, than the one measured when the aluminium-doped zinc oxide has been prepared at 200C, {eta}=1.8%

  12. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.

    Science.gov (United States)

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-08-07

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  13. Study on the structure and morphology of Er/Yb/Al-doped ZnO thin film%Er/Yb/Al掺杂ZnO薄膜的结构与形貌研究

    Institute of Scientific and Technical Information of China (English)

    韩利新; 张宁玉; 霍庆松; 宋红莲

    2011-01-01

    ZnO thin films and Er/Yb/Al-doped ZnO thin films on Si substrate were fabricated by using RF magnetron sputtering method at room temperature. The XRD structure analysis shows that undoped ZnO thin film grows along the C orientation, but doped ZnO thin films deviate from the normal growth orientation and become nano-multi-crystal structure which is along (102) orientation and the crystal-lite size of ZnO thin film doped the Er/Yb /Al decreases with the increase of the content of the Er ele-ment. The morphology by AFM analysis shows that Er3 + 、Yb3 +、Al3+ that is doped in the ZnO thin films cause a change of crystal field and make the surface roughness larger.%采用射频磁控溅射技术在室温下Si衬底上制备了ZnO薄膜和Er/Yb/Al掺杂的ZnO薄膜.通过对XRD的结构分析表明:未掺杂ZnO薄膜沿c取向性生长,掺杂ZnO薄膜偏离了正常生长,变为(102)取向性生长的纳米多晶结构;Er/Yb/Al掺杂的ZnO薄膜的晶粒尺寸随着Er元素含量的增多而减小.经AFM对其形貌分析表明:Er3+、yb3+、Al3+的掺入引起了ZnO薄膜晶格场变化,使薄膜表面粗糙度变大.

  14. Defects generated by MF magnetron sputtering and their influences on the electrical and optical properties of Al doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Changshan; Shirolkar, Mandar M.; Li, Jieni [Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wu, Binjun [Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); QinZhou College, QinZhou, Guangxi 535000 (China); Yin, Shiliu; Li, Ming [Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Haiqian, E-mail: hqwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-01

    Highlights: • Oxygen interstitial dominates the carrier concentration of sputtered films. • Chemisorbed oxygen decreases the mobility of sputtered films. • Hydrogen annealing can remove oxygen interstitials and chemisorbed oxygen. • High and low resistivity states (HRS and LRS) are observed under hydrogen atmosphere. • Defect configurations of (H{sub 2}){sub i} and H{sub O} + H{sub i} are assigned to HRS and LRS. - Abstract: In this paper, the defects of Al doped ZnO films generated by magnetron sputtering in the deposition processes are comprehensively investigated. It is found that oxygen ion bombardment deteriorates the crystallinity and generates oxygen related defects, such as oxygen interstitials (O{sub i}), chemisorbed oxygen at the grain boundaries (O{sub GB}), and oxygen vacancies (V{sub O}). O{sub i} and O{sub GB} decrease the carrier concentration and mobility of the pristine films remarkably, but they can be removed by hydrogen annealing. However, the grain boundary scattering originated from poor crystallinity cannot be reduced by the annealing below 450 °C. Moreover, the in-situ temperature-dependent resistivity measurement under hydrogen atmosphere suggests that hydrogen atoms are incorporated into the ZnO: Al films and interact with V{sub O}. We propose that there are two energetically favorable states for the incorporated hydrogen. The defect configurations of (H{sub 2}){sub i} and H{sub O} + H{sub i} are assigned to the high resistivity state (HRS) and low resistivity state (LRS) respectively and the switching between these two states is activated by V{sub O} and mediated by a metastable state (H{sub 2}){sup *}{sub O}. The transformation between these two resistivity states leads to a hysteresis loop during the heating and cooling process.

  15. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    Science.gov (United States)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO

  16. Characteristics of Al-doped ZnO thin films prepared in Ar + H{sub 2} atmosphere and their vacuum annealing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bailin; Lü, Kun; Wang, Jun; Li, Taotao; Wu, Jun [Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Zeng, Dawen; Xie, Changsheng [Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-11-15

    The microstructure and electrical–optical properties of Al-doped ZnO (AZO) films have been studied as a function of H{sub 2} flux in the magnetron sputtering process at 150 °C and postannealing temperature in vacuum. As H{sub 2} flux increases in the sputtering gas, the AZO films deposited have a (002) preferred orientation rather than the mixed (100) and (002) orientations, the grain size shows a tendency to first increase then decrease, and (002) diffraction peak position is inclined to shift to higher angles first then to lower angles. The resistivity of the films first decreases then increases with H{sub 2} flux, and the lowest resistivity of 4.02 × 10{sup −4}Ω cm is obtained at a H{sub 2} flux of 10 sccm. The average transmittance in the visible region shows little dependence on H{sub 2} flux. As a whole, the AZO films with higher values of figure of merit are obtained when the H{sub 2} flux is in the range of 6–12 sccm. The AZO films deposited in Ar and Ar + H{sub 2} exhibit different annealing behaviors. For the AZO film deposited in Ar, the grain size gradually increases, the stresses are relaxed, the resistivity first decreases then increases, and the average transmittance in the visible region is unchanged initially then somewhat decreased as annealing temperature is increased. The optimum annealing temperature for improving properties of AZO films deposited in Ar is 300 °C. For the AZO films deposited in Ar + H{sub 2}, annealing does not significantly change the microstructure but increases the resistivity of the films; the average transmittance in the visible region remains unchanged initially but greatly reduced with further increase in annealing temperature. The carrier transport in the as-deposited and annealed films appears to be controlled by a mechanism of grain boundary scattering, and the value of E{sub g} increases with the increase in carrier concentration due to Burstein–Moss effect.

  17. Significant Enhancement in the Conductivity of Al-Doped Zinc Oxide thin Films for TCO Application

    Science.gov (United States)

    Mohite, R. M.; Ansari, J. N.; Roy, A. S.; Kothawale, R. R.

    2016-03-01

    Nanostructured Al-doped Zinc oxide (ZnO) thin films were deposited on glass substrate by chemical bath deposition (CBD) using aqueous zinc nitrate solution and subjected for different characterizations. Effect of Al3+ substitution on the properties of ZnO annealed at 400∘C was studied by XRD and UV-Vis for structural studies, SEM and TEM for surface morphology and DC four probe resistivity measurements for electrical properties. Al3+ substitution does not influence the morphology and well-known peaks related to wurtzite structure of ZnO. Electron microscopy (SEM and TEM) confirms rod shaped Al-doped ZnO nanocrystals with average width of 50nm. The optical band gap determined by UV-Visible spectroscopy was found to be in the range 3.37eV to 3.44eV. An EPR spectrum of AZO reveals peak at g=1.96 is due to shallow donors Zn interstitial. The DC electrical resistivity measurements of Al-doped ZnO show a minimum resistivity of 3.77×10-2Ω-cm. Therefore, these samples have potential use in n-type window layer in optoelectronic devices, organic solar cells, photonic crystals, photo-detectors, light emitting diodes (LEDs), gas sensors and chemical sensors.

  18. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports.

    Science.gov (United States)

    V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra

    2017-01-01

    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10(15)cm(-2) for AZO and -6×10(14)cm(-2) for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg(-1)) compared to AZO (0.032Umg(-1)), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM(-1)cm(-2) towards glucose for GOx/AZO and 2.2μAmM(-1)cm(-2) for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics.

  19. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  20. Preparation of Al-doped ZnO nanocrystalline aggregates with enhanced performance for dye adsorption

    Science.gov (United States)

    Zhang, Jin; Que, WenXiu; Yuan, Yuan; Zhong, Peng; Liao, YuLong

    2012-07-01

    Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.

  1. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    Science.gov (United States)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-10-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  2. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  3. Influence of Annealing on Microstructure and Photoluminescence Properties of Al-Doped ZnO Films

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effect of annealing temperature and time on the microstructure and photoluminescence (PL) properties of Al doped ZnO thin films deposited on Si (100) substrates by sol-gel method was investigated. An X-ray diffraction (XRD) was used to analyze the structural properties of the thin films. All the thin films have a preferential c-axis orientation, which are enhances in the annealing process. It is found from the PL measurement that near band edge (NBE) emission and deep-level (DL) emissions are observed in as-grown ZnO∶Al thin films. However, the intensity of DLE is much smaller than that of NBE. Enhancement of NBE is clearly observed after thermal annealing in air and the intensity of NBE increases with annealing temperature. Results also show that the PL spectrum is dependent not only on the processing temperature but also on the processing time. The DLE related defects can not be removed by annealing, and on the contrary, the annealing conditions actually favor their formation.

  4. Effects of morphology on the thermoelectric properties of Al-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Van Nong, Ngo; Zhang, Wei;

    2014-01-01

    The nanoparticles of Al-doped ZnO were successfully grown into rod-like and platelet-like morphologies by soft chemical routes. These powders were consolidated using spark plasma sintering (SPS) technique. The samples consolidated from rods and platelets exhibited characteristic structures...

  5. Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique

    Institute of Scientific and Technical Information of China (English)

    T.A.El-Brolossy; O.Saber; S.S.Ibrahim

    2013-01-01

    The thermal conductivity and specific heat capacity of undoped and Al-doped (1-10 at.%) ZnO nanoparticles prepared using the solvent thermal method are determined by measuring both thermal diffusivity and thermal effusivity of a pressed powder compact of the prepared nanoparticles by using the laser-induced photoacoustic technique.The impact of Al doping versus the microstructure of the samples on such thermal parameters has been investigated.The results reveal an obvious enhancement in the specific heat capacity when decreasing the particle size,while the effect of Al doping on the specific heat capacity is minor.The measured thermal conductivities are about one order of magnitude smaller than that of the bulk ZnO due to several nested reducing heat transfer mechanisms.The results also show that Al doping significantly influences the thermal resistance.Using a simple thermal impedance model,the added thermal resistance due to Al dopant has been estimated.

  6. Study on synthesis and optical properties of Al-doped ZnO hierarchical nanostructures

    OpenAIRE

    2011-01-01

    Highly densified Al-doped ZnO (denoted as Al-ZnO) hierarchical nanostructures were synthesized on transparent quartz substrate by chemical vapor deposition. It is found that the heating temperature plays a key role on controlling the morphologies of the Al-ZnO hierarchical nanostructures through a temperature dependent migration of Al atoms. Such uneven distribution of Al element in the hierarchical nanostructures is clearly evidenced by the x-ray photoelectron spectrum (XPS) measurements. Th...

  7. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting.

    Science.gov (United States)

    Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2012-10-25

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm-2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption.

  8. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chen, Zhi-jian; Zhou, Bai-yang; Li, Jian-xin; Wen, Cui-lian

    2016-11-01

    The Al-doped Mg2Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg2Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg2Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg2Si thin films are significantly greater than that of undoped Mg2Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg2Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m-1 k-2 for 1.56 at.% Al-doped Mg2Si thin film at 573 K.

  9. Morphological properties of Al-doped ZnO nano/microstructures

    Science.gov (United States)

    Kim, Kyung Ho; Umakoshi, Tomoyuki; Abe, Yoshio; Kawamura, Midori; Kiba, Takayuki

    2016-03-01

    We discussed the morphological properties of Al-doped zinc oxide (Al-ZnO) microrods grown on a ZnO seed layer and precipitation particles and compared them with undoped ZnO samples. The ZnO nanorods grown on a ZnO seed layer were dense and perpendicular to the surface of the substrate, i.e., fluorine-doped tin oxide (FTO). In contrast the Al-ZnO grew as larger microrods, and the rods were sparsely and obliquely arranged. Precipitation particles synthesized in the ZnO solution through homogeneous nucleation had flower-like structures assembled from the rods and individual rods with lengths of several micrometers. Al-ZnO precipitation particles consisted of rods with length of several micrometers and hexagonal nanoplates. Fourier transform infrared (FTIR) analysis results showed that the rods and precipitation particles had the good chemical properties of ZnO. Both size and morphology of the rods could be effectively controlled by adding aluminum nitrate (Al(NO3)3) as dopant in the ZnO rod solution.

  10. Structure and thermoelectric properties of Al-doped ZnO films prepared by thermal oxidization under high magnetic field

    Science.gov (United States)

    Liu, Shiying; Peng, Sunjuan; Ma, Jun; Li, Guojian; Qin, Xuesi; Li, Mengmeng; Wang, Qiang

    2017-04-01

    This paper studies the effects of high magnetic field (HMF) on the structure, optical and thermoelectric properties of the doped ZnO thin films. The results show that both Al dopant and application of HMF can affect the crystal structure, surface morphology, elemental distribution and so on. The particles of the thin films become small and regular by doping Al. The ZnO films oxidized from the Au/Zn bilayer have needle structure. The ZnO films oxidized from the Au/Zn-Al bilayer transform to spherical from hexagonal due to the application of HMF. The transmittance decreases with doping Al because of the opaque of Al element and decreases with the application of HMF due to the dense structure obtained under HMF. Electrical resistivity (ρ) of the ZnO films without Al decreases with increasing measurement temperature (T) and is about 1.5 × 10-3 Ω·m at 210 °C. However, the ρ of the Al-doped ZnO films is less than 10-5 Ω·m. The Seebeck coefficient (S) of the films oxidized from the Au/Zn-Al films reduces with increasing T. The S values oxidized under 0 T and 12 T conditions are 2.439 μV/K and -3.415 μV/K at 210 °C, respectively. Power factor reaches the maximum value (3.198 × 10-4 W/m·K2) at 210 °C for the film oxidized under 12 T condition. These results indicate that the Al dopant and the application of HMF can be used to control structure and thermoelectric properties of doped ZnO films.

  11. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    Science.gov (United States)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  12. Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A., E-mail: yildizab@gmail.com [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Cansizoglu, H. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Turkoz, M. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Electrical-Electronic Engineering, Faculty of Engineering, University of Karabuk, Karabuk (Turkey); Abdulrahman, R.; Al-Hilo, Alaa; Cansizoglu, M.F.; Demirkan, T.M.; Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2015-08-31

    Al-doped ZnO (AZO) nanostructure arrays with different shapes (tilted rods, vertical rods, spirals, and zigzags) were fabricated by utilizing glancing angle deposition (GLAD) technique in a DC sputter growth unit at room temperature. During GLAD, all the samples were tilted at an oblique angle of about 90° with respect to incoming flux direction. In order to vary the shapes of nanostructures, each sample was rotated at different speeds around the substrate normal axis. Rotation speed did not only affect the shape but also changed the microstructural and optical properties of GLAD AZO nanostructures. The experimental results reveal that GLAD AZO nanostructures of different shapes each have unique morphological, crystal structure, mechanical, and optical properties determined by scanning electron microscopy, X-ray diffraction, transmission, and reflectance measurements. Vertical nanorods display the largest grain size, minimum strain, lowest defect density, and highest optical transmittance compared to the other shapes. Growth dynamics of GLAD has been discussed to explain the dependence of structural and optical properties of nanostructures on the substrate rotation speed. - Highlights: • Al-doped ZnO (AZO) nanostructures with different shapes were fabricated. • They have unique morphological, crystal structure, and optical properties. • Vertical AZO nanorods show an enhanced optical transmittance.

  13. Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition

    NARCIS (Netherlands)

    Wu, Y.; Hermkens, P.M.; Loo, B.W.H. van de; Knoops, H.C.M.; Potts, S.E.; Verheijen, M.A.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    In this work, the structural, electrical, and optical properties as well as chemical bonding state of Al-doped ZnO films deposited by atomic layer deposition have been investigated to obtain insight into the doping and electrical transport mechanisms in the films. The range in doping levels from 0%

  14. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films

    Science.gov (United States)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-11-01

    ZnO and Al-doped ZnO (AZO) films were synthesized using sol-gel spin-coating method. The powder XRD analysis revealed the stress relaxation mechanism upon Al doping in ZnO film. The reduction in the imaginary part of the dielectric constant and suppression of deep level acceptor type octahedral oxygen interstitial defects account for the reduction in carrier concentration in AZO with respect to ZnO. Electrical conductivity measurements and grain boundary conduction model are used to quantify the carrier concentration. From the Commission Internationale d'Eclairge diagram of ZnO and AZO, color parameters like dominant wavelength, color purity and luminosity are determined and reported for the first time. The prepared ZnO and AZO films show considerable blue emission. These films can be used for white light generation.

  15. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    Science.gov (United States)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  16. Temperature-dependence on the structural, optical, and magnetic properties of Al-doped ZnO nanoparticles

    Science.gov (United States)

    Lu, Xiaofei; Liu, Yongsheng; Si, Xiaodong; Shen, Yulong; Yu, Wenying; Wang, Wenli; Luo, Xiaojing; Zhou, Tao

    2016-12-01

    Al-doped ZnO nanoparticles synthesized by a hydrothermal method at relatively low temperature synthesis and anneal were reported in this paper. The XRD results reveal that all the samples have a hexagonal wurtzite structure. A higher synthesis temperature leads to a slight increase in the grain size and improvement of the crystal quality. Different morphologies evolved from acicular closely-packed morphology to dandelion-like 3D nanostructures can be obtained by controlling the synthesis temperatures. Moreover, the influence of synthesis temperature on optical property indicates that the absorption ability in ultraviolet region declines with increasing the synthesis temperature. In addition, the annealed nanoparticles have an enhancement of the room temperature ferromagnetism (RT-FM) and the saturation magnetization (MS). Those results suggest that Al-doped ZnO nanoparticles synthesized at relatively low temperature could be a promising candidate for photosensitive and room temperature nanolasers applications.

  17. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Directory of Open Access Journals (Sweden)

    Tamil Many K Thandavan

    Full Text Available Vapor phase transport (VPT assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn was used to prepare un-doped and Al-doped zinc oxide (ZnO nanostructures (NSs. The structure and morphology were characterized by field emission scanning electron microscopy (FESEM and x-ray diffraction (XRD. Photoluminescence (PL properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni, oxygen interstitials (Oi, zinc vacancy (Vzn, singly charged zinc vacancy (VZn-, oxygen vacancy (Vo, singly charged oxygen vacancy (Vo+ and oxygen anti-site defects (OZn in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  18. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    Science.gov (United States)

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  19. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Science.gov (United States)

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  20. A Study of Structural and Photoluminescence for Al-Doped CdO Thin Films

    Directory of Open Access Journals (Sweden)

    Bong Ju Lee

    2016-01-01

    Full Text Available Al-doped CdO thin films were prepared by radio frequency magnetron sputtering at different deposition time and substrate temperature. X-ray diffraction showed that the changes in the intensities of the (200, (220, and (311 planes followed a similar trend with increase in deposition time. The surface of the thin film was examined by scanning electron microscopy. Grain sizes of Al-doped CdO thin films increased significantly with increasing deposition time. The film thicknesses were 0.09, 0.12, 0.20, and 0.225 μm for the deposition times of 1, 2, 3, and 4 h, respectively. The photoluminescence spectra of the Al-doped CdO thin films were measured at room temperature. The photoluminescence wavelength changed in the sequence, green, blue, green, and blue, with increasing deposition time, which indicates that blue light emitting films can be fabricated by adjusting the processing parameters.

  1. Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Antaryami [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Simmons, Jay G. [Department of Chemistry, Duke University, Durham, NC 27708 (United States); Everitt, Henry O. [U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Shen, Gang; Margaret Kim, Seongsin [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Kung, Patrick, E-mail: patkung@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-02-15

    The effect of Al doping concentration and oxygen ambient pressure on the structural and optical properties of chemical vapor deposition-grown, Al-doped ZnO nanowires is studied. As Al doping increases, the strength of the broad visible emission band decreases and the UV emission increases, but the growth rate depends on the oxygen pressure in a complex manner. Together, these behaviors suggest that Al doping is effective in reducing the number of oxygen vacancies responsible for visible emission, especially at low oxygen ambient pressure. The intensities and quantum efficiencies of these emission mechanisms are discussed in terms of the effect growth and doping conditions have on the underlying excitonic decay mechanisms. -- Highlights: • Correlated study of the photoluminescence of undoped and Al-doped ZnO nanowires. • Comparative study of structural and optical properties of ZnO and Al:ZnO nanowires. • Study of excitonic decay relaxation channels as function of pressure and Al doping. • More effective reduction of oxygen vacancies by Al doping at lower pressure.

  2. Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers

    Science.gov (United States)

    Huang, Zheng-Lun; Chen, Chih-Ming; Lin, Zheng-Kun; Yang, Sheng-Hsiung

    2017-02-01

    In this paper, we first incorporated Al(NO3)3·9H2O as the Al source into ZnO nanorods (NRs) lattice via the hydrothermal method to modify nature properties of ZnO NRs for the fabrication of perovskite solar cells (PSCs). The X-ray diffraction (XRD) pattern of Al-doped ZnO NRs exhibits higher 2θ values and stronger intensity of (002) plane. Larger optical band gap and higher electrical conductivity of Al-doped ZnO NRs are also observed relative to non-doped ZnO ones. The steady-state photoluminescence shows effective charge extraction and collection at the interface between Al-doped ZnO NRs and perovskite layer. The optimized PSC based on Al-doped ZnO NRs showed an open-circuit voltage of 0.84 V, a short-circuit current density of 21.93 mA/cm2, a fill factor of 57%, and a power conversion efficiency of 10.45% that was 23% higher than the non-doped ZnO ones.

  3. Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements

    DEFF Research Database (Denmark)

    Jensen, Flemming; Shkondin, Evgeniy; Takayama, Osamu;

    2016-01-01

    In this work, we report on fabrication of deep-profile one- and two-dimensional lattices made from Al-doped ZnO (AZO). AZO is considered as an alternative plasmonic material having the real part of the permittivity negative in the near infrared range. The exact position of the plasma frequency...... of AZO is doping concentration dependent, allowing for tuning possibilities. In addition, the thickness of the AZO film also affects its material properties. Physical vapor deposition techniques typically applied for AZO coating do not enable deep profiling of a plasmonic structure. Using the atomic...

  4. ZAO透明导电薄膜微观结构和光电性能的研究%Microstructure and Optoelectrical Properties of Transparent Conductive Al Doped ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    钟志有; 顾锦华

    2011-01-01

    以ZnAl2O4陶瓷靶为靶材,采用射频磁控溅射法制备了掺铝氧化锌(ZAO)透明导电薄膜,通过XRD、SEM、四探针仪和分光光度计等测试,研究了沉积温度对薄膜结构、形貌、力学和光电性能的影响.结果表明:ZAO具有(002)择优取向的六角纤锌矿结构,沉积温度对薄膜性能具有明显影响,当温度位于370~ 400℃区间时,薄膜的结晶质量较好、电阻率较低、可见光波段的平均透射率较高,其品质因数大于1.20×10-2S,具有良好的光电综合性能.同时基于透射光谱计算了ZAO薄膜的光学常数,并用有效单振子理论解释了薄膜的折射率色散关系.%Transparent conducting aluminum-doped zinc oxide (ZAO) thin film were deposited by RF magnetron sputtering using using ZnAl2O4 as sintered ceramic target. The influence of deposition temperature on microstructure, morphology, mechanical and optoelectrical properties of ZAO films was investigated by XRD, SEM, four-point probe and spectrophotometer respectively. The results showed that the polycrystalline ZAO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the deposition temperature significantly affects the crystal structures and physical properties of the films. The ZAO films prepared at the deposition temperature of 370-400 ℃ exhibit the higher synthetic optoelectrical properties, which have the relatively well crystallinity, the lower electrical resistivity, the higher average transmittance in the visible light range and the higher figure of merit (1. 20×10 -2 S). Furthermore, the optical bandgap of the ZAO films was calculated using Taucs theory, and the refractive index and extinction coefficient were determined by the envelope method. The dispersion behaviour of the refractive index was studied in terms of the single oscillator model.

  5. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    Science.gov (United States)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  6. On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Ottsen, Tobias Sand; Stamate, Eugen;

    2016-01-01

    The electrical properties of RF-sputtered Al-doped ZnO are often spatially inhomogeneous and strongly dependent on deposition parameters. In this work, we study the mechanisms that limit the minimum resistivity achievable under different deposition regimes. In a low- and intermediate-pressure reg......The electrical properties of RF-sputtered Al-doped ZnO are often spatially inhomogeneous and strongly dependent on deposition parameters. In this work, we study the mechanisms that limit the minimum resistivity achievable under different deposition regimes. In a low- and intermediate......-pressure regime, we find a generalized dependence of the electrical properties, grain size, texture, and Al content on compressive stress, regardless of sputtering pressure or position on the substrate. In a high-pressure regime, a porous microstructure limits the achievable resistivity and causes it to increase...... over time as well. The primary cause of inhomogeneity in the electrical properties is identified as energetic particle bombardment. Inhomogeneity in oxygen content is also observed, but its effect on the electrical properties is small and limited to the carrier mobility....

  7. Thermoelectric properties of Al-doped Mg{sub 2}Si thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-jian; Zhou, Bai-yang, E-mail: zby_112921@163.com; Li, Jian-xin; Wen, Cui-lian, E-mail: clwen@fzu.edu.cn

    2016-11-15

    Highlights: • The thin films were fabricated by two-target alternative magnetron sputtering. • The maximum power factor of Al-doped Mg{sub 2}Si thin film we obtained is 3.8 mW m{sup −1} k{sup −2}. • A proper Al dopant can enhance the thermoelectric properties of Mg{sub 2}Si thin films. • Low-dimensional technique can enhance thermoelectric performance effectively. - Abstract: The Al-doped Mg{sub 2}Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg{sub 2}Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg{sub 2}Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg{sub 2}Si thin films are significantly greater than that of undoped Mg{sub 2}Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg{sub 2}Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m{sup −1} k{sup −2} for 1.56 at.% Al-doped Mg{sub 2}Si thin film at 573 K.

  8. An insight to the low temperature conduction mechanism of c-axis grown Al-doped ZnO, a widely used transparent conducting oxide

    Science.gov (United States)

    Murali, Banavoth; Parui, Jayanta; Madhuri, M.; Krupanidhi, S. B.

    2015-01-01

    Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 µA to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (ω0) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.

  9. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.

    Science.gov (United States)

    Baek, Seong-Ho; Noh, Bum-Young; Park, Il-Kyu; Kim, Jae Hyun

    2012-01-05

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.

  10. Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-10-05

    The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, and yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates. We show that ammonia addition to the aqueous AZO nanoparticle solution is a critically important step toward producing compact and smooth thin films which partially retain the aluminum doping and crystalline order of the starting AZO nanocrystals. The ammonia treatment appears to reduce the native defects via nitrogen incorporation, making the AZO film a very good electron transporter and energetically matched with the fullerene acceptor. Importantly, highly efficient solar cells are achieved without the need for additional surface chemical passivation or modification, which has become an increasingly common route to improving the performance of evaporated or solution-processed ZnO ETLs in solar cells.

  11. Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al2O3 and ZnO by Radio-Frequency Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Min-Kyeong Song

    2015-01-01

    Full Text Available High crystalline Al-doped ZnO (AZO nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF thermal plasma. Micron-sized (~1 μm ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm. The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.

  12. Fabrication of nanowires of Al-doped ZnO using nanoparticle assisted pulsed laser deposition (NAPLD) for device applications

    Energy Technology Data Exchange (ETDEWEB)

    Thanka Rajan, S. [ECMS Division, CSIR – Central Electrochemical Research Institute, Karaikudi 630 006 (India); Subramanian, B., E-mail: subramanianb3@gmail.com [ECMS Division, CSIR – Central Electrochemical Research Institute, Karaikudi 630 006 (India); Nanda Kumar, A.K.; Jayachandran, M. [ECMS Division, CSIR – Central Electrochemical Research Institute, Karaikudi 630 006 (India); Ramachandra Rao, M.S. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2014-01-25

    Graphical abstract: -- Highlights: • Novel technique of NP assisted PLD was employed to obtain Al doped ZnO. • AZO nano wires with aspect ratios exceeding 20 were obtained at 500 sccm Ar gas pressure. • AZO films belong to the most stable wurtzite type. • Films show near band edge emission and defect related emission. -- Abstract: Aluminium doped zinc oxide (AZO) nanostructures have been successfully synthesized on sapphire substrates by using nanoparticle assisted pulsed laser deposition (NAPLD) in Ar atmosphere without using any catalyst. The growth of the AZO nanowires has been investigated by varying the argon flow rates. The coatings have been characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), Diffuse Reflectance Spectroscopy (DRS), Laser Raman spectroscopy and Photoluminescence spectroscopy. The results of XRD indicate that the deposited films are crystalline ZnO with hexagonal wurtzite structure with (0 0 2) preferred orientation. FESEM images also clearly reveal the hexagonal structure and the formation of nanowires with aspect ratios between 15 and 20. The surface roughness value of 9.19 nm was observed from AFM analysis. The optical properties of the sample showed that under excitation with λ = 325 nm, an emission band was observed in UV and visible region. The characteristic Raman peaks were detected at 328, 380, 420, 430 cm{sup −1}.

  13. Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-04-22

    A facile and low-temperature (125 °C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia-treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll-to-roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT-based polymer light emitting diode are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrodeposition of nanoporous ZnO on Al-doped ZnO leading to a highly organized structure for integration in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Renou G.

    2010-10-01

    Full Text Available In the present study, we propose an improvement of the anode configuration in Zinc Oxide based Dye Sensitized Solar Cells (DSSC. Instead of the classical configuration, which is composed by two different metal oxides: one transparent conducting oxide (TCO for the substrate and one nanostructured metal oxide for supporting the dye, the new approach is to use ZnO as unique material. Thus, nanoporous zinc oxide films have been electrodeposited on a sputtered Al doped ZnO layers with varying thicknesses up to 6 μm. The evolution of the porosity of the structure has been studied by scanning electron microscope (SEM and electrochemical impedance spectroscopy and compared with standard nanoporous ZnO grown on fluorine doped tin oxide (SnO2:F noted FTO. This results firstly in the modification of the nanoporous structure morphology and secondly a better adhesion between the nanoporous layer and the substrate. Organization in the nanoporous material is enhanced with regular pores arrays and perpendicular to the substrate. Dye sensitized solar cells based on this simplified architecture present efficiencies up to 4.2% and 4.5% with N719 and D149 respectively as sensitizers. Higher fill factor and Voc are found in comparison with the one obtained for deposition on the classical transparent conducting oxide (FTO, which denote improved electrical transfer properties.

  15. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    Science.gov (United States)

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation.

  16. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2016-01-07

    In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation at grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.

  17. Studies on the properties of sputter-deposited Al-doped ZnO films

    Science.gov (United States)

    Selmi, M.; Chaabouni, F.; Abaab, M.; Rezig, B.

    2008-09-01

    ZnO is a well known material; however, the research interest in this material is still high enough because ZnO is one of the materials with the most potential for optoelectronics due to its promising properties of high conductivity as well as good transparency. In this work, aluminum doped zinc oxide films (ZnO:Al) were deposited by RF magnetron sputtering on glass and silicon substrates with different deposition times of 2, 3 and 4 h. The aim of this work is the study of the deposition time effect on the properties of ZnO:Al films. It is shown that films grow with the hexagonal c-axis perpendicular to the substrate surface. The morphological characteristics show a granular and homogenous surface and the cristallinity of the films is enhanced with increased deposition time. The deposited films show good optical transmittance (80%-90%) in the visible and near infrared spectrum. The calculated band gap is about 3.3 eV. The electrical ZnO:Al/Si(p) junction properties were investigated using the Capacitance-Voltage ( C-V) dependence. Calculations of the built-in potential from classical 1/C2-V characterization give values between 0.54 and 0.71 V. This work shows how the variation of deposition time allows the control of structural, electrical and optical properties of the films.

  18. The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Van Nong, Ngo; Le, Thanh Hung;

    2013-01-01

    A systematic investigation on the microstructure and thermoelectric properties of Al-doped ZnO using α- and γ-Al2O3 as dopants was conducted in order to understand the doping effect and its mechanism. The samples were prepared by the spark plasma sintering technique from precursors calcined...... at various temperatures. Clear differences in microstructure and thermoelectric properties were observed between the samples doped with α- and γ-Al2O3. At any given calcination temperature, γ-Al2O3 resulted in the formation of a larger amount of the ZnAl2O4 phase in the Al-doped ZnO samples. The average...... exhibited by these samples. The γ-Al2O3 promoted the substitution for donor impurities in ZnO, thus resulting in shrinkage of the unit cell volume and an increase in the electrical conductivity compared with the α-Al2O3-doped ZnO. At a calcination temperature of 1173K, the γ-Al2O3-doped sample showed a ZT...

  19. Optical characterization of pure and Al-doped ZnO prepared by sol-gel method

    Science.gov (United States)

    Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna

    2016-09-01

    In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.

  20. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Liao, Chung-Chi [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ke, Wen-Cheng, E-mail: wcke@saturn.yzu.edu.tw; Chang, Yuan-Ching; Huang, Hao-Ping [Department of Mechanical Engineering, Yuan Ze University, Chung-Li 320, Taiwan (China); Chen, Nai-Chuan [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  1. CdS/CdSe-sensitized solar cell based on Al-doped ZnO nanoparticles prepared by the decomposition of zinc acetate solid solution

    Science.gov (United States)

    Deng, Jianping; Wang, Minqiang; Ye, Wei; Fang, Junfei; Zhang, Pengchao; Yang, Yongping; Yang, Zhi

    2017-01-01

    In the study, Al-doped ZnO nanoparticles (Al-ZnO NPs) were prepared by the decomposition of zinc acetate solid solution. The X-ray diffraction results showed that Al3+ was successfully doped without the formation of Al and Al2O3 impurity phases. The less Al-doping did not change the hexagonal wurtzite crystal structure of ZnO. The ratio of Al to Al + Zn (9.05%) measured by the energy dispersive X-ray also confirmed the formation of Al-ZnO. The Al-ZnO NPs were used as the photoanode material to prepare CdS/CdSe-sensitized solar cell. Compared with the cell based on commercial ZnO NPs (C-ZnO), the short-circuit current density and the fill factor of the cell were increased from 5.8 mA/cm2 and 34.1% (C-ZnO) to 7.78 mA/cm2 and 48.7% (Al-ZnO), respectively. The cell efficiency was increased from 1.01% (C-ZnO) to (1.9%) (Al-ZnO) and the increase percentage reached 88.1%. The results of electrochemical impedance spectroscopy and open-circuit voltage-decay suggested the lower carrier transport resistance and the longer electron lifetime of Al-ZnO-based cell.

  2. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory.

    Science.gov (United States)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-16

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  3. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory

    Science.gov (United States)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-01

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  4. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells.

    Science.gov (United States)

    Deng, Jianping; Wang, Minqiang; Liu, Jing; Song, Xiaohui; Yang, Zhi

    2014-03-15

    Photoelectrode of nanocables (NCs) structure of ZnO nanowires (NWs) coated with Al-doped ZnO (AZO) shells was investigated for CdS quantum dots sensitized solar cells (QDSSCs). ZnO NWs serve as the frame for the preparation of AZO shells, in which electron transport more rapidly due to the more higher electron mobility of AZO (n-ZnO) than that of i-ZnO. AZO shells were assembled onto the surface of ZnO NWs via a spin-coating method. Optical band-gap of the ZnO/AZO films varies from 3.19 eV for pure ZnO to 3.25 eV for AZO (15%) depending on the Al-doping concentration. The PL intensity of AZO/ZnO, V(oc), J(sc) and η of the cells first increased and then decreased with the increase in the Al-doping (from 0% to 20%) and post-annealed temperature. Remarkably, the value of V(oc) can achieve above 0.8 V after Al-doping. The dark current and absorption spectrum provided direct evidence of the increase in J(sc) and V(oc), respectively. Moreover, we discussed the effect of Al-doping on optical band-gap of the samples and the transfer of electron.

  5. Structural and X-Ray Photoelectron Spectroscopy Study of Al-Doped Zinc-Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Bong Ju Lee

    2015-01-01

    Full Text Available Al-doped zinc-oxide (AZO thin films were prepared by RF magnetron sputtering at different oxygen partial pressures and substrate temperatures. The charge-carrier concentrations in the films decreased from 1.69 × 1021 to 6.16 × 1017 cm−3 with increased gas flow rate from 7 to 21 sccm. The X-ray diffraction (XRD patterns show that the (002/(103 peak-intensity ratio decreased as the gas flow rate increased, which was related to the increase of AZO thin film disorder. X-ray photoelectron spectra (XPS of the O1s were decomposed into metal oxide component (peak A and the adsorbed molecular oxygen on thin films (peak B. The area ratio of XPS peaks (A/B was clearly related to the stoichiometry of AZO films; that is, the higher value of A/B showed the higher stoichiometric properties.

  6. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630003 (India); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan)

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption of ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.

  7. Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Nyun; Shin, Chi-Ho [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of); Hwang, Duck Kun [Department of Corporate Diagnosis, Small and Medium Business Corporation, Seoul 150-718 (Korea, Republic of); Kim, Haekyoung [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Oh, Kyeongseok [Department of Chemical and Environmental Technology, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Hyun-Jong, E-mail: hjkim23@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of)

    2015-09-25

    Highlights: • Low-temperature pressurized polyol method synthesized Al-doped ZnO nanoclusters. • Reaction time affected the doping efficiency, resistivity, and NIR transmittance. • The near-IR blocking efficiency of Al-doped ZnO (AZO) nanoclusters reached 85%. • AZO nanocluster coatings could be used for heat reflectors or artificial glasses. - Abstract: In this study, a novel pressurized polyol method is proposed to synthesize aluminum-doped ZnO (AZO) nanoclusters without utilizing additional thermal treatment to avoid the merging of nanoclusters. The size of the AZO nanoclusters range from 100 to 150 nm with a resistivity of 204 Ω cm. The AZO nanoclusters primarily consist of approximately 10-nm nanocrystals that form a spherically clustered morphology. A two-stage growth model has been proposed based on the results of scanning electron microscopy and transmission electron microscopy images, nanocluster sizes, and X-ray diffraction patterns. The primary AZO nanocrystals first nucleate under pressurized conditions and then spontaneously aggregate into larger nanoclusters. Optically, the AZO nanoclusters exhibit a significant decrease in the near-infrared (NIR) transmittance compared to pure ZnO nanoparticles. The NIR blocking efficiency of AZO nanoclusters reached 85%. Moreover, the doping efficiency, resistivity, and NIR transmittance of AZO nanoclusters are influenced by the reaction time in the pressurized polyol solution. On the other hand, the reaction time has no effect on the particle size and crystallinity. An optically transparent coating for the AZO nanoclusters, which consisted of iso-propanol solvent and ultraviolet-curable acrylic binder, was also demonstrated.

  8. Effect of Al Doping on Optical Band Gap Energy of Al-TiO2 Thin Films.

    Science.gov (United States)

    Song, Yo-Seung; Kim, Bae-Yeon; Cho, Nam-Ihn; Lee, Deuk Yong

    2015-07-01

    Al-TiO2 thin films were prepared using a sol-gel derived spin coating by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the optical band gap energy (Eg) of the films. GAXRD results indicated that Al-TiO2 is composed of anatase and FTO phases when the Al/Ti molar ratio was less than 0.18. Above 0.38, no other peaks except FTO were found and transparency of the films was severely deteriorated. Eg of Al-TiO2 decreased from 3.20 eV to 2.07 eV when the Al/Ti ratio was raised from 0 to 0.38. Eg of 2.59 eV was found for the anatase Al-TiO2 films having the Al/Ti ratio of 0.18. The absorption band of Al-TiO2 coatings shifted dramatically from the UV region to the visible region with increasing the amount of Al dopant. The Al doping was mainly attributed to the optical band gap energy of Al-TiO2.

  9. Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film

    KAUST Repository

    Mahmood, Khalid

    2014-01-01

    A novel electrosprayed bilayer film composed of an over-layer (L 2) of aluminium-doped ZnO (AZO) nanoflakes (NF-AZO) and a under-layer (L1) of AZO nanocrystallites structure (NC-AZO) named BL:NF/NC-AZO is studied as an excellent field-emitter. The XRD pattern demonstrated that the doped bilayer film has preferential growth along the c-axis with hexagonal wurtzite structure and the (0 0 2) peak shifted toward the larger angle side after doping. The lowest turn-on field of ∼2.8 V μm-1, highest emission current density of 1.95 mA cm-2 is obtained for BL:NF/NC-AZO under the field of 6.8 V μm-1 and as well as the highest field enhancement factor (β) is estimated to be 4370 ± 3, compared to pure ZnO bilayer film (BL:NF/NC-ZnO) and also better than NC-AZO film and possesses the excellent long term stability of emission current. The PL intensity of doped ZnO bilayer film is very much stronger than pure ZnO bilayer structure. The superior field emission properties are attributed to the better morphologies, Al-doping and better crystallinity of bilayer AZO films. © 2014 The Royal Society of Chemistry.

  10. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering.

    Science.gov (United States)

    Nandy, S; Maiti, U N; Ghosh, C K; Chattopadhyay, K K

    2009-03-18

    Stoichiometric NiO, a Mott-Hubbard insulator at room temperature, shows p-type electrical conduction due to the introduction of Ni(2+) vacancies (V(Ni)('')) and self-doping of Ni(3+) ions in the presence of excess oxygen. The electrical conductivity of this important material is low and not sufficient for active device fabrication. Al doped NiO thin films were synthesized by radio frequency (RF) magnetron sputtering on glass substrates at a substrate temperature of 250 °C in an oxygen + argon atmosphere in order to enhance the p-type electrical conductivity. X-ray diffraction studies confirmed the correct phase formation and also oriented growth of NiO thin films. Al doping was confirmed by x-ray photoelectron spectroscopic studies. The structural, electrical and optical properties of the films were investigated as a function of Al doping (0-4 wt%) in the target. The room temperature electrical conductivity increased from 0.01-0.32 S cm (-1) for 0-4% Al doping. With increasing Al doping, above the Mott critical carrier density, energy band gap shrinkage was observed. This was explained by the shift of the band edges due to the existence of exchange and correlation energies amongst the electron-electron and hole-hole systems and also by the interaction between the impurity quasi-particle system.

  11. Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells

    Directory of Open Access Journals (Sweden)

    Fan Xi

    2011-01-01

    Full Text Available Abstract Flake-like Al-doped ZnO (AZO nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.

  12. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    Science.gov (United States)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  13. Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-07-01

    We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 μm to a modest 0.50 μm over an underlying 0.10-μm intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 μm/3 μm) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  14. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    Science.gov (United States)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3).

  15. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer.

    Science.gov (United States)

    Kim, Jun Young; Cho, Eunae; Kim, Jaehoon; Shin, Hyeonwoo; Roh, Jeongkyun; Thambidurai, Mariyappan; Kang, Chan-mo; Song, Hyung-Jun; Kim, SeongMin; Kim, Hyeok; Lee, Changhee

    2015-09-21

    We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10(-3) Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC(70)BM), the power conversion efficiency increased from 3.7 to 5.6%.

  16. Thin films of conductive ZnO patterned by micromolding resulting in nearly isolated features.

    Science.gov (United States)

    Göbel, Ole F; Blank, Dave H A; ten Elshof, Johan E

    2010-02-01

    Patterned and continuous thin films of conductive Al-doped zinc oxide (ZnO:Al) were prepared on different substrates from a polymeric precursor solution. Their electric conductivity and light transmittance (for visible and UV light) was measured at room temperature. By means of a simple device, conductive ZnO:Al films with high fidelity patterns with features of 2-20 microm width could be obtained by simply micromolding the liquid precursor film prior to heat treatment. The individual features were interconnected by a very thin residual ZnO layer.

  17. Enhanced Doping Efficiency of Al-Doped ZnO by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide as an Alternative Aluminum Precursor

    NARCIS (Netherlands)

    Wu, Y.; Potts, S.E.; Hermkens, P.M.; Knoops, H.C.M.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition offers the unique opportunity to control, at the atomic level, the 3D distribution of dopants in highly uniform and conformal thin films. Here, it is demonstrated that the maximum doping efficiency of Al in ZnO can be improved from ∼10% to almost 60% using dimethylaluminum is

  18. AlGaN/GaN high-electron-mobility transistors with transparent gates by Al-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Chong; He Yun-Long; Zheng Xue-Feng; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2013-01-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated,and Ni/Au/Ni-gated HEMTs are produced in comparison.The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics,and the gate electrodes achieve excellent transparencies.Compared with Ni/Au/Ni-gated HEMTs,AZO-gated HEMTs show a low saturation current,high threshold voltage,high Schottky barrier height,and low gate reverse leakage current.Due to the higher gate resistivity,AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz,and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs.Moreover,the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.

  19. Effect of Al Doping on ZnO Nanocrystals Synthesized by Methanol Alcoholysis Method%Al掺杂对甲醇醇解法合成ZnO纳米粉体的影响

    Institute of Scientific and Technical Information of China (English)

    陈义川; 胡跃辉; 张效华; 杨丰; 陈新华; 陈俊

    2011-01-01

    采用醇解法,在130℃的甲醇溶液中分别合成纯的和Al掺杂纳米氧化锌(ZnO)晶体.使用X射线衍射仪,透射电子显微镜,Fourier红外光谱和偏振稳态荧光光谱对其晶体结构和光学性能进行了表征.结果表明:在甲醇溶液中,在较低的温度(130℃)下,成功制备出纳米ZnO晶体.Fourier红外吸收光谱表明醇解法合成的ZnO纳米晶体含有较少的有机物杂质.荧光光谱结果可以看出,纯ZnO和Al掺杂的ZnO纳米晶体在可见光范围(400nm~700nm)内有一个高的蓝光发光带(峰位为440nm)和一个绿光发光带(纯的和Al掺杂的峰位分别为520nm和530nm).通过对比发现掺杂Al可以有效的改变ZnO纳米粉体的可见光发光特性.%Undoped ZnO and Al doped ZnO nanocrystals were synthesized by the methanol alcoholysis method at 130℃. Structure, morphology and optical properties of ZnO nanocrystals were characterized using X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectra. The results show that ZnO nanocrystals can be obtained in methanol solution at low temperature (130℃)). FTIR spectra show that ZnO nanocrystals synthesized by the methanol alcoholysis include a little organic impurity. PL spectra reveal that pure ZnO and Al doped ZnO nanocrystals have a blue band emission at 440 nm and a green band emission at 520 nm and 530 nm, respectively. Compared with the pure ZnO nanocrystals, the Al doping improves the luminescent properties.

  20. Effect of Al and Mg Doping on Optical Properties of ZnO Thin Films Prepared by Spin Coating

    Directory of Open Access Journals (Sweden)

    G. T Yusuf

    2014-08-01

    Full Text Available This paper investigated the influence of aluminum and magnesium doping on the optical and electrical properties of zinc oxide (ZnO thin films for solar cell application. Zinc acetate dehydrates was used as starting material. Aluminum chloride and tin chloride were added to each solution to serve as dopants. X-ray diffractions were analyzed by X-ray diffraction (XRD which revealed crystalline and hexagonal wurtzite structure. All the films showed more than 80% transparency in the visible region. The optical band gap of undoped ZnO thin film was found to be 3.12ev while that of Al-doped and Mg-doped ZnO film was estimated to be 3.16eV and 3.26eV respectively. The resistivity of the films measured were 2.51×10–4 Ω cm for Al-doped, 2.53×10–4 Ω cm for mg-doped and 2.61×10-4 Ω cm for undoped ZnO respectively. The quality of the films deposited in this work is a promising window layer component of a solar cell. The variation in the band gap observed in this work could be explained by Burstein–Moss effect which was fully explained in the discussion section of this work.

  1. Double-beam pulsed laser deposition for the growth of Al-incorporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Bizarro, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-186, C.P. 04510 México D.F., México (Mexico)

    2014-05-01

    Pulsed laser deposition in a delayed-double beam configuration is used to incorporate in situ Al in ZnO thin films. In this configuration, two synchronized pulsed-laser beams are employed to ablate independently a ZnO and an Al target. We investigated the effects of relative time delay of plasma plumes on the composition of the films with the aim of evaluating the performance of this technique to produce doped materials. Relative delay between plumes was found to control the incorporation of Al in the film in the range from 14% to 30%. However, to produce low impurity concentration of Al-doped ZnO (with Al incorporation less than 2%) the fluence used to produce the plasmas has more influence over the film composition than the relative plume delay. The minimum incorporation of Al corresponded to a relative delay of 0 μs, due to the interaction between plumes during their expansion.

  2. Al掺杂ZnO纳米棒的性能研究及其在太阳能电池中的应用%Properties of Al-doped ZnO nanorods and the application in organic photovoltaic devices

    Institute of Scientific and Technical Information of China (English)

    丁国静; 秦文静; 杨利营; 黄康; 印寿根

    2012-01-01

    We fabricated the ZnO nanorods with different Al3+-doped concentrations of 0 %, 0.5 %, 1.0 % and 1.5 %, respectively. The morphology and the crystalline of/M-doped ZnO nanorods are investigated by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The optical and electrical properties are researched by ultraviolet-visible (UV-VIS) absorption spectroscopy,time-resolved photo- luminescence (TRPL) spectroscopy and sheet resistance. The analysis indicates that the ZnO nanorods are orderly arrayed and have good crystallinity. As the Al3+ doped concentration increasing,the conductivity of ZnO is improved and the electron transfer between donor and acceptor becomes faster. Finally, Al-doped ZnO nanorods are incorporated in the organic photovoltaic devices as both cathode and electron conductive layer. The optimized device (at lower doping of 0.5%) shows 30% higher Jsc and 50% higher photoelectric conversion efficiency (PCE) compared with the device without Al doping.%通过水热法制备了不同质量分数(0%,0.5%,1.0%和1.5%)的Al3+掺杂ZnO纳米棒,扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见(UV—vis)吸收光谱等测试结果表明,通过这种方法得到了较为规整的ZnO纳米阵列,结晶良好、具有明显的C轴生长取向;掺杂浓度的增加对产物的形貌和晶体结构产生了明显的影响。通过瞬态光谱和面电阻测试发现,Al3+掺杂提高了ZnO传导电子的能力。将Al3+掺杂的ZnO纳米棒同时作为电极与电子传输层,应用于有机太阳能电池器件中,在低浓度(0.5at.%)掺杂时得到最佳的器件性能,相比于未掺杂的ZnO纳米棒,短路电流提高了30%,光电转化效率提高了50%。

  3. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    Science.gov (United States)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  4. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Song Li-Jun; Li Shou-Chun; Lu You-Ming; Tian Yun-Xia; Liu Jia-Yi; Wang Lian-Yuan

    2006-01-01

    This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.

  5. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    Science.gov (United States)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  6. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  7. Influence of low sputtering pressure on structural, electrical and optical properties of Al-doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zengguang; Tang, Yang, E-mail: tangyang@nicenergy.com; Chen, Jingyun; Chen, Jie

    2016-08-15

    Aluminum-doped zinc oxide thin films were deposited without intentional heating by radio-frequency magnetron sputtering. The sputtering pressure varied from 0.02 Pa to 0.32 Pa while the deposition power was kept at 240 W for all depositions. The structural properties of as-deposited films were analyzed by X-ray diffraction and scanning electron microscopy, indicating that the deposited films have a strong preferred c-axis (002) orientation perpendicular to the substrate regardless of sputtering pressure. The minimum resistivity of 6.4×10{sup −4} Ω cm is obtained at 0.05 Pa, which is mainly influenced by the hall mobility, rather than carrier concentration. The highest transmittance could be ~80% on average in the visible range under various working pressures, and the largest bandgap achieved is about 3.82 eV. The ultraviolet emission peaks in photoluminescence spectra are centered at about 360 nm. A new mechanism is proposed to explain the dependence of the electrical and optical properties on structural evolution of deposited films.

  8. Evolution of Surface Morphology and Chemistry in ZnO Thin Films and Steel Surfaces studied by Synchrotron X-ray Spectroscopy and Imaging

    Science.gov (United States)

    Jiang, Hua

    Thin film and surface treatment play an important role in developing materials with unique properties. They have been widely used in energy generation and storage, optical devices, LEDS, electrical semiconductor devices, etc. The stability and functionality of them under operational environment are important, especially the surface morphology and chemical evolution at micro-scale. This information is critical to understand the behaviors of the materials under various environments for a wide range of applications. Synchrotron x-ray fluorescence (XRF) and x-ray absorption near edge structure (XANES) are suitable techniques on investigating surface morphology and chemical evolution. Here, we use both techniques to investigate chemical and morphological heterogeneity of zinc oxide thin films after environmental humidity exposure, as well as surface and chemical evolution of iron oxidation states during iron redox process for samples with/without surface anti-corrosion treatment. Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, leading to failure of electronics due to environmental factors, such as heat and humidity. While degradation appears to be linked to water and oxygen penetration in the ZnO film, a direct observation in ZnO film morphological evolution, in conjunction with structural and chemical changes is lacking. Here, we systematically investigated the chemical and morphological heterogeneity of ZnO thin films caused by steam treatment. X-ray fluorescence microscopy, absorption spectroscopy, grazing incident small angle and wide angle scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM and optical microscopy were carried out to examine ZnO, Al-doped ZnO and Ga-doped ZnO thin films, on two different substrates - silicon wafer and PET film. The environmental aging introduced pin-holes in the un-doped ZnO thin film. More significant morphological features formed in the Al-doped ZnO thin

  9. Atomic layer deposition of high-quality Al{sub 2}O{sub 3} and Al-doped TiO{sub 2} thin films from hydrogen-free precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aarik, Lauri, E-mail: lauri.aarik@ut.ee [University of Tartu, Institute of Physics, Riia 142, 51014 Tartu (Estonia); Arroval, Tõnis; Rammula, Raul; Mändar, Hugo [University of Tartu, Institute of Physics, Riia 142, 51014 Tartu (Estonia); Sammelselg, Väino [University of Tartu, Institute of Physics, Riia 142, 51014 Tartu (Estonia); University of Tartu, Institute of Chemistry, Ravila 14A, 50411 Tartu (Estonia); Hudec, Boris; Hušeková, Kristína; Fröhlich, Karol [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Aarik, Jaan [University of Tartu, Institute of Physics, Riia 142, 51014 Tartu (Estonia)

    2014-08-28

    Possibilities for atomic layer deposition of Al{sub 2}O{sub 3} films from chloride and ozone were studied in order to avoid application of precursors that could leave hydrogen impurities in the films. Growth of Al{sub 2}O{sub 3} was obtained at substrate temperatures of 300–450 °C. At these temperatures, the growth rate was close to the values reported for corresponding H{sub 2}O-based processes. Studies of thin-film composition revealed that reactivity of O{sub 3} was sufficient to ensure deposition of films with chlorine concentration below 0.05 at.% at 350–450 °C. Application of the AlCl{sub 3}–O{sub 3} atomic layer deposition process for in situ Al-doping of TiO{sub 2} thin films demonstrated that the amount of Al incorporated into the films during a single deposition cycle depended on the doping level. A reason for this effect was the influence of Al-doping on the phase composition of the film material. Al-doping of the TiO{sub 2} films significantly reduced the surface roughness allowing deposition of high-density films with very flat surfaces. In capacitor structures with capacitance equivalent oxide thicknesses below 0.4 nm, the Al-doped TiO{sub 2} films deposited from TiCl{sub 4}, AlCl{sub 3} and O{sub 3} demonstrated markedly lower leakage current densities than the films with similar capacitance densities grown from TiCl{sub 4}, Al(CH{sub 3}){sub 3} and H{sub 2}O and from TiCl{sub 4}, Al(CH{sub 3}){sub 3} and O{sub 3} did. - Highlights: • Atomic layer deposition of thin films from AlCl{sub 3} and O{sub 3} was investigated. • Growth of Al{sub 2}O{sub 3} was obtained at temperatures 300–450 °C. • Growth rates up to 0.069 nm per cycle were observed. • Deposition of Al-doped TiO{sub 2} films from TiCl{sub 4}, AlCl{sub 3} and O{sub 3} was studied. • Films with superior dielectric properties were grown in the hydrogen-free process.

  10. Microstructure and blueshift in optical band gap of nanocrystalline Al{sub x}Zn{sub 1−x}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Majeed Khan, M.A., E-mail: majeed_phys@rediffmail.com [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Kumar, Sushil [Materials ScienceLaboratory, Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); Naziruddin Khan, M.; Ahamed, Maqusood [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Al Dwayyan, A.S. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-11-15

    In this paper, we report the structural and optical properties of Al doped ZnO (AZO) thin films grown on glass substrates using the sol–gel process. To understand the effect of Al doping on the structural and optical response of ZnO nanoparticles thin films, the prepared samples have been characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), UV–vis absorption and Raman spectroscopy. X-ray diffraction results show that Al doped ZnO nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM images as well as XRD data exhibit the estimated size of nanoparticles to be in the range 35–45 nm. The optical band gap has been determined from optical absorption spectra. The band gap varied from 3.27 eV for undoped ZnO film to 3.87 eV for AZO film having 3 atwt% Al. The blue shift in energy band gap mainly related to carrier concentration induced by Al-donor doping, and to the degree of crystalline order. Photoluminescence study further confirms the blue shift in UV emission when Al doping concentration is increased, as a consequence of extension in band gap. - Highlights: • Undoped and Al doped ZnO nanoparticles has been synthesized by the sol–gel method. • Undoped and Al doped ZnO films have a (0 0 2) peak, indicating a hexagonal wurtzite structure. • The stacking faults induced by Al-doped provide another path for electron transfer. • Influence of Al doping on the physical properties of ZnO nanoparticles was investigated. • The quality and crystallinity of Al-doped ZnO films were investigated by varying the Al compositions.

  11. Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off

    CERN Document Server

    Kinsey, N; Kim, J; Ferrera, M; Shalaev, V M; Boltasseva, A

    2015-01-01

    Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum doped zinc oxide (AZO) is very attractive because its dielectric permittivity can be engineered over a broad range in the near infrared and infrared. However, despite all these beneficial features, the slow (> 100 ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength of 1.3 {\\mu}m. The unique properties of the demonstrated AZO thin films are the result of...

  12. Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)

    Science.gov (United States)

    2014-01-15

    AFRL-RY-WP-TP-2014-0009 TRANSPARENT CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) Monica Allen, Jeffery Allen...CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N...for plasmonic waveguiding applications with an emphasis on highly conducting ZnO . In addition, the paper contains analysis of a set of thin Al-doped

  13. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Luo, Junming [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Tian, Xinlong, E-mail: tianxinlong2010@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wu, Shoukun; Chen, Chun; Deng, Jianfeng [Huizhou King Brother Electronic Technology Co., Ltd, Huizhou 516083 (China); Xiao, Chumin [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Hu, Guanghui, E-mail: qhxy123@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2014-01-15

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice.

  14. ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsouva, M.G. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Papadimitriou, D. [National Technical University of Athens, Department of Physics, GR-15780 Athens (Greece); Fasaki, I.; Kompitsas, M. [Theor. and Phys./Chem. Institute, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens (Greece)

    2011-04-15

    Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 deg. C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.

  15. ZnO Thin Film Electronics for More than Displays

    Science.gov (United States)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  16. Compositional and physico-optical characterization of 0-5% Al-doped zinc oxide films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R; Lopez-Ibanez, R; Ramos-Barrado, J R; Martin, F; Leinen, D [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dpto. Fisica Aplicada I and Dpto. IngenierIa Quimica, Universidad de Malaga, E-29071 Malaga (Spain); Dalchiele, E A, E-mail: dietmar@uma.e [Instituto de Fisica, Facultad de IngenierIa, Universidad de la Republica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2010-03-10

    Highly transparent polycrystalline Al-doped ZnO thin films were deposited in open atmosphere by chemical spray pyrolysis on fused silica and glass substrates at 623 K. The influence of Al doping, 0 to 5%, was studied. XPS results revealed a linear relationship between Al content in the precursor solutions and Al content in the films. XPS depth profiling showed that any carbon contamination is restricted to the uppermost surface of the films. Optical transmission measurements revealed an increasing number of dispersion centres as well as a band gap shift to higher values with increasing Al content in the films. At fixed Al concentration, the comparison of the absorption coefficient for increasing film thickness showed that the films are very homogeneous, not changing their materials properties such as absorption coefficient and band gap.

  17. Influence of process parameters on band gap of AI-doped ZnO film

    Institute of Scientific and Technical Information of China (English)

    Diqiu HUANG; Xiangbin ZENG; Yajuan ZHENG; Xiaojin WANG; Yanyan YANG

    2013-01-01

    This paper presents the influence of process parameters, such as argon (Ar) flow rate, sputtering power and substrate temperature on the band gap of Al-doped ZnO film, Al-doped ZnO thin films were fabricated by radio frequency (RF) magnetron sputtering technology and deposited on polyimide and glass substrates. Under different Ar flow rates varied from 30 to 70 sccm, the band gap of thin films were changed from 3.56 to 3.67 eV. As sputtering power ranged from 125 to 200 W, the band gap was varied from 3.28 to 3.82 eV; the band gap was between 3.41 and 3.88 eV as substrate temperature increases from 150℃ to 300℃. Furthermore, the correlation between carrier concentration and band gap was investigated by HALL. These results demonstrate that the band gap of the Al-doped ZnO thin film can be adjusted by changing the Ar flow rate, sputtering power and substrate temperature, which can improve the performance of semiconductor devices related to Al-doped ZnO thin film.

  18. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    Science.gov (United States)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; Williams, Garth; Thieme, Juergen; Nykypanchuk, Dmytro; Li, Li; Muto, Atsushi; Chen-Wiegart, Yu-chen Karen

    2016-08-01

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and wide angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100-200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.

  19. Effects of doping concentration on properties of Mn-doped ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Gao Li; Zhang Jian-Min

    2009-01-01

    This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500 ℃. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn_(2p3/2) increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4 wt. % and 10 wt. % Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20 wt. % Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.

  20. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    Science.gov (United States)

    Go, Bit-Na; Kim, Yang Doo; suk Oh, Kyoung; Kim, Chaehyun; Choi, Hak-Jong; Lee, Heon

    2014-09-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively.

  1. Mn doped nanostucture ZnO thin film for photo sensor and gas sensor application

    Science.gov (United States)

    Mahajan, Sandip V.; Upadhye, Deepak S.; Shaikh, Shahid U.; Birajadar, Ravikiran B.; Siddiqui, Farha Y.; Ghule, Anil V.; Sharma, Ramphal

    2013-02-01

    Mn doped nanostructure ZnO thin film prepared by soft chemically route method. ZnO thin films were deposited on glass substrate by successive ionic layer adsorption and reaction technique (SILAR). After deposit ZnO thin film dipped in MnSO4 solution for 1 min. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Structural properties were studied by XRD. The improvement in gas sensing properties was found to enhance after doping of Mn on ZnO thin film. The Photo Sensor nature was calculated by I-V characteristics.

  2. Optical characterization of ZnO thin films deposited by RF magnetron sputtering method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This study investigated the process parameter effects on the structural and optical properties of ZnO thin film using radio frequency (RF) magnetron sputtering on amorphous glass substrates. The process parameters included RF power and working pressure. Results show that RF power was increased to promote the crystalline quality and decrease ZnO thin film defects. However, when the working pressure was increased to 3 Pa the ZnO thin film crystalline quality became worse. At a 200 W RF power and 1 Pa working pressure, the ZnO thin film with an optical band gap energy of 3.225 eV was obtained.

  3. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    OpenAIRE

    2012-01-01

    The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis o...

  4. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  5. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    Directory of Open Access Journals (Sweden)

    Deepu Thomas

    2014-01-01

    Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.

  6. Al-doped and undoped zinc oxide films obtained by soft chemistry

    Directory of Open Access Journals (Sweden)

    Suzana M. Mihaiu

    2009-06-01

    Full Text Available Zinc oxide with a hexagonal wurzite type structure is an unique material that exhibits semiconducting, piezoelectric and pyroelectric properties. These properties play a key role for applications in optoelectronic devices. In the present work Al-doped and undoped ZnO films were obtained by soft chemistry starting with zinc acetate dihydrate and Al(III isopropoxide in absolute ethyl alcohol. Trietanolamine was used as chelating agent. The fi lms were deposited by dip coating technique on the silicon substrate and thermally treated at 500°C for one hour. The morphological characteristics of the films were investigated by Atomic Force Microscopy (AFM. Optical constants, such as refractive index (n and extinction coeffi cient (k, were established by Spectroellipsometry measurements. Electrical conductivity of the studied fi lms was determined in the 20–500°C temperature range by “the four point method”. The morphology of the fi lms is infl uenced by the starting sol composition, as found from AFM. According to the ellipsometric spectral data, more porous and thinner films, with smaller refractive index were obtained in the case of Al-doped ZnO fi lms as compared with ZnO films. Both ZnO and Al-doped ZnO fi lms presented high electrical resistivity.

  7. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  8. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gürbüz, Osman [Department of Physics, Yıldız Technical University, Davutpaşa, 34210 İstanbul (Turkey); Kurt, İsmail; Çalışkan, Serkan [Department of Physics, Fatih University, Büyükçekmece, 34500 İstanbul (Turkey); Güner, Sadık, E-mail: sguner@fatih.edu.tr [Department of Physics, Fatih University, Büyükçekmece, 34500 İstanbul (Turkey)

    2015-09-15

    Highlights: • RF magnetron sputtering technique seems to be very efficient method for fabrication of Al doped ZnO (AZO) films. • Long range single crystalline structure improves with annealing process. • Optical properties became much better after annealing process especially for the AZO films that include high Al concentration. • Much greater conductivity with increasing Al concentration and annealing process. • AZO films have potential applicability in spintronic devices. - Abstract: The pure ZnO and Al-doped ZnO (AZO) thin films (thickness: 200 nm) were prepared on both side polished silica (SiO{sub 2}) substrates via RF magnetron sputtering at room temperature by using 2.5 inches high-purity ZnO (99.9%) and Al (99.9%) targets. The samples were annealed at 300 °C, 400 °C and 500 °C for 45 min in N{sub 2} ambient in quartz annealing furnace system, respectively. We investigated the effects of various Al concentrations and annealing treatment on the structural, electrical, and optical properties of films. The preferred crystallization was observed along c axis (single (0 0 2) diffraction peak) from substrate surface assigning the single crystalline Würtzite lattice for pure ZnO and AZO thin films. Although increasing Al concentration decreases the order of crystallization of as-grown films, annealing process increases the long range crystal order. The crystallite sizes vary between minimum 12.98 nm and maximum 20.79 nm for as-grown and annealed samples. The crystallite sizes decrease with increasing Al concentration but increase with increasing annealing temperature as general trend. The grain size and porosity of films change with annealing treatment. The smaller grains coalesce together to form larger grains for many films. However, a reverse behavior is seen for Al{sub 2.23}ZnO and Al{sub 12.30}ZnO samples. That is, Al concentration plays critical role as well as temperature on grain size. Low percent optical transmittance (T%) is observed due to

  9. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    OpenAIRE

    Deepu Thomas; Sunil C. Vattappalam; Sunny Mathew; Simon Augustine

    2014-01-01

    ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR) method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with S...

  10. Effective conductivity of chemically deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Robles, M. [Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca (Mexico). Fac. de Ciencias; Tagueena-Martinez, J. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar; Del Rio, J.A. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar

    1997-01-30

    Chemically deposited thin films have multiple applications. However, as a result of their complex structure, their physical properties are very difficult to predict. In this paper, we use an effective medium approach to model these heterogeneous systems. We extend Thorpe`s formula for the effective electrical conductivity of elliptical holes randomly distributed in a matrix to a system composed of conducting ellipses in a conducting matrix. This extension is used to calculate the effective electrical conductivity of polycrystalline chemically deposited ZnO thin films. We compare experimental results obtained by two different deposition methods: spray pyrolysis and successive ion layer adsorption and reaction (SILAR) reported here. We select the elliptical geometric parameters from microstructural data. Good agreement between the experimental measurements and our calculation is obtained. In addition, we present a new proof of the reciprocity theorem used to derive the theoretical relation. (orig.)

  11. Microstructure of ZnO Thin Films Deposited by High Power Impulse Magnetron Sputtering (Postprint)

    Science.gov (United States)

    2015-03-01

    ABSTRACT High power impulse magnetron sputtering was used to deposit thin (~100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates...used to deposit thin (~100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates heated to 150 °C. The resulting films had strong...support from the Air Force Office of Scientific Research Aerospace Materials for Extreme Environments program (14RX13COR) is gratefully acknowledged

  12. Synthesis and annealing study of RF sputtered ZnO thin film

    Science.gov (United States)

    Singh, Shushant Kumar; Sharma, Himanshu; Singhal, R.; Kumar, V. V. Siva; Avasthi, D. K.

    2016-05-01

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  13. Analysis of Li-related defects in ZnO thin films influenced by annealing ambient

    Indian Academy of Sciences (India)

    Bing Wang; Lidan Tang

    2014-02-01

    Li-doped ZnO thin films were grown on quartz substrates by radio frequency magnetron sputtering and in situ annealing under O2 or Ar ambient. Li-related defects in ZnO films strongly depend on the annealing ambient. AFM and XRD indicated that ZnO films possessed a good crystallinity with -axis orientation, uniform thickness and dense surface. Electrical and optical properties demonstrated that, an amount of LiZn defect had existed in ZnO annealed under O2 ambient and an amount of Lii(o) defect had existed in ZnO annealed under Ar ambient. First-principle calculations were performed to calculate formation energies of Li-doped ZnO in order to explain the formation mechanism of Li-related defects in ZnO.

  14. Oriented grain growth in ZnO thin films by Iodine doping

    Science.gov (United States)

    Thomas, Deepu; Vattappalam, Sunil C.; Mathew, Sunny; Augustine, Simon

    2015-02-01

    ZnO thin films were prepared by Successive Ionic Layer Adsorption Reaction (SILAR) method. Oriented grain growth in Iodine doped ZnO thin films were studied. The oriented grain growth in samples was studied by comparing the peak intensities from X-ray diffraction data and surface morphology by scanning electron microscopy. It is found that oriented grain growth significantly enhanced by Iodine doping. When the oriented grain growth increases, crystallinity of the thin film improves, resistance and band gap decrease. ZnO thin films having good crystallinity with preferential (002) orientation is a prerequisite for the fabrication of devices like UV diode lasers, acoustic- optic devices etc. A possible mechanism for the oriented grain growth is also investigated. It is inferred that creation of point defects is responsible for the enhanced oriented grain growth in ZnO thin films when doped with iodine.

  15. Macroparticles Reduction Using Filter Free Cathodic Vacuum Arc Deposition Method in ZnO Thin Films.

    Science.gov (United States)

    Yuvakkumar, R; Peranantham, P; Nathanael, A Joseph; Nataraj, D; Mangalaraj, D; Hong, Sun Ig

    2015-03-01

    We report a new method to reduce macroparticles in ZnO thin films using filter free cathodic vacuum arc deposition without using any cooling arrangements operated at low arc current. The detailed mechanism has been proposed to reduce macroparticles during thin film deposition. The successful reduction of macroparticles was confirmed employing FESEM-EDX studies. FESEM images of ZnO thin films deposited with cathode spot to substrate distance from 10 to 20 cm revealed that the population of the macroparticles were reduced with the increase of cathode spot to substrate distances at low arc current. The prepared ZnO films were characterised and showed good structural and optical properties.

  16. Direct current magnetron sputter-deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoon, Jian-Wei [Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chan, Kah-Yoong, E-mail: kychan@mmu.edu.my [Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Krishnasamy, Jegenathan; Tou, Teck-Yong [Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Knipp, Dietmar [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)

    2011-01-15

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  17. Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films

    Science.gov (United States)

    Mohamed, S. H.; El-Hagary, M.; Althoyaib, S.

    2012-01-01

    Nanocomposite TiO2-ZnO thin films, with different ZnO content, were deposited by electron-beam evaporation on glass and Si(1 0 0) substrates. The resulting films were annealed in air for 1 h at 450 °C. X-ray diffraction revealed the presence of monoclinic β-TiO2 and hexagonal ZnO for the films prepared with ZnO content of 0 at.% and 100 at.%, respectively. Mixed monoclinic β-TiO2 and hexagonal ZnO phases were observed at higher ZnO content between 50 at.% and 85 at.%. Spectroscopic ellipsometry (SE) was employed to determine the film thickness and optical constants. A two-layer model was used to describe the experimental ellipsometric data. At any wavelength longer than 390 nm, the refractive index decreases gradually with increasing ZnO content in the composite films. The optical band gap increased with increasing ZnO content. The photocatalytic behavior of TiO2-ZnO thin films was mainly evaluated by measuring the decomposition of methylene blue. The nanocomposite film with ZnO content of 8 at.% has the best photocatalytic activities.

  18. Crystallographic polarity effect of ZnO on thin film growth of pentacene

    Science.gov (United States)

    Nakamura, Tatsuru; Nagata, Takahiro; Hayakawa, Ryoma; Yoshimura, Takeshi; Oh, Seungjun; Hiroshiba, Nobuya; Chikyow, Toyohiro; Fujimura, Norifumi; Wakayama, Yutaka

    2017-04-01

    The spontaneous polarization effect of ZnO on the thin film growth of pentacene, which is a typical π conjunction organic semiconductor, was investigated. Pentacene thin films were grown on polar ZnO surfaces by ultraslow organic film physical vapor deposition to obtain layer-by-layer growth. X-ray diffraction measurements revealed that pentacene molecules stand upright on polar ZnO surfaces, and that the films consist of two polymorphs, namely, the thin-film and bulk phases. The thin-film phases of pentacene were observed regardless of the polarity of the ZnO substrate at a thickness of less than six molecular layers. However, pentacene on a Zn-polar ZnO substrate gradually changed to the bulk phase unlike that on an O-polar ZnO substrate. Kelvin probe force microscopy measurements revealed that the surface potential of pentacene becomes more positive with increasing pentacene thickness at less than two molecular layers. The variation in the potential of pentacene on the Zn-polar ZnO substrate was larger than that of pentacene on the O-polar ZnO substrate. These findings indicate that the polarity of the semiconductor can control the growth and electronic state of the inorganic/organic semiconductor interface.

  19. Optical characterization of ZnO thin films deposited by RF magnetron sputtering method

    Institute of Scientific and Technical Information of China (English)

    TANG Ning; WANG JinLiang; XU HengXing; PENG HongYong; FAN Chao

    2009-01-01

    This study investigated the process parameter effects on the structural and optical properties of ZnO thin film using radio frequency(RF)magnetron sputtering on amorphous glass substrates.The process parameters included RF power and working pressure.Results show that RF power was increased to promote the crystalline quality and decrease ZnO thin film defects.However,when the working pressure was increased to 3 Pa the ZnO thin film crystalline quality became worse.At a 200 W RF power and 1 Pa working pressure,the ZnO thin film with an optical band gap energy of 3.225 eV was obtained.

  20. Properties of multilayer gallium and aluminum doped ZnO(GZO/AZO)transparent thin films deposited by pulsed laser deposition process

    Institute of Scientific and Technical Information of China (English)

    Jin-Hyum SHIN; Dong-Kyun SHIN; Hee-Young LEE; Jai-Yeoul LEE

    2011-01-01

    Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO GZO/AZO thin films linearly decreases with increasing the Al ratio.

  1. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition

    Science.gov (United States)

    Chiu, Hsiang-Chih; Chang, Huan-Pu; Lo, Fang-Yu; Yeh, Yu-Ting; Department of Physics, National Taiwan Normal University Collaboration

    Zinc Oxide (ZnO) nanostructures have potential applications in nano-electro-mechanical systems (NEMS) due to their unique physical properties. ZnO is also an excellent lubricant and hence a promising candidate for protective coatings in NEMS. By means of atomic force microscopy (AFM), we have investigated the frictional properties of ZnO thin films prepared by pulsed laser deposition technique. In addition, UV illumination is used to convert the surface wettability of ZnO thin films from being more hydrophobic to superhydrophilic via the photo-catalyst effect. We found that the frictional properties of the UV illuminated, superhydrophilic ZnO surface are strongly dependent on the environment humidity. While for hydrophobic ZnO, no such dependence is found. The observed frictional behaviors can be explained by the interplay between the surface roughness, environmental humidity and the presence of nanoscale capillary condensation forming between surface asperities at the tip-ZnO contact. Our results might find applications in future ZnO related NEMS. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition.

  2. Surface morphology and photoluminescence properties of ZnO thin films obtained by PLD

    Institute of Scientific and Technical Information of China (English)

    FAN Xi-mei; LIAN Jian-she; GUO Zuo-xing; JIANG Qing

    2005-01-01

    ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere, Nd-YAG laser with wavelength of 1 064 nm was used as laser source. XRD and FESEM microscopy were applied to characterize the structure and surface morphology of the deposited ZnO films. The optical properties of the ZnO thin films were characterized by photoluminescence. The UV and deep level (yellow-green) light were observed from the films. The UV light is the intrinsic property and deep level light is attributed to the existence of antisite defects (OZn). The intensity of UV and deep level light depends strongly on the surface morphology and is explained by the surface roughness of ZnO film. A strongly UV emission can be obtained from ZnO film with surface roughness in nanometer range.

  3. Thickness dependency of sol-gel derived ZnO thin films on gas sensing behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, Nitul; Jee, Seung Hyun; Kim, Su Hyun; Oh, Jun Young; Yoon, Young Soo, E-mail: yoonys@yonsei.ac.k

    2010-10-29

    ZnO thin films were fabricated by a sol-gel method using Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O as starting material in order to prepare an acetone gas sensor. A homogeneous and stable solution was prepared by dissolving the zinc acetate in a solution of ethanol and monoethanolamine. The sol-gel solution is coated on alumina substrates with various thicknesses by spin coating technique and heat treated to grow crystalline ZnO thin films. The effect of thickness on physical and electrical properties of as deposited ZnO thin films has been studied. The as deposited ZnO thin films were characterized by X-ray diffraction spectroscopy, field emission scanning electron microscopy and atomic force microscopy. The root mean square surface roughness factors increase with thickness of the films and found 3.9, 6.6, 9.0, and 11.28 nm for 80-, 220-, 450- and 620-nm-thin films respectively. The activation energies of the films are calculated from the resistance temperature characteristics. The sensitivities of the ZnO films towards the acetone gas were determined at an operating temperature of 200 {sup o}C. The sensitivity towards acetone vapor is strongly depending on surface morphology of the ZnO thin films.

  4. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  5. Growth and Properties of Cu-based Al-doped ZnO Multilayer Films%Cu基Al掺杂ZnO多层薄膜的生长及其性能

    Institute of Scientific and Technical Information of China (English)

    王钰萍; 吕建国; 叶志镇

    2011-01-01

    Al-doped ZnO/Cu(AZO/Cu) bi-layer,Cu/AZO bi-layer,and AZO/Cu/AZO tri-layer films were prepared on glass substrates by DC magnetron sputtering at different temperatures.Comparative study of electrical and optical properties reveal that AZO/Cu bi-layer film is superior in photoelectric properties to other two kinds of multilayer films,with an optimum growth temperature in the 100-150℃ range.Effects of growth temperature on the structural property and surface morphology of AZO/Cu bi-layer films were further investigated.Moderate growth temperatures could lead to high crystal quality of the films,and therefore improve the photoelectric properties.AZO/Cu bi-layer films grown at 150℃ have the highest figure of merit of 1.11×10-2 Ω-1,with a low sheet resistance of 8.99 Ω/sq,high visible transmittance of 80%,and near infrared reflectance of about 70%.Combination of good transparent-conductive property,excellent near-infrared reflectivity,and low-temperature deposition enable the AZO/Cu bi-layer films to be widely used in various fields such as coated glasses,solar cells,and flat panel displays.%本文采用直流磁控溅射技术在玻璃衬底上制备了AZO/Cu、Cu/AZO和AZO/Cu/AZO三种复合结构多层膜,研究了生长温度对多层膜特性的影响,发现AZO/Cu双层薄膜具有最优的光电性能,其最佳生长温度为100~150℃。文中进一步考察了生长温度对AZO/Cu双层薄膜结构性能和表面形貌的影响,结果表明:合适的生长温度有利于改善AZO/Cu双层薄膜的晶体质量,进而提高其光电性能;150℃下沉积的薄膜具有最佳品质因子1.11×10-2Ω-1,此时方块电阻为8.99Ω/sq,可见光透过率为80%,近红外反射率约70%。本文在较低温度下制备的AZO/Cu双层膜具有较优的透明导电性和良好的近红外反射性,可以广泛应用于镀膜玻璃、太阳能电池、平板显示器等光电领域。

  6. Control al doping Compromiso de Colombia

    Directory of Open Access Journals (Sweden)

    Claudia Prieto

    2015-06-01

    Full Text Available Este documento da a conocer la importante noticia de la aprobación, por parte del Comité Olímpico Internacional (COl, de un laboratorio colombiano, para el control al doping, a la vez que aprovecha la oportunidad para ampliar alguna información sobre este tema.

  7. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    Science.gov (United States)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  8. Effect of silver growth temperature on the contacts between Ag and ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures,200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150 ℃ and 200℃. Ohmic contacts were formed while the growth temperatures were lower than 150℃ or higher than 200 ℃. After analysis,the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

  9. Effect of silver growth temperature on the contacts between Ag and ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    LI XinKun; LI QingShan; LIANG DeChun; XU YanDong; XIE XiaoJun

    2009-01-01

    Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were depos-ited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts be-tween Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150℃ and 200℃. Ohmic contacts were formed while the growth temperatures were lower than 150℃ or higher than 200℃. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

  10. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Sheng [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Shih, Wei-Che [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ye, Wei-Tsuen [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Cheng, Da-Long, E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China)

    2016-04-30

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD{sub UV} is influenced by SAW types and ZnO film characteristics.

  11. Textured ZnO thin films by RF magnetron sputtering

    CERN Document Server

    Ginting, M; Kang, K H; Kim, S K; Yoon, K H; Park, I J; Song, J S

    1999-01-01

    Textured thin films ZnO has been successfully grown by rf magnetron sputtering method using a special technique of introducing a small amount of water and methanol on the deposition chamber. The grain size of the textured surface is highly dependent on the argon pressure during the deposition. The pressure in this experiment was varied from 50 mTorr down to 5 mTorr and the highest grain size of the film is obtained at 5 mTorr. The total transmittance of the films are more than 85% in the wavelength of 400 to 800 nm, and haze ratio of about 14% is obtained at 400 nm wavelength. Beside the textured surface, these films also have very low resistivity, which is lower than 1.4x10 sup - sup 3 OMEGA centre dot cm. X-ray analysis shows that the films with textured surface have four diffraction peaks on the direction of (110), (002), (101) and (112), while the non-textured films have only (110) and (002) peaks. Due to the excellent characteristics of this film, it will make the film very good TCO alternatives for the ...

  12. Impact of nanostructured thin ZnO film in ultraviolet protection

    Science.gov (United States)

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  13. Synthesis and characterization of ZnO thin film by low cost modified SILAR technique

    Directory of Open Access Journals (Sweden)

    Haridas D. Dhaygude

    2016-03-01

    Full Text Available The ZnO thin film is prepared on Fluorine Tin Oxide (FTO coated glass substrate by using SILAR deposition technique containing ZnSO4.7H2O and NaOH as precursor solution with 150 deeping cycles at 70 °C temperature. Nanocrystalline diamond like ZnO thin film is characterized by different characterization techniques such as X-ray diffraction (XRD, Fourier transform (FT Raman spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM with Energy dispersive X-Ray Analysis (EDAX, optical absorption, surface wettability and photoelectrochemical cell performance measurement. The X-ray diffraction analysis shows that the ZnO thin film is polycrystalline in nature having hexagonal crystal structure. The FT-Raman scattering exhibits a sharp and strong mode at 383 cm−1 which confirms hexagonal ZnO nanostructure. The surface morphology study reveals that deposited ZnO film consists of nanocrystalline diamond like morphology all over the substrate. The synthesized thin film exhibited absorption wavelength around 309 nm. Optical study predicted the direct band gap and band gap energy of this film is found to be 3.66 eV. The photoelectrochemical cell (PEC parameter measurement study shows that ZnO sample confirmed the highest values of, short circuit current (Isc - 629 mAcm−2, open circuit voltage (Voc - 878 mV, fill factor (FF - 0.48, and maximum efficiency (η - 0.89%, respectively.

  14. Ohmic-rectifying conversion of Ni contacts on ZnO and the possible determination of ZnO thin film surface polarity.

    Directory of Open Access Journals (Sweden)

    Kim Guan Saw

    Full Text Available The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001 ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001 ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2. The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type and ZnO (which is intrinsically n-type. The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.

  15. Investigations of ZnO thin films deposited by a reactive pulsed laser ablation

    Institute of Scientific and Technical Information of China (English)

    Y.; C.; SOO; H.; KANDEL; M.; A.; THOMAS; C.; P.; DAGHLIAN

    2009-01-01

    Highly transparent ZnO thin films were deposited at different substrate temperatures by pulsed laser deposition in an oxygen atmosphere. The thin films were characterized by various techniques including X-ray diffraction, scanning electron microscopy, optical absorption, and photoluminescence. We demonstrated that oriented wurtzite ZnO thin films could be deposited at room temperature using a high purity zinc target. Variable temperature photoluminescence revealed new characteristics in the band edge emission. The underlying mechanism for the observed phenomena was also discussed.

  16. Variable range hopping crossover and magnetotransport in PLD grown Sb doped ZnO thin film

    Science.gov (United States)

    Mukherjee, Joynarayan; Mannam, Ramanjaneyulu; Ramachandra Rao, M. S.

    2017-04-01

    We report on the variable range hopping (VRH) crossover in the electrical transport of Sb doped ZnO (SZO) thin film. Structural, chemical, electrical and magnetotransport properties were carried out on SZO thin film grown by pulsed laser deposition. X-photoelectron spectroscopy study confirms the presence of both Sb3+(33%) and Sb5+(67%) states. Sb doped ZnO thin film shows n-type behavior which is attributed to the formation of SbZn and/or SbZn–VZn defect complex. Temperature dependent resistivity measurement showed that in a low temperature regime (doped ZnO thin films is explained by the Khosla and Fischer model.

  17. Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique

    Science.gov (United States)

    Lv, Jianguo; Sun, Yue; Zhao, Min; Cao, Li; Xu, Jiayuan; He, Gang; Zhang, Miao; Sun, Zhaoqi

    2016-03-01

    ZnO thin films were successfully grown on fluorine-doped tin oxide glass by electrodeposition technique. The crystal structure, surface morphology and optical properties of the thin films were investigated. The average crystallite size and intensity of A1(LO) mode increase with improving the absolute value of deposition potential. The best preferential orientation along c-axis and the richest oxygen interstitial defects have been observed in the sample deposited at -0.8 V. A heterojunction device consisting of ZnO thin film and n-type fluorine-doped tin oxide was fabricated. The current-voltage (I-V) characteristic of the p-n heterojunction device deposited at -0.8 V shows the best rectifying diode behavior. The p-type conductivity of the ZnO thin film could be attributed to complex defect of unintentional impurity and interstitial oxygen.

  18. Investigation of thin ZnO layers in view of laser desorption-ionization

    Energy Technology Data Exchange (ETDEWEB)

    Grechnikov, A A; Borodkov, A S [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., 119991 Moscow (Russian Federation); Georgieva, V B [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Alimpiev, S S; Nikiforov, S M; Simanovsky, Ya O [General Physics Institute, Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow (Russian Federation); Dimova-Malinovska, D; Angelov, O I, E-mail: lazarova@issp.bas.b [Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  19. Nitrogen oxides and ammonia sensing characteristics of SILAR deposited ZnO thin film

    Science.gov (United States)

    Lupan, O. I.; Shishiyanu, S. T.; Shishiyanu, T. S.

    2007-07-01

    Pure and Sn, Ni doped ZnO thin films were deposited on glass substrates using a novel successive ionic layer adsorption and reaction (SILAR) method at room temperature. Microstructures of the deposited films were optimized by adjusting growth parameters. The variation in resistivity of the ZnO film sensors was performed with rapid photothermal processing (RPP). The effect of rapid photothermal processing was found to have an important role in ZnO based sensor sensitivity to NO 2, NH 3. While the undoped ZnO film surface exhibited higher NH 3 sensitivity than that of NO 2, an enhanced NO 2 sensitivity was noticed for the ZnO films doped with Sn and higher NH 3 sensitivity was obtained by Ni doping.

  20. Synthesis of Imine-Bearing ZnO Nanoparticle Thin Films and Characterization of Their Structural, Morphological and Optical Properties.

    Science.gov (United States)

    Kaur, Narinder; Sharma, Sanjeev K; Kim, Deuk Young; Sharma, Hemant; Singh, Narinder

    2015-10-01

    We are presenting the first report on the fabrication of imine-bearing ZnO nanoparticle thin films grown on Corning glass by spin coating. The sol was prepared by dissolving imine-bearing ZnO nanoparticles in dimethylsulfoxide (DMSO). The thickness of the films was manipulated to be 125-200 nm. The X-ray diffraction (XRD) analysis showed hexagonal wurtzite structure of imine-bearing ZnO nanoparticles thin films with a (002) preferential orientation. The stretching of chemical bonds of the imine linkage and Zn-O in imine-bearing ZnO nanoparticle thin films was confirmed by Fourier transform infrared spectroscopy (FTIR). The grain size of the films increased with increasing the thickness of the films due to the number of coatings and subsequently dried at 200 °C. The transmittance of imine-bearing ZnO nanoparticle thin films was observed to be ≥94%, which was in close agreement to pure ZnO thin films in the visible region. The bandgap of imine-bearing ZnO nanoparticle thin films (3.04 eV), evaluated from Tauc's plot, was observed to be lower than that of pure ZnO (3.21 eV), which is attributed to the interaction of the ZnO nanoparticles with the imine receptor.

  1. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    Science.gov (United States)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  2. Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2 Thin Films%基于铝离子掺杂二氧化钛薄膜的染料敏化太阳能电池的光电性能

    Institute of Scientific and Technical Information of China (English)

    刘秋平; 黄慧娟; 周洋; 段彦栋; 孙庆文; 林原

    2012-01-01

    Al-doped TiO2 thin films were synthesized by the hydrothermal method.To prepare a working electrode,a TiO2 or AlTiO2 slurry was coated onto a fiuorine-doped tin oxide glass substrate by the doctor blade method and the coated substrate was sintered at 450℃.TiO2 and Al-doped TiO2 films were characterized by X-ray photoelectron spectroscopy (XPS),X-ray diffraction (XRD),scanning electron microscopy (SEM),and tested by the dye-sensitized solar cell (DSSCs) system.The influences of Al-doping on TiO2 crystal form and the photovoltaic performance of DSSCs were investigated.X-ray photoelectron spectroscopy (XPS) data indicate that the doped Al ions exist in the form of Al3+,and these ions play a role as e- or h+ traps and reduce the e-/h* pair recombination rate.The corresponding MottSchottky plot indicates that the Al-doped TiO2 photoanode shifts the fiat band potential positively.The positive shift of the fiat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2.The Al-doped TiO2 thin film shows a photovoltaic efficiency of 6.48%,which is higher than that of the undoped TiO2 thin film (5.58%) and the short-circuit photocurrent density increases from 16.5 to 18.2 mA·cm-2.%采用水热法制备出Al3+掺杂二氧化钛薄膜,通过玻璃棒涂于导电玻璃上,在450℃的温度下烧结并将其用N3染料敏化制成染料敏化太阳能电池(DSSCs).通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)及DSSCs测试系统对其进行了测试表征,研究了Al3+掺杂对TiO2晶型及染料敏化太阳能电池的光电性能影响.XPS数据显示Al3+成功掺杂到了TiO2晶格内,由于Al3+的存在,对半导体内电子和空穴的捕获及阻止电子/空穴对的复合发挥重要作用.莫特-肖特基曲线显示掺杂Al3+后二氧化钛平带电位发生正移,并导致电子从染料注入到TiO2的驱动力提高.DSSCs系统测试结果表明,Al3+掺杂的TiO2

  3. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  4. Growth of ZnO thin films on GaAs by pulsed laser deposition

    OpenAIRE

    Craciun, V.; Elders, J.; Gardeniers, J.G.E.; Geretovsky, J.; Boyd, Ian W.

    1995-01-01

    ZnO thin films have been grown on GaAs substrates using the pulsed laser deposition technique with or without a photodeposited SiO2 buffer layer. The presence of the SiO2 layer has a beneficial effect on the crystalline quality of the grown ZnO films. Highly c-axis oriented ZnO films having a full width at half maximum value of the (002) X-ray diffraction line of less than 0.13 ° have been grown on such buffer layers at a substrate temperature of only 350 °C.

  5. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    Science.gov (United States)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  6. Ethanol Sensing Properties of Nanosheets ZnO Thin Films Prepared by Chemical Bath Deposition

    Science.gov (United States)

    Julia, Sri; Nururddin, Ahmad; Nugraha, Suyatman; Yuliarto, Brian

    2011-12-01

    Nanosheets ZnO thin films were successfully fabricated on alumina substrate by chemical bath deposition method using Zinc Nitrate Tetra hydrate as precursor. Films were annealed at 300 °C for 30 minutes and observed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) to know crystal phase and structure, surface morphology, and elemental composition respectively. The gas sensing performance of ZnO thin films was studied on exposure to ethanol gas sensing in various concentration (300 and 600 ppm). The films showed higher response towards ethanol gas sensing at optimized temperature of 250 °C and exhibited excellent sensitivity of 62.45% upon exposure 300 ppm and 69% upon exposure of 600 ppm ethanol gas sensing. Further, the response and recovery times of ZnO thin films to ethanol become shorter at higher operating temperatures. A possible mechanism of ethanol sensing has been explained.

  7. Effect of Ag Doping on Optical and Electrical Properties of ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    XU Jin; ZHANG Zi-Yu; ZHANG Yang; LIN Bi-Xia; FU Zhu-Xi

    2005-01-01

    @@ ZnO thin films were prepared on p-type Si (100) substrates by the sol-gel process. The influence of Ag doping at a content of 0.002 % on the photoluminescence and current-voltage (Ⅰ - Ⅴ) characteristics of ZnO thin films has been investigated. It is found that Ag doping leads to a pronounced increase in the intensity of near band edge emission at 3.23 eV and a remarkable red shift of the visible broadband at room temperature. The Ⅰ - Ⅴ characteristics of ZnO/p-Si hetero junctions are also changed. These results could be explained by Ag substituting for Zn in Ag doped ZnO thin films.

  8. Study on pulsed laser ablation and deposition of ZnO thin films by L-MBE

    Institute of Scientific and Technical Information of China (English)

    HE YongNing; ZHANG JingWen; YANG XiaoDong; XU QingAn; ZHU ChangChun; HOU Xun

    2007-01-01

    ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.

  9. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  10. Annealing effect on the property of ultraviolet and green emissions of ZnO thin films

    Science.gov (United States)

    Kang, Hong Seong; Kang, Jeong Seok; Kim, Jae Won; Lee, Sang Yeol

    2004-02-01

    The mechanism of ultraviolet (UV) and green emission of ZnO thin films deposited on (001) sapphire substrates by pulsed laser deposition was investigated by using postannealing treatment at various annealing temperatures after deposition. Structural, electrical, and optical properties of ZnO films have been also observed. As the postannealing temperature increased, the intensity of UV (380 nm) peak and the carrier concentration were decreased while the intensity of the visible (about 490-530 nm) peak and the resistivity were increased. The role of oxygen in ZnO thin film during the annealing process was important to the change of optical properties. The mechanism of the luminescence suggested that UV luminescence of ZnO thin film was related to the transition from near band edge to valence band, and green luminescence of ZnO thin film was caused by the transition from deep donor level to valence band due to oxygen vacancies. The activation energy derived by using the variation of green emission intensity was 1.19 eV.

  11. EPD-deposited ZnO thin films: a review

    Energy Technology Data Exchange (ETDEWEB)

    Verde, M.

    2014-07-01

    ZnO-based materials and specifically ZnO films with tailored morphology have been subjected to extensive research in the past few years due to their high potential for multiple prospective applications, mainly in electronics. Electrophoretic Deposition (EPD) constitutes an economical, eco friendly, low energy consuming and easily scalable alternative to the high energy consuming evaporative techniques which are commonly used for the obtaining of these ZnO films. For its application, however, the use of stable, well dispersed suspensions is a necessary requirement, and thus a thorough study of their colloidal chemistry is essential. In this work the main contributions to the study of colloidal chemistry of ZnO nanoparticle suspensions and their shaping into ZnO films by EPD are summarized. (Author)

  12. Schottky Junction Methane Sensors Using Electrochemically Grown Nanocrystalline-Nanoporous ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    P. K. Basu

    2009-01-01

    Full Text Available Nanocrystalline-nanoporous ZnO thin films were prepared by an electrochemical anodization method, and the films were tested as methane sensors. It was found that Pd-Ag catalytic contacts showed better sensing performance compared to other noble metal contacts like Pt and Rh. The methane sensing temperature could be reduced to as low as 100∘C by sensitizing nanocrystalline ZnO thin films with Pd, deposited by chemical method. The sensing mechanism has been discussed briefly.

  13. Structural, optical and electronic properties of Fe doped ZnO thin films

    Science.gov (United States)

    Singh, Karmvir; Devi, Vanita; Dhar, Rakesh; Mohan, Devendra

    2015-09-01

    Fe doped ZnO thin films have been deposited by pulsed laser deposition technique on quartz substrate to study structural, optical and electronic structure using XRD, AFM, UV-visible and X-ray absorption spectroscopy. XRD study reveals that Fe doping has considerable effect on stress, strain, grain size and crystallinity of thin films. UV-visible study determines that band gap of pristine ZnO decreases with Fe doping, which can be directly correlated to transition tail width and grain size. Change in electronic structure with Fe doping has been examined by XAS study.

  14. Effective annealing of ZnO thin films grown by three different SILAR processes

    OpenAIRE

    2015-01-01

    In the present work, zinc oxide (ZnO) thin films have been grown three different cation solution on glass substrates by a simple and economic successive ionic layer absorption and reaction method (SILAR). One of each grown different solution films was annealed to investigate to effective annealing at 473 K for 30 minutes. Absorption measurements showed that the optical band-gaps of all ZnO thin films were wide and were about 3.08-3.31 eV. All films’ band gap increased with annealing. Energy-D...

  15. Magnetic properties of high Li doped ZnO sol–gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vettumperumal, R. [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Santoshkumar, B. [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Thangavel, R. [Department of Physics, Indian School of Mines, Dhanbad (India)

    2014-02-01

    Highlights: • Ferromagnetism in high Li doped ZnO films. • Magnetic properties observed by Guoy's and VSM method. • The rod and wrinkle like structures are observed from the surface of the films. • Band gap of ZnO does not get altered by high Li doping. - Abstract: Undoped and Li doped ZnO thin films were deposited on a glass substrate using the sol–gel dip coating method. The films were prepared at 5 mol.% and 10 mol.% of Li doped ZnO at 550 °C annealing temperature and the deposited films were characterized by X-ray diffraction (XRD), microscopic studies, Gouy's method, vibrating sample magnetometer (VSM) and UV–visible spectroscopy. All the deposited thin films had a hexagonal wurtzite structure with polycrystalline grains at random. Primarily magnetic properties of pure and Li doped ZnO films were observed by Guoy's method which depicted Dia and Para magnetic behavior at room temperature. VSM measurement reveals a coercivity of 97.7 Oe in the films. An inverse relative ferromagnetism was perceived in Li doped ZnO films which had an average transmission of <90%.

  16. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors

    Institute of Scientific and Technical Information of China (English)

    LI Shao-Juan; HE Xin; HAN De-Dong; SUN Lei; WANG Yi; HAN Ru-Qi; CHAN Man-Sun; ZHANG Sheng-Dong

    2012-01-01

    The structural and electrical properties of ZnO 61ms deposited by reactive radiofrequency sputtering with a metallic zinc target are systematically investigated. While the as-deposited ZnO film is in a poly-crystalline structure when the partial pressure of oxygen (pO2) is low, the grain size abruptly decreases to a few nanometers as pO2 increases to a criticaJ vaiue, and then becomes almost unchanged with a further increase in pO2.In addition, the resistivity of the ZnO films shows a non-monotonic dependence on pO2, including an abrupt transition of about seven orders of magnitude at the critical pO2. Thin-film transistors (TFTs) with the nanocrystalline ZnO films as channel layers have an on/off current ratio of more than 107, an off-current in the order of pA, a threshold voltage of about 4.5 V, and a carrier mobility of about 2cm2/(V-s). The results show that radiofrequency sputtered ZnO with a zinc target is a promising candidate for high-performance ZnO TFTs.%The structural and electrical properties of ZnO films deposited by reactive radiofrequency sputtering with a metallic zinc target are systematically investigated.While the as-deposited ZnO film is in a poly-crystalline structure when the partial pressure of oxygen (pO2 ) is low,the grain size abruptly decreases to a few nanometers as pO2 increases to a critical value,and then becomes almost unchanged with a further increase in pO2.In addition,the resistivity of the ZnO films shows a non-monotonic dependence on pO2,including an abrupt transition of about seven orders of magnitude at the critical pO2.Thin-film transistors (TFTs) with the nanocrystalline ZnO films as channel layers have an on/off current ratio of more than 10 7,an off-current in the order of pA,a threshold voltage of about 4.5 V,and a carrier mobility of about 2 cm2/(V.s).The results show that radiofrequency sputtered ZnO with a zinc target is a promising candidate for high-performance ZnO TFTs.

  17. Nanoscale heterogeniety and workfunction variations in ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anirudh [Flinders Centre for NanoScale Science and Technology, Flinders University, PO Box 2100, Adelaide 5001, SA (Australia); Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128 (Germany); Untch, Maria [Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128 (Germany); Quinton, Jamie S. [Flinders Centre for NanoScale Science and Technology, Flinders University, PO Box 2100, Adelaide 5001, SA (Australia); Berger, Rüdiger, E-mail: berger@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128 (Germany); Andersson, Gunther; Lewis, David A. [Flinders Centre for NanoScale Science and Technology, Flinders University, PO Box 2100, Adelaide 5001, SA (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Quantitative insight in lateral work function distribution was obtained. • Ramp-annealed ZnO exhibits two electronically distinct nanoscale regions. • Comparative UPS and KPFM studies were performed to measure work function of heterogeneous surface. - Abstract: Nano-roughened, sol–gel derived polycrystalline ZnO thin films prepared by a thermal ramping procedure were found to exhibit different work function values on a sub-micrometer scale. By Kelvin probe force microscopy (KPFM) two distinct nanoscale regions with work function differing by over 0.1 eV were detected which did not coincide with the nano-roughened surface topography. In contrast, a flat ZnO surface displayed a single, uniform distribution. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the average workfunction across a flat ZnO surface was 3.7 eV while ZnO with a nano-roughened morphology had a lower workfunction of 3.4 eV with indications of electronic heterogeneity across the surface, supporting the KPFM results. Scanning Auger Nanoprobe measurements showed that the chemical composition was uniform across the surface in all samples, suggesting the work function heterogeneity was due to variations in crystallinity or crystal orientation on the surface of these thin films. Such heterogeneity in the electronic properties of materials in thin film devices can significantly influence the interfacial charge transport across materials.

  18. Preparation and properties of ZnO thin films deposited by sol-gel technique

    Institute of Scientific and Technical Information of China (English)

    LAN Wei; PENG Xingping; LIU Xueqin; HE Zhiwei; WANG Yinyue

    2007-01-01

    Zinc oxide (ZnO) thin films were deposited on (100) Si substrates by sol-gel technique.Zinc acetate was used as the precursor material.The effect of different anneal-ing atmospheres and annealing temperatures on composition, structural and optical properties of ZnO thin films was inves-tigated by using Fourier transform infrared spectroscopy, X-ray diffraction,atomic force microscopy and photolumi-nescence (PL),respectively.At an annealing temperature of 400℃ in N2 for 2 h,dried gel films were propitious to undergo structural relaxation and grow ZnO grains.ZnO thin film annealed at 400℃ in N2 for 2 h exhibited the optimal structure and PL property,and the grain size and the lattice constants of the film were calculated (41.6 nm,a = 3.253 A and c=5.210A).Moreover,a green emission around 495 nm was observed in the PL spectra owing to the oxygen vacancies located at the surface of ZnO grains.With increas- ing annealing temperature,both the amount of the grown ZnO and the specific surface area of the grains decrease,which jointly weaken the green emission.

  19. Random lasing of ZnO thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cachoncinlle, C., E-mail: christophe.cachoncinlle@univ-orleans.fr [GREMI, UMR 7344 CNRS—Université Orléans, 45067 Orléans Cedex 2 (France); Hebert, C.; Perrière, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 PO Box. MG-36, 77125 Bucharest—Magurele (Romania); Petit, A.; Millon, E. [GREMI, UMR 7344 CNRS—Université Orléans, 45067 Orléans Cedex 2 (France)

    2015-05-01

    Highlights: • Random lasing at RT in nanocrystalline ZnO PLD thin film (<100 nm). • Low optical pumping threshold (<30 kW cm{sup −2}) for UV random lasing. • Random lasing interpreted by the electron-hole plasma (EHP) model. - Abstract: Low-dimensional semiconductor structures on nanometer scale are of great interest because of their strong potential applications in nanotechnologies. We report here optical and structural properties on UV lasing in ZnO thin films. The ZnO films, 110 nm thick, were prepared using pulsed-laser deposition on c-cut sapphire substrates at 500 °C under 10{sup −2} oxygen pressure. The ZnO films are nearly stoichiometric, dense and display the wurtzite phase. The films are highly textured along the ZnO c-axis and are constituted of nanocrystallites. According to Hall measurements these films are conductive (0.11 Ω cm). Photoluminescence measurements reveals a so-called random lasing in the range 390 to 410 nm, when illuminating at 355 nm with a tripled frequency pulsed Nd-YAG laser. Such random lasing is obtained at rather low optical pumping, 45 kW cm{sup −2}, a value lower than those classically reported for pulsed-laser deposition thin films.

  20. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis

    Science.gov (United States)

    Babar, A. R.; Deshamukh, P. R.; Deokate, R. J.; Haranath, D.; Bhosale, C. H.; Rajpure, K. Y.

    2008-07-01

    Zinc oxide (ZnO) and ZnO : Ga films have been deposited by the spray pyrolysis method onto preheated glass substrates using zinc acetate and gallium nitrate as precursors for Zn and Ga ions, respectively. The effect of Ga doping on the structural, morphological, optical and electrical properties of sprayed ZnO thin films were investigated using x-ray diffraction (XRD), scanning electron microscopy, optical absorption, photoluminescence (PL) and Hall effect techniques. XRD studies reveal that films are polycrystalline with hexagonal (wurtzite) crystal structure. The thin films were oriented along the (0 0 2) plane. Room temperature PL measurements indicate that the deposited films exhibit proper doping of Ga in ZnO lattice. The average transparency in the visible range was around ~85-95% for typical thin film deposited using 2 at% gallium doping. The optical band gap increased from 3.31 to 3.34 eV with Ga doping of 2 at%. The addition of gallium induces a decrease in electrical resistivity of the ZnO : Ga films up to 2 at% gallium doping. The highest figure of merit observed in this present study was 3.09 × 10-3 cm2 Ω-1.

  1. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babar, A R; Deshamukh, P R; Deokate, R J; Bhosale, C H; Rajpure, K Y [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Haranath, D [National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: rajpure@yahoo.com

    2008-07-07

    Zinc oxide (ZnO) and ZnO : Ga films have been deposited by the spray pyrolysis method onto preheated glass substrates using zinc acetate and gallium nitrate as precursors for Zn and Ga ions, respectively. The effect of Ga doping on the structural, morphological, optical and electrical properties of sprayed ZnO thin films were investigated using x-ray diffraction (XRD), scanning electron microscopy, optical absorption, photoluminescence (PL) and Hall effect techniques. XRD studies reveal that films are polycrystalline with hexagonal (wurtzite) crystal structure. The thin films were oriented along the (0 0 2) plane. Room temperature PL measurements indicate that the deposited films exhibit proper doping of Ga in ZnO lattice. The average transparency in the visible range was around {approx}85-95% for typical thin film deposited using 2 at% gallium doping. The optical band gap increased from 3.31 to 3.34 eV with Ga doping of 2 at%. The addition of gallium induces a decrease in electrical resistivity of the ZnO : Ga films up to 2 at% gallium doping. The highest figure of merit observed in this present study was 3.09 x 10{sup -3} cm{sup 2} {omega}{sup -1}.

  2. Structural and morphological study of ZnO thin films electrodeposited on n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ait Ahmed, N., E-mail: nadiaitahmed@yahoo.fr [Laboratoire de Technologie des materiaux et Genie des Procedes : Equipe d' electrochimie - Corrosion Universite Abderrahmane Mira, Bejaia, 06000 (Algeria); Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Fortas, G. [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Hammache, H. [Laboratoire de Technologie des materiaux et Genie des Procedes : Equipe d' electrochimie - Corrosion Universite Abderrahmane Mira, Bejaia, 06000 (Algeria); Sam, S.; Keffous, A.; Manseri, A. [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Guerbous, L. [Centre de Recherche Nucleaire d' Alger (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria)

    2010-10-01

    In this work, we report on the electrodeposition of ZnO thin films on n-Si (1 0 0) and glass substrates. The influence of the deposition time on the morphology of ZnO thin films was investigated. The ZnO thin films were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS) and scanning electron microscopy (SEM). The results show a variation of ZnO texture from main (0 0 2) at 10 min to totally (1 0 1) at 15 min deposition time. The photoluminescence (PL) studies show that both UV ({approx}382 nm) and blue ({approx}432 nm) luminescences are the main emissions for the electrodeposited ZnO films. In addition, the film grown at 15 min indicates an evident decrease of the yellow-green ({approx}520 nm) emission band comparing with that of 10 min. Finally, transmittance spectra show a high transmission value up to 85% in the visible wavelength range. Such results would be very interesting for solar cells applications.

  3. Characteristics of THz carrier dynamics in GaN thin film and ZnO nanowires by temperature dependent terahertz time domain spectroscopy measurement

    Science.gov (United States)

    Balci, Soner; Baughman, William; Wilbert, David S.; Shen, Gang; Kung, Patrick; Kim, Seongsin Margaret

    2012-12-01

    We present a comprehensive study of the characteristics of carrier dynamics using temperature dependent terahertz time domain spectroscopy. By utilizing this technique in combination with numerical calculations, the complex refractive index, dielectric function, and conductivity of n-GaN, undoped ZnO NWs, and Al-doped ZnO NWs were obtained. The unique temperature dependent behaviors of major material parameters were studied at THz frequencies, including plasma frequency, relaxation time, carrier concentration and mobility. Frequency and temperature dependent carrier dynamics were subsequently analyzed in these materials through the use of the Drude and the Drude-Smith models.

  4. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar, E-mail: tpathak01@gmail.com; Kumar, R.; Purohit, L. P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab., Department of Physics, Gurukula Kangri University, Haridwar (India)

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  5. Study on pulsed laser ablation and deposition of ZnO thin films by L-MBE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ZnO,as a wide-band gap semiconductor,has recently become a new research fo-cus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy(L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition(PLD) . Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond(ns) pulsed laser abla-tion of ZnO ceramic target,the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.

  6. Structural characterization of supported nanocrystalline ZnO thin films prepared by dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, J.R. [CITEDEF-CINSO-CONICET Centro de Investigaciones en Solidos, Juan B. de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires (Argentina); Heredia, E.A., E-mail: eheredia@citedef.gob.ar [CITEDEF-CINSO-CONICET Centro de Investigaciones en Solidos, Juan B. de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires (Argentina); Bojorge, C.D.; Canepa, H.R. [CITEDEF-CINSO-CONICET Centro de Investigaciones en Solidos, Juan B. de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires (Argentina); Kellermann, G. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Craievich, A.F. [Instituto de Fisica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo, SP (Brazil)

    2011-09-15

    Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 deg. C, and (ii) isothermal annealing at 450 deg. C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 deg. C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 deg. C. These results indicate that thermal annealing at the highest temperature (550 deg. C) induces a noticeable compaction effect on the structure of the studied thin films.

  7. Development of Solution-Processed ZnO Nanorod Arrays Based Photodetectors and the Improvement of UV Photoresponse via AZO Seed Layers.

    Science.gov (United States)

    Zhang, Yuzhu; Xu, Jianping; Shi, Shaobo; Gao, Yanyan; Wang, Chang; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2016-08-31

    Designing a rational structure and developing an efficient fabrication technique for bottom-up devices offer a promising opportunity for achieving high-performance devices. In this work, we studied how Al-doped ZnO (AZO) seed layer films influence the morphology and optical and electrical properties for ZnO aligned nanorod arrays (NRs) and then the performance of ZnO NRs based ultraviolet photodetectors (UV PDs) with Au/ZnO NRs Schottky junctions and p-CuSCN/n-ZnO NRs heterojunctions. The PD with AZO thin film with 0.5 at. % Al doping (named as AZO (0.5%)) exhibited more excellent photoresponse properties than that with pristine ZnO and AZO (1%) thin films. This phenomenon can be ascribed to the good light transmission of the AZO layer, increased density of the NRs, and improved crystallinity of ZnO NRs. The PDs based on CuSCN/ZnO NRs heterojunctions showed good rectification characteristics in the dark and self-powered UV photoresponse properties with excellent stability and reproducibility under low-intensity illumination conditions. A large responsivity located at 365 nm of 22.5 mA/W was achieved for the PD with AZO (0.5%) thin film without applied bias. The internal electric field originated from p-CuSCN/n-ZnO NRs heterojunctions can separate photogenerated carriers in ZnO NRs and drift toward the corresponding electrode.

  8. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    Science.gov (United States)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  9. Influence of Bi doping on the electrical and optical properties of ZnO thin films

    Science.gov (United States)

    Abed, S.; Bougharraf, H.; Bouchouit, K.; Sofiani, Z.; Derkowska-Zielinska, B.; Aida, M. S.; Sahraoui, B.

    2015-09-01

    Transparent conducting ZnO doped Bi thin films were prepared on glass substrates by ultrasonic spray method. The influence of Bi doping concentration on the structural, optical and nonlinear optical properties of ZnO thin films was studied. The X-ray diffraction (XRD) analysis show that all studied films have a hexagonal wurtzite structure and are preferentially oriented along the c-axis from substrate surface. Optical transmittance measurements show that all samples have average 80% transparency in the visible light. Optical band gap values range between 3.14 and 3.28 eV. ZnO film with 3 wt% of Bi showed the highest electrical conductivity. In addition, the second and third order nonlinear susceptibilities were determined and their values have been calculated.

  10. Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Prasada Rao, T., E-mail: prasadview@gmail.co [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620015 (India); Santhosh Kumar, M.C., E-mail: santhoshmc@yahoo.co [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620015 (India); Safarulla, A. [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620015 (India); Ganesan, V.; Barman, S.R. [UGC-DAE Consortium for Scientific Research, Indore-452001 (India); Sanjeeviraja, C. [School of Physics, Alagappa University, Karaikudi-630003 (India)

    2010-05-01

    Zinc oxide (ZnO) thin films have been deposited with various substrate temperatures by spray pyrolysis technique onto glass substrates. X-ray diffraction (XRD) results showed the random growth orientation of the crystallites and the presence of the wurtzite phase of ZnO. The x-ray photoelectron spectroscopy (XPS) measurements reveal the presence of Zn{sup 2+} and chemisorbed oxygen in ZnO thin films. Atomic force micrograms (AFM) revealed a granular, polycrystalline morphology for the films. The grain size is found to increase as the substrate temperature increases. All films exhibit a transmittance of about 85% in the visible region. The photoluminescence (PL) measurements indicated that the intensity of emission peaks significantly varying with substrate temperature. Electrical resistivity has been found to decrease; while the carrier concentration increases with substrate temperature.

  11. Nanostructured ZnO thin films prepared by sol–gel spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, E., E-mail: heredia.edu@gmail.com [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Bojorge, C.; Casanova, J.; Cánepa, H. [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, A. [Instituto de Física, Universidade de São Paulo, Cidade Universitária, 66318 São Paulo, SP (Brazil); Kellermann, G. [Universidade Federal do Paraná, 19044 Paraná (Brazil)

    2014-10-30

    Highlights: • ZnO films synthesized by sol–gel were deposited by spin-coating on flat substrates. • Structural features of ZnO films with several thicknesses were characterized by means of different techniques. • The thicknesses of different ZnO thin films were determined by means of FESEM and AFM. • The nanoporous structures of ZnO thin films were characterized by GISAXS using IsGISAXS software. • The average densities of ZnO thin films were derived from (i) the critical angle in 1D XR patterns, (ii) the angle of Yoneda peak in 2D GISAXS images, (iii) minimization of chi2 using IsGISAXS best fitting procedure. - Abstract: ZnO thin films deposited on silica flat plates were prepared by spin-coating and studied by applying several techniques for structural characterization. The films were prepared by depositing different numbers of layers, each deposition being followed by a thermal treatment at 200 °C to dry and consolidate the successive layers. After depositing all layers, a final thermal treatment at 450 °C during 3 h was also applied in order to eliminate organic components and to promote the crystallization of the thin films. The total thickness of the multilayered films – ranging from 40 nm up to 150 nm – was determined by AFM and FESEM. The analysis by GIXD showed that the thin films are composed of ZnO crystallites with an average diameter of 25 nm circa. XR results demonstrated that the thin films also exhibit a large volume fraction of nanoporosity, typically 30–40 vol.% in thin films having thicknesses larger than ∼70 nm. GISAXS measurements showed that the experimental scattering intensity is well described by a structural model composed of nanopores with shape of oblate spheroids, height/diameter aspect ratio within the 0.8–0.9 range and average diameter along the sample surface plane in the 5–7 nm range.

  12. CdS quantum dots sensitized Cu doped ZnO nanostructured thin films for solar cell applications

    Science.gov (United States)

    Poornima, K.; Gopala Krishnan, K.; Lalitha, B.; Raja, M.

    2015-07-01

    ZnO nanorods and Cu doped ZnO nanorods thin films have been prepared by simple hydrothermal method. CdS quantum dots are sensitized with Cu doped ZnO nanorod thin films using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction study reveals that ZnO nanorods, and CdS quantum dot sensitized Cu doped ZnO nanorods exhibit hexagonal structure. The scanning electron microscope image shows the presence of ZnO nanorods. The average diameter and length of the aligned nanorod is 300 nm and 1.5 μm respectively. The absorption spectra shows that the absorption edge of CdS quantum dot sensitized ZnO nanorod thin film is shifted toward longer wavelength region when compared to the absorption edge of ZnO nanorods film. The conversion efficiency of the CdS quantum dot sensitized Cu doped ZnO nanorod thin film solar cell is 1.5%.

  13. Development of novel control system to grow ZnO thin films by reactive evaporation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2016-07-01

    Full Text Available This work describes a novel system implemented to grow ZnO thin films by plasma assisted reactive evaporation with adequate properties to be used in the fabrication of photovoltaic devices with different architectures. The innovative aspect includes both an improved design of the reactor used to activate the chemical reaction that leads to the formation of the ZnO compound as an electronic system developed using the virtual instrumentation concept. ZnO thin films with excellent opto-electrical properties were prepared in a reproducible way, controlling the deposition system through a virtual instrument (VI with facilities to control the amount of evaporated zinc involved in the process that gives rise to the formation of ZnO, by means of the incorporation of PID (proportional integral differential and PWM (pulse width modulation control algorithms. The effectiveness and reliability of the developed system was verified by obtaining with good reproducibility thin films of n+-ZnO and i-ZnO grown sequentially in situ with thicknesses and resistivities suitable for use as window layers in chalcopyrite based thin film solar cells.

  14. Room temperature ferromagnetism in Cd-doped ZnO thin films through defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Debbichi, M., E-mail: mourad_fsm@yahoo.fr [Laboratoire de la matière condensée et nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Souissi, M. [College of Arts and Science Nayriya, Dammam University, 31441 Dammam (Saudi Arabia); Fouzri, A. [Laboratoire Physico-Chimie des Matériaux, Unité de Service Commun de Recherche ‘‘High Resolution X-ray Diffractometer’’, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Schmerber, G. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); Said, M. [Laboratoire de la matière condensée et nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Alouani, M. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France)

    2014-06-15

    Highlights: • ZnO:Cd thin film grown on c-sapphire substrate by MOCVD method. • RTFM in ZnO:Cd thin film is detected by SQUID magnetometer measurement. • DFT theory is conducted to elucidate the mechanism of RTFM in Cd-doped ZnO. - Abstract: Room-temperature ferromagnetism is detected in undoped and cadmium-doped ZnO (ZnO:Cd) thin film grown on c-plane sapphire substrate by metal–organic chemical vapor deposition method. To elucidate the origin of ferromagnetism, a theoretical study based on density functional theory is conducted, focusing on the role of the neutral cation vacancy on the appearance of magnetism in Cd-doped ZnO thin film. The calculations revealed that Cd substitution at Zn sites contributes to the long-ranged ferromagnetism in ZnO by lowering the formation energy of Zn vacancies and thereby stabilizing Zn vacancies from which the magnetic moments originate.

  15. Dopant-induced modifications in structural and optical properties of ZnO thin films prepared by PLD

    Science.gov (United States)

    Hashmi, Jaweria Z.; Siraj, K.; Naseem, S.; Shaukat, S.

    2016-09-01

    The objective of the present work is to study the effect of yttrium doping concentration on the microstructure and optical behavior of ZnO thin films, deposited by pulsed laser deposition on silicon (001) substrates. The microstructural analysis of doped ZnO thin films shows columnar growth of the ZnO (002) plane under tensile stress, confirmed by Raman shifts of the E2 (high) mode. The optical properties are investigated by using a spectroscopic ellipsometer. Undoped and yttrium-doped ZnO films show high transparency in the visible region, and the estimated optical band gap energy is randomly shifted in the range 2.93-3.1 eV by increasing the yttrium doping level. Yttrium doping in ZnO is limited, which means that at doping concentrations higher than 3 wt.% of yttrium, the structural and optical properties show a shift towards those of undoped ZnO.

  16. Luminescence and structural properties of ZnO thin films annealing in air

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R; Martinez, J [Centro de Investigacion de Dispositivos Semiconductores, BUAP, Puebla, Pue. C.P. 72570 (Mexico); Esparza, A [Centro de Ciencias Aplicadas y Desarrollo de TecnologIa - UNAM. C.P. 04510, Mexico D.F (Mexico); Kryshtab, T [Departamento de Ciencias de Materiales, ESFM - IPN, Mexico D.F (Mexico); Juarez, G; Solache, H; Andraca, J; Pena, R, E-mail: rbaca02006@yahoo.com.mx

    2010-02-15

    All ZnO thin films deposited on (001) silicon substrates by DC reactive magnetron sputtering were annealed in air atmosphere with different times at 800deg. C. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD investigation showed that ZnO phase was hexagonal wurtzite structure growing along the (002) direction. The as grown ZnO films presented macrostrain and microstrain caused a shift of the line diffraction (002) and a broadening respectively. However after 1 hour annealing these strains disappear. The grain size of ZnO films increased with an increase of annealing time. The as-deposited reactive sputtering ZnO films resulted semi-insulating with poor PL response. After high temperature annealing in air, the crystallinity and the PL response considerably improved, but their semi-insulating property also increased. The PL spectra of the annealed samples showed well defined transitions close to the near-band-edge and a wide visible deep-level band emission (430-640 nm). The main interest of this work was to enhance the PL response and to identify the origin of deep-level luminescence bands. The AFM, PL and XRD results indicated that the ZnO films annealing have potential applications in optoelectronic devices.

  17. Preparation of Ni doped ZnO thin films by SILAR and their characterization

    Science.gov (United States)

    Mondal, S.; Mitra, P.

    2013-02-01

    Pure and nickel (Ni) doped zinc oxide (NZO) thin films were deposited on glass substrates from ammonium zincate bath using successive ion layer adsorption and reaction (SILAR). Characterization techniques such as XRD, TEM, SEM and EDX were utilized to investigate the effect of Ni doping on the microstructure of Ni:ZnO thin films. Structural characterization by X-ray diffraction reveals the polycrystalline nature of the films. Particle size shows slightly decreasing trend with increasing nickel impurification. The average particle size for pure ZnO is 22.75 nm and it reduces to 20.51 nm for 10 % Ni doped ZnO. Incorporation of Ni was confirmed from elemental analysis using EDX. The value of fundamental absorption edge is 3.23 eV for pure ZnO and it decreases to 3.19 eV for 10 % Ni:ZnO. The activation energy barrier value to electrical conduction process increases from 0.261 eV for pure ZnO to 0.293 eV for 10 % Ni doped ZnO.

  18. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Science.gov (United States)

    Khan, M. I.; Bhatti, K. A.; Qindeel, Rabia; Alonizan, Norah; Althobaiti, Hayat Saeed

    In this work, zinc oxide (ZnO) multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD) confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM) showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV-Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications.

  19. Solution-based synthesis of cobalt-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vempati, Sesha [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Shetty, Amitha [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India); Dawson, P., E-mail: p.dawson@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Nanda, K.K.; Krupanidhi, S.B. [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-01

    Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. - Highlights: Black-Right-Pointing-Pointer Simple solution-based method for the fabrication of Co-doped ZnO thin films. Black-Right-Pointing-Pointer Evidence for Co substitution on Zn sites in + 2 oxidation state. Black-Right-Pointing-Pointer ZnO, with up to 4% Co doping, retains high transparency across visible spectrum. Black-Right-Pointing-Pointer Quenching of exciton photoluminescence linked to chemisorbed oxygen in Co-doped ZnO.

  20. Preparation of Aligned ZnO Nanorod Arrays on Sn-Doped ZnO Thin Films by Sonicated Sol-Gel Immersion Fabricated for Dye-Sensitized Solar Cell

    OpenAIRE

    Saurdi, I.; Mamat, M. H.; M. F. Malek; M. Rusop

    2014-01-01

    Aligned ZnO Nanorod arrays are deposited on the Sn-doped ZnO thin film via sonicated sol-gel immersion method. The structural, optical, and electrical properties of the Sn-doped ZnO thin films were investigated. Results show that the Sn-doped ZnO thin films with small grain size (~20 nm), high average transmittance (96%) in visible region, and good resistivity 7.7 × 102 Ω·cm are obtained for 2 at.% Sn doping concentration. The aligned ZnO nanorod arrays with large surface area were also obtai...

  1. Retracted: Study of the wettability of ZnO nanofilms

    Directory of Open Access Journals (Sweden)

    Ujjwal M Joshi

    2012-04-01

    Full Text Available Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  2. Study of the wettability of ZnO nanofilms

    Science.gov (United States)

    Subedi, Deepak Prasad; Madhup, Dinesh Kumar; Sharma, Ashish; Joshi, Ujjwal Man; Huczko, Andrzej

    2012-04-01

    Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM) and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  3. Experimental Studies on Doped and Co-Doped ZnO Thin Films Prepared by RF Diode Sputtering

    OpenAIRE

    2009-01-01

    Our research on the growing and characterizing of p-type ZnO thin films, prepared by radio frequency (RF) diode sputtering, mono-doped with nitrogen, and co-doped with aluminium and nitrogen, is a response of the need from p-type ZnO thin films for device applications. The dopants determine the conductivity type of the film and its physical properties. We obtained p-type ZnO thin films by RF diode sputtering and using a nitrogen dopant source. The novelty in our approach is in the use of a pl...

  4. Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Serhane, Rafik, E-mail: rserhane@cdta.dz [Centre for Development of Advanced Technologies, Cité 20 Août 1956, Baba Hassen, BP: 17, DZ-16303 Algiers (Algeria); Abdelli-Messaci, Samira; Lafane, Slimane; Khales, Hammouche; Aouimeur, Walid [Centre for Development of Advanced Technologies, Cité 20 Août 1956, Baba Hassen, BP: 17, DZ-16303 Algiers (Algeria); Hassein-Bey, Abdelkadder [Centre for Development of Advanced Technologies, Cité 20 Août 1956, Baba Hassen, BP: 17, DZ-16303 Algiers (Algeria); Micro and Nano Physics Group, Faculty of Sciences, University Saad Dahlab of Blida (USDB), BP. 270, DZ-09000 Blida (Algeria); Boutkedjirt, Tarek [Equipe de Recherche Physique des Ultrasons, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, Bab-Ezzouar, DZ-16111 Algiers (Algeria)

    2014-01-01

    Piezoelectric properties of ZnO thin films have been investigated for micro-electro-mechanical systems (MEMS). Wurtzite ZnO structure was prepared on different substrates (Si (1 0 0), Pt (1 1 1)/Ti/SiO{sub 2}/Si and Al (1 1 1)/SiO{sub 2}/Si) at different substrate temperatures (from 100 to 500 °C) by a pulsed laser deposition (PLD) technique. X-ray diffraction (XRD) characterization showed that the ZnO films were highly c-axis (0 0 2) oriented, which is of interest for various piezoelectric applications. Scanning electron microscopy (SEM) showed evidence of honeycomb-like structure on the surface and columnar structure on the cross-section. In the case of ZnO on Al, ZnO exhibited an amorphous phase at the ZnO/Al interface. The XRD measurements indicated that the substrate temperature of 300 °C was the optimum condition to obtain high quality (strongest (0 0 2) peak with the biggest associated grain size) of crystalline ZnO on Pt and on Al and that 400 °C was the optimum one on Si. ZnO on Al exhibits smallest rocking curve width than on Pt, leading to better crystalline quality. The ZnO films were used in bulk acoustic wave (BAW) transducer. Electrical measurements of the input impedance and S-Parameters showed evidence of piezoelectric response. The electromechanical coupling coefficient was evaluated as K{sub eff}{sup 2}=5.09%, with a quality factor Q{sub r} = 1001.4.

  5. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahumada-Lazo, R.; Torres-Martínez, L.M. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Ruíz-Gómez, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Departmento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán 97310, México (Mexico); Vega-Becerra, O.E. [Centro de Investigación en Materiales Avanzados S.C, Alianza norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66600 Apodaca Nuevo León, México (Mexico); and others

    2014-12-15

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  6. Room temperature ferromagnetism of Ni, (Ni, Li), (Ni, N)-doped ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    AU; ChakTong

    2010-01-01

    Ni-doped ZnO thin films (Ni concentration up to 10 mol%) were generated on Si (100) substrates by a sol-gel technique. The films showed wurtzite structure and no other phase was found. The chemical state of Ni was found to be bivalent by X-ray photoelectron spectroscopy. The results of magnetic measurements at room temperature indicated that the films were ferromagnetic, and magnetic moment decreased with rise of Ni concentration. The magnetization of Ni (10 mol%)-doped ZnO film annealed in nitrogen was lower than that annealed in argon, suggesting that the density of defects had an effect on ferromagnetism.

  7. Electrical properties of silver Schottky contacts to ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    LI Xin-kun; LI Qing-shan; LIANG De-chun; XU Yan-dong

    2009-01-01

    ZnO thin films are deposited on Al/Si substrates by the pulsed laser deposition (PLD) method. The XRD and SEM images of films are examined. Highly c-axis oriented ZnO thin films which have uniform compact surface morphology are fabricated. The size of surface grains is about 30 nm. The Schottky barrier ultraviolet detectors with silver Schottky contacts are made on ZnO thin films. The current-voltage characteristics are measured. The ideality contact factor between Ag and ZnO film is 1.22, while the barrier height is 0.908 e V. After annealing at 600 ℃ for 2h, the ideafity factor is 1.18 and the barrier height is 0.988 eV. With the illumination of 325 nm wavelength UV-light, the photocurrent-to-dark current ratios before and after annealing are 140.4 and 138.4 biased at 5 V, respectively. The photocurrents increase more than two orders of magnitude over the dark currents.

  8. Studies on nonvolatile resistance memory switching in ZnO thin films

    Indian Academy of Sciences (India)

    L M Kukreja; A K Das; P Misra

    2009-06-01

    Six decades of research on ZnO has recently sprouted a new branch in the domain of resistive random access memories. Highly resistive and c-axis oriented ZnO thin films were grown by us using d.c. discharge assisted pulsed laser deposition on Pt/Ti/SiO2/Si substrates at room temperature. The resistive switching characteristics of these films were studied in the top-bottom configuration using current–voltage measurements at room temperature. Reliable and repeated switching of the resistance of ZnO thin films was obtained between two well defined states of high and low resistance with a narrow dispersion and small switching voltages. Resistance ratios of the high resistance state to low resistance state were found to be in the range of 2–5 orders of magnitude up to 20 test cycles. The conduction mechanism was found to be dominated by the Ohmic behaviour in low resistance states, while Poole–Frenkel emission was found to dominate in high resistance state. The achieved characteristics of the resistive switching in ZnO thin films seem to be promising for nonvolatile memory applications.

  9. Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films

    Science.gov (United States)

    Onuk, Zuhal; Rujisamphan, Nopporn; Murray, Roy; Bah, Mohamed; Tomakin, Murat; Shah, S. Ismat

    2017-02-01

    We investigated the effects of growth conditions during magnetron sputtering on the structural, morphological, and optical properties of nanostructured ZnO thin films. Undoped ZnO thin films are deposited onto p-type Si (100) and corning 7059 glass substrates by RF magnetron sputtering using a ZnO target in combination with various Ar-O2 sputtering gas mixtures at room temperature. The effect of the partial pressure of oxygen on the morphology of ZnO thin film structure and band alignment were investigated. Thickness, and therefore the growth rate of the samples measured from the cross-sectional SEM micrographs, is found to be strongly correlated with the oxygen partial pressure in the sputtering chamber. The optical transmittance spectrometry results show that the absorption edge shifts towards the longer wavelength at higher oxygen partial pressure. X-ray photoelectron spectroscopy (XPS) used for determining the surface chemical structure and valence band offsets show that conduction band can be controlled by changing the sputtering atmosphere.

  10. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    Directory of Open Access Journals (Sweden)

    Suk In Park

    2015-01-01

    Full Text Available We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm2 at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  11. The formation of anomalous Hall effect depending on W atoms in ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Can, Musa Mutlu, E-mail: musamutlucan@gmail.com [Faculty of Engineering and Natural Sciences, Nanotechnology Research and Application Center, Sabancı University, Tuzla, 34956 İstanbul (Turkey); CNR-SPIN, Universitá di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Shah, S. Ismat [Department of Physics and Astronomy, Department of Material Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Fırat, Tezer [Department of Physics Engineering, Hacettepe University, Beytepe 06800 Ankara (Turkey)

    2014-06-01

    This article investigates the effects of intrinsic point defects and extrinsic W atoms on magneto electrical properties in the ZnO lattice. The analyses were accomplished for ∼0.5% W including ZnO thin films, grown using a radio frequency (RF) magnetron sputtering system. The polarized spin current dependent magnetic formation was investigated by longitudinal and transverse magneto electrical measurements in a temperature range of 5 K to 300 K. The positive magneto resistivity (PMR) ratios reached 28.8%, 12.7%, and 17.6% at 5 K for thin films, having different post-deposition annealing conditions as a consequence of ionic W dependent defects in the lattice. Furthermore, an anomalous Hall effect, originating from polarized spin currents, was understood from the split in Hall resistance versus magnetic field (R{sub xy}(H)) curves for the thin film with high amount of Zn{sup 2+} and W{sup 6+} ionic defects.

  12. Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water

    Indian Academy of Sciences (India)

    Monika Gupta; Vidhika Sharma; Jaya Shrivastava; Anjana Solanki; A P Singh; V R Satsangi; S Dass; Rohit Shrivastav

    2009-02-01

    Nanostructured zinc oxide thin films (ZnO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of zinc acetate 2-hydrate in ethanol and 2-methoxy ethanol. Films were obtained by spin coating at 1500 rpm under room conditions (temperature, 28–35°C) and were subsequently sintered in air at three different temperatures (400, 500 and 600°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and bandgap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of ZnO, sintered at 600°C are better for photoconversion than the films sintered at 400 or 500°C. Plausible explanations have been provided.

  13. Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure

    Indian Academy of Sciences (India)

    Ping Yang; Liqiang Zhang; Haiying Yang; Dongjing Liu; Xialong Li

    2014-05-01

    We predict that there is a critical value of Al2O3/ZnO nano thin interface thickness based on two assumptions according to an interesting phenomenon, which the thermal conductivity (TC) trend of Al2O3/ZnO nano thin interface is consistent with that of relevant single nano thin interface when the nano thin interface thickness is > 300 nm; however, TC of Al2O3/ZnO nano thin interface is higher than that of relevant single nano thin interface when the thin films thickness is < 10 nm. This prediction may build a basis for the understanding of interface between two different oxide materials. It implies an idea for new generation of semiconductor devices manufacturing.

  14. Nanostructured hybrid ZnO thin films for energy conversion

    Directory of Open Access Journals (Sweden)

    Samantilleke Anura

    2011-01-01

    Full Text Available Abstract We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc and Eosin-Y (EoY. Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

  15. Photopatternable nano-composite (SU-8/ZnO) thin films for piezo-electric applications

    Science.gov (United States)

    Kandpal, Manoj; Sharan, Chandrashekhar; Poddar, Pankaj; Prashanthi, K.; Apte, Prakash R.; Ramgopal Rao, V.

    2012-09-01

    Photo-curable nanocomposite material was formulated by embedding ZnO nanoparticles into a SU-8 matrix and studied for its piezoelectric properties for low cost fabrication of self-powered nanodevices. The piezoelectric coefficient of ZnO nanoparticles was observed to be ranging between 15 and 23 pm/V, which is the highest reported. These experimental studies support the recent theoretical predictions where the piezoelectric coefficients in ZnO nanoparticles were found to be higher compared to the thin films because of the surface relaxation induced volume reductions in the nanometer scale. The photo-curable property of these polymer composite films is exploited to demonstrate fabrication of a micro-cantilever test structure.

  16. Role of Ni doping on transport properties of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima [Laser Bhawan, School Of Physics, Devi Ahilaya University Takshashila Campus Khandwa Road Indore, Indore-452001 (India)

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO results in decrease in magnitude of negative MR.

  17. Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

    Science.gov (United States)

    Blumenstein, Nina J; Streb, Fabian; Walheim, Stefan; Schimmel, Thomas; Bill, Joachim

    2017-01-01

    Biomaterials are used as model systems for the deposition of functional inorganic materials under mild reaction conditions where organic templates direct the deposition process. In this study, this principle was adapted for the formation of piezoelectric ZnO thin films. The influence of two different organic templates (namely, a carboxylate-terminated self-assembled monolayer and a sulfonate-terminated polyelectrolyte multilayer) on the deposition and therefore on the piezoelectric performance was investigated. While the low negative charge of the COOH-SAM is not able to support oriented attachment of the particles, the strongly negatively charged sulfonated polyelectrolyte leads to texturing of the ZnO film. This texture enables a piezoelectric performance of the material which was measured by piezoresponse force microscopy. This study shows that it is possible to tune the piezoelectric properties of ZnO by applying templates with different functionalities. PMID:28243568

  18. Electrodeposition of ZnO thin films on n-Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dalchiele, E.A.; Giorgi, P.; Marotti, R.E. [Facultad de Ingenieria, Instituto de Fisica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Martin, F.; Ramos-Barrado, J.R.; Ayouci, R.; Leinen, D. [Laboratorio de Materiales y Superficie, Unidad asociada al CSIC, Departamento de Fisica Aplicada and Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain)

    2001-12-31

    In this study, ZnO thin films have been deposited onto monocrystalline n-type Si(100) by electrodeposition at different applied potentials. XRD shows a preferential orientation (0002) that increases when the applied cathodic potential increases. The XPS analysis presents a Zn/O composition close to stoichiometric. SEM micrographs show a compact structure with localized platelets with a grain size of about 10{mu}m. However, crystallite size determined by the Scherrer method shows a size close to 2.50x10{sup -2}{mu}m, then the grains can be considered as clusters of crystallites. Optical measurements were made on samples deposited on ITO/glass through the same procedures giving a band gap of 3.3eV in agreement with the reported values for ZnO at room temperature.

  19. Effect of Oxidation Temperature on Characteristics of Thermally Oxidized ZnO Thin Films on Mica Substrates.

    Science.gov (United States)

    Moon, Jiyun; Kim, Younggyu; Kim, Byunggu; Leem, Jae-Young

    2015-11-01

    Muscovite mica is one of the promising alternatives to polymer substrates because of its good thermal resistivity, flexibility, and transparency. In this study, metallic Zn films with a thickness of 300 nm were deposited on mica substrates through thermal evaporation; the thin films were then oxidized by annealing at temperatures ranging from 350 to 550 degrees C. The structural and optical properties of thermally oxidized ZnO thin films were investigated. Diffraction peaks for ZnO (100) and (002) planes were observed only for the ZnO thin films oxidized at temperatures above 450 degrees C. These films consisted of relatively rough film-like structures, and the average transmittance of the films was greater than 70% in the visible region. The highest near-band-edge emission was observed for the ZnO thin films oxidized at 500 degrees C. Upon increasing the oxidation temperatures to 500 degrees C, the optical band gap was blue-shifted.

  20. (0 0 2-oriented growth and morphologies of ZnO thin films prepared by sol-gel method

    Directory of Open Access Journals (Sweden)

    Guo Dongyun

    2016-09-01

    Full Text Available Zinc acetate was used as a starting material to prepare Zn-solutions from solvents and ligands with different boiling temperature. The ZnO thin films were prepared on Si(1 0 0 substrates by spin-coating method. The effect of baking temperature and boiling temperature of the solvents and ligands on their morphologies and orientation was investigated. The solvents and ligands with high boiling temperature were favorable for relaxation of mechanical stress to form the smooth ZnO thin films. As the solvents and ligands with low boiling temperature were used to prepare Zn-solutions, the prepared ZnO thin films showed (0 0 2 preferred orientation. As n-propanol, 2-methoxyethanol, 2-(methylaminoethanol and monoethanolamine were used to prepare Zn-solutions, highly (0 0 2-oriented ZnO thin films were formed by adjusting the baking temperature.

  1. Effects of sapphire substrates surface treatment on the ZnO thin films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yinzhen [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: agwyz@yahoo.com.cn; Chu Benli [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)

    2008-06-01

    The surface treatment effects of sapphire substrate on the ZnO thin films grown by magnetron sputtering were studied. The sapphire substrates properties have been investigated by means of atomic force microscopy (AFM) and X-ray diffraction rocking curves (XRCs). The results show that sapphire substrate surfaces have the best quality by CMP with subsequent chemical etching. The surface treatment effects of sapphire substrate on the ZnO thin films were examined by X-ray diffraction (XRD) and photoluminescence (PL) measurements. Results show that the intensity of (0 0 2) diffraction peak of ZnO thin films on sapphire substrates treated by CMP with subsequent chemical etching was strongest, FWHM of (0 0 2) diffraction peak is the narrowest and the intensity of UV peak of PL spectrum is strongest, indicating surface treatment on sapphire substrate preparation may improve ZnO thin films crystal quality and photoluminescent property.

  2. Photovoltaic properties of undoped ZnO thin films prepared by the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Zinc oxide (ZnO) can be used as a window material, transparent electrode and active layer in different types of solar cells, UV emitters, and UV sensors. In addition to being low cost, ZnO is more abundant than indium tin oxide. ZnO is non toxic and has a high chemical stability in reduction environments. When ZnO films are made without any intentional doping, they exhibit n-type conductivity. ZnO thin films can be prepared by reactive sputtering, laser ablation, chemical-vapour deposition, laser molecular-beam epitaxy, thermal evaporation, sol-gel, atomic layer deposition and spray pyrolysis, with the latter being simple, inexpensive and adaptable to large area depositions. In this work ZnCl{sub 2} was used as a source of Zn where it was dissolved in distilled water. The structural, electrical and optical properties of the films were investigated due to their important characteristic for solar cell applications. Polycrystalline ZnO thin films were deposited on glass substrate by spray pyrolysis using a home-made spraying system at substrate temperature of 450 degrees C. The films were characterized by recording and analyzing their I-V plots, their transmittance, X-ray diffraction and SEM micrographs. There resistivity was found to be about 200 ohms per cm and their bandgap energy about 3.27 eV. X-ray diffraction patterns revealed that the films have a hexagonal wurtzite structure and are highly ordered with a preferential orientation (002). SEM images revealed that the substrates are continuously covered and the surface of the film is uniform. 16 refs., 4 figs.

  3. Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

    Indian Academy of Sciences (India)

    Sushil Kumar Pandey; Saurabh Kumar Pandey; Vishnu Awasthi; Ashish Kumar; Uday P Deshpande; Mukul Gupta; Shaibal Mukherjee

    2014-08-01

    We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on -type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ∼ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

  4. Modification of ZnO Thin Films by Ni, Cu, and Cd Doping*1

    Science.gov (United States)

    Jiménez-González, A. E.

    1997-02-01

    With the propose of investigating the effect of transition elements in ZnO thin films prepared by the Successive Ion Layer Adsorption and Reaction (SILAR) technique, the deposition solutions were chemically impurified with Ni, Cu, and Cd, as elements of the Ib, IIb, and VIIIa groups. X-ray fluorescence (XRF) analyses confirm that the impurification with Ni and Cu in fact took place but the impurification with Cd did not, while the XRD analyses show that foras preparedand Ni-impurified annealed films, the crystallites are almost oriented along thecaxis. The electrical properties of the ZnO films were also modified with the impurification. After annealing in air (450°C) the dark conductivity of the films was increased in the case of Ni and Cd impurification up to 1.80×10-3and 1.86×10-2[Ω cm]-1, respectively, but it decreased drastically in the case of Cu to 5.51×10-7[Ω cm]-1, as referred to the dark conductivity (1.86×10-4[Ω cm]-1) of the pure ZnO sample. The measured activation energy for the electrical conductivity of the modified ZnO thin films is 55 meV for the Ni modification, indicating the existence of donor levels. On the other hand, the Cu modification increases the activation energy up to 132 meV, which is higher than the activation energy for pure ZnO thin films (98 meV).

  5. MICROSTRUCTURE AND PROPERTIES OF ANNEALED ZnO THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING

    Institute of Scientific and Technical Information of China (English)

    J. Lee; W. Gao; Z. Li; M. Hodgson; A. Asadov; J. Metson

    2005-01-01

    ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. The correlation of the annealing conditions with the microstructure and properties of the ZnO films were investigated by ultraviolet-visible spectroscopy, X-ray diffraction, conductivity measurement and scanning electron microscopy. Only the strong 002peak could be observed by X-ray diffraction. The post-deposition annealing of ZnO films was found to alter the film's microstructure and properties, including crystallinity, porosity, grain size, internal stress level and resistivity. It was also found that after annealing, the conductivity of poorly conductive samples often improved. However, annealing does not improve the conductivity of samples with high conductivity prior to annealing. The resistivity of as-grown films annealing on the conductivity of ZnO, it is believed that annealing may alter the presence and distribution of oxygen defects, reduce the lattice stress, cause diffusion, grain coarsening and recrystallization. Annealing will reduce the density of grain boundaries in less dense films,which may decrease the resistivity of the films. On the other hand, annealing may also increase the porosity of thin films, leading to an increase in resistivity.

  6. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  7. Effect of substrate temperature on structural and optical properties of spray deposited ZnO thin films

    Directory of Open Access Journals (Sweden)

    Larbah Y.

    2015-09-01

    Full Text Available Undoped ZnO thin films have been prepared on glass substrates at different substrate temperatures by spray pyrolysis method. The effect of temperature on the structural, morphological and optical properties of n-type ZnO films was studied. The X-ray diffraction (XRD results confirmed that the ZnO thin films were polycrystalline with wurtzite structure. Scanning electron microscopy (SEM measurements showed that the surface morphology of the films changed with temperature. The studies demonstrated that the ZnO film had a transmission of about 85 % and energy gap of 3.28 eV at 450 °C. The RBS measurements revealed that ZnO layers with a thickness up to 200 nm had a good stoichiometry.

  8. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  9. Design and fabrication of a MEMS Lamb wave device based on ZnO thin film*

    Institute of Scientific and Technical Information of China (English)

    Liu Mengwei; Li Junhong; Ma Jun; Wang Chenghao

    2011-01-01

    This paper presents the design and fabrication of a Lamb wave device based on ZnO piezoelectric film.The Lamb waves were respectively launched and received by both Al interdigital transducers. In order to reduce the stress of the thin membrane, the ZnO/A1/LTO/Si3N4/Si multilayered thin plate was designed and fabricated. A novel method to obtain the piezoelectric constant of the ZnO film was used. The experimental results for characterizing the wave propagation modes and their frequencies of the Lamb wave device indicated that the measured center frequency of antisymmetric A0 and symmetric S0 modes Lamb wave agree with the theoretical predictions. The mass sensitivity of the MEMS Lamb wave device was also characterized for gravimetric sensing application.

  10. Comparative study of ZnO thin films prepared by different sol-gel route

    Directory of Open Access Journals (Sweden)

    F Esmaieli Ghodsi

    2012-03-01

    Full Text Available   Retraction Notice    The paper "Comparative study of ZnO thin films prepared by different sol-gel route" by H. Absalan and F. E. Ghodsi, which appeared in Iranian Journal of Physics Research, Vol. 11, No. 4, 423-428 (in Farsi is translation of the paper "Comparative Study of ZnO Thin Films Prepared by Different Sol-Gel Route" by F. E. Ghodsi and H. Absalan, which appeared in ACTA PHYSICA POLONICA A, Vol 118 (2010 (in English and for this reason is retracted from this journal.The corresponding author  (and also the first author is the only responsible person for this action.   

  11. Semiconducting Properties of Swift Au Ion-Irradiated ZnO Thin Films at Room Temperature

    Science.gov (United States)

    Kwon, Sera; Park, Hyun-Woo; Chung, Kwun-Bum

    2017-02-01

    The semiconducting properties of Au ion-irradiated ZnO thin films were investigated as a function of ion irradiation dose at room temperature. The Au ion irradiation was conducted with acceleration energy of 130 MeV in the ion dose range from 1 × 1011 to 5 × 1012 ions/cm2. The physical properties showed no change regardless of the Au ion irradiation dose; however, the electrical properties of Au ion-irradiated ZnO thin films changed, depending on the Au ion irradiation dose. The electronic structure drastically changed with the evolution of hybridized molecular orbital structure for the conduction band and band edge states below the conduction band. These remarkable changes in electronic structure correlate with changes in electrical properties, such as carrier concentration and mobility.

  12. Design and fabrication of a MEMS Lamb wave device based on ZnO thin film

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mengwei; Li Junhong; Ma Jun; Wang Chenghao, E-mail: liumw@mail.ioa.ac.cn [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-04-15

    This paper presents the design and fabrication of a Lamb wave device based on ZnO piezoelectric film. The Lamb waves were respectively launched and received by both Al interdigital transducers. In order to reduce the stress of the thin membrane, the ZnO/Al/LTO/Si{sub 3}N{sub 4}/Si multilayered thin plate was designed and fabricated. A novel method to obtain the piezoelectric constant of the ZnO film was used. The experimental results for characterizing the wave propagation modes and their frequencies of the Lamb wave device indicated that the measured center frequency of antisymmetric A{sub 0} and symmetric S{sub 0} modes Lamb wave agree with the theoretical predictions. The mass sensitivity of the MEMS Lamb wave device was also characterized for gravimetric sensing application. (semiconductor devices)

  13. Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach

    Science.gov (United States)

    Jilani, Asim; Abdel-wahab, M. Sh.; Zahran, H. Y.; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-09-01

    Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O-2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.

  14. Ion-Irradiation-Induced Ferromagnetism in Undoped ZnO Thin Films

    Science.gov (United States)

    2013-01-01

    Ion-irradiation-induced ferromagnetism in undoped ZnO thin filmsq Siddhartha Mal a,⇑, Sudhakar Nori a, J. Narayan a, J.T. Prater b, D.K. Avasthi c...S, Narayan J, Nori S, Prater JT, Kumar D. Solid State Commun 2010;150:1660. [8] Mal S, Nori S, Jin C, Narayan J, Nellutla S, Smirnov AI, et al. J

  15. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    Science.gov (United States)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  16. Effects of nitrogen on the growth and optical properties of ZnO thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J B; Thomas, M A; Soo, Y C; Kandel, H; Chen, T P [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2009-08-07

    ZnO thin films were grown using pulsed laser deposition by ablating a Zn target in various mixtures of O{sub 2} and N{sub 2}. The presence of N{sub 2} during deposition was found to affect the growth of the ZnO thin films and their optical properties. Small N{sub 2} concentrations during growth led to strong acceptor-related photoluminescence (PL), while larger concentrations affected both the intensity and temperature dependence of the emission peaks. In addition, the PL properties of the annealed ZnO thin films are associated with the N{sub 2} concentration during their growth. The possible role of nitrogen in ZnO growth and annealing is discussed.

  17. Epitaxial Properties of Co-Doped ZnO Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CAO Qiang; DENG Jiang-Xia; LIU Guo-Lei; CHEN Yan-Xue; YAN Shi-Shen

    2007-01-01

    High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450 ℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co2+ substituting Zn2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures TC above room temperature.

  18. Effect of Sb2O3-doped on optical absorption of ZnO thin film

    Institute of Scientific and Technical Information of China (English)

    CHANG Chun-rong; LI Zi-quan; XU Yun-yun

    2006-01-01

    Sb2O3 doped ZnO thin film was prepared by RF magnetron sputtering technique.The influence of Sb2O3 on the structure and the optical absorption of ZnO thin film was studied by XPS,XRD apparatuses and UV-Vis spectrophotometer.The results show that doped Sb2O3 has affected atomic and electronic structures,growth modes of crystal grains and optical absorption of ZnO.The element Sb exists in many forms in the film including transpositional atoms and compounds such as Sb2O3,Zn7Sb2O14 etc.ZnO crystal grains grow in mixing directions.The lattice relaxation and the content of second phases increase when more Sb is doped.The UVA absorption of doped ZnO thin film increases obviously.The ultraviolet absorption peak narrows,absorption intensity increases,the absorption margin becomes steep and moves to shorter wavelength of about 5 nm,and the visible absorption increases in some sort.

  19. Structural, morphological, optical and opto-thermal properties of Ni-doped ZnO thin films using spray pyrolysis chemical technique

    Indian Academy of Sciences (India)

    S Rajeh; A Barhoumi; A Mhamdi; G Leroy; B Duponchel; M Amlouk; S Guermazi

    2016-02-01

    Nickel-doped zinc oxide thin films (ZnO : Ni) at different percentages were deposited on glass substrates using a chemical spray technique. The effect of Ni concentration on the structural, morphological, optical and photoluminescence (PL) properties of the ZnO : Ni thin films were investigated. X-ray diffraction analysis revealed that all films consist of single phase ZnO and was well crystallized in würtzite phase with the crystallites preferentially oriented towards the (002) direction parallel to the c-axis. The optical transmittance measurement was found to be higher than 90%, the optical band gap values of ZnO thin films decreased after doping from 3.29 to 3.21 eV. A noticeable change in optical constants was observed between undoped and Ni-doped ZnO. Room-temperature PL is observed for ZnO, and Ni-doped ZnO thin films.

  20. Structural and optical properties of Ni added ZnO thin films deposited by sol-gel method

    Science.gov (United States)

    Murugan, R.; Vijayaprasath, G.; Mahalingam, T.; Anandhan, N.; Ravi, G.

    2014-04-01

    Pure and Ni added zinc oxide thin films were prepared by sol-gel method using spin-coating technique on glass substrates. The influences of nickel on ZnO thin films are characterized by Powder X-ray diffraction study. Pure and Ni added thin films are hexagonal wurtzite structure without any secondary phase in c-axis orientation. The SEM images of thin films show uniform sphere like particles covered completely on glass substrates. All the films exhibit transmittance of 85-95% in the visible range up to 800nm and cut-off wavelength observed at 394 nm corresponding to the fundamental absorption of ZnO. The photoluminescence property for pure and Ni added ZnO thin films has been studied and results are presented in detail.

  1. The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films

    Science.gov (United States)

    Raoufi, Davood; Raoufi, Taha

    2009-03-01

    Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.

  2. Performance Evaluation of ZnO based Rare Earth Element Doped Thin Films

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2013-10-01

    Full Text Available In DMS materials, a small fraction of a host semiconductor cation is substituted by magnetic ions. We chose as semiconducting host the transparent ZnO, with a bandgap of 3.3 eV at room temperature. Studies on ZnO doped with 3d transition metals indicated only small magnetic moments. The more recent results for Gd in GaN, indicating high magnetic moments, motivated us to investigate ZnO thin films doped with rare earth (RE metal ions. For the 3d transition metals, the 3d electrons are exterior and delocalized; leading to strong direct exchange interactions and high Curie temperatures, but often the orbital momentum is zero, leading to small total magnetic moments per atom. In RE metals, the 4f electrons are localized, exchange interactions are indirect, via 5d or 6s conduction electrons, but the high orbital momentum is leading to high total magnetic moments per atom, like 3.27μB for Nd. The Curie point for Nd is 19 K. In this paper we present the results of our study on ZnO films doped with Nd. Hall measurements are performed to investigate the electrical properties of films. Here we prepared and investigated ZnO films doped with different concentration of Nd. The films are grown on a-plane Al2O3 or SiO2 substrates. Hall investigations of electrical properties revealed the presence of a degenerate, highly conducting, film–substrate interface layer for the films grown on Al2O3; such an effect can be avoided, for example, by using SiO2 substrates. Magnetotransport measurements indicated no anomalous Hall effect, but a pronounced negative magneto resistance ratio that can be interpreted as a paramagnetic response of the system to the applied magnetic field. We would like to proceed with the surface sensitive techniques for investigating magnetic properties of ZnO:RE thin films.

  3. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2015-01-07

    Gd-doped ZnO thin films prepared by pulsed laser deposition with Gd concentrations varying from 0.02–0.45 atomic percent (at. %) showed deposition oxygen pressure controlled ferromagnetism. Thin films prepared with Gd dopant levels (

  4. Gd doping effect on structural, electrical and magnetic properties of ZnO thin films synthesized by sol-gel spin coating technique

    Science.gov (United States)

    Kumar, Sanjeev; Thangavel, Rajalingam

    2017-03-01

    Nanocrystalline Gd-doped ZnO thin films were deposited on sapphire (0001) substrates using sol-gel spin coating technique. The structural and optical properties of deposited thin films were characterized by X-ray diffraction (XRD) and micro Raman spectroscopy. Structural and optical studies show that the doped Gd ions occupy Zn sites retaining the wurtzite symmetry. Photoluminescence (PL) studies reveal the presence of oxygen vacancies in Gd doped ZnO thin films. The resistivity of Gd doped ZnO thin film decreases with increase in Gd doping upto 4%. Gd-doped ZnO films demonstrate weak magnetic ordering at room temperature.

  5. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    Science.gov (United States)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  6. Optical and electrical characterization of aluminium doped ZnO layers

    Science.gov (United States)

    Major, C.; Nemeth, A.; Radnoczi, G.; Czigany, Zs.; Fried, M.; Labadi, Z.; Barsony, I.

    2009-08-01

    Al doped ZnO (ZAO) thin films (with Al-doping levels 2 at.%) were deposited at different deposition parameters on silicon substrate by reactive magnetron sputtering for solar cell contacts, and samples were investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry (SE). Specific resistances were measured by the well known 4-pin method. Well visible columnar structure and in most cases voided other regions were observed at the grain boundaries by TEM. EELS measurements were carried out to characterize the grain boundaries, and the results show spacing voids between columnar grains at samples with high specific resistance, while no spacing voids were observed at highly conductive samples. SE measurements were evaluated by using the analytical expression suggested by Yoshikawa and Adachi [H. Yoshikawa, S. Adachi, Japanese Journal of Applied Physics 36 (1997) 6237], and the results show correlation between specific resistance and band gap energy and direct exciton strength parameter.

  7. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Science.gov (United States)

    Krämer, André; Engel, Sebastian; Sangiorgi, Nicola; Sanson, Alessandra; Bartolomé, Jose F.; Gräf, Stephan; Müller, Frank A.

    2017-03-01

    Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO2 laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency frep = 800 Hz and a peak power Ppeak = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I-V measurements were performed.

  8. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  9. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.

    Science.gov (United States)

    Baxter, Jason B; Schmuttenmaer, Charles A

    2006-12-21

    The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.

  10. Preparation of manganese-doped ZnO thin films and their characterization

    Indian Academy of Sciences (India)

    S Mondal; S R Bhattacharyya; P Mitra

    2013-04-01

    In this study, pure and manganese-doped zinc oxide (Mn:ZnO) thin films were deposited on quartz substrate following successive ion layer adsorption and reaction (SILAR) technique. The film growth rate was found to increase linearly with number of dipping cycle. Characterization techniques of XRD, SEM with EDX and UV–visible spectra measurement were done to investigate the effect of Mn doping on the structural and optical properties of Mn:ZnO thin films. Structural characterization by X-ray diffraction reveals that polycrystalline nature of the films increases with increasing manganese incorporation. Particle size evaluated using X-ray line broadening analysis shows decreasing trend with increasing manganese impurification. The average particle size for pure ZnO is 29.71nm and it reduces to 23.76nm for 5%Mn-doped ZnO. The strong preferred c-axis orientation is lost due to manganese (Mn) doping. The degree of polycrystallinity increases and the average microstrain in the films decreases with increasing Mn incorporation. Incorporation of Mn was confirmed from elemental analysis using EDX. As the Mn doping concentration increases the optical bandgap of the films decreases for the range of Mn doping reported here. The value of fundamental absorption edge is 3.22 eV for pure ZnO and it decreases to 3.06 eV for 5%Mn:ZnO.

  11. Photoluminescence properties of ZnO thin films prepared by DC magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    YANG Bing-chu; LIU Xiao-yan; GAO Fei; MA Xue-long

    2008-01-01

    ZnO thin films were prepared by direct current(DC) reactive magnetron sputtering under different oxygen partial pressures.And then the samples were annealed in vacuum at 450 ℃. The effects of the oxygen partial pressures and the treatment of annealing in vacuum on the photoluminescence and the concentration of six intrinsic defects in ZnO thin films such as oxygen vacancy(Vo),zinc vacancy(VZn), antisite oxygen(OZn), antisite zinc(ZnO), interstitial oxygen(Oi) and interstitial zinc(Zni) were studied. The results show that a green photoluminescence peak at 520 nm can be observed in all the samples, whose intensity increases with increasing oxygen partial pressure; for the sample annealed in vacuum, the intensity of the green peak increases as well. The green photoluminescence peak observed in ZnO may be attributed to zinc vacancy, which probably originates from transitions between electrons in the conduction band and zinc vacancy levels, or from transitions between electrons in zinc vacancy levels and up valence band.

  12. ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2016-10-01

    Full Text Available Nanostructured ZnO thin films with high transparency have been grown on glass substrate by atomic layer deposition at various temperatures ranging from 100 °C to 300 °C. Efforts have been made to observe the effect of substrate temperature on the thickness of the deposited thin films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per cycle at a substrate temperature of 200 °C for ZnO thin films have been achieved. This is the maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which have a polycrystalline nature with preferential orientation along (100 plane. The thickness of the films deposited at different substrate temperatures was measured by ellipsometry and surface profiling system while the UV–visible and photoluminescence spectroscopy studies have been used to evaluate the optical properties of the respective thin films. It has been observed that the thickness of the thin film depends on the substrate temperatures which ultimately affect the optical and structural parameters of the thin films.

  13. Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon

    Institute of Scientific and Technical Information of China (English)

    Zhou Xin; Wang Shi-Qi; Lian Gui-Jun; Xiong Guang-Cheng

    2006-01-01

    High-quality oxide semiconductor ZnO thin films were prepared on single-crystal sapphire and LaAlO3 substrates by pulsed laser deposition (PLD) in the mixture gas of hydrogen and argon. Low resistivity n-type ZnO thin films with smoother surface were achieved by deposition at 600℃ in 1Pa of the mixture gas. In addition, ferromagnetism was observed in Co-doped ZnO thin films and rectification Ⅰ-Ⅴ curves were found in p-GaN/n-ZnO and p-CdTe/n-ZnO heterostructure junctions. The results indicated that using mixture gas of hydrogen and argon in PLD technique was a flexible method for depositing high-quality n-type oxide semiconductor films, especially for the multilayer thin film devices.

  14. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.co [Department of Nanoscience and Technology, Bharathiar University, Coimbatore-641046 (India); Nataraj, D. [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India)

    2010-10-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  15. Effects of Annealing Temperature on Properties of ZnO Thin Films Grown by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Hui-zhao; XUE Shou-bin; XUE Cheng-shan; HU Li-jun; LI Bao-li; ZHANG Shi-ying

    2007-01-01

    ZnO thin films are deposited on n-Si(111) substrates by pulsed laser deposition(PLD) system.Then the samples are annealed at different temperatures in air ambient and their properties are investigated particularly as a function of annealing temperature.The microstructure,morphology and optical properties of the as-grown ZnO films are studied by X-ray diffraction(XRD),atomic force microscope(AFM),Fourier transform infrared spectroscopy(FTIR) and photoluminescence(PL) spectra.The results show that the as-grown ZnO films have a hexagonal wurtzite structure with a preferred c-axis orientation.Moreover,the diameters of the ZnO crystallites become larger and the crystal quality of the ZnO films is improved with the increase of annealing temperature.

  16. Characterization of ZnO and ZnO:Al thin films deposited by the sol-gel dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Marotti, R.E. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, J. H. Reissig 565, CC 30, CP 11000, Montevideo (Uruguay)], E-mail: khamul@fing.edu.uy; Bojorge, C.D. [REPSOL-YPF, CITEFA, CINSO, Juan B. de La Salle 4397 - CP 1603 Villa Martelli, Buenos Aires (Argentina); Broitman, E. [Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA 15213 (United States); Canepa, H.R. [CINSO, CONICET-CITEFA, Juan B. de La Salle 4397, CP 1603 Villa Martelli, Buenos Aires (Argentina); Badan, J.A.; Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, J. H. Reissig 565, CC 30, CP 11000, Montevideo (Uruguay); Gellman, A.J. [Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA 15213 (United States)

    2008-12-01

    Nanocrystalline zinc oxide films have been obtained by the sol-gel process. The films were deposited from precursor solutions by dip-coating on quartz substrates, and subsequently transformed into nanocrystalline pure or aluminium-doped ZnO films after a thermal treatment. The film microstructure and composition characterization was studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The optical properties were studied by transmittance spectroscopy. The water adsorption energy was measured by temperature programmed desorption (TPD) in the range 90-700 K. The optical transmittance in the UV region gives bandgap energy values of 3.27 eV for undoped samples, and higher than 3.30 eV for the Al-doped ones. The increase in bandgap energy in Al-doped samples may be explained by band-filling effects. The band edge absorption coefficient increases monotonically for the Al-doped samples but has a shoulder for the undoped ones, which may be assigned to room-temperature excitonic absorption.

  17. Characterization of the ZnO thin film prepared by single source chemical vapor deposition under low vacuum condition

    Institute of Scientific and Technical Information of China (English)

    DENG; Hong(邓宏); B.; GONG; A.; J.; Petrella; J.; J.; Russell; R.; N.; Lamb

    2003-01-01

    A novel technique is developed for growing high quality ZnO thin films by means of single source chemical vapor deposition (SS CVD) under low vacuum conditions with the precursor of zinc carbamate Zn4O(CO2Net2)6. SEM, AFM and XRD studies show that the resultant thin films have high density, smooth surface, uniform polycrystalline structure and excellent c-axis orientation. XPS investigation indicates that the ZnO films are free of decomposed precursor residues in the bulk. Careful quantitative XPS analysis reveals that the ZnO films are stoichiometric with O/Zn atomic ratio very close to that of ZnO single crystal.

  18. Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential

    Energy Technology Data Exchange (ETDEWEB)

    Marotti, R.E.; Guerra, D.N.; Machado, G.; Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565, C.C. 30, Montevideo 11000 (Uruguay); Bello, C. [Unidad Central de Instrumentacion Cientifica UCIC, Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.C. 10773, Montevideo 11400 (Uruguay)

    2004-05-01

    ZnO thin films were electrochemically deposited onto opaque and transparent substrates (copper and ITO). The electrolyte consisted of a 0.1M Zn(NO{sub 3}){sub 2} solution with the initial pH adjusted to 6.0, different electrodeposition potentials from E=-700 to -1200mV (saturated calomel electrode, SCE). The resulting samples have the structural, chemical and morphological properties of hexagonal ZnO, with thickness varying from less than 1{mu}m to almost 30{mu}m. The bandgap energy varies inversely with film thickness, ranging from less than 3.1 to 3.4eV. The bandgap also depends on the electrodeposition potential. This result allows to adjust the desired absorption edge within a 30nm wide region in the UV.

  19. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2016-03-24

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  20. Thin Solid Films Topical Special Issue on ZnO related transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Jinn P.; Endo, Tamio; Ellmer, Klaus; Gessert, Tim; Ginley, David

    2016-04-01

    World-wide research activities on ZnO and related transparent conductive oxides (TCO) in thin film, nanostructured, and multilayered forms are driven by the vast potential of these materials for optoelectronic, microelectronic, and photovoltaic applications. Renewed interest in ZnO applications is partly stimulated by cost reduction in material processing and device development. One of the most important issues is doping and alloying with Al, Ga, In, Sn, etc. in order to tune properties. When highly doped, these materials are used as transparent-conducting contacts on solar cells, as well as in catalytic, spintronic, and surface acoustic wave devices. Film growth conditions, including substrate type and orientation, growth temperature, deposition rate, and ambient atmosphere, all play important roles in determining structural, electrical, magnetic, and optical properties.

  1. Thermal activation of nitrogen acceptors in ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Talla, K.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth (South Africa)

    2010-06-15

    Nitrogen doping in ZnO is inhibited by spontaneous formation of compensating defects. Perfect control of the nitrogen doping concentration is required, since a high concentration of nitrogen could induce the formation of donor defects involving nitrogen. In this work, the effect of post-growth annealing in oxygen ambient on ZnO thin films grown by Metalorganic Chemical Vapor Deposition, using NO as both oxidant and nitrogen dopant, is studied. After annealing at 700 C and above, low-temperature photoluminescence shows the appearance of a transition at {proportional_to}3.23 eV which is interpreted as pair emission involving a nitrogen acceptor. A second transition at {proportional_to}3.15 eV is also discussed. This work suggests annealing as a potential means for p-type doping using nitrogen (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Epitaxial electrodeposition of ZnO thin film on GaN(0001) bulk single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, Keigo; Yoshida, Tsukasa [Center of Innovative Photovoltaic Systems (CIPS), Environmental and Renewable Energy Systems (ERES) Division, Graduate School of Engineering, Gifu University (Japan)

    2008-10-15

    Ga terminated surface of heavily doped conductive GaN(0001) bulk single crystal was used as a rotating disk electrode (RDE) to electrodeposit ZnO thin film employing reduction of O{sub 2}. Although the native surface was rather inactive for the reduction of O{sub 2}, it was activated by dipping in HCl and further by prolonged electrolysis to reduce O{sub 2} in a Zn{sup 2+} free solution. Koutecky-Levich analysis revealed important kinetic constants, such as the standard charge transfer rate constant (k{sup 0}) of 2.4 x 10{sup -14} cm s{sup -1} and the transfer coefficient ({alpha}) of 0.11 at 70 C for the reduction of O{sub 2} at the most activated GaN(0001). Electrodeposition of ZnO from the bath containing ZnCl{sub 2} lead to an epitaxial growth of ZnO in a ZnO[100] parallel GaN[100] alignment as confirmed from the XRD {omega} scan with {theta} adjusted to ZnO(10 anti 12). The higher level of epitaxy was achieved for the more active surfaces of GaN as estimated from narrowing of the full width at half maximum (fwhm) of the peaks in the XRD {omega} -scan. Such films were also fully covering the surface of GaN as found in the SEM observation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Effect of temperature on the deposition of ZnO thin films by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Shei, Shih-Chang; Lee, Pay-Yu; Chang, Shoou-Jinn

    2012-08-01

    In this study, ZnO thin films were deposited on glass substrates by the successive ionic layer adsorption and reaction (SILAR) method, and the effect of the temperature treatment in ethylene glycol on the crystal structure, surface morphology, and optical properties of the films were investigated. When the temperature was below 85 °C, the ZnO films showed poor optical transmission and had a rough surface crystal structure. As the temperature was increased, dense polycrystalline films with uniform ZnO grain distribution were obtained. The optical transmittance of the ZnO thin films fabricated at temperatures greater than 95 °C was very high (90%) in the visible-light region. Therefore, it could be concluded that increasing the temperature of treatment in ethylene glycol helps in obtaining fine-grained ZnO films with a high growth rate and a low concentration of oxygen vacancies. However, temperatures greater than 145 °C led to shedding of ZnO from the surface and a reduction in the growth rate. Thus, temperature treatment was confirmed to play an important role in ZnO film deposition instead of post thermal annealing after the film growth.

  4. Properties of ZnO thin films grown on Si substrates in vacuum and oxygen ambient by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jie [State Key Laboratory for Materials Modification by Laser, Ion, Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116024 (China) and Department of Physics, Kunming University of Science and Technology, Kunming 650093 (China)]. E-mail: jiezhao_sub@163.com; Hu Lizhong [State Key Laboratory for Materials Modification by Laser, Ion, Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116024 (China); Liu Weifeng [State Key Laboratory for Materials Modification by Laser, Ion, Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116024 (China); Wang Zhaoyang [State Key Laboratory for Materials Modification by Laser, Ion, Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116024 (China)

    2007-05-15

    Epitaxial ZnO thin films have been synthesized directly on Si(1 1 1) substrates by pulsed laser deposition (PLD) in vacuum. The reflection high-energy electron diffraction (RHEED) indicates that streaky patterns can be clearly observed from the ZnO epilayers prepared at 600 and 650 deg. C, revealing a two-dimensional (2D) growth mode. While the ZnO thin film deposited in oxygen ambient shows ring RHEED pattern. There is a compressive in-plane stress existing in the ZnO epitaxial film, but a tensile one in the polycrystalline film. Compared with the ZnO epilayer, the ZnO polycrystalline film shows more intense ultraviolet emission (UVE) with a small full width at half maximum (FWHM) of 89 meV. It is suggested that the atomically flat epilayers may be powerfully used as transitive stratums to grow high-quality ZnO films suitable for the fabrication of optoelectronic devices.

  5. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension.

    Science.gov (United States)

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2012-08-01

    Thin films of N-doped ZnO are synthesized via spray pyrolysis technique in aqueous medium using zinc acetate and ammonium acetate as precursors. Influence of N doping onto photochemical, structural, morphological, optical and thermal properties have been investigated. Structural analysis depicts hexagonal (wurtzite) crystal structure. The effect of N doping on the photocatalytic activity of N-doped ZnO in the degradation of toluene is studied and results are compared with pure ZnO. The results show that the rate of degradation of toluene over N-doped ZnO is higher as compared to that of pure ZnO and increases with increasing N doping up to 10 at.% and then decreases. The enhancement of photocatalytic activity of N-doped ZnO thin films is mainly due to their capability for reducing the electron hole pair recombination. The photocatalytic mineralization of toluene in aqueous solution has been studied by measuring COD and TOC. Possible reaction mechanism pathways during toluene degradation over N-doped ZnO has been proposed.

  6. Study of deposition parameters for the fabrication of ZnO thin films using femtosecond laser

    Science.gov (United States)

    Hashmi, Jaweria Zartaj; Siraj, Khurram; Latif, Anwar; Murray, Mathew; Jose, Gin

    2016-08-01

    Femtosecond (fs) pulsed laser deposition (fs-PLD) of ZnO thin film on borosilicate glass substrates is reported in this work. The effect of important fs-PLD parameters such as target-substrate distance, laser pulse energy and substrate temperature on structure, morphology, optical transparency and luminescence of as-deposited films is discussed. XRD analysis reveals that all the films grown using the laser energy range 120-230 μJ are polycrystalline when they are deposited at room temperature in a ~10-5 Torr vacuum. Introducing 0.7 mTorr oxygen pressure, the films show preferred c-axis growth and transform into a single-crystal-like film when the substrate temperature is increased to 100 °C. The scanning electron micrographs show the presence of small nano-size grains at 25 °C, which grow in size to the regular hexagonal shape particles at 100 °C. Optical transmission of the ZnO film is found to increase with an increase in crystal quality. Maximum transmittance of 95 % in the wavelength range 400-1400 nm is achieved for films deposited at 100 °C employing a laser pulse energy of 180 μJ. The luminescence spectra show a strong UV emission band peaked at 377 nm close to the ZnO band gap. The shallow donor defects increase at higher pulse energies and higher substrate temperatures, which give rise to violet-blue luminescence. The results indicate that nano-crystalline ZnO thin films with high crystalline quality and optical transparency can be fabricated by using pulses from fs lasers.

  7. Characterization of Undoped and Cu-Doped ZnO Thin Films Deposited on Glass Substrates by Spray Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Metin Bedir; Mustafa (O)ztas; A. Necmeddin Yazici; E. Vural Kafadar

    2006-01-01

    @@ Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2) in the spray solution of ZnO. Variation of structural, electrical, optical and thermoluminescence (TL) properties with doping concentrations is investigated in detail.

  8. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neykova, Neda, E-mail: neykova@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering Trojanova 13, 120 00 Prague 2 (Czech Republic); Hruska, Karel; Holovsky, Jakub; Remes, Zdenek; Vanecek, Milan [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic)

    2013-09-30

    We report on the hydrothermal growth of high quality arrays of single crystalline zinc oxide (ZnO) nanocolumns, oriented perpendicularly to the transparent conductive oxide substrate. In order to obtain precisely defined spacing and arrangement of ZnO nanocolumns over an area up to 0.5 cm{sup 2}, we used electron beam lithography. Vertically aligned ZnO (multicrystalline or single crystals) nanocolumns were grown in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine at 95 °C, with a growth rate 0.5 ÷ 1 μm/h. The morphology of the nanostructures was visualized by scanning electron microscopy. Such nanostructured ZnO films were used as a substrate for the recently developed 3-dimensional thin film silicon (amorphous, microcrystalline) solar cell, with a high efficiency potential. The photoelectrical and optical properties of the ZnO nanocolumns and the silicon absorber layers of these type nanostructured solar cells were investigated in details. - Highlights: • Vertically-oriented ZnO nanocolumns were grown by hydrothermal method. • The ZnO nanocolumns were grown over an area of 0.5 cm{sup 2}. • For precise arrangement of the ZnO nanocolumns electron beam lithography was used. • We report on 3-D design of nanostructured solar cell. • Optical thickness of nanostructured cell was three times higher compared to flat cell.

  9. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation.

    Science.gov (United States)

    Alvarado, Jose Alberto; Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  10. Annealing temperature dependency of ZnO thin films memristive behavior

    Science.gov (United States)

    Shaari, N. A. A.; Kasim, S. M. M.; Rusop, M.; Herman, S. H.

    2016-07-01

    The work focuses on the effect of different annealing temperature on the ZnO-based memristive device. Zinc oxide was deposited on the ITO substrate by sol-gel spincoating technique. The deposited ZnO thin films were then annealed from 50°C to 450°C in a furnace for 60 minutes each. The electrodes Platinum (Pt) were sputtered by using JEOL JFC-1600 Auto Fine Coater. The thin film thicknesses were measured by Veeco Dektak 150 Surface Profiler. The thickness of the thin film annealed at 350°C is the thinnest, which is 54.78nm and from the electrical characterization it also shown the switching characteristic behavior. The surface morphology and topology to examine the existence of nanoparticles

  11. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2015-04-01

    Full Text Available This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm, which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  12. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films.

    Science.gov (United States)

    Zhao, Min; Shang, Fengjiao; Lv, Jianguo; Song, Ying; Wang, Feng; Zhou, Zhitao; He, Gang; Zhang, Miao; Song, Xueping; Sun, Zhaoqi; Wei, Yiyong; Chen, Xiaoshuang

    2014-01-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail.

  13. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  14. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    OpenAIRE

    Duy Phong Pham; Huu Truong Nguyen; Bach Thang Phan; Thi My Dung Cao; Van Dung Hoang; Vinh Ai Dao; Junsin Yi; Cao Vinh Tran

    2014-01-01

    Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codop...

  15. Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Chenlei; Tang, Wu, E-mail: tang@uestc.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Multi-resolution signal decomposition of wavelet transform is applied to Ga-doped ZnO thin films with various thicknesses. • Fractal properties of GZO thin films are investigated by box counting method. • Fractal dimension is not in conformity with original RMS roughness. • Fractal dimension mainly depends on the underside diameter (grain size) and distance between adjacent grains. - Abstract: The change in roughness of various thicknesses Ga-doped ZnO (GZO) thin films deposited by magnetron reactive sputtering on glass substrates at room temperature was measured by atomic force microscopy (AFM). Multi-resolution signal decomposition based on wavelet transform and fractal geometry was applied to process surface profiles, to evaluate the roughness trend of relevant frequency resolution. The results give a six-level decomposition and the results change with deposited time and surface morphology. Also, it is found that fractal dimension is closely connected to the underside diameter (grain size) and the distance between adjacent grains that affect the change rate of surface and the increase of the defects such as abrupt changes lead to a larger value of fractal dimension.

  16. Structural and optical properties of electrodeposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, K. [Laboratoire de Physique des Materiaux Divises et Interfaces (LPMDI), CNRS-UMR 8108, Universite Paris-Est, 5 Bd. Descartes, 77454 Marne la Vallee Cedex 2 (France); Wang, B.Q.; Yu, D.P. [School of Physics, Electron Microscopy Laboratory, and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Leprince-Wang, Y. [Laboratoire de Physique des Materiaux Divises et Interfaces (LPMDI), CNRS-UMR 8108, Universite Paris-Est, 5 Bd. Descartes, 77454 Marne la Vallee Cedex 2 (France)], E-mail: yamin.leprince@univ-mlv.fr

    2008-11-28

    Zinc oxide thin films were electrodeposited on different substrates. Electrodeposition was performed with hydrogen peroxide, as hydroxide ions source, at - 1.5 V versus mercurial sulfate electrode during one hour, and a temperature maintained at 70 deg. C . The resulting thin films have a good crystallinity and a high c-axis orientation, and the unit cell parameters determined by X-ray diffraction experiment are a = 0.326 nm and c = 0.523 nm, respectively. Microstructure studies using scanning electron microscopy and atomic force microscopy show a good homogeneity of the film and a roughness around 22 nm. Optical properties were studied with Raman spectroscopy and photoluminescence spectroscopy. Optical properties of the films revealed a low defect emission in photoluminescence spectra. The E{sub 2} vibration mode for ZnO was observed near 439 cm{sup -1}, indicating that the as-deposited films were under compressive stress. Oscillations were observed in the photoluminescence spectra, from which the refractive index of ZnO thin films was extracted, that is {approx} 1.90.

  17. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenanakis, G., E-mail: gkenanak@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Katsarakis, N. [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece)

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  18. Optical and Micro-Structural Properties of ZnO Thin Films Grown on Silicon Substrate by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO thin films were deposited on n-Si (111) at various substrate temperatures and oxygen pressures by pulsed laser deposition (PLD) using a Nd∶YAG laser with the wavelength of 1064 nm. X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the microstructure, optical property and morphology of the ZnO thin films. A comparatively optimal crystallized ZnO thin film was obtained at the substrate temperature of 600 ℃ in oxygen pressure of 50 mTorr. The intensity of the luminescence strongly depends on the stoichiometry of the film as well as the crystalline quality.

  19. Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Murugan, R. [Department of Physics, Alagappa University, Karaikudi 630004, Tamil Nadu (India); Ravi, G., E-mail: gravicrc@gmail.com [Department of Physics, Alagappa University, Karaikudi 630004, Tamil Nadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan)

    2014-09-15

    Graphical abstract: - Highlights: • Diluted magnetic semiconducting TM (Ni, Mn, Co) doped ZnO thin films were fabricated by sol–gel spin coating technique. • The XRD analyses revealed that the TM (Ni, Mn, Co) doped ZnO films have hexagonal wurtzite structure. • Photoluminescence and micro-Raman spectra were interpreted for TM (Ni, Mn, Co) doped ZnO thin films. • SEM morphology studies were made for Zn{sub 0.97} Ni{sub 0.03}O, Zn{sub 0.97} Mn{sub 0.03}O and Zn{sub 0.97} Co{sub 0.03}O thin films. • Room temperature ferromagnetism was observed in TM (Ni, Mn, Co) doped ZnO thin films. - Abstract: Pure and transition metal (TM = Ni, Mn, Co) doped zinc oxide (ZnO) thin films were prepared by sol–gel spin coating method with a concentration of 0.03 mol% of transition metals. X-ray diffraction studies revealed the polycrystalline nature of the films with the presence of hexagonal wurtzite structure. UV transmittance spectra showed that all the films are highly transparent in the visible region and in the case of doped ZnO thin films, d–d transition was observed in the violet region due to the existence of crystalline defects and grain boundaries. The optical band gap of the films decreases with increasing orbital occupation numbers of 3d electrons due to the orbital splitting of magnetic ions. Ultraviolet and near-infrared electronic transitions were observed which reveals a strong relationship with the doping of transition metal into ZnO site. The observed luminescence in the green, violet and red regions strongly depends on the doping elements owing to the different oxygen vacancy, oxygen interstitial, and surface morphology. The surface morphology of thin films was investigated by scanning electron microscope (SEM). The energy dispersive X-ray analysis (EDX) confirmed the stoichiometric composition of the TM doped ZnO thin films. Magnetic measurements at room temperature exhibited well defined ferromagnetic features of the thin films.

  20. Influence of pH on ZnO nanocrystalline thin films prepared by sol–gel dip coating method

    Indian Academy of Sciences (India)

    K Sivakumar; V Senthil Kumar; N Muthukumarasamy; M Thambidurai; T S Senthil

    2012-06-01

    ZnO nanocrystalline thin films have been prepared on glass substrates by sol–gel dip coating method. ZnO thin films have been coated at room temperature and at four different pH values of 4, 6, 8 and 10. The X-ray diffraction pattern showed that ZnO nanocrystalline thin films are of hexagonal structure and the grain size was found to be in the range of 25–45 nm. Scanning electron microscopic images show that the surface morphology improves with increase of pH values. TEM analysis reveals formation of ZnO nanocrystalline with an average grain size of 44 nm. The compositional analysis results show that Zn and O are present in the sample. Optical band studies show that the films are highly transparent and exhibit a direct bandgap. The bandgap has been found to lie in the range of 3.14–3.32 eV depending on pH suggesting the formation of ZnO nanocrystalline thin films.

  1. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    Science.gov (United States)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  2. Effect of In-doping on the Optical Constants of ZnO Thin Films

    Science.gov (United States)

    Xie, G. C.; Fanga, L.; Peng, L. P.; Liu, G. B.; Ruan, H. B.; Wu, F.; Kong, C. Y.

    Highly transparent and conductive Indium-doped ZnO (ZnO:In) thin films with different In content were deposited on quartz glass slides by RF magnetron sputtering at room temperature. The thickness and the optical constants of the films were obtained by the Swanepoel method, and the effects of In concentration on the optical constants were investigated. Calculated results show that both the refractive index and optical band gap first increase then decreases with In concentration increasing in the visible region, and the variation of both ɛr and ɛi with wavelength follows the same trend as that of refractive index and extinction coefficient, respectively.

  3. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films.

    Science.gov (United States)

    Sapkal, R T; Shinde, S S; Mahadik, M A; Mohite, V S; Waghmode, T R; Govindwar, S P; Rajpure, K Y; Bhosale, C H

    2012-09-01

    Zinc oxide (ZnO) thin films have been successfully deposited onto fluorine doped tin oxide coated glass at substrate temperature of 400 °C and used as electrode in photoelectrocatalytic reactor. The untreated textile effluent was circulated through photoelectrocatalytic reactor under UVA illumination for the decolorization and degradation. Textile effluent was decolorized by 93% within 3h at room temperature with significant reduction in COD (69%). High performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) analysis of samples before and after decolorization confirmed the degradation of dyes molecules from textile effluent into simpler oxidizable products. Phytotoxicity study revealed reduction in toxic nature of textile effluent after treatment.

  4. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2007-01-01

    International audience; The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the ...

  5. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2015-01-01

    The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the PZT structural change du...

  6. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  7. Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films

    Science.gov (United States)

    Mughal, Asad J.; Carberry, Benjamin; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-03-01

    In this work, we employ a simple two-step growth technique to deposit impurity doped heteroepitaxial thin films of (0001) ZnO onto (111) MgAl2O4 spinel substrates through a combination of atomic layer deposition (ALD) and hydrothermal growth. The hydrothermal layer is doped with Al, Ga, and In through the addition of their respective nitrate salts. We evaluated the effect that varying the concentrations of these dopants has on both the structural and optical properties of these films. It was found that the epitaxial ALD layer created a ZnO}} } . out-of-plane orientation and a ZnO}} } . in-plane orientation between the film and substrate. The rocking curve line widths ranged between 0.75° and 1.80° depending on dopant concentration. The optical bandgap determined through the Tauc method was between 3.28 eV and 3.39 eV and showed a Burstein-Moss shift with increasing dopant concentration.

  8. Organic photovoltaic cells based on ZnO thin film electrodes.

    Science.gov (United States)

    Ghica, C; Ion, L; Epurescu, G; Nistor, L; Antohe, S; Dinescu, M

    2010-02-01

    Due to its wide band-gap (ca. 3.4 eV), ZnO is a possible candidate material to be used as transparent electrode for a new class of photovoltaic (PV) cells. Also, an increased interest for the photovoltaic properties of several organic monomers and polymers (merocyanines, phthalocyanines and porphyrins) was noticed, because of their high optical absorption in the visible region of the spectrum allowing them to be used as potential inexpensive materials for solar cells. Preparation and properties of CuPc (copper phthalocyanine) based photovoltaic cells using ZnO thin films as transparent conductor electrodes are presented in this paper. ZnO layers are grown by pulsed laser deposition, while the organic layers are obtained by thermal evaporation. Structural characterization is performed by electron microscopy. Optical and transport properties of the mutilayered structures are obtained by electrical and spectro-photometric measurements. The influence of the ZnO-polymer interface on the external quantum efficiency (EQE) of the photovoltaic cell is clearly evidenced by our measurements.

  9. ZnO THIN FILMS PREPARED BY SPRAY-PYROLYSIS TECHNIQUE FROM ORGANO-METALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    Martin Mikulics

    2012-07-01

    Full Text Available Presented experiments utilize methanolic solution of zinc acetyl-acetonate as a precursor and sapphire (001 as a substrate for deposition of thin films of ZnO. The X-ray diffraction analysis revealed polycrystalline character of prepared films with preferential growth orientation along c-axis. The roughness of prepared films was assessed by AFM microscopy and represented by roughness root mean square (RMS value in range of 1.8 - 433 nm. The surface morphology was mapped by scanning electron microscopy showing periodical structure with several local defects. The optical transmittance spectrum of ZnO films was measured in wavelength range of 200-1000 nm. Prepared films are transparent in visible range with sharp ultra-violet cut-off at approximately 370 nm. Raman spectroscopy confirmed wurtzite structure and the presence of compressive stress within its structure as well as the occurrence of oxygen vacancies. The four-point Van der Pauw method was used to study the transport prosperities. The resistivity of presented ZnO films was found 8 × 10–2 Ω cm with carrier density of 1.3 × 1018 cm–3 and electron mobility of 40 cm2 V–1 s–1.

  10. Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films

    Science.gov (United States)

    Prajapati, C. S.; Kushwaha, Ajay; Sahay, P. P.

    2013-11-01

    Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20-28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (˜94.5 %) at the operating temperature of 275 °C for 100 ppm concentration of formaldehyde, which is much higher than the response (˜35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.

  11. Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films

    Science.gov (United States)

    Mughal, Asad J.; Carberry, Benjamin; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    In this work, we employ a simple two-step growth technique to deposit impurity doped heteroepitaxial thin films of (0001) ZnO onto (111) MgAl2O4 spinel substrates through a combination of atomic layer deposition (ALD) and hydrothermal growth. The hydrothermal layer is doped with Al, Ga, and In through the addition of their respective nitrate salts. We evaluated the effect that varying the concentrations of these dopants has on both the structural and optical properties of these films. It was found that the epitaxial ALD layer created a ZnO}} } out-of-plane orientation and a ZnO}} } in-plane orientation between the film and substrate. The rocking curve line widths ranged between 0.75° and 1.80° depending on dopant concentration. The optical bandgap determined through the Tauc method was between 3.28 eV and 3.39 eV and showed a Burstein-Moss shift with increasing dopant concentration.

  12. Preparation of cadmium-doped ZnO thin films by SILAR and their characterization

    Indian Academy of Sciences (India)

    S Mondal; P Mitra

    2012-10-01

    Cadmium-doped zinc oxide (Cd : ZnO) thin films were deposited from sodium zincate bath following a chemical dipping technique called successive ion layer adsorption and reaction (SILAR). Structural characterization by X-ray diffraction reveals that polycrystalline nature of the films increases with increasing cadmium incorporation. Particle size evaluated using X-ray line broadening analysis shows decreasing trend with increasing cadmium impurification. The average particle size for pure ZnO is 36.73nm and it reduces to 29.9 nm for 10% Cd:ZnO, neglecting strain broadening. The strong preferred c-axis orientation is lost due to cadmium doping and degree of polycrystallinity of the films also increases with increasing Cd incorporation. Incorporation of cadmium was confirmed from elemental analysis using EDX. The optical bandgap of the films decreases with increasing Cd dopant. The value of fundamental absorption edge is 3.18 eV for pure ZnO and it decreases to 3.11 eV for 10% Cd:ZnO.

  13. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core-Shell Solar Cell

    Directory of Open Access Journals (Sweden)

    Elif Peksu

    2015-01-01

    Full Text Available In this investigation, hydrothermal technique was employed for the synthesis of well-aligned dense arrays of ZnO nanowires (NWs on a wide range of substrates including silicon, soda-lime glass (SLG, indium tin oxide, and polyethylene terephthalate (PET. Results showed that ZnO NWs can be successfully grown on any substrate that can withstand the growth temperature (~90°C and precursor solution chemicals. Results also revealed that there was a strong impact of growth time and ZnO seed layer deposition route on the orientation, density, diameter, and uniformity of the synthesized nanowires. A core-shell n-ZnO NWs/p-AgGaSe2 (AGS thin film solar cell was fabricated as a device application of synthesized ZnO nanowires by decoration of nanowires with ~700 nm thick sputtering deposited AGS thin film layer, which demonstrated an energy conversion efficiency of 1.74% under 100 mW/cm2 of simulated solar illumination.

  14. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Science.gov (United States)

    Marimuthu, T.; Anandhan, N.; Mummoorthi, M.; Dharuman, V.

    2016-05-01

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  15. Effect of the Substrate Movement on the Optical Properties of ZnO Thin Films Deposited by Ultrasonic Spray Pyrolysis

    OpenAIRE

    2012-01-01

    Using a modified ultrasonic spray pyrolysis (USP) system, ZnO thin films were deposited on the substrate moved back and forth (ZO1) and rotated (ZO3) as well as fixed (ZO2) in the conventional USP technique. Prepared thin films are pure ZnO with a preferred crystalline orientation of (0 0 2) in the hexagonal wurtzite structure. Diffraction angle shift implies a decrease lattice parameter along c-axis and a-axis 0.2% and 0.3%, respectively. Maximum strain has been found for ZO1 which is about ...

  16. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    OpenAIRE

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-01-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might als...

  17. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    OpenAIRE

    Daria Majchrowicz; Marzena Hirsch; Paweł Wierzba; Michael Bechelany; Roman Viter; Małgorzata Jędrzejewska‑Szczerska

    2016-01-01

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acqui...

  18. Planar waveguide laser in Er/Al-doped germanosilicate

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Hübner, Jörg; Kristensen, Martin;

    1999-01-01

    A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations.......A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations....

  19. Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures.

    Science.gov (United States)

    Khanlary, Mohammad Reza; Vahedi, Vahid; Reyhani, Ali

    2012-05-02

    In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.

  20. Synthesis and Characterization of ZnO Nanowires by Thermal Oxidation of Zn Thin Films at Various Temperatures

    Directory of Open Access Journals (Sweden)

    Ali Reyhani

    2012-05-01

    Full Text Available In this research high-quality zinc oxide (ZnO nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM, X-ray diffraction (XRD, energy dispersive X-ray (EDX and photoluminescence (PL measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002, and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.

  1. Mixing ALD/MLD-grown ZnO and Zn-4-aminophenol layers into various thin-film structures.

    Science.gov (United States)

    Sundberg, Pia; Sood, Anjali; Liu, Xuwen; Karppinen, Maarit

    2013-11-14

    Building 2D inorganic-organic hybrids by combining inorganic and organic constituents with molecular-layer precision is an attractive approach to fabricate novel materials with a tailored combination of properties from both entities. Here we demonstrate the potential of the combined atomic and molecular layer deposition (ALD/MLD) technique for the state-of-the-art synthesis of such materials and to fabricate both homogeneous thin-film mixtures and nanolaminates of ZnO and the Zn-4-aminophenol inorganic-organic hybrid. The thin films are deposited by varying the number of precursor cycles during the depositions. Diethyl zinc and 4-aminophenol (AP) are used as precursors for the Zn-AP hybrid depositions, and diethyl zinc and water for the ZnO depositions. The characterization of the mixed Zn-AP and ZnO films reveals that crystallinity, density, surface roughness, chemical stability, hardness and contact modulus are sensitively altered by even a minor insertion of Zn-AP hybrid into the ZnO structure. Fabrication of Zn-AP + ZnO nanolaminates with different thicknesses of the Zn-AP and ZnO layers provides us with an even better way to control the hardness and contact modulus, and also to enhance the chemical stability of the films.

  2. Study of the surface properties of ZnO nanocolumns used for thin-film solar cells.

    Science.gov (United States)

    Neykova, Neda; Stuchlik, Jiri; Hruska, Karel; Poruba, Ales; Remes, Zdenek; Pop-Georgievski, Ognen

    2017-01-01

    Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 μm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM). The surface properties of ZnO NCs and the binding state of present elements were investigated before and after different plasma treatments, typically used in plasma-enhanced CVD solar cell deposition processes, by X-ray photoelectron spectroscopy (XPS). Photothermal deflection spectroscopy (PDS) was used to investigate the optical and photoelectrical characteristics of the ZnO NCs, and the changes induced to the absorptance by the plasma treatments. A strong impact of hydrogen plasma treatment on the free-carrier and defect absorption of ZnO NCs has been directly detected in the PDS spectra. Although oxygen plasma treatment was proven to be more efficient in the surface activation of the ZnO NC, the PDS analysis showed that the plasma treatment left the optical and photoelectrical features of the ZnO NCs intact. Thus, it was proven that the selected oxygen plasma treatment can be of great benefit for the development of thin film solar cells based on ZnO NCs.

  3. Epitaxial growth of ZnO thin films on AlN substrates deposited at low temperature by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Rahmane, S.; Soussou, A.; Gautron, E.; Jouan, P.Y.; Le Brizoual, L.; Barreau, N.; Djouadi, M.A. [Institut des Materiaux Jean Rouxel -IMN-, UMR CNRS 6502, Nantes (France); Abdallah, B. [Institut des Materiaux Jean Rouxel -IMN-, UMR CNRS 6502, Nantes (France); Atomic Energy Commission Syrian (AECS), Damascus (Syria); Soltani, A. [IEMN, UMR CNRS 8520, USTL, Villeneuve d' Ascq (France)

    2010-07-15

    Hexagonal aluminium nitride (AlN) and zinc oxide (ZnO) thin films have been deposited by DC and RF reactive magnetron sputtering at room temperature. For a first set of samples, sputtered AlN films were deposited on silicon ZnO substrate. For a second set, ZnO films were deposited on AlN substrate. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis of the synthesized AlN film on ZnO buffer layer have shown some amorphous zones close to the interface followed by a nanocrystalline layer exhibiting (10-10) and (0002) orientations of the hexagonal AlN crystalline phase. At the top of the film, a relatively well-crystallized layer with a single (0002) orientation has been observed. We have related the relatively bad interface to the presence of oxygen coming from ZnO substrate. This behaviour was different for the growth of ZnO film when AlN was used as substrate. In fact, we have observed thanks to HRTEM images and selected area electron diffraction patterns, that the ZnO film deposited on AlN substrate exhibits an epitaxial growth which is strongly dependent on the crystalline quality of AlN film. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

    Science.gov (United States)

    Stuchlik, Jiri; Hruska, Karel; Poruba, Ales; Remes, Zdenek; Pop-Georgievski, Ognen

    2017-01-01

    Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 μm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM). The surface properties of ZnO NCs and the binding state of present elements were investigated before and after different plasma treatments, typically used in plasma-enhanced CVD solar cell deposition processes, by X-ray photoelectron spectroscopy (XPS). Photothermal deflection spectroscopy (PDS) was used to investigate the optical and photoelectrical characteristics of the ZnO NCs, and the changes induced to the absorptance by the plasma treatments. A strong impact of hydrogen plasma treatment on the free-carrier and defect absorption of ZnO NCs has been directly detected in the PDS spectra. Although oxygen plasma treatment was proven to be more efficient in the surface activation of the ZnO NC, the PDS analysis showed that the plasma treatment left the optical and photoelectrical features of the ZnO NCs intact. Thus, it was proven that the selected oxygen plasma treatment can be of great benefit for the development of thin film solar cells based on ZnO NCs.

  5. Synthesis, characterization, and hydrogen gas sensing properties of AuNs-catalyzed ZnO sputtered thin films

    Science.gov (United States)

    Drmosh, Q. A.; Yamani, Z. H.

    2016-07-01

    Hydrogen present in concentration up to 4 vol.% forms an explosive mixture with air. Its propensity to escape in the event of leak, could lead to quick build-up and formation of an explosive mixture with air in confined spaces, such as an automobile. This necessitates its detection at very low concentration. Zinc oxide (ZnO) is a well-known wide band gap (∼3.37 eV) semiconducting oxide that has been widely used for gas sensing applications. This work reports on the fabrication, characterization and gas sensing performance of nanogold decorated ZnO thin films made by DC reactive sputtering. The sensor films were fabricated by depositing a very thin layer of gold on the sputtered ZnO thin film. The as deposited Au@ZnO films were converted into highly crystalline ZnO film covered with gold nanostructures (AuNs@ZnO) by mild heat treatment. The structural and morphological as well as the compositional homogeneity of the as-deposited and heat-treated ZnO, Au@ZnO and AuNs@ZnO thin films were ascertained. The gas sensing behavior of the AuNs@ZnO thin films towards hydrogen as a function of temperature at different H2 concentrations was investigated and compared with that of pure and heat-treated ZnO films. The effect of the presence of gold nanoparticles on imparting improvement (in terms of higher response signal, high reproducibility and complete reversibility) was established; the optimal operating temperature was about 400 °C. A plausible mechanism for the observed enhancement in the sensing behavior of AuNs@ZnO films towards H2 is proposed.

  6. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    Science.gov (United States)

    Rajalakshmi, R.; Angappane, S.

    2015-06-01

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO2/SiOx/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ˜200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  7. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    Energy Technology Data Exchange (ETDEWEB)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  8. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rajalakshmi, R.; Angappane, S., E-mail: angappane@cnsms.res.in [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore-560013 (India)

    2015-06-24

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO{sub 2}/SiO{sub x}/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ∼200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  9. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raegan Lynn [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  10. Effect of magnesium doping on the light-induced hydrophilicity of ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Huang Kai; Lü Jianguo; Zhang Li; Tang Zhen; Yu Jiangying; Li Ping; Liu Feng

    2012-01-01

    Undoped and Mg-doped ZnO thin films were deposited on Si (111) and quartz substrates by using the sol-gel method.Microstructure,surface topography and water contact angle of the thin films have been measured by X-ray diffraction (XRD),an atomic force microscope (AFM) and water contact angle apparatus,respectively.The XRD results show that all the thin films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.With the increase of Mg concentration,the RMS roughness increases from 2.14 to 9.56 nm and the contact angle of the un-irradiated thin films decreases from 89° to 82°.The wetting behavior of the resulting films can be reversibly switched from hydrophobic to hydrophilic,through alternation of UV illumination and dark storage.The light-induced efficiency of the thin films increases with the increase of Mg concentration.

  11. Co doping induced structural and optical properties of sol–gel prepared ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Ebru, E-mail: egungor@mehmetakif.edu.tr [Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur 15030 (Turkey); Gungor, Tayyar [Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur 15030 (Turkey); Caliskan, Deniz [Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ceylan, Abdullah [SNTG Laboratory, Physics Engineering Department, Hacettepe University, Ankara 06800 (Turkey); Ozbay, Ekmel [Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2014-11-01

    Highlights: • Transparent metal oxides are related to ZnO. • Optical transmission spectrum of Co doped ZnO thin films. • Determination of optical band gap using photoluminescence measurement. • Deposition thin film by using ultrasonic spray pyrolysis. - Abstract: The preparation conditions for Co doping process into the ZnO structure were studied by the ultrasonic spray pyrolysis technique. Structural and optical properties of the Co:ZnO thin films as a function of Co concentrations were examined. It was observed that hexagonal wurtzite structure of ZnO is dominant up to the critical value, and after the value, the cubic structural phase of the cobalt oxide appears in the X-ray diffraction patterns. Every band-edge of Co:ZnO films shifts to the lower energies and all are confirmed with the PL measurements. Co substitution in ZnO lattice has been proved by the optical transmittance measurement which is observed as the loss of transmission appearing in specific region due to Co{sup 2+} characteristic transitions.

  12. Structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis: Effect of precursor concentration

    Indian Academy of Sciences (India)

    F Zahedi; R S Dariani; S M Rozati

    2014-05-01

    ZnO thin films have been prepared using zinc acetate precursor by spray pyrolytic decomposition of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical properties has been investigated. ZnO films are polycrystalline with (002) plane as preferential orientation. The optical transmission spectrum shows that transmission increases with decrease in the concentration and the maximum transmission in visible region is about 95% for ZnO films prepared with 0.1 M. The direct band-gap value decreases from 3.37 to 3.19 eV, when the precursor concentration increases from 0.1 to 0.4 M. Photoluminescence spectra at room temperature show an ultraviolet (UV) emission at 3.26 eV and two visible emissions at 2.82 and 2.38 eV. Lowest resistivity is obtained at 2.09 cm for 0.3 M. The current–voltage characteristic of the ZnO thin films were measured in dark and under UV illumination. The values of photocurrent and photoresponsivity at 5 V are increased with increase in precursor concentration and reaches to maximum value of 1148 A and 0.287 A/W, respectively which is correlated to structural properties of ZnO thin films.

  13. The Annealing Effects of ZnO Thin Films on Characteristic Parameters of Au/ZnO Schottky Contacts on n-Si

    Directory of Open Access Journals (Sweden)

    A. Toprak

    2012-03-01

    Full Text Available 200 nm ZnO thin films have been grown on n type Silicon substrates by DC sputtering technique. One of the thin films has been annealed at 300 ºC for 45 minutes. The Au front contacts on ZnO thin films have been formed by evaporation of Au metal by means of shadow mask. It has been seen that the rectification ratio of Au/ZnO device obtained using annealed ZnO thin film is higher than the one obtained using unannealed ZnO thin film. The characteristic parameters of Au/ZnO junctions such as ideality factor, barrier height and series resistance obtained by current-voltage (I-V measurements of the structures at room temperature and in dark have been compared with each others. 200 nm ZnO thin films have been grown on n type Silicon substrates by DC sputtering technique. One of the thin films has been annealed at 300 ºC for 45 minutes. The Au front contacts on ZnO thin films have been formed by evaporation of Au metal by means of shadow mask. It has been seen that the rectification ratio of Au/ZnO device obtained using annealed ZnO thin film is higher than the one obtained using unannealed ZnO thin film. The characteristic parameters of Au/ZnO junctions such as ideality factor, barrier height and series resistance obtained by current-voltage (I-V measurements of the structures at room temperature and in dark have been compared with each others. 200 nm ZnO thin films have been grown on n type Silicon substrates by DC sputtering technique. One of the thin films has been annealed at 300 ºC for 45 minutes. The Au front contacts on ZnO thin films have been formed by evaporation of Au metal by means of shadow mask. It has been seen that the rectification ratio of Au/ZnO device obtained using annealed ZnO thin film is higher than the one obtained using unannealed ZnO thin film. The characteristic parameters of Au/ZnO junctions such as ideality factor, barrier height and series resistance obtained by current-voltage (I-V measurements of the structures at

  14. Exploration of Wettability and Optical Aspects of ZnO Nano Thin Films Synthesized by Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Kartik H. Patel

    2016-03-01

    Full Text Available This paper aims to explore structural, optical and wettabil‐ ity aspects of zinc oxide (ZnO nano thin films prepared by radio frequency (RF magnetron sputtering. The deposition time is varied from 10 to 50 minutes and sputtering pressure from 0.5 to 8.0 Pa. The increase of deposition time from 10 to 50 minutes leads to formation of a single (002 peak for ZnO films; (100, (101 and (110 peaks are not observed under these conditions. The intensity for (100, (002, (101 and (110 peaks decreases with a sputtering pressure value of 3.5 Pa and above. The optical transmis‐ sion and band gaps are measured by a UV-Vis-NIR spectrophotometer. The wettability and contact-angle hysteresis (CAH for deposited ZnO nano thin films are investigated for water, ethylene glycol, sunflower oil and formamide using a contact-angle goniometer.

  15. Quality improvement of ZnO thin layers overgrown on Si(100 substrates at room temperature by nitridation pretreatment

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2012-06-01

    Full Text Available To improve the quality of ZnO thin film overgrown on Si(100 substrate at RT (room temperature, the Si(100 surface was pretreated with different methods. The influence of interface on the overgrown ZnO layers was investigated by atomic force microscopy, photoluminescence and X-ray diffraction. We found that the nitridation pretreatment could significantly improve the quality of RT ZnO thin film through two-fold effects: one was to buffer the big lattice mismatch and ease the stress resulted from heterojunction growth; the other was to balance the interface charge, block the symmetric inheritance from the cubic Si (100 substrate and thus restrain the formation of zincblende phase.

  16. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    Directory of Open Access Journals (Sweden)

    U.S. Mbamara

    2016-06-01

    Full Text Available Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS and X-ray Diffraction (XRD. The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-face surfaces were examined to assess the wear dimension and failure mechanism. Both friction behavior and wear (in the ball counter-face were observed to be dependent on the crystallinity and thickness of the thin film coatings.

  17. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianlin [Univ. of California, Riverside, CA (United States)

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  18. Structural, electrical and optical studies on spray-deposited aluminium-doped ZnO thin film

    Indian Academy of Sciences (India)

    S Tewari; A Bhattacharjee

    2011-01-01

    Thin films of zinc oxide (ZnO) were deposited on cleaned glass substrates by chemical spray pyrolysis technique using Zn(CH3COO)2 as precursor solution. Also, aluminium-doped thin films of ZnO were prepared by using AlCl3 as doping solution for aluminium. The dopant concentration [Al/Zn atomic percentage (at%)] was varied from 0 to 1.5 at% in thin films of ZnO prepared in different depositions. Structural characterization of the deposited films was performed with X-ray diffraction (XRD) studies. It confirmed that all the films were of zinc oxide having polycrystalline nature and possessing typical hexagonal wurtzite structure with crystallite size varying between 100.7 and 268.6 nm. The films exhibited changes in relative intensities and crystallite size with changes in the doping concentration of Al. The electrical studies established that 1 at% of Aldoping was the optimum for enhancing electrical conduction in ZnO thin films and beyond that the distortion caused in the lattice lowered the conductivity. The films also exhibited distinct changes in their optical properties at different doping concentrations, including a blue shift and slight widening of bandgap with increasing Al dopant concentration.

  19. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO. Follow......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...... temperatures. Clear correlations between the initial crystallographic phase of the dopants and the thermoelectric properties of the resulting Al-doped ZnO were observed. For Al, Ga-dually doped ZnO, the spark plasma sintering conditions together with the microstructural evolution and thermoelectric properties...

  20. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, O. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Azimirad, R., E-mail: azimirad@yahoo.com [Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Safa, S. [Department of Nanotechnology, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Unfunctionalized and functionalized MWCNT/ZnO thin films were synthesized by sol-gel method. {yields} Zn-O-C carbonaceous bonds formed in the functionalized MWCNT/ZnO thin films. {yields} The functionalized MWCNT/ZnO had stronger photoinactivation of the bacteria than the unfunctionalize type. {yields} 10 wt% functionalized MWCNT content had the optimum antibacterial property. - Abstract: Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the unfunctionalized ones, for all of the various MWCNT contents (from 2 to 30 wt%). While the functionalized MWCNT-ZnO nanocomposites with the optimum MWCNT content of 10 wt% inactivated whole of the bacteria after 10 min UV-visible light irradiation, the unfunctionalized ones could inactivate only 63% of the bacteria under the same conditions. The significant enhancement of the photoinactivation of the bacteria onto the surface of the functionalized MWCNT-ZnO nanocomposites was assigned to charge transfer through Zn-O-C bands formed between the Zn atoms of the ZnO film and oxygen atoms of the carboxylic functional groups of the functionalized MWCNTs.

  1. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhanyun; Chen Min; Chen Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); Pan Shirong, E-mail: stscdh@mail.sysu.edu.c [Artificial Heart Lab, the 1st Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080 (China)

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  2. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers.

    Science.gov (United States)

    Huang, Zhan-Yun; Chen, Min; Pan, Shi-Rong; Chen, Di-Hu

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  3. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    Energy Technology Data Exchange (ETDEWEB)

    Norek, Małgorzata, E-mail: mnorek@wat.edu.pl [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Łuka, Grzegorz [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Włodarski, Maksymilian [Institute of Optoelectronics, Military University of Technology, Str. Kaliskiego 2, 00-908 Warszawa (Poland)

    2016-10-30

    Highlights: • Al nano-concave arrays with different interpore distance (D{sub c}) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al{sub 2}O{sub 3} spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D{sub c} and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D{sub c} ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D{sub c}) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al{sub 2}O{sub 3} spacer was placed between the textured Al and the ZnO films (the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D{sub c} = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ{sub (0,1)} SPP resonance mode. In the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ{sub (0,1)} plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ{sub (0,1)} SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al{sub 2}O{sub 3}-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further

  4. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    Science.gov (United States)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  5. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-09-08

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  6. Synthesis and characterization of nanostructured undoped and Sn-doped ZnO thin films via sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, H., E-mail: cihataydin_26@hotmail.com [Department of Metallurgical and Materials Engineering, Engineering Faculty, Tunceli University, Tunceli 62000 (Turkey); El-Nasser, H.M. [Department of Physics, Al al-Bayt University, Mafraq (Jordan); Aydin, C. [Department of Metallurgy and Materials Engineering, Faculty of Technology, Firat University, Elazig 23119 (Turkey); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig 23119 (Turkey); Nanoscience and Nanotechnology Laboratory, Firat University, Elazig 23119 (Turkey)

    2015-09-30

    Graphical abstract: - Highlights: • Sn-doped ZnO films were prepared via facile sol–gel spin coating method. • The grain size of the films changes from 39.23 to 71.84 nm with Sn doping. • The refractive index dispersion of the films obeys the single oscillator model. - Abstract: Thin films of Sn-doped ZnO were prepared via facile sol–gel spin coating method. The structural and optical properties of the films were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-VIS-NIR spectrophotometer. The X-ray results confirmed that all the ZnO thin films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation of (002) plane. The crystallite size and lattice parameter values of the films were obtained. Atomic force microscopy results indicate that the Sn-doped ZnO films have the nanostructure. The grain size values of the films were found to vary from 39.23 to 71.84 nm with Sn doping. The nanostructure of the Sn-doped ZnO films was also confirmed by scanning electron microcopy. The optical bandgaps of the films were calculated for the various Sn contents. The refractive index dispersion curves obey the single oscillator model. The optical constants and dispersion parameters of the ZnO films were changed with Sn doping. The obtained results suggest that the structural and optical properties of ZnO films can be controlled by Sn doping.

  7. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  8. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    Science.gov (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  9. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    Science.gov (United States)

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film.

  10. Growth process optimization of ZnO thin film using atomic layer deposition

    Science.gov (United States)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  11. Oxidation of ZnO thin films during pulsed laser deposition process

    Indian Academy of Sciences (India)

    E De Posada; L Moreira; J Pérez De La Cruz; M Arronte; L V Ponce; T Flores; J G Lunney

    2013-06-01

    Pulsed laser deposition of ZnO thin films, using KrF laser, is analysed. The films were deposited on (001) sapphire substrates at 400 °C, at two different oxygen pressures (0.3 and 0.4 mbar) and two different target–substrate distances (30 and 40 mm). It is observed that in order to obtain good quality in the photoluminescence of the films, associated with oxygen stoichiometry, it is needed to maximize the time during which the plasma remains in contact with the growing film (plasma residence time), which is achieved by selecting suitable combinations of oxygen pressures and target to substrate distances. It is also discussed that for the growth parameters used, the higher probability for ZnO films growth results from the oxidation of Zn deposited on the substrate and such process takes place during the time that the plasma is in contact with the substrate. Moreover, it is observed that maximizing the plasma residence time over the growing film reduces the rate of material deposition, favouring the surface diffusion of adatoms, which favours both Zn–O reaction and grain growth.

  12. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    Science.gov (United States)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  13. Heavy lithium-doped ZnO thin films prepared by spray pyrolysis method

    Indian Academy of Sciences (India)

    M Ardyanian; N Sedigh

    2014-10-01

    Lithium-doped ZnO thin films (ZnO : Li) were prepared by spray pyrolysis method on the glass substrates for ( = [Li]/[Zn]) value varied between 5 and 70%. Structural, electrical and optical properties of the samples were studied by X-ray diffraction (XRD), UV–Vis–NIR spectroscopy, scanning electron microscopy (SEM), Hall effect and sheet resistance measurements. XRD results show that for ≤ 50%, the structure of the films tends to be polycrystals of wurtzite structure with preferred direction along (0 0 2). The best crystalline order is found at = 20% and the crystal structure is stable until = 60%. The Hall effect results describe that Li doping leads to change in the conduction type from - to -type, again it changes to -type at = 70% and is attributed to self-compensation effect. Moreover, the carrier density was calculated in the order of 1013 cm-3. The resistivity of Li-doped films decreases until 22 cm at = 50%. Optical bandgap was reduced slightly, from 3.27 to 3.24 eV as a function of the grain size. Optical transmittance in the visible range reaches = 97%, by increasing of Li content until = 20%. Electrical and optical properties are coherent with structural results.

  14. Engineering of electronic and optical properties of ZnO thin films via Cu doping

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-Heng; Deng Xiao-Yan; Xue Hua; Xiang Gang

    2013-01-01

    ZnO thin films doped with different Cu concentrations are fabricated by reactive magnetron sputtering technique.XRD analysis indicates that the crystal quality of the ZnO:Cu film can be enhanced by a moderate level of Cu-doping in the sputtering process.The results of XPS spectra of zinc,oxygen,and copper elements show that Cu-doping has an evident and complicated effect on the chemical state of oxygen,but little effect on those of zinc and copper.Interestingly,further investigation of the optical properties of ZnO:Cu samples shows that the transmittance spectra exhibit both red shift and blue shift with the increase of Cu doping,in contrast to the simple monotonic behavior of the Burstein-Moss effect.Analysis reveals that this is due to the competition between oxygen vacancies and intrinsic and surface states of oxygen in the sample.Our result may suggest an effective way of tuning the bandgap of ZnO samples.

  15. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    Science.gov (United States)

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  16. Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Mi-jin Jin

    2013-10-01

    Full Text Available We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD. The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300 °C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002 direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ∼ 700 nm in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.

  17. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi [NTT Device Innovation Center, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2015-05-15

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  18. Optoelectronic Properties and the Electrical Stability of Ga-Doped ZnO Thin Films Prepared via Radio Frequency Sputtering

    OpenAIRE

    Shien-Uang Jen; Hui Sun; Hai-Pang Chiang; Sheng-Chi Chen; Jian-Yu Chen; Xin Wang

    2016-01-01

    In this work, Ga-doped ZnO (GZO) thin films were deposited via radio frequency sputtering at room temperature. The influence of the Ga content on the film’s optoelectronic properties as well as the film’s electrical stability were investigated. The results showed that the film’s crystallinity degraded with increasing Ga content. The film’s conductivity was first enhanced due to the replacement of Zn2+ by Ga3+ before decreasing due to the separation of neutralized gallium atoms from the ZnO la...

  19. Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position

    Institute of Scientific and Technical Information of China (English)

    Zhang An; Zhao xiao-Ru; Duan Li-Bing; Liu Jin-Ming; Zhao Jian-Lin

    2011-01-01

    The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately,both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si)TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with GB position.

  20. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Science.gov (United States)

    Ceylan, Abdullah; Ozcan, Yusuf; Orujalipoor, Ilghar; Huang, Yen-Chih; Jeng, U.-Ser; Ide, Semra

    2016-06-01

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  1. Hydrogen influence on the electrical and optical properties of ZnO thin films grown under different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I., E-mail: lorite@physik.uni-leipzig; Wasik, J.; Michalsky, T.; Schmidt-Grund, R.; Esquinazi, P.

    2014-04-01

    In this work we studied the changes of the electrical and optical properties after hydrogen plasma treatment of polycrystalline ZnO thin films grown under different atmosphere conditions. The obtained results show that the gas used during the growth process plays an important role in the way hydrogen is incorporated in the films. The hydrogen doping can produce radiative and non-radiative defects that reduce the UV emission in ZnO films grown in oxygen atmosphere but it passivates defects created when the films are grown in nitrogen atmosphere. Impedance spectroscopy measurements show that these effects are related to regions where hydrogen is mostly located, either at the grain cores or boundaries. We discuss how hydrogen strongly influences the initial semiconducting behavior of the ZnO thin films. - Highlights: • Effectiveness of hydrogen treatment depends on the thin film growth conditions. • There is no detection of secondary phases after treatment by IS. • Hydrogen incorporation changes optical and electrical ZnO properties.

  2. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Said Benramache; Foued Chabane; Boubaker Benhaoua; Fatima Z.Lemmadi

    2013-01-01

    This paper examines the growth of ZnO thin films on glass substrate at 350 ℃ using an ultrasonic spray technique.We have investigated the influence of growth time ranging from 1 to 4 min on structural,optical and electrical properties of ZnO thin films.The as-grown films exhibit a hexagonal structure wurtzite and are (002) oriented.The maximum value of grain size G =63.99 nm is attained for ZnO films grown at 2 min.The average transmittance is about 80%,thus the films are transparent in the visible region.The optical gap energy is found to increase from 3.26 to 3.37 eV with growth time increased from 1 to 2 min.The minimum value of electrical resistivity of the films is 0.13 Ω·cm obtained at 2 min.A systematic study on the influence of growth time on the properties of ZnO thin films deposited by ultrasonic spray at 350 ℃ has been reported.

  3. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    R.T.Sapkal; S.S.Shinde; K.Y.Rajpure; C.H.Bhosale

    2013-01-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 ℃ by using a chemical spray pyrolysis technique.Deposited films are characterized for their structural,morphological optical and photocatalytic activity by using XRD,an SEM,a UV-vis spectrophotometer,and a PEC single-cell reactor.Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface.The observed direct band gap is about 3.22 eV for typical films prepared at 400 ℃.The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  4. Difference in magnetic properties between Co-doped ZnO powder and thin film

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Shi Er-Wei; Chen Zhi-Zhan; Zhang Hua-Wei; Zhang Tao; Song Li-Xin

    2007-01-01

    This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, while the latter exhibits obvious ferromagnetic properties at 5 K and room temperature. The UV-vis spectra and x-ray absorption spectra show that Co2+ ions are homogeneously incorporated into ZnO lattice without forming secondary phases. The distinct difference between film and powder sample is the c-axis (002) preferential orientation indicated by the x-ray diffraction pattern and field emission scanning electron microscopy measurement, which may be the reason why Zn0.95Co0.05O film shows ferromagnetic behaviour.

  5. The electrical stability of In-doped ZnO thin films deposited by RF sputtering

    Science.gov (United States)

    Sun, Hui; Jen, Shien-Uang; Chen, Sheng-Chi; Ye, Shiau-Shiang; Wang, Xin

    2017-02-01

    The electrical stability of transparent conductive oxides is an important criterion for evaluating their performance, especially when they are employed at elevated temperatures or in long-term operation. In this work, indium-doped ZnO thin films with various doping concentrations were prepared by RF sputtering. The electrical properties, electrical thermal stability, and time stability of films with differing indium contents were investigated. The results showed that the degradation of the films’ conductivity is primarily attributable to the reduction in oxygen vacancies at high temperatures under oxygenated conditions. The aggregation of indium atoms, which cannot replace Zn3+ cations at temperatures above 200 °C, can improve the carrier concentration. Further reaction with oxygen degraded the performance of the films due to the formation of insulating oxides. Long-term analysis showed the IZO films to have quite stable electrical properties. Their conductivity remained almost unchanged after two months at room temperature under normal atmospheric conditions.

  6. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prestgard, M. C.; Siegel, G.; Tiwari, A., E-mail: tiwari@eng.utah.edu [Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Research Science and Engineering Center, University of Utah, Salt Lake City, Utah 84112 (United States); Roundy, R.; Raikh, M. [Materials Research Science and Engineering Center, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  7. Physical properties of Ga-doped ZnO thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Prasada Rao, T., E-mail: prasadview@gmail.co [Advanced Materials laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.ed [Advanced Materials laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2010-09-17

    Research highlights: In this work, we report the structural, optical and electrical properties of the transparent conducting GZO thin films prepared by spray pyrolysis method. We sought optimum deposition conditions yielding GZO films with desired physical properties, specifically good crystalline quality microstructure, low resistivity and high transparency. The electrical conductivity and mobilities of GZO thin films are very good as compared with previous reported spray pyrolysed films. - Abstract: Gallium doped zinc oxide (GZO) thin films were prepared using the simple, flexible and cost-effective spray pyrolysis technique. The physical properties of the films were studied as a function of increasing gallium dopant concentration from 1 to 9 at.%. The films were characterized by various methods to understand their structural, morphological, optical and electrical properties. The X-ray diffraction analysis revealed that the films were polycrystalline in nature having a hexagonal wurtzite type crystal structure with a preferred grain orientation in the (0 0 2) direction. Scanning electron microscopy (SEM) measurements reveal that the surface morphology of the films changes continuously with a decrease in the grain size due to Ga doping. All the films showed nearly 90% of transparency in the entire visible region. A blue shift of the optical band gap was observed with an increase in Ga doping. Room temperature photoluminescence (PL) measurement of the deposited films indicates incorporation of Ga in ZnO lattice. At 3 at.% Ga doping, the film has lowest resistivity of 6.8 x 10{sup -3} cm while the carrier concentration is highest.

  8. Modeling of Thin Film Solar Photovoltaic Based on Zno/Sns Oxide-Absorber Substrate Configuration

    Directory of Open Access Journals (Sweden)

    Anupam Verma

    2014-06-01

    Full Text Available Due to increasing awareness for using clean energy and therefore greater demand for relying more on the renewable sources which solar photovoltaic are part of because they pose very little or no threat to the environment comparatively, there is growing pressure for reducing electricity generation costs from solar photovoltaic (PV modules. Hence there is need for alternative new light absorbing materials that can provide conversion efficiencies which would be comparable to the current technologies based on crystalline silicon and CdTe or CIGS thin films at lower manufacturing costs and therefore providing cost effective solutions. In this paper we have evaluated the tin based absorber material (based on tin monosulfide; SnS as the next generation of Photovoltaic cells that can provide the desired performance in the long term. Therefore it explores the potential use of tin mono-sulfide as photovoltaic material for conversion of light into electricity. Zinc Oxide (ZnO thin films have been recognized as good candidates in photovoltaic devices acting as wide-band gap window layer. The results are presented through the numerical analysis done by AMPD-1D simulator tool to explore the possibility of using thin film and stable ZnO/SnS solar photovoltaic device with aim to achieve comparable conversion efficiencies.

  9. Synthesis, microstructural characterization and optical properties of undoped, V and Sc doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amezaga-Madrid, P.; Antunez-Flores, W.; Ledezma-Sillas, J.E.; Murillo-Ramirez, J.G.; Solis-Canto, O.; Vega-Becerra, O.E.; Martinez-Sanchez, R. [Centro de Investigacion en Materiales Avanzados S.C. and Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Chihuahua, Chih., C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados S.C. and Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Chihuahua, Chih., C.P. 31109 (Mexico)

    2011-06-15

    Research highlights: > Undoped, V and Sc doped ZnO thin films by Aerosol Assisted Chemical Vapour Deposition. > Optimum substrate temperatures of 673 K and 623 K for Sc and V doped films. > Around one third of the dopants in solution were deposited into the films. > Crystallite and grain size decreased with the increase of dopant concentration. > Optical band gap increased from 3.29 to 3.32 eV for undoped to 7 Sc/Zn at. %. - Abstract: Many semiconductor oxides (ZnO, TiO{sub 2}, SnO{sub 2}) when doped with a low percentage of non-magnetic (V, Sc) or magnetic 3d (Co, Mn, Ni, Fe) cation behave ferromagnetically. They have attracted a great deal of interest due to the integration of semiconducting and magnetic properties in a material. ZnO is one of the most promising materials to carry out these tasks in view of the fact that it is optically transparent and has n or p type conductivity. Here, we report the synthesis, microstructural characterization and optical properties of undoped, V and Sc doped zinc oxide thin films. ZnO based thin films with additions of V and Sc were deposited by the Aerosol Assisted Chemical Vapour Deposition method. V and Sc were incorporated separately in the precursor solution. The films were uniform, transparent and non-light scattering. The microstructure of the films was characterized by Grazing Incidence X-ray Diffraction, Scanning Electron Microscopy, and Scanning Probe Microscopy. Average grain size and surface rms roughness were estimated by the measurement of Atomic Force Microscopy. The microstructure of doped ZnO thin films depended on the type and amount of dopant material incorporated. The optical properties were determined from specular reflectance and transmittance spectra. Results were analyzed to determine the optical constant and band gap of the films. An increase in the optical band gap with the content of Sc dopant was obtained.

  10. Fabrication of Mg-doped ZnO thin films by laser ablation of Zn:Mg target

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Park, Jin Jae; Nam, Sang Hwan; Park, Hye Sun; Cheong, Nu Ri [Department of Chemistry, Kyunghee University, Seoul 130-701 (Korea, Republic of); Song, Jae Kyu [Department of Chemistry, Kyunghee University, Seoul 130-701 (Korea, Republic of)], E-mail: jaeksong@khu.ac.kr; Park, Seung Min [Department of Chemistry, Kyunghee University, Seoul 130-701 (Korea, Republic of)], E-mail: smpark@khu.ac.kr

    2009-03-01

    Mg-doped ZnO thin films were fabricated by laser ablation of Zn:Mg targets consisting of Mg metallic strips and Zn disk in oxygen atmosphere with a goal to facilitate convenient control of Mg contents in the films. The characteristics of the deposited films were examined by analyzing their photoluminescence (PL), X-ray diffraction and X-ray photoelectron spectroscopy (XPS) spectra. Mg contents as analyzed by XPS indicate that the target composition is fairly transferred to the deposited films. The wurtzite structure of ZnO was conserved even for the highly doped ZnO films and there was no Mg- or MgO-related XRD peaks. With increase in the Mg content, the bandgap and PL peak energy shifted to blue and the Stokes shift became larger.

  11. Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties.

    Science.gov (United States)

    Nagaya, Satoshi; Nishikiori, Hiromasa

    2013-09-25

    Dye-adsorbing ZnO thin films were prepared on ITO films by electroless deposition. The films were formed in an aqueous solution containing zinc nitrate, dimethylamine-borane, and eosin Y at 328 K. The film thickness was 1.2-2.0 μm. Thinner and larger-plane hexagonal columns were produced from the solution containing a higher concentration of eosin Y. A photocurrent was observed in the electrodes containing such ZnO films during light irradiation. The photoelectrochemical performance of the film was improved by increasing the concentration of eosin Y because of increases in the amount of absorbed photons and the electronic conductivity of ZnO.

  12. Growth of nitrogen-doped p-type ZnO thin films prepared by atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    LEE Chongmu; LIM Jongmin; PARK Suyoung; KIM Hyounwoo

    2006-01-01

    Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2[Diethylzinc,DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·m with a hole concentration of 3.71×1017cm-3 . Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is ap-type semiconductor.

  13. Influence of Doping and Annealing on Structural, Optical and Electrical properties Amorphous ZnO Thin Films Prepared by PLD

    Directory of Open Access Journals (Sweden)

    Azhar AbduAlwahab Ali

    2015-03-01

    Full Text Available The optical gap of the films was calculated from the curve of absorption coefficient (αhע2 vs. hע and was found to be 3.8 eV at room temperature, and this value decreases from 3.8 to 3.58 eV with increasing of annealing temperature up to 473-673 K, and increases with the Ga doping. λ cutoff was calculated for ZnO and showed an increase with increasing annealing temperature and shifting to longer wavelength, while with doping the λcutoff shifted to shorter wavelength. The photoluminescence (PL results indicate that the pure ZnO thin films grown at room temperature show strong peaks at 640 nm , but  GaO doped ZnO films showed a band emission in the yellow-green spectral region (380 to 450nm.

  14. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    Science.gov (United States)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  15. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  16. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    Science.gov (United States)

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  17. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Nadia, E-mail: nadia.garino@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Gerbaldi, Claudio, E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); GAME Lab, Department of Applied Science and Technology – DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-12-05

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g{sup −1}) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm{sup −2} after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency.

  18. Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating.

    Science.gov (United States)

    Kumar, Vinod; Kumar, Vijay; Som, S; Yousif, A; Singh, Neetu; Ntwaeaborwa, O M; Kapoor, Avinashi; Swart, H C

    2014-08-15

    Zinc oxide (ZnO) thin films were deposited on silicon substrates by a sol-gel method using the spin coating technique. The ZnO films were annealed at 700°C in an oxygen environment using different annealing times ranging from 1 to 4 h. It was observed that all the annealed films exhibited a hexagonal wurtzite structure. The particle size increased from 65 to 160 nm with the increase in annealing time, while the roughness of the films increased from 2.3 to 10.6 nm with the increase in the annealing time. Si diffusion from the substrate into the ZnO layer occurred during the annealing process. It is likely that the Si and O2 influenced the emission of the ZnO by reducing the amount of Zn defects and the creation of new oxygen related defects during annealing in the O2 atmosphere. The emission intensity was found to be dependent on the reflectance of the thin films.

  19. Insight of dipole surface plasmon mediated optoelectronic property tuning of ZnO thin films using Au

    Science.gov (United States)

    Dixit, Tejendra; Shukla, Mayoorika; Palani, I. A.; Singh, Vipul

    2016-12-01

    Surface plasmon mediated photoluminescence (PL) studies of ZnO, ZnO/Au, ZnO/Au/ZnO and Au/ZnO films have been investigated. An enhancement of UV and visible light emission has been observed in ZnO/Au and ZnO/Au/ZnO films, compared to that of ZnO thin films, while for Au/ZnO films quenching of PL intensity was observed. Excitation intensity (EI) dependent PL spectra have shown dominance of horizontal dipole surface plasmon mode for ZnO/Au/ZnO, ZnO/Au samples, which led enhanced greenish-yellow and orange emissions respectively. Moreover, confocal laser scanning microscope measurements and diffuse reflectance spectroscopy were conducted to investigate the mechanism behind the variations and involvement of Urbach tail. UV and visible region absorption were selectively enhanced by varying the Au and ZnO configuration and can be assigned to the interaction of the dipole surface plasmon resonance with localized trapping levels and phonon subsystem. The excellent photoluminescence performance has immense potential for ZnO thin film based optoelectronic devices.

  20. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.

    Science.gov (United States)

    Majchrowicz, Daria; Hirsch, Marzena; Wierzba, Paweł; Bechelany, Michael; Viter, Roman; Jędrzejewska-Szczerska, Małgorzata

    2016-03-22

    In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  1. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lare, Y. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Godoy, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, IMN, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Jondo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Abachi, T. [Ecole Normale Superieure, Kouba, Alger (Algeria); Diaz, F.R. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Napo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France)

    2009-04-15

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  2. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  3. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    Directory of Open Access Journals (Sweden)

    Zafer Ziya Ozturk

    2012-08-01

    Full Text Available In this study, zinc oxide (ZnO was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  4. Improved electrical, optical, and structural properties of undoped ZnO thin films grown by water-mist-assisted spray pyrolysis

    Science.gov (United States)

    Martínez Pérez, L.; Aguilar-Frutis, M.; Zelaya-Angel, O.; Muñoz Aguirre, N.

    2006-08-01

    Undoped ZnO thin films were prepared using the ultrasonic spray pyrolysis deposition technique with zinc acetylacetonate dissolved in N,N-dimethylformamide as the source materials solution. The addition of water mist in a parallel flux to the spray solution stream was also used during deposition of the films. The addition of water mist improved the electrical characteristics of the ZnO films. Fresh ZnO samples were then thermally annealed in a H2 reducing atmosphere. X-ray diffraction patterns show mainly the wurzite crystalline ZnO phase in the films. An electrical resistivity ( ) of around 2.7 × 10-2 cm was measured at room temperature for the best undoped ZnO film. is approximately one order of magnitude lower than the resistivities found in undoped ZnO films obtained by means of similar non-vacuum deposition techniques.

  5. Influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L H; Chen, Y L; Xu, F [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, 210044 (China); Li, X Y [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Hua, S, E-mail: congyu3256@sina.com [Institute of Electronic Engineering and Photoelectric Technology, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2011-02-01

    In this work, a SiO{sub 2} buffer layer was first grown on Si substrate by thermal oxidation, and then ZnO thin films were deposited on SiO{sub 2} buffer layer and Si substrate by electron beam evaporation and sol-gel method. The influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of the films was investigated. The analyses of X-ray diffraction (XRD) showed that all the ZnO thin films had a hexagonal wurtzite structure and were preferentially oriented along the c-axis perpendicular to the substrate surface. The SiO{sub 2} buffer layer improved the crystalline quality and decreased the stress in ZnO thin films. The surface morphology analyses of the samples indicated that ZnO thin films deposited on SiO{sub 2} buffer layers had densely packed grains which obviously increased compared with those grown on bare Si substrate. The photoluminescence spectra of the samples showed that the ZnO thin films deposited on SiO{sub 2} buffer layers had stronger ultraviolet emission performance. The results suggest that SiO{sub 2} buffer layer can improve the crystalline quality and ultraviolet emission of ZnO thin films.

  6. Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles

    Indian Academy of Sciences (India)

    MAGDALENA BARWIOLEK; ROBERT SZCZĘSNY; EDWARD SZŁYK

    2016-07-01

    Cu(II) complexes with Schiff bases derived from ethylenediamine (en) and 2-pyridinecarboxaldehyde (pyca), 2,5-dimethoxybenzaldehyde (dmbaH) or 4-imidazolecarboxaldehyde (4Him) were obtained and studied by elemental analysis, UV-VIS and IR spectra. Zinc oxide was synthesized using a simple homogeneous precipitation method with zinc acetate as a starting material. Thin layers of the studied Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) substrates by a spin coating method and characterized with a scanningelectron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of the [Cu(II)(en(4Him)₂)Cl₂](2a)/ZnO/Si and [Cu(en(dmbaH)₂)Cl₂](3a)/ZnO/Si layers the quenching of the emission band from ZnO at 440 nm (λex = 330 nm) associated with various intrinsic or extrinsic lattice defects was noted.

  7. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires.

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Azaceta, Eneko; Tena-Zaera, Ramón; Bisquert, Juan

    2011-04-21

    Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

  8. An economic approach to fabricate photo sensor based on nanostructured ZnO thin films

    Science.gov (United States)

    Huse, Nanasaheb; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    Nanostructural ZnO Thin Films have been synthesized by simple and economic Chemical Bath Deposition technique onto glass substrate with bath temperature at 60°C for 1 hour. Structural, Optical, Electrical and topographical properties of the prepared Thin Films were investigated by GIXRD, I-V Measurement System, UV-Visible Spectrophotometer and AFM respectively. Calculated lattice parameters are in good agreement with the standard JCPDS card (36-1451) values, exhibits Hexagonal Wurtzite crystal structure. I-V Measurement curve has shown ohmic nature in dark condition and responds to light illumination which reveals Photo sensor properties. After illumination of 60W light, decrease in resistance was observed from 110.9 KΩ to 104.4 KΩ. The change in current and calculated Photo sensitivity was found to be 3.51 µA and 6.3% respectively. Optical band gap was found to be 3.24 eV. AFM images revealed uniform deposition over entire glass substrate with 32.27 nm average roughness of the film.

  9. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin-Film Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The stability of intrinsic and Al-doped single- and bi-layer ZnO for thin-film CuInGaSe2 solar cells, along with Al-doped Zn1-xMgxO alloy and Sn-doped In2O3 (ITO) and F-doped SnO2, was evaluated by direct exposure to damp heat (DH) at 85oC and 85% relative humidity. The results show that the DH-induced degradation rates followed the order of Al-doped ZnO and Zn1-xMgxO >> ITO > F:SnO2. The degradation rates of Al:ZnO were slower for films of higher thickness, higher substrate temperature in sputter-deposition, and with dry-out intervals. As inferred from the optical micro-imaging showing the initiation and propagation of degrading patterns and regions, the degradation behavior appears similar for all TCOs, despite the obvious difference in the degradation rate. A degradation mechanism is proposed to explain the temporal process involving thermal hydrolysis.

  10. Studies on effect of oxygen flow rate in textured grain growth of ZnO thin films

    Science.gov (United States)

    Thomas, Deepu; Vattappalam, Sunil C.; Mathew, Sunny; Augustine, Simon

    2015-02-01

    ZnO thin films were deposited on glass substrate by Successive Ionic Layer Adsorption Reaction (SILAR) method. Effect of oxygen flow rate in textured grain growth, resistance and band gap of the thin films have been done. Textured grain growth of the samples were measured by comparing the peak intensities from XRD. Textured grain growth was found to be maximum when the oxygen flow rate is 2.5 litre/minute. It is found that as the oxygen flow rate increases above this limit, textured grain growth decreases and resistance the samples increases. The optical band gap of ZnO film was found to be increased with the increase of oxygen flow rate.

  11. Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Mansoor Anbia; Seyyed Ebrahim Moosavi Fard

    2012-01-01

    The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temperatures.The nanoporous thin films were prepared by sol-gel technique.It was found that the impedance of the sensor sintered at 600 ℃ changed more than four order of magnitude in the relative humidity (RH) range of 11%-95% at 25 ℃.The response and recovery time of the sensor were about 13 and 17 s,respectively.The sensor showed high humidity sensitivity,rapid response and recovery,prominent stability,good repeatability and narrow hysteresis loop.These results indicated that Ce-doped nanoporous ZnO thin films can be used in fabricating high-performance humidity sensors.

  12. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pathirane, M., E-mail: minoli.pathirane@uwaterloo.ca; Iheanacho, B.; Lee, C.-H.; Wong, W. S. [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Tamang, A.; Knipp, D. [Research Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Bremen 28759 (Germany); Lujan, R. [Electronic Materials and Devices Laboratory, Palo Alto Research Center, Palo Alto, California 93003 (United States)

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  13. Room temperature radio-frequency plasma-enhanced pulsed laser deposition of ZnO thin films

    Science.gov (United States)

    Huang, S.-H.; Chou, Y.-C.; Chou, C.-M.; Hsiao, V. K. S.

    2013-02-01

    In this study, we compared the crystalline structures, optical properties, and surface morphologies of ZnO thin films deposited on silicon and glass substrates by conventional pulsed laser deposition (PLD) and radio-frequency (RF) plasma-enhanced PLD (RF-PEPLD). The depositions were performed at room temperature under 30-100 mTorr pressure conditions. The RF-PEPLD process was found to have deposited a ZnO structure with preferred (0 0 2) c-axis orientation at a higher deposition rate; however, the RF-PEPLD process generated more defects in the thin films. The application of oxygen pressure to the RF-PEPLD process reduced defects effectively and also increased the deposition rate.

  14. Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T. Prasada, E-mail: prasadview@gmail.co [Department of physics, National Institute of Technology, Tiruchirappalli 620015 (India); Kumar, M.C. Santhosh, E-mail: santhoshmc@yahoo.co [Department of physics, National Institute of Technology, Tiruchirappalli 620015 (India); Angayarkanni, S. Anbumozhi; Ashok, M. [Department of physics, National Institute of Technology, Tiruchirappalli 620015 (India)

    2009-10-19

    Zinc oxide (ZnO) thin films have been deposited with various substrate temperatures by spray pyrolysis method onto glass substrates. The effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. The evolution of strain and stress effects in ZnO thin films on glass substrate has been studied using X-ray diffraction. The films deposited at low substrate temperature have large compressive stress of 1.77 GPa, which relaxed to 1.47 GPa as the substrate temperature increased to 450 deg. C. Optical parameters such as optical transmittance, reflectance, dielectric constant, refractive index and energy band gap have been studied and discussed with respect to substrate temperature. All films exhibit a transmittance of about 85% in the visible region. It was found that the compressive stress in the films causes a decrease in the optical band gap.

  15. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Xing, G. Z., E-mail: guozhong.xing@unsw.edu.au; Yi, J. B.; Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Chen, T. [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong); Ionescu, M. [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  16. Properties and Structure of Al-doped Conductive Zinc Oxide Powder%Al掺杂纳米氧化锌导电粉的性能与结构

    Institute of Scientific and Technical Information of China (English)

    熊瑜; 郑冀; 李燕; 刘雪佳; 梁璐

    2012-01-01

    Using zinc nitrate, aluminium nitrate and urea as raw materials, basic zinc carbonate powder was prepared by homogeneous precipitation, Al-doped ZnO powders were prepared by calcining the precursor. The property was characterized by SEM, TGA, XPS and XRD. The results show that the volume resistivity of the zinc oxide decreases to 1. 05 × 10s Ω · cm when the Al3+ doping content is 1. 5% (mole fraction) , much lower than that of the conventional zinc oxide powders. Al-doped ZnO nanoparticles are wurtzite structure,and similar to ellipsoidal. The grain size distribution of doped ZnO nanopowders is narrow. Meanwhile,the conductivity of Al-doped ZnO powders was improved greatly.%以Zn( NO3)2·6H2O,Al(NO3)3·9H2O,尿素为原料,采用均相沉淀法,制备出碱式碳酸锌粉末,之后将前驱体在氢气气氛下煅烧,制得Al掺杂氧化锌导电粉.利用SEM,TGA,XPS和XRD等分析手段对材料性能进行表征,研究了Al掺杂氧化锌导电性能的影响.结果表明:随着Al3+掺杂量的增大,粉体体积电阻率先降低后升高,Al3+掺杂含量在1.5%(摩尔分数)时电阻率最低,为1.05×105Ω·cm.掺杂后的ZnO为六方纤锌矿结构,颗粒呈类椭球形,粒度分布窄,导电性能明显提高.

  17. Swift heavy ion induced optical and structural modifications in RF sputtered nanocrystalline ZnO thin film

    Science.gov (United States)

    Singh, S. K.; Singhal, R.; Vishnoi, R.; Kumar, V. V. S.; Kulariya, P. K.

    2017-01-01

    In the present study, 100 MeV Ag7+ ion beam-induced structural and optical modifications of nanocrystalline ZnO thin films are investigated. The nanocrystalline ZnO thin films are grown using radio frequency magnetron sputtering and irradiated at fluences of 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. The incident swift heavy ions induced change in the crystallinity together with the preferential growth of crystallite size along the c axis (002) orientation. The average crystallite size is found to be increased from 10.8 ± 0.7 to 20.5 ± 0.3 nm with increasing the ion fluence. The Atomic force microscopy analysis confirms the variation in the surface roughness by varying the incident ion fluences. The UV-visible spectroscopy shows the decrement in transmittance of the film with ion irradiation. The micro-Raman spectra of ZnO thin films are investigated to observe ion-induced modifications which support the increased lattice defects with higher fluence. The variation in crystallinity indicates that ZnO-based devices can be used in piezoelectric transduction mechanism.

  18. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  19. Optical constants and near infrared emission of Er doped ZnO sol–gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vettumperumal, R. [P.G. and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi 627412, Tamil Nadu (India); Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in [P.G. and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi 627412, Tamil Nadu (India); Thangavel, R., E-mail: rtvel_au@yahoo.co.in [Department of Applied Physics, Indian School of Mines, Dhanbad (India)

    2015-02-15

    Erbium (Er) doped zinc oxide (ZnO) sol–gel thin films were deposited on glass substrate using the spin coating method. The effect of erbium concentration and annealing temperature on structural and optical properties was studied. The annealed film was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDX), micro-Raman, photoluminescence (PL) and UV–vis spectroscopy. All the films showed a wurtzite structure of polycrystalline nature with an average crystal size of 27.44 nm at 500 °C and 29.28 nm at 600 °C. The Raman spectra confirmed the absence of secondary phases in the Er doped ZnO films and the longitudinal optical phonon mode was upto the fifth order. Densely packed surfaces of the films were observed from SEM images. The presence and distribution of Zn, O and Er elements in the deposited films were confirmed by EDX analysis. The calculated value of exciton binding energy of ZnO film was 60 meV with a maximum value of 72 meV being observed for Er doped films. The near infra-red emission peak was observed at 1.63 eV through PL spectra studies. The average transmission was 80% with the calculated value of optical band gap being 3.26–3.32 eV. An increase in the refractive index value predicts the substitutional incorporation of Er ions in ZnO with the maximum optical conductivity being observed in the UV region. - Highlights: • Higher exciton binding energy in the doped ZnO films. • Near infrared emission is observed and better than ZnO. • Refractive index is calculated by theoretical and experimental means. • Maximum optical conductivity in the UV region.

  20. Effect of depth of traps in ZnO polycrystalline thin films on ZnO-TFTs performance

    Science.gov (United States)

    Medina-Montes, Maria I.; Baldenegro-Perez, Leonardo A.; Sanchez-Zeferino, Raul; Rojas-Blanco, Lizeth; Becerril-Silva, Marcelino; Quevedo-Lopez, Manuel A.; Ramirez-Bon, Rafael

    2016-09-01

    ZnO thin films were processed by radio frequency magnetron sputtering at room temperature on p-Si/SiO2 substrates under pure argon (Ar:O2 = 100:0 vol.%) and argon-oxygen mixture (Ar:O2 = 99:1 vol.%) gas environment. Morphological, optical and electrical characteristics of the ZnO films are reported, and they show a clear relationship with the gas mixture employed for the sputtering process. Scanning Electron Microscopy revealed the formation of grains of 15.3 and 19.9 nm average sizes and thicknesses of 59 nm and 82 nm for films growth in pure argon and argon-oxygen, respectively. Photoluminescence measurements at room temperature showed the violet emission band (centered at 3 eV) which was only detected in the ZnO film grown under pure argon. From thermally stimulated conductivity measurements two traps with 0.27 and 0.14 eV activation energies were identified for films grown in pure argon and argon-oxygen mixture, respectively. The trap at 0.27 eV is associated with a level located below the conduction band edge and it is supported by the PL band centered at 3 eV. Both types of ZnO films were used as the active channel layer in thin film transistors with thermal SiO2 as gate dielectric. Field effect mobility, threshold voltage and current ratio were improved in the devices with ZnO channel deposited with the argon-oxygen mixture (99% Ar/1% O2 vol.). Threshold voltage decreased from 25 V to 15 V, field effect mobility and current ratio increased from 0.8 to 2.4 cm2/Vs and from 102 to 106, in that order.

  1. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    Science.gov (United States)

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  2. The effect of different annealing conditions in undoped and Ag doped ZnO thin films grown by SILAR method

    OpenAIRE

    GÜNEY, HARUN

    2015-01-01

    Undoped, %3 and %5 Silver (Ag) doped zinc oxide (ZnO) thin films have been grown on glass substrates by simple and economic successive ionic layer absorption and reaction method (SILAR). All grown films were annealed vacuum and air to investigate to effective annealing at 573 K for 30 minutes. Energy-Dispersive-X-Ray-Fluorescence (EDXRF) spectroscopy showed %3 and %5 dopants Ag. Absorbance measurements showed that the optical band-gaps of all thin films were wide and generally decrease with a...

  3. Effect of the H2 plasma treatment of a seed layer on the synthesis of ZnO nanorods using a microwave hydrothermal method

    Science.gov (United States)

    Koo, Horng-Show; Lin, Ching-Cheng; Chen, Yao-Ju; Peng, Cheng-Hsiung; Chen, Mi

    2014-01-01

    The effect of H2 plasma treatment of a seed layer on the synthesis and characterization of zinc oxide (ZnO) nanorods is determined. Using an Al-doped ZnO (AZO) thin film as a seed layer, well-aligned ZnO nanorods are rapidly grown on an indium tin oxide (ITO)-coated glass substrate using a microwave hydrothermal method. The deposited AZO substrate was previously treated with H2 plasma. The effect of H2 plasma treatment of the seed layer on the alignment, growth rate, and crystallinity of the ZnO nanorods is determined. It is shown that the alignment and growth rate of the ZnO nanorods depend on the characteristics and roughness of the seed layer, which are improved by H2 plasma treatment. Various characterization methods such as X-ray diffraction (XRD), cathodoluminescence (CL), transmission electron microscopy (TEM), and X-ray photoemission spectroscopy (XPS) are used to determine the characteristic quality of the ZnO nanorods. A fundamental model of the effect of H2 plasma treatment on the seed layer and ZnO growth using a microwave hydrothermal process is also presented.

  4. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    Science.gov (United States)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  5. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    Science.gov (United States)

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  6. Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis

    Science.gov (United States)

    Tarwal, N. L.; Shinde, P. S.; Oh, Y. W.; Cerc Korošec, Romana; Patil, P. S.

    2012-11-01

    Nickel-zinc oxide (Ni-ZnO) thin films were deposited onto glass and tin-doped indium oxide-coated glass substrates by using a pneumatic spray pyrolysis technique at 450 °C from aqueous solutions of zinc acetate and nickel acetate precursors. The effect of nickel doping on structural, morphological and optical properties of the ZnO thin films has been studied. The X-ray diffraction patterns confirmed the polycrystalline nature of the films having hexagonal crystal structure. Ni-ZnO films with appropriate nickel doping revealed the occurrence of novel wheel-like surface morphology. The absorption edge of the Ni-ZnO films showed a red shift, meaning that the optical band gap energy decreases as the nickel doping concentration increases. A growth model is developed and proposed for the novel wheel-like morphology. All the thin films exhibited room-temperature photoluminescence. Pure ZnO and Ni-ZnO thin films were tested for their photoelectrochemical performance in 0.5 M Na2SO4 electrolyte solution. The values of fill factor and open circuit voltage were improved for the Ni-ZnO thin films.

  7. Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tarwal, N.L.; Shinde, P.S.; Patil, P.S. [Shivaji University, Thin Film Materials Laboratory, Department of Physics, Kolhapur, Maharashtra (India); Oh, Y.W. [Kyungnam University, Department of Nano Engineering, Masan (Korea, Republic of); Cerc Korosec, Romana [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana (Slovenia)

    2012-11-15

    Nickel-zinc oxide (Ni-ZnO) thin films were deposited onto glass and tin-doped indium oxide-coated glass substrates by using a pneumatic spray pyrolysis technique at 450 C from aqueous solutions of zinc acetate and nickel acetate precursors. The effect of nickel doping on structural, morphological and optical properties of the ZnO thin films has been studied. The X-ray diffraction patterns confirmed the polycrystalline nature of the films having hexagonal crystal structure. Ni-ZnO films with appropriate nickel doping revealed the occurrence of novel wheel-like surface morphology. The absorption edge of the Ni-ZnO films showed a red shift, meaning that the optical band gap energy decreases as the nickel doping concentration increases. A growth model is developed and proposed for the novel wheel-like morphology. All the thin films exhibited room-temperature photoluminescence. Pure ZnO and Ni-ZnO thin films were tested for their photoelectrochemical performance in 0.5 M Na{sub 2}SO{sub 4} electrolyte solution. The values of fill factor and open circuit voltage were improved for the Ni-ZnO thin films. (orig.)

  8. Electrochemical Synthesis of ZnO Nanorods/Nanotubes/Nanopencils on Transparent Aluminium-Doped Zinc Oxide Thin Films for Photocatalytic Applications.

    Science.gov (United States)

    Le, Thi Ngoc Tu; Pham, Tan Thi; Ngo, Quang Minh; Vu, Thi Hanh Thu

    2015-09-01

    We report an electrochemical synthesis of homogeneous and well-aligned ZnO nanorods (NRs) on transparent conducting aluminium-doped zinc oxide (AZO) thin films as electrodes. The selected ZnO NRs was then chemically corroded in HCl and KCl aqueous solutions to form nanopencils (NPs), and nanotubes (NTs), respectively. A DC magnetron sputtering was employed to fabricate AZO thin films at various thicknesses. The obtained AZO thin films have a c-direction orientation, transmittance above 80% in visible region, and sheet resistance approximately 40 Ω/sq. They are considered to be relevant as electrodes and seeding layers for electrochemical. The ZnO NRs are directly grown on the AZOs without a need of catalysts or additional seeding layers at temperature as low as 85 degrees C. Their shapes are strongly associated with the AZO thickness that provides a valuable way to control the diameter of ZnO NRs grown atop. With the addition of HCI and KCl aqueous solutions, ZnO NRs were modified their shape to NPs and NTs with the reaction time, respectively. All the ZnO NRs, NPs, and NTs are preferred to grow along c-direction that indicates a lattice matching between AZO thin films and ZnO nanostructrures. Photoluminescence spectra and XRD patterns show that they have good crystallinities. A great photocatalytic activity of ZnO nanostructures promises potential application in environmental treatment and protection. The ZnO NTs exhibits a higher photocatalysis than others possibly due to the oxygen vacancies on the surface and the polarizability of Zn2+ and O2-.

  9. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Peiris, T.A.; Sagu, Jagdeep S.; Hazim Yusof, Y.; Upul Wijayantha, K.G., E-mail: U.Wijayantha@lboro.ac.uk

    2015-09-01

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm{sup −2} at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm{sup −2} at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving.

  10. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    Science.gov (United States)

    Gürbüz, Osman; Okutan, Mustafa

    2016-11-01

    An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO CrxZnO1-x (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr11.88ZnO and Cr15.96ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in ZnO host material increased. Furthermore, by increasing the Cr concentration, the improved electrical performance was observed. The electrical resistivity of samples decreased from 3.98 × 10-2 Ω cm to 4.03 × 10-4 Ω cm with the increase in Cr content. For these reasons, Cr doped ZnO (Cr:ZnO) thin films may be used in microwave devices as the electrical conductivity increases while dielectric constant decreases with the Cr content.

  11. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    Science.gov (United States)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-12-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  12. Structural and Optical Properties of Mg Doped ZnO Thin Films Deposited by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    A.Sh. Asvarov

    2016-11-01

    Full Text Available This paper reports the growth and characterization of transparent magnesium doped zinc oxide (ZnO:Mg thin films prepared on glass substrates by dc magnetron sputtering. The effects of the Mg concentrations (0, 1 and 5 at % and working gas compositions (pure Ar and Ar-O2 mixture on the structural and optical properties of the ZnO:Mg thin films were investigated. The experiment results showed that the ZnO and ZnO:Mg thin films are polycrystalline with a hexagonal wurtzite structure exhibiting a preferred (002 crystal plane orientation. The results indicated that the crystallinity of ZnO:Mg thin films was significantly affected by both Mg-doping and the woking gas composition. Optical studies revealed that the optical band gap increases with Mg concentration.

  13. Effect of annealing on the electrical and optical properties of electron beam evaporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al Asmar, R. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Ferblantier, G. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Mailly, F. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Gall-Borrut, P. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Foucaran, A. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France)]. E-mail: foucaran@cem2.univ-montp2.fr

    2005-02-01

    Zinc oxide thin films have been grown on (100)-oriented silicon substrate at a temperature of 100 deg. C by reactive e-beam evaporation. Structural, electrical and optical characteristics have been compared before and after annealing in air by measurements of X-ray diffraction, real and imaginary parts of the dielectric coefficient, refractive index and electrical resistivity. X-ray diffraction measurements have shown that ZnO films are highly c-axis-oriented with a full width at half maximum (FWMH) lower than 0.5 deg . The electrical resistivity increases from 10{sup -2} {omega} cm to reach a value about 10{sup 9} {omega} cm after annealing at 750 deg. C. The FWHM decreases after annealing treatment, which proves the crystal quality improvement. Ellipsometer measurements show the improvement of the refractive index and the real dielectric coefficient after annealing treatment at 750 deg. C of the ZnO films evaporated by electron beam. Atomic force microscopy shows that the surfaces of the electron beam evaporated ZnO are relatively smooth. Finally, a comparative study on structural and optical properties of the electron beam evaporated ZnO and the rf magnetron deposited one is discussed.

  14. Reactive magnetron sputtering of Ni doped ZnO thin film: Investigation of optical, structural, mechanical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Siddheswaran, R., E-mail: rajendra@ntc.zcu.cz [New Technologies Research Centre, University of West Bohemia, Plzeň 30614 (Czech Republic); Netrvalová, Marie; Savková, Jarmila; Novák, Petr; Očenášek, Jan; Šutta, Pavol [New Technologies Research Centre, University of West Bohemia, Plzeň 30614 (Czech Republic); Kováč, Jaroslav [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Il’kovičova 3, 81219 Bratislava (Slovakia); Jayavel, R. [Centre for Nanoscience and Technology, Anna University, Chennai 600025 (India)

    2015-07-05

    Highlights: • Highly preferred oriented [0 0 1] thin film columnar structure in ZnO:Ni from RF sputtering. • XRD confirmed the preferred orientation of ZnO structure from the only observed (0 0 2) plane. • Variation of refractive indices and optical band gap by doping of Ni in ZnO were studied. • Surface morphology and mechanical properties of the thin films were studied by SEM and AFM. • Critical concentration of Ni for the rise and enhancement of ferromagnetism was studied by VSM. - Abstract: Nickel doped ZnO (ZnO:Ni) thin films are considered to be promising materials for optoelectronic applications. The doping of transition metal ion modifies the optical and physical properties of the materials. Therefore, studies on optical and physical properties are important for such applications. In the present work, the ZnO:Ni thin films with different Ni concentrations were deposited on Si (1 0 0) and corning glass substrates at 400 °C by reactive magnetron sputtering using Ar and O{sub 2} gas mixture. The (0 0 2) growth plane of the ZnO was identified from the X-ray diffraction experiment. It was also confirmed that the films exhibit strong preferred orientation (texture) of crystalline columns in the direction [0 0 1] perpendicular to the substrate surface. The optical transmittance, band gap, and refractive indices of the thin films were studied by UV–Vis spectroscopy, photoluminescence and spectroscopic ellipsometry. The optical band gap and refractive index of the thin films decreased with increase of Ni content. The Raman and FT-IR spectroscopic studies were used to explain the modes of vibrations of the functional groups in the material. The surface topography, grain size, distribution, and fine structure of the thin films were analyzed by using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hardness of the films was measured using a nanoindenter coupled with AFM. The growth of ferromagnetism by the effect of Ni content was

  15. Annealing effect on properties of transparent and conducting ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)], E-mail: boudermstf@yahoo.fr; Hamzaoui, S.; Adnane, M.; Sahraoui, T.; Zerdali, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)

    2009-01-01

    This work presents the effect of postdeposition annealing on the structural, electrical and optical properties of undoped ZnO (zinc oxide) thin films, prepared by radio-frequency sputtering method. Two samples, 0.17 and 0.32 {mu}m-thick, were annealed in vacuum from room temperature to 350 deg. C while another 0.32 {mu}m-thick sample was annealed in air at 300 deg. C for 1 h. X-ray diffraction analysis revealed that all the films had a c-axis orientation of the wurtzite structure normal to the substrate. Electrical measurements showed that the resistivity of samples annealed in vacuum decreased gradually with the increase of annealing temperature. For the 0.32 {mu}m-thick sample, the gradual decrease of the resistivity was essentially due to a gradual increase in the mobility. On the other hand, the resistivity of the sample annealed in air increased strongly. The average transmission within the visible wavelength region for all films was higher than 80%. The band gap of samples annealed in vacuum increased whereas the band gap of the one annealed in air decreased. The main changes observed in all samples of this study were explained in terms of the effect of oxygen chemisorption and microstructural properties.

  16. Microstructural evolution of sol-gel derived ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James B., E-mail: jbmiller@andrew.cmu.ed [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA 15236 (United States); Hsieh, Hsin-Jung [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Howard, Bret H. [National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA 15236 (United States); Broitman, Esteban [Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2010-09-30

    Zinc oxide thin films, with thicknesses between {approx} 20 and 450 nm, were prepared by spin-coating a sol-gel precursor solution (zinc acetate dihydrate and monoethanolamine in an isopropanol solvent) onto glass substrates, followed by heat treatment at temperatures through 773 K. At 298 and 373 K, the films exhibited the structure of a lamellar ZnO precursor, Layered Basic Zinc Acetate (LBZA). At higher temperatures, LBZA released intercalated water and acetate groups and dehydroxylated to form zinc oxide nanograins with wurtzite structure, which were preferentially oriented in the c-axis direction. Both the degree of the films' c-axis orientation and the topography of their surfaces varied with heat treatment and precursor concentration. For films calcined at 773 K, a minimum of micron-scale surface wrinkles coincided with a maximum in c-axis preference at intermediate concentrations, suggesting that release of mechanical stress during densification of thicker films may have disrupted the ordering process that occurs during heat treatment.

  17. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    Science.gov (United States)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  18. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2016-08-01

    Full Text Available Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates.

  19. Study of Ultraviolet Emission Spectra in ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Y. M. Lu

    2013-01-01

    Full Text Available Photoluminescence (PL of ZnO thin films prepared on c-Al2O3 substrates by pulsed laser deposition (PLD are investigated. For all samples, roomtemperature (RT spectra show a strong band-edge ultraviolet (UV emission with a pronounced low-energy band tail. The origin of this UV emission is analyzed by the temperature dependence of PL spectra. The result shows that the UV emission at RT contains different recombination processes. At low temperature donor-bound exciton (D0X emission plays a major role in PL spectra, while the free exciton transition (FX gradually dominates the spectrum with increasing temperatures. It notes that at low temperature an emission band (FA appears in low energy side of D0X and FX and can survive up to RT. Further confirmation shows that the origin of the band FA can be attributed to the transitions of conduction band electrons to acceptors (e, A0, in which the acceptor binding energy is estimated to be approximately 121 meV. It is concluded that at room temperature UV emission originates from the corporate contributions of the free exciton and free electrons-to-acceptor transitions.

  20. A Comparative Study of Spin Coated Transparent Conducting Thin Films of Gallium and Aluminum Doped ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Alkahlout

    2015-01-01

    Full Text Available Transparent conducting Ga:ZnO (GZO and Al:ZnO (AZO layers have been deposited by spin coating on glass substrates using crystalline nanoparticles redispersed in 1-propanol. The coatings have been sintered in air at 600°C for 15 min and then postannealed in a reducing atmosphere at 400°C for 90 min. The effect of Ga and Al doping on the structural, morphological, optical, and electrical properties of the obtained thin films was investigated. Both films were found to be crystalline with a hexagonal structure. A single step spin coated layer 52–56 nm thick is obtained. To increase the thickness and lower the obtained sheet resistance multilayers coatings have been used. The visible transmission of both layers is high (T>80%. The influence of the sintering temperature and the optimum doping concentration was investigated. Five layers synthesized with doping ratio of 1 mol.% and sintered at 600°C and then submitted to reducing treatment in forming gas exhibited a minimum resistivity value of 7.4 × 10−2 Ω·cm for GZO layer and 1.45 Ω·cm for AZO coating.

  1. Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    黄继杰; 王钰萍; 吕建国; 龚丽; 叶志镇

    2011-01-01

    Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 x 10~3 Ω-1, with a low sheet resistance of12.38Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.%Al-doped ZnO(AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature.The structural,electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer.The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 × 10-3 Ω-1,with a low sheet resistance of 12.38Ω/sq,an acceptable visible transmittance of 73%,and a high near-infrared reflectance of about 50%.

  2. Effect of reduced graphene oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Teh, Swe Jyan; Yeoh, Soo Ling; Lee, Kian Mun; Lai, Chin Wei; Abdul Hamid, Sharifah Bee; Thong, Kwai Lin

    2016-08-01

    The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.

  3. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    Science.gov (United States)

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  4. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  5. Theoretical study of the multiferroic properties in M-doped (M=Co, Cr, Mg) ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bahoosh, S.G. [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Trimper, S. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Wesselinowa, Julia M. [University of Sofia, Department of Physics, Blvd. J. Bouchier 5, 1164 Sofia (Bulgaria)

    2015-01-01

    The origin of multiferroism is still an open problem in ZnO. We propose a microscopic model to clarify the occurrence of multiferroism in this material. Using Green's function technique we study the influence of ion doping and size effects on the magnetization and polarization of ZnO thin films. The calculations for magnetic Co- and Cr-ions are based on the s–d model, the transverse Ising model in terms of pseudo-spins and a biquadratic magnetoelectric coupling, whereas in case of nonmagnetic Mg-ions the model takes into account the Coulomb interaction and an indirect coupling between the pseudo-spins via the conduction electrons. We show that the magnetization M exhibits a maximum for a fixed concentration of the doping ions. Furthermore M increases with decreasing film thickness N. The polarization increases with increasing concentration of the dopant and decreasing N. The results are in good agreement with the experimental data. - Highlights: • The paper analyzes the multiferroic properties of doped ZnO thin films by a microscopic model. • The magnetization exhibits a maximum at a fixed doping concentration. • The polarization increases with growing dopant concentration. • The ferroelectric transition temperature is enhanced for increasing dopant concentration.

  6. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    Science.gov (United States)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  7. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    Science.gov (United States)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  8. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Sheeba, N. H., E-mail: sheebames.naser@gmail.com [M.E.S. Asmabi College, P. Vemballur, Thrissur, Kerala (India); Naduvath, J., E-mail: johnsnaduvath@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai (India); Abraham, A., E-mail: anithakklm@gmail.com; Philip, R. R., E-mail: reenatara@rediffmail.com [Thin Film Research Lab, U.C. College, Aluva, Kerala (India); Weiss, M. P., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Diener, Z. J., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Remillard, S. K., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; DeYoung, P. A., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu [Hope Ion Beam Accelerator Laboratory, Hope College, Holland, MI (United States)

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  9. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ferromagnetism in laser ablated ZnO and Mn-doped ZnO thin films: A comparative study from magnetization and Hall effect measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Hoa Hong, E-mail: nguyen.hoahong@univ-tours.f [Laboratoire LEMA, UMR 6157 CNRS - Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); Chikoidze, Ekaterina; Dumont, Yves [Laboratoire GeMAC, UMR 8635 CNRS - Universite de Versailles, Place A. Briand, 92195 Meudon (France)

    2009-11-15

    Room temperature FM was observed in pristine ZnO thin films grown by pulsed laser deposition on Al{sub 2}O{sub 3} substrates. It seems to originate from other defects but not oxygen vacancies. Magnetization of thinner films is much larger than that of the thicker films, indicating that defects are mostly located at the surface and/or the interface between the film and the substrate. Data on the Fe:ZnO and Mn:ZnO films show that a transition-metal doping does not play any essential role in introducing the magnetism into ZnO. In the case of Mn doping, the magnetic moment could be very slightly enhanced. Hall effect measurements reveal that an incorporation of Mn does not change the carrier type, but decreases the carrier concentration, and increases the Hall mobility, resulting in more resistive Mn:ZnO films. Since no anomalous Hall effect was observed, it is understood that the observed FM is not due to the interaction between the free-carrier and the Mn impurity.

  11. Identifying the influence of the intrinsic defects in Gd-doped ZnO thin-films

    KAUST Repository

    Flemban, Tahani H.

    2016-02-08

    Gd-doped ZnO thin films were prepared using pulsed laser deposition at different oxygen pressures and varied Gd concentrations. The effects of oxygen deficiency-related defects on the Gd incorporation, optical and structural properties, were explored by studying the impact of oxygen pressure during deposition and post-growth thermal annealing in vacuum. Rutherford Backscattering Spectrometry revealed that the Gd concentration increases with increasing oxygen pressure for samples grown with the same Gd-doped ZnO target. Unexpectedly, the c-lattice parameter of the samples tends to decrease with increasing Gd concentration, suggesting that Gd-defect complexes play an important role in the structural properties. Using low-temperature photoluminescence(PL), Raman measurements and density functional theory calculations, we identified oxygen vacancies as the dominant intrinsic point defects. PL spectra show a defect band related to oxygen vacancies for samples grown at oxygen deficiency.

  12. Flexible photodiodes constructed with CdTe nanoparticle thin films and single ZnO nanowires on plastics.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2011-10-14

    We construct a flexible pn heterostructured photodiode using a CdTe nanoparticle thin film and a single ZnO nanowire (NW) on a plastic substrate. The photocurrent characteristics of the flexible photodiode are examined under illumination with 325 nm wavelength light and the photocurrent efficiencies at bias voltages of ± 2.5 V are estimated to be 8.0 and 2.1 µA W(-1) under forward and reverse bias conditions, respectively. The photocurrent generation of the pn heterostructured photodiode is dominantly associated with the transport of the photogenerated charge carriers in the single ZnO NW. Furthermore, the operations of our flexible photodiode are investigated in the upwardly and downwardly bent states, as well as in the flat state.

  13. Thin Film growth and characterization of Ti doped ZnO by RF/DC magnetron sputtering

    KAUST Repository

    Baseer Haider, M.

    2015-01-01

    Thin film Ti doped ZnO (Ti-ZnO) film were grown on sapphire (0001) substrate by RF and DC magnetron sputtering. Films were grown at a substrate temperature of 250 °C with different Ti/Zn concentration. Surface chemical study of the samples was performed by X-ray photoelectron spectroscopy to determine the stoichiometry and Ti/Zn ratio for all samples. Surface morphology of the samples were studied by atomic force microscopy. X-ray diffraction was carried out to determine the crystallinity of the film. No secondary phases of TixOy was observed. We observed a slight increase in the lattice constant with the increase in Ti concentration in ZnO. No ferromagnetic signal was observed for any of the samples. However, some samples showed super-paramagnetic phase. © 2015 Materials Research Society.

  14. Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires.

    Science.gov (United States)

    Lévy-Clément, Claude; Elias, Jamil

    2013-07-22

    The properties of the components of ZnO/CdSe/CuSCN extremely thin absorber (ETA) solar cells based on electrodeposited ZnO nanowires (NWs) were investigated. The goal was to study the influence of their morphology on the characteristics of the solar cells. To increase the energy conversion efficiency of the solar cell, it was generally proposed to increase the roughness factor of the ZnO NW arrays (i.e. to increase the NW length) with the purpose of decreasing the absorber thickness, improving the light scattering, and consequently the light absorption in the ZnO/CdSe NW arrays. However, this strategy increased the recombination centers, which affected the efficiency of the solar cell. We developed another strategy that acts on the optical configuration of the solar cells by increasing the diameter of the ZnO NW (from 100 to 330 nm) while maintaining a low roughness factor. We observed that the scattering of the ZnO NW arrays occurred over a large wavelength range and extended closer to the CdSe absorber bandgap, and this led to an enhancement in the effective absorption of the ZnO/CdSe NW arrays and an increase in the solar cell characteristics. We found that the thicknesses of CuSCN above the ZnO/CdSe NW tips and the CdSe coating layer were optimized at 1.5 μm and 30 nm, respectively. Optimized ZnO/CdSe/CuSCN solar cells exhibiting 3.2% solar energy conversion efficiency were obtained by using 230 nm diameter ZnO NWs.

  15. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  16. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  17. Growth and characterization of ZnO nanostructured thin films by a two step chemical method

    Science.gov (United States)

    Kumar, P. Suresh; Raj, A. Dhayal; Mangalaraj, D.; Nataraj, D.

    2008-12-01

    Zinc oxide (ZnO) nanostructured seed layer was grown by successive ionic layer adsorption and reaction (SILAR) method on glass substrate. The as-prepared nanostructured seed layer was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for its structure and surface morphology. XRD results showed (0 0 2) oriented ZnO seed layer growth. Surface morphology study revealed the cluster of ZnO nanocrystals with hexagonal shape. ZnO nanorods (NRs) have been grown over the as-prepared ZnO nanostructured seed layer using a simple chemical bath deposition (CBD) method by immersing seed layer substrate in a chemical bath. It has been found that the morphology of the nanostructured seed layer is a key influencing factor for the growth of vertical ZnO NRs. In our growth method, we were successful in growing vertical NRs with diameter of about 70-150 nm with perfect hexagonal shape. Photoluminescence (PL) and Raman studies were carried out to analyse the crystal quality of our as-grown ZnO nanorods.

  18. Growth and characterization of ZnO nanostructured thin films by a two step chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)], E-mail: dmraj800@yahoo.com; Nataraj, D. [Thin Film and Nanomaterials Research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India)

    2008-12-30

    Zinc oxide (ZnO) nanostructured seed layer was grown by successive ionic layer adsorption and reaction (SILAR) method on glass substrate. The as-prepared nanostructured seed layer was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for its structure and surface morphology. XRD results showed (0 0 2) oriented ZnO seed layer growth. Surface morphology study revealed the cluster of ZnO nanocrystals with hexagonal shape. ZnO nanorods (NRs) have been grown over the as-prepared ZnO nanostructured seed layer using a simple chemical bath deposition (CBD) method by immersing seed layer substrate in a chemical bath. It has been found that the morphology of the nanostructured seed layer is a key influencing factor for the growth of vertical ZnO NRs. In our growth method, we were successful in growing vertical NRs with diameter of about 70-150 nm with perfect hexagonal shape. Photoluminescence (PL) and Raman studies were carried out to analyse the crystal quality of our as-grown ZnO nanorods.

  19. Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M.; Hamzaoui, S. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria); Amrani, B. [Department of Physics, Centre Universitaire de Mascara, Mascara 29000 (Algeria)], E-mail: abouhalouane@yahoo.fr; Reshak, Ali H. [Institute of Physical Biology-South Bohemia University, Institute of System Biology and Ecology-Academy of Sciences, Nove Hrady 37333 (Czech Republic); Adnane, M.; Sahraoui, T.; Zerdali, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)

    2008-09-01

    Undoped ZnO thin films of different thicknesses were prepared by r.f. sputtering in order to study the thickness effect upon their structural, morphological, electrical and optical properties. The results suggest that the film thickness seems to have no clear effect upon the orientation of the grains growth. Indeed, the analysis with X-ray diffraction show that the grains were always oriented according to the c(0 0 2)-axis perpendicular to substrate surface whatever the thickness is. However, the grain size was influenced enough by this parameter. An increase in the grain size versus the thickness was noted. For the electrical properties, measurements revealed behaviour very dependent upon thickness. The resistivity decreased from 25 to 1.5x10{sup -3} {omega} cm and the mobility increased from 2 to 37 cm{sup 2} V{sup -1} s{sup -1} when the thickness increased from 70 to 1800 nm while the carrier concentration seems to be less affected by the film thickness and varied slightly remaining around 10{sup 20} cm{sup -3}. Nevertheless, a tendency to a decrease was noticed. This behaviour in electrical properties was explained by the crystallinity and the grain size evolution. The optical measurements showed that all the samples have a strong transmission higher than 80% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the thickness increased. This result shows that the band gap is slightly decreases from 3.37 to 3.32 eV with the film thickness vary from 0.32 to 0.88 {mu}m.

  20. Investigation on the Electrical and Methane Gas-Sensing Properties of ZnO Thin Films Produced by Different Methods

    Science.gov (United States)

    Teimoori, F.; Khojier, K.; Dehnavi, N. Z.

    2016-10-01

    In this work, the influence of deposition method on the structural, electrical, and methane gas-sensing properties of ZnO thin films is investigated. Sol-gel spin coating, direct current (DC) magnetron sputtering, and e-beam evaporation techniques are employed for production of Zn thin films post-annealed at 500°C with a constant flow of oxygen. Detailed morphological, chemical, and structural investigations are carried out on all samples by field emission electron microscopy (FESEM) and x-ray diffraction (XRD) analyses. DC electrical resistivity of the samples was measured using a four-point probe instrument while a Hall effect instrument was used for the Hall effect measurements. The sensing performance was optimized with respect to the deposition method as well as the operating temperature. Detection limit, reproducibility, and stability of all samples produced using different methods are also identified. An optimum operating temperature of 350°C is obtained. The best sensitivity was attributed to the deposited film by the e-beam evaporation method due to its different surface morphology, which provided a larger ratio of surface-to-bulk area, and a lower carrier concentration, which caused higher electrical resistance. All ZnO thin films deposited by different methods also showed good reproducibility and stability.

  1. Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications

    Science.gov (United States)

    Ganesh, V.; Yahia, I. S.; AlFaify, S.; Shkir, Mohd.

    2017-01-01

    In the current work, nanocrystalline undoped and Sn doped ZnO thin films with different doping concentrations (1, 3, 5, 7 at%) have been deposited on glass substrate by low cost spin coating technique. The strong effect of Sn doping on structural, morphological, optical, nonlinear properties have been observed. X-ray diffraction study revealed that all the thin films are preferentially grown along (002) plane. The crystallite size is found to be increased with increasing the concentration of Sn, similar behavior was observed by atomic force microscopy analysis. Optical study shows that the prepared thin films are highly transparent. The direct optical band gap was calculate and found to be 3.16, 3.20, 3.22, 3.34, 3.18 eV for pure and doped films respectively. The refractive index, linear susceptibility, nonlinear absorption coefficient, nonlinear susceptibility and nonlinear refractive index were calculated. Furthermore, the third order nonlinear optical properties are investigated using Z-scan technique and their values are found to be -3.75×10-8 cm2/W, -3.76×10-3 cm/W and 0.65×10-3 esu for 7% Sn doped ZnO, respectively. There is a good correlation between theoretical and experimental third order nonlinear properties and higher values shows that the deposited films are may be applied in nonlinear optical applications.

  2. Characterization of ZnO Thin Films Doped with Natrium by Sol-Gel Method

    OpenAIRE

    gareso, paulus lobo; Syuhada, Nurnadiyah; Rauf, Nurlaela; Juarlin, Eko; Sugianto; Maddu, Akhirruddin

    2014-01-01

    This article will be presented in the 4Th International conference on Theoretical and applied Physics in Bali for 16-17 October 2014 The characterization of ZnO films doped with natrium by sol-gel spin coating method have been studied using the optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. The ZnO films were prepared using zinc acetate dehydrate (Zn(CH3COO)2.2H2O), ethanol, and diethanolamine (DEA) as the precursor, solvent, and stabilizer, respectively. For ZnO d...

  3. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  4. Effects of ZnO Buffer Layer Thickness on Properties of MgxZn1-xO Thin Films Deposited by MOCVD

    Institute of Scientific and Technical Information of China (English)

    DONG Xin; LIU Da-li; DU Guo-tong; ZHANG Yuan-tao; ZHU Hui-chao; YAN Xiao-long; GAO Zhong-min

    2005-01-01

    High-quality MgxZn1-xO thin films were grown on sapphire(0001) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the MgxZn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an MgxZn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.

  5. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...... from dense and small-grained ceramic targets show optical transmission larger than 70 % in the visible and reveal an onset of metallic reflectivity in the near infrared at 1100 nm and a crossover to a negative real part of the permittivity at approximately 1500 nm. In comparison to noble metals, doped...

  6. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    Science.gov (United States)

    Mahajan, S. V.; Upadhye, D. S.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Bagul, S. B.; Huse, N. P.; Sharma, R. B.

    2015-06-01

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni7+ ions with the fluence of 5x1012ions/cm2. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  7. Optical properties of ZnO thin films on SiO2 substrates deposited by radio frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    Deping Xiong(熊德平); Xiqing Zhang(张希清); Jing Wang(王晶); Peng Lin(林鹏); Shihua Huang(黄世华)

    2004-01-01

    The optical properties of both the annealed and as-deposited ZnO thin films by radio frequency (RF)magnetron sputtering on SiO2 substrates were studied. In the annealed films, two pronounced well defined exciton absorption peaks for the A and B excitons were obtained in the absorption spectra, a strong free exciton emission without deep-level emissions was observed in the photoluminescence (PL) spectra at room temperature. It was found that annealing the films in oxygen dramatically improved the optical properties and the quality of the films.

  8. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B. [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P. [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Sharma, R. B., E-mail: ramphalsharma@yahoo.com, E-mail: rps.phy@gmail.com [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India)

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  9. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    OpenAIRE

    2011-01-01

    A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO) films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus...

  10. Thickness dependence of the structural and electrical properties of ZnO thermal-evaporated thin films

    Indian Academy of Sciences (India)

    A Ghaderi; S M Elahi; S Solaymani; M Naseri; M Ahmadirad; S Bahrami; A E Khalili

    2011-12-01

    ZnO thin films of different thicknesses were prepared by thermal evaporation on glass substrates at room temperature. Deposition process was carried out in a vapour pressure of about 5.54 × 10-5 mbar. The substrate–target distance was kept constant during the process. By XRD and AFM techniques the microstructural characteristics and their changes with variation in thickness were studied. Electrical resistivity and conductivity of samples vs. temperature were investigated by four-probe method. It was shown that an increase in thickness causes a decrease in activation energy.

  11. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    OpenAIRE

    M.A. Bodea; Sbarcea, G.; Naik, Gururaj V.; Boltasseva, Alexandra; Klar, T. A.; Pedarnig, J. D.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass from dense and small-grained ceramic targets show optical transmission larger than 70 % in the visible and reveal an onset of metallic reflectivity in the near infrared at 1100 nm and a crossover to...

  12. Enhancement in conductivity through Ga, Al dual doping of ZnO nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Minkyu; Han, Seung Min, E-mail: smhan01@kaist.ac.kr

    2015-09-01

    In this study, electrical conductivity of Al doped ZnO nanofiber was enhanced by using Ga co-doping over the maximum conductivity achievable with only Al dopants of 2 at.% in ZnO. Al and Ga have different atomic sizes that results in further doping with Ga up to 1 at.%. Al, Ga co-doped ZnO nanofiber was fabricated by using electrospinning technique and structural analysis was investigated by X-ray diffraction. X-ray analysis indicates a change in lattice parameter(a-axis) of doped ZnO from 3.2497 Å to 3.2483 Å with added 1 at.% Al and from 3.2497 Å to 3.2488 Å with co-doping of 1 at.% Ga on top of the 2 at.% of Al doped ZnO. Therefore, Ga was incorporated into Al doped ZnO nanofiber without significant lattice parameter and grain size reduction to result in the enhanced conductivity up to a maximum value of 9.57 × 10{sup −3} S/cm. - Highlights: • Al, Ga co-doped ZnO nanofiber is synthesized by electrospinning methods. • Al, Ga co-doped nanofiber shows the higher electrical conductivity compared to Al doped ZnO nanofiber. • AGZO nanofiber shows higher conductivity due to its higher crystallinity.

  13. Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors

    Science.gov (United States)

    Seo, Gi Ho; Yun, Da Jeong; Lee, Won Ho; Yoon, Sung Min

    2017-02-01

    ZnO nanoparticles (NPs) with monolayer structures were prepared by atomic layer deposition (ALD) to use for a charge-trap layer (CTL) for nonvolatile memory thin-film transistors (MTFTs). The optimum ALD temperature of the NP formation was demonstrated to be 160 °C. The size and areal density of the ZnO NPs was estimated to be approximately 33 nm and 4.8 × 109 cm-2, respectively, when the number of ALD cycles was controlled to be 20. The fabricated MTFTs using a ZnO-NP CTL exhibited typical memory window properties, which are generated by charge-trap/de-trap processes, in their transfer characteristics and the width of the memory window (MW) increased from 0.6 to 18.0 V when the number of ALD cycles increased from 5 to 30. The program characteristics of the MTFT were markedly enhanced by the post-annealing process performed at 180 °C in an oxygen ambient due to the improvements in the interface and bulk qualities of the ZnO NPs. The program/erase (P/E) speed was estimated to be 10 ms at P/E voltages of -14 and 17 V. The memory margin showed no degradation with the lapse in retention time for 2 × 104 s and after the repetitive P/E operations of 7 × 103 cycles.

  14. The Effect of Tin Addition to ZnO Nanosheet Thin Films for Ethanol and Isopropyl Alcohol Sensor Applications

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2015-01-01

    Full Text Available The requirements of green environmental and public health monitoring have become stricter along with greater world attention for global warming. The most common pollutants in the environment that need tightened control are volatile organic compounds (VOC. Compared to other kinds of sensors, semiconductor sensors have certain advantages, including high sensitivity, fast response, simplicity, high reliability and low cost. In this work, ZnO and Sn-doped ZnO nanostructure materials with high surface nanosheet areas were synthesized using chemical bath deposition. The X-ray diffraction patterns could be indexed according to crystallinity mainly to a hexagonal wurzite ZnO structure. The scanning electron microscopy (SEM results showed that in all samples, the thin films after the addition of Sn consisted of many kinds of microstructure patterns on a nanoscale, with various sheet shapes. The sensor performance characterizations showed that VOC levels as low as 3 vol% of isopropyl alcohol (IPA and ethanol could be detected at sensitivities of 83.86% and 85.57%, respectively. The highest sensitivity of all sensors was found at an Sn doping of 1.4 at%. This high sensor sensitivity is a result of the high surface area and Sn doping, which in turn produced a higher absorption of the targeted gas.

  15. Analysis of Band-Edge Dynamics in ZnO and MgZnO Thin Films

    Science.gov (United States)

    Canul, Amrah

    This work investigates the temperature dependence of electron states at the band-edge in ZnO and Mg0.07Zn0.93O thin films. To investigate the band-edge dynamics, we study in-gap states via temperature dependent absorption spectroscopy in the range 77-500K. The in-gap states at the band-edge were analyzed via the Urbach energy model, where the Urbach Energy is a measure of the extent of states into the bandgap. In parallel, we also analyze the temperature dependent Urbach energy via the Wasim model, which separates the relative contributions of defect states and temperature dependent phonon modes to the in-gap states. It was found that the defect contribution to in-gap states at the band-edge was significantly higher for Mg0.07Zn0.93O than in ZnO. Additionally, the phonon contribution to in-gap states was less in Mg 0.07Zn0.93O than in ZnO. The author gratefully acknowledges the National Science Foundation and the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering under Grant No. DE-FG02-07ER46386.

  16. Stark effects of ZnO thin film and ZnO/ZnMgO quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Abe, T.; Fujinuma, R.; Yasuda, K.; Yamaguchi, T.; Kasada, H.; Ando, K. [Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 (Japan)

    2012-08-15

    We have investigated external electric field dependent Stark effects of ZnO thin film and ZnO/ZnMgO QWs by electroreflectance (ER) spectroscopy to develop electroabsorption modulators. The ZnO single film and ZnO/ZnMgO QWs were grown by plasma-assisted molecular beam epitaxy (PA-MBE). ZnO single film exhibited red-shift of 8 meV by applying external bias at 18 K. This red-shift is due to Stark effect in a low electric field, but it was changed to Franz-Keldysh effect in a high electric field region. We confirmed a large blue-shift of 39 meV for ZnO/ZnMgO QWs by external bias at room temperature. This energy shift, originated from quantum confined Stark effect (QCSE) in ZnO/ZnMgO QWs, proved a large exciton binding energy of this system. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    Science.gov (United States)

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)20 cm2 V(-1) s(-1), subthreshold swing10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  18. Effects of Al and Mn Dopant on Structural and Optical Properties of ZnO Thin Film Prepared by Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Sumetha SUWANBOON

    2007-01-01

    Full Text Available Undoped, 10 wt% Al and 10 wt% Mn doped ZnO thin films were deposited on a glass substrate by sol-gel dip coating. Al ions played an important role in improvement of the c-axis orientation, while Mn ions inhibited the growth along c-axis. The average grain size decreased when doping ZnO with Al and Mn. The smallest average grain size was 25 nm, obtained with 10 wt% Mn doping. The band gap values of prepared thin films varied in the range of 3.24 - 3.96 eV.

  19. The role of Al, Ba, and Cd dopant elements in tailoring the properties of c-axis oriented ZnO thin films

    Science.gov (United States)

    Ali, Dilawar; Butt, M. Z.; Arif, Bilal; Al-Ghamdi, Ahmed A.; Yakuphanoglu, Fahrettin

    2017-02-01

    Highly c-axis oriented un-doped ZnO and Al-, Ba-, and Cd-doped ZnO thin films were successfully deposited on glass substrate employing sol-gel spin coating method. XRD analysis showed that all thin films possess hexagonal wurtzite structure with preferred orientation along c-axis. Field emission scanning electron microscope (FESEM) was used to study the morphology of thin films. The morphology consists of spherical and non-spherical shape grains. EDX analysis confirms the presence of O, Zn, Al, Ba, and Cd in the relevant thin films. The optical properties of thin films were studied using UV-Vis spectrometer. All thin films possess more than 85% optical transmittance in the visible region. Blue shift in optical band gap Eg has been observed on doping with Al, whereas doping with Ba and Cd resulted in red shift of Eg. Urbach energy Eu of all doped ZnO thin films was found to have excellent correlation with their band gap energy Eg. Moreover, Eg increases while Eu decreases on the increase in crystallite size D. Optical parameters Eg and Eu as well as structural parameters lattice strain and stacking fault probability also show excellent correlation with the B-factor or the mean-square amplitude of atomic vibrations of the dopant elements. Electrical conductivity measurement of the thin films was carried out using two-point probe method. The electrical conductivity was found to increase with the increase in crystallite orientation along c-axis.

  20. The Theoretical Investigation and Analysis of High-Performance ZnO Double-Gate Double-Layer Insulator Thin-Film Transistors

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-Xia; HU Rong; YANG Yin-Tang

    2012-01-01

    A novel structure of a ZnO thin-film transistor with a double-gate and double-layer insulator is proposed to improve device performance.Compared with the conventional ZnO thin-film transistor structure,the novel thinfilm transistor has a higher on-state current,steeper sub-threshold characteristics and a lower threshold voltage,owing to the double-gate and high-k dielectric.Based on two-dimensional simulation,the potential channel distribution and the reasons for the improvement in performance are investigated.%A novei structure of a ZnO thin-film transistor with a double-gate and double-layer insulator is proposed to improve device performance. Compared with the conventional ZnO thin-Rim transistor structure, the novel thin-Sim transistor has a higher on-state current, steeper sub-threshold characteristics and a lower threshold voltage, owing to the double-gate and high-k dielectric. Based on two-dimensional simulation, the potential channel distribution and the reasons for the improvement in performance are investigated.

  1. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Sadan [SNTG Laboratory, Department of Physics Engineering, Hacettepe University, 06800 Ankara (Turkey); Rumaiz, Abdul K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Caliskan, Deniz [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Ozbay, Ekmel [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey); Woicik, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  2. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  3. Reliable and Damage-Free Estimation of Resistivity of ZnO Thin Films for Photovoltaic Applications Using Photoluminescence Technique

    Directory of Open Access Journals (Sweden)

    N. Poornima

    2013-01-01

    Full Text Available This work projects photoluminescence (PL as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE at 380 nm and the deep level emission (DLE at ~500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE (/ can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of / and resistivity for samples prepared under different deposition conditions is similar in nature. / was always less than resistivity by an order for all samples. Thus from PL measurements alone, the order of resistivity of the samples can be estimated.

  4. Photoluminescence and electrochemical properties of transparent CeO2-ZnO nanocomposite thin films prepared by Pechini method

    Science.gov (United States)

    Sani, Z. Khosousi; Ghodsi, F. E.; Mazloom, J.

    2017-02-01

    Nanocomposite thin films of CeO2-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm-2) and diffusion coefficient (3.507 × 10-17 cm2 s-1) belonged to the Ce/Zn (1:1) thin film.

  5. Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix

    Science.gov (United States)

    Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-08-01

    The present report addresses the application of surface plasmon resonance (SPR) phenomenon for urea sensing. The former promises a high sensitivity, label-free detection, and real-time information by monitoring the refractive index change at the metal-dielectric interface. In the present report, a highly sensitive urea biosensor has been developed by integrating a ZnO thin film matrix with the SPR technique. Kretschmann configuration has been used to excite the surface plasmon (SP) modes at the ZnO-metal (gold) interface using an indigeneously developed table top SPR measurement setup. Urease (Urs), the urea-specific enzyme, has been immobilized on the surface of ZnO thin film by physical adsorption technique. The SPR reflectance curves were recorded for the prism/Au/ZnO/Urs system in angular interrogation mode with phosphate-buffered saline (PBS) solution as the liquid media. The SPR resonance angle is found to be shifted toward a lower angle from 49.1 to 42.0 deg with an increase in the urea concentration (0 to 300 mg/dl) in the PBS solution. The developed sensor (prism/Au/ZnO/Urs) is found to be highly sensitive [sensitivity=0.039 deg/(mg/dl) or 203 deg/RIU] with detection accuracy of 0.045deg.

  6. Racetrack Effect on the Dissimilar Sensing Response of ZnO Thin Film-An Anisotropy of Isotropy.

    Science.gov (United States)

    Shankar, Prabakaran; Rayappan, John Bosco Balaguru

    2016-09-21

    The isotropic nature of the sensing elements decides the overall sensing performance of metal oxide gas/chemical sensors. Even a minimum deviation in the morphological and electrical characteristics of the sensing surface will lead to a nonuniform sensing performance, which in turn results in undesired figure of merits. With this background, the inhomogeneity of plasma discharge due to the racetrack effect of the magnetic field orbit in the planar magnetron and its significant influence on the formation of nanostructured ZnO thin films with desired uniformity has been investigated. The effect of the intensity of plasma discharges on the structural studies was a change in crystallite size from 11 to 35 nm. Anisotropic characteristics of the film influenced the mobility of carriers (10 and 220 cm(2) V(-1) s(-1)) by populating the carrier concentration (2.13 × 10(11) and 3.87 × 10(7) cm(-2)) in the nanostructures. Furthermore, the influence of this anisotropic surface of the obtained film on the room-temperature ethanol-sensing behavior is reported. The first observation of the racetrack effect on the sensing gradient of the sputter-deposited ZnO thin film has brought out the challenge in preparing an isotropic sensing element without anisotropy.

  7. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu-Min, E-mail: ymhu@nuk.edu.tw; Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Li, Sih-Sian [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-07

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu{sup 2+} state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu{sup 1+} ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.

  8. Effect of oxygen on active Al concentration in ZnO:Al thin films made by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Kodu, M., E-mail: Margus.Kodu@ut.ee; Arroval, T.; Avarmaa, T.; Jaaniso, R.; Kink, I.; Leinberg, S.; Savi, K.; Timusk, M.

    2014-11-30

    Highlights: • C-axis oriented ZnO:Al thin films were made by pulsed laser deposition. • The nominal Al doping concentration was between 1 and 10 at%. • Films were deposited in oxygen atmosphere and in vacuum. • The effective Al concentration was influenced by deposition ambient. • Vacuum-deposited films had much higher electron concentrations. - Abstract: Al doped ZnO is used as a material for transparent conductive electrodes in solar energy and display screen applications, as well as semiconducting material in electronic and photonic devices. For effective use it is essential to control the electrical and optical properties of ZnO:Al thin films. In order to investigate the influence of oxygen environment on effective Al solubility and intrinsic defects introduced at high doping levels during the film growth, ZnO:Al thin films were deposited in vacuum and oxygen background by pulsed laser deposition method. Films were doped with varying Al concentrations by using targets with Al doping levels of 1–10 at%. In vacuum, substantially increased free electron concentrations were observed for all Al doping levels, which indicates that the formation of acceptor-type defects, acting as electron killer centers, was largely suppressed during the growth in oxygen-poor conditions. The dependence of carrier mobility from Al concentration was also greatly influenced by oxygen conditions during the film growth, suggesting that ionized impurity concentrations in the films deposited in vacuum and oxygen background were significantly different. The results were interpreted in the context of intrinsic acceptor-type defects V{sub Zn} (zinc vacancy), which concentration is strongly modified by the presence of oxygen during the film deposition. These vacancies are assumed to influence free electron concentration and electron mobility by acting as deep electron acceptors and charged electron scattering centers (V{sub Zn}{sup 2−})

  9. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    Science.gov (United States)

    Congiu, Mirko; De Marco, Maria L.; Bonomo, Matteo; Nunes-Neto, Oswaldo; Dini, Danilo; Graeff, Carlos F. O.

    2017-01-01

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe2O4 (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe2O3 and Fe2O3/AlFe2O4 as photoanodes of a tandem DSSC.

  10. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyung Ho Kim

    2014-03-01

    Full Text Available We fabricated zinc oxide (ZnO nanorods (NRs with Al-doped ZnO (AZO seed layers and dye-sensitized solar cells (DSSCs employed the ZnO NRs between a TiO2 photoelectrode and a fluorine-doped SnO2 (FTO electrode. The growth rate of the NRs was strongly dependent on the seed layer conditions, i.e., thickness, Al dopant and annealing temperature. Attaining a large particle size with a high crystallinity of the seed layer was vital to the well-aligned growth of the NRs. However, the growth was less related to the substrate material (glass and FTO coated glass. With optimized ZnO NRs, the DSSCs exhibited remarkably enhanced photovoltaic performance, because of the increase of dye absorption and fast carrier transfer, which, in turn, led to improved efficiency. The cell with the ZnO NRs grown on an AZO seed layer annealed at 350 °C showed a short-circuit current density (JSC of 12.56 mA/cm2, an open-circuit voltage (VOC of 0.70 V, a fill factor (FF of 0.59 and a power conversion efficiency (PCE, η of 5.20% under air mass 1.5 global (AM 1.5G illumination of 100 mW/cm2.

  11. Nanoporous characteristics of sol-gel-derived ZnO thin film

    Institute of Scientific and Technical Information of China (English)

    Anees A. Ansari; M. A. M. Khan; M. Alhoshan; S. A. Alrokayan; M. S. Alsalhi

    2012-01-01

    Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 ℃ and subsequently annealed at different temperatures of 300,400 and 600 ℃.Atomic force micrographs demonstrated that the film was crack-free,and that granular nanoparticles were homogenously distributed on the film surface.The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6nm,respectively,which is due to the high porosity of the film.Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band,which might be due to an increased amount of oxygen vacancies on the lattice surface.The observed results of the nanoporous ZnO film indicates a promising applicationin the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).

  12. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics

    KAUST Repository

    Alshammari, Fwzah H.

    2016-08-24

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm2 V-1 s-1, but increased to 13.3 cm2 V-1 s-1 using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance. © 2016 American Chemical Society.

  13. Effect of thermal annealing on properties of polycrystalline ZnO thin films

    Science.gov (United States)

    Gritsenko, L. V.; Abdullin, Kh. A.; Gabdullin, M. T.; Kalkozova, Zh. K.; Kumekov, S. E.; Mukash, Zh. O.; Sazonov, A. Yu.; Terukov, E. I.

    2017-01-01

    Electrical properties (density, carriers mobility, resistivity), optical absorption and photoluminescence spectra of ZnO, grown by MOCVD and hydrothermal methods, have been investigated depending on the annealing and treatment modes in a hydrogen plasma. It has been shown that the electrical and photoluminescent (PL) properties of ZnO are strongly dependent on gas atmosphere during annealing. The annealing in oxygen atmosphere causes a sharp drop of carrier mobility and films conductivity due to the absorption of oxygen on grain boundaries. The process of ZnO electrical properties recovery by the thermal annealing in inert atmosphere (nitrogen), in oil (2×10-2 mbar) and oil-free (1×10-5 mbar) vacuum has been investigated. The hydrogen plasma treatment influence on the intensity of near-band-gap emission (NBE) has been studied. The effect of annealing and subsequent plasma treatment on PL intensity depends on the gas atmosphere of preliminary thermal annealing.

  14. Realization of stable p-type ZnO thin films using Li-N dual acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T. Prasada, E-mail: prasadview@gmail.com [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India); Kumar, M.C. Santhosh, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India)

    2011-09-01

    Highlights: > We have presented a promising Li-N dual acceptor doping method to realize p-type ZnO films via spray pyrolysis. > The influence of concentration of Li-N on the structural, electrical, and optical properties of p-type ZnO:(Li, N) films were investigated in detail. > It is found that (Li, N):ZnO films deposited on glass substrate show the preferential orientation of (002) plane. > The Hall Effect measurements exhibited p-type behaviour on (Li, N):ZnO thin films and the stability of the samples were verified by aging studies. - Abstract: Lithium and nitrogen dual acceptors-doped p-type ZnO thin films have been prepared using spray pyrolysis technique. The influence of dual acceptor (Li, N) doping on the structural, electrical, and optical properties of (Li, N):ZnO films are investigated in detail. The (Li, N):ZnO films exhibit good crystallinity with a preferred c-axis orientation. From AFM studies, it is found that the surface roughness of the thin films increases with the increase of doping percentage. The Hall Effect measurements showed p-type conductivity. The Hall measurements have been performed periodically up to seven months and it is observed that the films show p-type conductivity throughout the period of observation. The samples with Li:N ratio of 8:8 mol% showed the lowest resistivity of 35.78 {Omega} cm, while sample with Li:N ratio of 6:6 mol% showed highest carrier concentration. The PL spectra of (Li, N):ZnO films show a strong UV emission at room temperature. Furthermore, PL spectra show low intensity in deep level transition, indicating a low density of native defects. This indicates that the formation of intrinsic defects is effectively suppressed by dual acceptor (Li, N) doping in ZnO thin films. The chemical bonding states of N and Li in the films were examined by XPS analysis.

  15. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Purkayastha, Debarun Dhar, E-mail: ddebarun@yahoo.com [Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103 (India); Krishna, M. Ghanashyam [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Madhurima, V. [Department of Physics, Central University of Tamil Nadu, Thiruvarur 610004 (India)

    2015-03-01

    Highlights: • Zn metal films were deposited by thermal evaporation, on various substrates. • Upon annealing Zn there is transformation of the Zn nanosheets into ZnO nanowires. • ZnO nanowires are superhydrophobic and exhibit wetting transition on UV exposure. • ZnO will be useful in self-cleaning, mechanical and oxidation resistance surfaces. - Abstract: Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15–0.8 GPa and 18–300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic–hydrophilic transition under UV irradiation. The nanowires are much softer than the as-deposited Zn metal films, with hardness between 0.02 and 0.4 GPa and Young's modulus between 3 and 35 GPa. The current study thus demonstrates a simple process for fabrication of nanostructured Zn metal films followed by a one-step transformation to nanowires with properties that will be very attractive for mechanical and self-cleaning applications.

  16. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Miami University: Dr. Lei L. Kerr (PI, PD) Wright State University: Dr. David C. Look (PI) and Dr. Zhaoqiang Fang (Co-PI)

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  17. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    Science.gov (United States)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  18. Microstructural characterization, optical and photocatalytic properties of bilayered CuO and ZnO based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Solís-Canto, O.; Ornelas-Gutiérrez, C.; Pérez-García, S.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2014-12-05

    Highlights: • High quality bilayered Zn–Cu oxide thin films were deposited by aerosol assisted CVD. • Detailed microstructural characterization was performed by XRD and electron microscopy. • Absorbance of bilayered films shows a shift of absorption edge toward visible region. • Optical band gap or nearly 3.2 and 2 eV was determined for ZnO and Cu oxide. • High photocatalytic activity around 90% was obtained for bilayered samples. - Abstract: In this work, it is presented the synthesis, microstructural characterization and photocatalytic properties of bilayered CuO–ZnO/ZnO thin films onto borosilicate glass and fused silica substrates. The films were deposited by aerosol assisted chemical vapor deposition, using an experimental setup reported elsewhere. Deposition conditions were optimized to get high quality films; i.e. they were structurally uniform, highly transparent, non-light scattering, homogeneous, and well adhered to the substrate. Different Cu/Zn atomic ratios were tried for the upper layer. The microstructure of the films was characterized by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy. GIXRD results indicate the presence of ZnO Wurzite and Cu oxide phases. Results of SEM and HRTEM analysis of the cross sectional microstructure showed that the films were composed of compact and dense layers with no visible evidence of an interfacial boundary or porosity. Optical absorbance of the bilayered films showed a clear shift of the absorption toward the visible range. Optical band gap was determined roughly at 3.2 and 2 eV for ZnO and Cu oxide, respectively. Photocatalytic activity of the samples, for the degradation of a 10{sup −5} mol dm{sup −3} solution of methylene blue (MB), was determined after 120 and 240 min of irradiation with an UV-A source. Around 90% of MB degradation was reached by bilayered films with

  19. K-doping effects on the characteristics of ZnO thin films synthesized by using a spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Iksoo; Kim, Younggyu; Leem, Jaeyoung; Park, Hyunggil; Kim, Soaram [Inje University, Gimhae (Korea, Republic of); Kim, Jong Su [Yeungnam University, Gyeongsan (Korea, Republic of); Kim, Jinsoo [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-05-15

    Zinc-oxide (ZnO) thin films doped with various amounts of potassium were synthesized on quartz substrates by using the sol-gel method. The effects of K-doping on the structural and optical properties of the resultant ZnO thin films were investigated using X-ray diffraction (XRD), Ultraviolet visible (UV) spectroscopy, and photoluminescence (PL) spectroscopy. From the XRD results, the full width at half maximum (FWHM) for ZnO (002) and the grain size was measured. In the transmittance spectra, all the K-doped ZnO thin films were found to exhibit a high transmittance in the visible region. The optical band gap of the thin films was also determined from the transmittance results. The PL spectra showed near-band-edge (NBE) emission peaks in the UV region and deep-level emission (DLE) peaks of around 640 nm. The PL peak intensities of both the NBE emission and the DLE were found to change with varying concentrations of K.

  20. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

    Directory of Open Access Journals (Sweden)

    Abdel-Sattar Gadallah

    2013-01-01

    Full Text Available We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.

  1. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    Science.gov (United States)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  2. Microstructure and conduction behavior of BiFeO3 thin film deposited on Ge-doped ZnO

    Science.gov (United States)

    Raghavan, Chinnambedu Murugesan; Choi, Ji Ya; Kim, Sang Su

    2017-02-01

    BiFeO3 (BFO) thin films were deposited on a Ge-doped ZnO (GZO)/Si(100) and a Pt(111)/Ti/SiO2/Si(100) using a pulsed laser deposition technique. An improved crystal growth property was observed for the BFO thin film deposited on the GZO/Si(100). The BFO thin film, which was deposited on the (00 l) textured GZO/Si(100), exhibited preferred ( l00) orientated grains, while randomly orientated grains were observed for the thin film deposited on the Pt(111)/Ti/SiO2/Si(100). When compared with the Pt/BFO/Pt capacitor, the GZO/BFO/GZO capacitor exhibited improved conduction behaviors, such as a low leakage current density and high stability against electrical breakdown. From the J-E curves, conduction of the GZO/BFO/GZO and the Pt/BFO/Pt capacitors was found to be dominated by Ohmic and space charge limited conductions at low and high electric field, respectively.

  3. Role of substrate and annealing temperature on the structure of ZnO and Al{sub x}Zn{sub 1−x}O thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nambala, Fred Joe [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Department of Physics, University of Zambia, PO Box 32379, Great East Road Campus, Lusaka (Zambia); Nel, Jacqueline M.; Machatine, Augusto G.J. [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Mwakikunga, Bonex W. [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria (South Africa); Njoroge, Eric G. [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Maabong, Kelebogile [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Physics Department, University of Botswana, Private Bag 0022, Gaborone (Botswana); Das, Arran G.M. [Monash University, Private Bag X60, Roodepoort 1725 (South Africa); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    This paper reports on the deposition of pure and 5 at% Al doped ZnO (AZO) prepared by sol–gel and applied to the substrates by spin-coating, and the role of annealing temperature on the crystallinity of these layers. It is found that both ZnO and AZO are largely amorphous when coated on glass compared to n-Si(111), as substrates. On both substrates, X-ray diffraction (XRD) shows that the crystallinity improves as annealing temperature is raised from 200 to 600 °C with better crystallinity on Si substrates. The thickness of the films on substrates was determined as 120 nm by Rutherford backscattering spectroscopy (RBS). Specular ultra-violet visible (UV–vis) gives the direct transition optical band gaps (E{sub g}) for AZO as-deposited films are 2.60 and 3.35 eV while that of 600 °C annealed films are 3.00 and 3.60 eV. The E{sub g} calculated from diffuse reflectance spectroscopy (DRS) UV–vis are more diverse in ZnO- and AZO-Si than the ZnO- and AZO-glass samples, although in both sets the E{sub g} tend to converge after annealing 600 °C. The Raman spectra of samples show multiphonon processes of higher order from the AZO and substrates. It is found that residual stresses are related to E{sub 2} Raman mode.

  4. Significant mobility enhancement in extremely thin highly doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Look, David C., E-mail: david.look@wright.edu [Semiconductor Research Center, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431 (United States); Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433 (United States); Heller, Eric R. [Air Force Research Laboratory Materials and Manufacturing Directorate, 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433 (United States); Yao, Yu-Feng; Yang, C. C., E-mail: ccycc@ntu.edu.tw [Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  5. On the environmental stability of ZnO thin films by spatial atomic layer deposition

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Theelen, M.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium-doped ZnO films have been deposited by atmospheric spatial atomic-layer-deposition (spatial-ALD). The stability of their electrical, optical, and structural properties has been investigated by a damp-heat test in an environment with 85% relative humidity at 85 °C. The resistivity

  6. Improved electrical, optical, and structural properties of undoped ZnO thin films grown by water-mist-assisted spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Perez, L.Martinez [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del Instituto Politecnico Nacional, Legaria 694, Col. Irrigacion, C.P. 11500 Mexico D.F. (Mexico); Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas del Instituto Politecnico Nacional, Av. IPN No. 2580, Col. Barrio La Laguna Ticoman, C.P. 07340 Mexico D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del Instituto Politecnico Nacional, Legaria 694, Col. Irrigacion, C.P. 11500 Mexico D.F. (Mexico); Zelaya-Angel, O. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN 2508, Col. San Pedro Zacatenco, 07000 Mexico D.F. (Mexico); Munoz Aguirre, N. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas no. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D.F. (Mexico)

    2006-08-15

    Undoped ZnO thin films were prepared using the ultrasonic spray pyrolysis deposition technique with zinc acetylacetonate dissolved in N,N-dimethylformamide as the source materials solution. The addition of water mist in a parallel flux to the spray solution stream was also used during deposition of the films. The addition of water mist improved the electrical characteristics of the ZnO films. Fresh ZnO samples were then thermally annealed in a H{sub 2} reducing atmosphere. X-ray diffraction patterns show mainly the wurzite crystalline ZnO phase in the films. An electrical resistivity ({rho}) of around 2.7 x 10{sup -2} {omega}cm was measured at room temperature for the best undoped ZnO film. {rho} is approximately one order of magnitude lower than the resistivities found in undoped ZnO films obtained by means of similar non-vacuum deposition techniques. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  8. The role of the substrate material type in formation of laser induced periodical surface structures on ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, Marian, E-mail: marian.zamfirescu@inflpr.ro [National Institute for Research and Development in Microtechnology, Str. Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); Dinescu, Adrian; Danila, Mihai [National Institute for Research and Development in Microtechnology, Str. Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); Socol, Gabriel; Radu, Catalina [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer LIPSS were produced by femtoseconds laser beam on ZnO films deposited by PLD. Black-Right-Pointing-Pointer The nanostructures morphology depends on substrate material. Black-Right-Pointing-Pointer The XRD measurements demonstrate the polycrystalline structure of the ZnO LIPSS. Black-Right-Pointing-Pointer Fused silica and c-Al{sub 2}O{sub 3} substrates are the most suitable for producing ZnO ripples. - Abstract: Laser induced periodical surface structures (LIPSS) are obtained on extended area of zinc oxide thin films by femtosecond laser pulses. The ZnO films deposited by pulsed laser deposition (PLD) technique were irradiated by femtosecond laser beam with 200 fs pulse duration, at 775 nm central wavelength and 2 kHz repetition rate. The irradiation conditions such as laser fluence and scanning speed were varied for each sample. The morphology and the crystalline structure of the LIPSS on ZnO films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) for different substrates such as fused silica, crystalline SiO{sub 2}, MgO, Al{sub 2}O{sub 3}, or Si wafers with different crystal orientation. The LIPSS appear on all ZnO films, deposited on crystalline substrates, as well as on amorphous substrates. However, more irregular nanostructures, such as bifurcations or nanodroplets were observed on ZnO with MgO, and r-Al{sub 2}O{sub 3} substrates. The ZnO LIPSS are polycrystalline when fused silica, and SiO{sub 2} (0 0 0 1) substrates are used.

  9. The high temperature photoluminescence and optical absorption of undoped ZnO single crystals and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, Samuel [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Laboratoire Matériaux Optiques, Photonique et Systèmes, Université de Lorraine, F-57070 Metz Cedex (France); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-21

    The photoluminescence of undoped ZnO single crystals up to 1350 °C and the optical absorption of stress-relaxed, epitaxial ZnO thin films up to 1100 °C are reported. The photoluminescence intensity and power dependence with illumination flux are related to the crystal growth methods and stabilize after high temperature annealing. The observation of excitonic recombination at very high temperatures requires high illumination flux. It is found that the zero phonon line model reproduces the shift and the band gap narrowing as well as the free excitonic transition up to the cross-over with a defect level at 2.83 eV that occurs at 800 °C. A phenomenological model of the excitonic recombination band shape, taking account exciton-phonon losses and defect levels provides an excellent fit up to 2.2–2.4 eV (1100 °C). At these cross-over temperatures, an energy transfer is observed between the free exciton transition and defect transitions. However, at temperature above 1100 °C, the decrease of the band gap and the increase of thermal radiation, as well as the restrictions of our experimental set-up and particularly the illumination flux of the exciting laser, limit the analysis of the photoluminescence spectra measurements.

  10. Effect of O2/Ar Gas Flow Ratios on Properties of Cathodic Vacuum Arc Deposited ZnO Thin Films on Polyethylene Terephthalate Substrate

    Directory of Open Access Journals (Sweden)

    Chien-Wei Huang

    2016-01-01

    Full Text Available Cathodic vacuum arc deposition (CVAD can obtain a good quality thin film with a low growth temperature and a high deposition rate, thus matching the requirement of film deposition on flexible electronics. This paper reported the room-temperature deposition of zinc oxide (ZnO thin films deposited by CVAD on polyethylene terephthalate (PET substrate. Microstructure, optical, and electrical measurements of the deposited ZnO thin films were investigated with various O2/Ar gas flow ratios from 6 : 1 to 10 : 1. The films showed hexagonal wurtzite crystal structure. With increasing the O2/Ar gas flow ratios, the c-axis (002 oriented intensity decreased. The crystal sizes were around 16.03 nm to 23.42 nm. The average transmittance values in the visible range of all deposited ZnO films were higher than 83% and the calculated band gaps from the absorption data were found to be around 3.1 to 3.2 eV. The resistivity had a minimum value in the 3.65 × 10−3 Ω·cm under the O2/Ar gas flow ratio of 8 : 1. The luminescence mechanisms of the deposited film were also investigated to understand the defect types of room-temperature grown ZnO films.

  11. Low-temperature growth and physical investigations of undoped and (In, Co) doped ZnO thin films sprayed on PEI flexible substrate

    Science.gov (United States)

    Ben Ameur, S.; Barhoumi, A.; Mimouni, R.; Amlouk, M.; Guermazi, H.

    2015-08-01

    ZnO thin films were deposited on polymer substrate Polyethyerimide (PEI) at 250 °C by spray pyrolysis technique. The effects of different doping elements (Co and In) on physical properties of ZnO thin films were investigated. Thin film characterizations were carried out using X-ray diffraction technique, UV-Vis-NIR spectroscopy, Photoluminescence (PL) spectroscopy and the contact angle measurement method. XRD measurement showed a successful growth of crystalline films on polymer substrate at low temperature by the spray pyrolysis process. XRD patterns revealed that all films consist of single ZnO phase and were well crystallized with preferential orientation towards (1 0 1) direction. Doping by cobalt has effective role in the enhancement of the crystalline quality, increases in the band gap according to Burstein Moss effect. Doping with indium leads rather to the decrease of both crystallinity and optical band gap energy value. Photoluminescence of the films showed UV emission (NBE) and visible emission related to defects. The contact angles were measured to study the effect of various doping elements on the hydrophobicity of the film depending on surface roughness. Results showed strong dependence on the doping element. In fact, doping with cobalt element increases the roughness of ZnO films and reinforces the surface from hydrophilic to hydrophobic (θ > 90°).

  12. Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process

    Directory of Open Access Journals (Sweden)

    James C. Moore

    2014-08-01

    Full Text Available The photocatalytic activity and stability of thin, polycrystalline ZnO films was studied. The oxidative degradation of organic compounds at the ZnO surface results from the ultraviolet (UV photo-induced creation of highly oxidizing holes and reducing electrons, which combine with surface water to form hydroxyl radicals and reactive oxygen species. Therefore, the efficiency of the electron-hole pair formation is of critical importance for self-cleaning and antimicrobial applications with these metal-oxide catalyst systems. In this study, ZnO thin films were fabricated on sapphire substrates via direct current sputter deposition of Zn-metal films followed by thermal oxidation at several annealing temperatures (300–1200 °C. Due to the ease with which they can be recovered, stabilized films are preferable to nanoparticles or colloidal suspensions for some applications. Characterization of the resulting ZnO thin films through atomic force microscopy and photoluminescence indicated that decreasing annealing temperature leads to smaller crystal grain size and increased UV excitonic emission. The photocatalytic activities were characterized by UV-visible absorption measurements of Rhodamine B dye concentrations. The films oxidized at lower annealing temperatures exhibited higher photocatalytic activity, which is attributed to the increased optical quality. Photocatalytic activity was also found to depend on film thickness, with lower activity observed for thinner films. Decreasing activity with use was found to be the result of decreasing film thickness due to surface etching.

  13. One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires

    Science.gov (United States)

    Ho, G. W.; Wong, A. S. W.

    2007-03-01

    Bundles of high-aspect-ratio single-crystalline ZnO nanowires were fabricated by a single-step mild hydrothermal condition without the use of a seeding layer, thus eliminating an annealing step. The growth yields nanowires of high aspect ratio (>200). No significant lateral growth takes place with prolonged reaction time. The morphology and aspect ratio of the final products depend on the concentration of the precursors; a highly water-soluble tetradentate cyclic tertiary amine and zinc nitrate system. The nanowires grow along the [0001] direction and have an average width of <10 nm and a narrow distribution of ±5 nm. Photoluminescence measurements of the ultra-thin nanowires exhibit a strong band-edge emission at room temperature. The highly crystalline sub tens of nanometer scale diameter nanowires can, in combination, be a good one-dimensional candidate to study optical and electronic properties.

  14. Influence of baking method and baking temperature on the optical properties of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Zi-Neng; Chan, Kah-Yoong [Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2015-04-24

    In this work, sol-gel spin coating technique was utilised to coat ZnO thin films on glass substrates. During the intermediate 3 minutes baking process, either hotplate or convection oven was employed to bake the samples. The temperature for the baking process was varied from 150°C to 300°C for both instruments. Avantes Optical Spectrophotometer was used to characterise the optical property. The optical transmittances of hotplate-baked and oven-baked samples showed different trends with increasing baking temperatures, ranging from below 50% transmittance to over 90% transmittance in the visible range of wavelength. The difference in baking mechanisms using hotplate and convection oven will be discussed in this paper.

  15. Effect of annealing on structural and optical properties of sol-gel prepared Cd doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Guruprasad, E-mail: guruprasad@physics.iitm.ac.in; Jain, Mahaveer K. [Department of Physics, Indian Institute of Technology Madras, Chennai-600036 (India); Meher, S. R. [School of Advanced Sciences, VIT University, Vellore-632014 (India)

    2015-06-24

    Zn{sub 1-x}Cd{sub x}O thin films have been prepared by sol-gel spin coating method. Structural analysis shows that the Cd substitution into the wutrzite ZnO lattice is achieved up to about 20 mol %. The optical band gap is found to decrease with the increase in Cd content. Increase in the annealing temperature up to a certain critical temperature leads to band gap narrowing because of the proper substitution of Zn by Cd and thereafter the band gap increases due to Cd re-evaporation from the lattice sites. This critical temperature lowers down with the increase in Cd doping concentration. The resistivity decreases with the increase in Cd content and increases with the increase in annealing temperature.

  16. Aging and annealing effects on properties of Ag-N dual-acceptor doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, R.; Amiruddin, R.; Santhosh Kumar, M. C. [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli -620 015 (India)

    2013-02-05

    Ag-N dual acceptor doping into ZnO has been proposed to realize p-ZnO thin film of different concentrations (1, 2 and 4 at.%) by spray pyrolysis at 623 K and then 4 at.% films annealed at 673 K and 723 K for 1 hr. X-ray diffraction studies reveal that all the films are preferentially oriented along (002) plane. Energy dispersive spectroscopy (EDS) confirms the presence of Ag and N in 2 at.% ZnO:(Ag, N) film. Hall measurement shows that 4 at.% ZnO:(Ag, N) film achieved minimum resistivity with high hole concentration. The p-type conductivity of the ZnO:(Ag, N) films is retained even after 180 days. Photoluminescence (PL) spectra of ZnO:(Ag, N) films show low density of native defects.

  17. Study of electrical transport properties of ZnO thin films used as front contact of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, C.; Gordillo, G.; Olarte, J. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2005-07-01

    This work is focused on the study of possible mechanisms affecting the electrical transport properties of ZnO thin films. The films were deposited using the reactive evaporation technique, obtaining transmittances greater than 80% and resistivities of the order of 8 x 10{sup -4} {omega}cm without using extrinsic doping. This films are suitable for transparent front contact of solar cells. Measurements of resistivity and Hall coefficient, as a function of temperature, were performed on the films. The interpretation of these results was done with the help of a theoretical calculation of the carrier mobility as a function of the temperature. Several scattering mechanisms affecting the electrical transport in the temperature range studied (90 K-680 K) were found. The most important are processes occurring in the grain boundaries and interactions of free carriers with ionized impurities. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Identification of Acceptor States in Li-N Dual-Doped p-Type ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin-Zhu; LU Jian-Guo; YE Zhi-Zhen; HE Hai-Ping; CHEN Lan-Lan; ZHAO Bing-Hui

    2009-01-01

    @@ Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films are prepared by pulsed laser deposition. The optical properties are studied using temperature-dependent photoluminescence. The Lizn-No complex aceeptor with an energy level of 138 meV is identified from the free-to-neutral-acceptor (e, Ao) emission. The Haynes factor is about 0.087 for the LiZn-NO complex acceptor, with the acceptor bound-exciton binding energy of 12meV. Another deeper acceptor state located at 248meV, also identified from the (e, Ao) emission, is attributed to zinc vacancy acceptor. The two acceptor states might both contribute to the observed p-type conductivity in ZnO:(Li,N).

  19. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D., E-mail: dibyendu@barc.gov.in [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Haque, Sk Maidul [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, VIZAG Centre, Visakhapatnam-530012 (India); Shukla, Dinesh; Choudhary, Ram Janay [UGC DAE Consortium for Scientific Research, Indore-452001 (India)

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  1. Electrical Characterization of Zn and ZnO Nanowires Grown on PEDOT:PSS Conductive Polymer Thin Films by Physical Vapor Deposition

    Science.gov (United States)

    Chamberlin, Matthew; Constantin, Costel

    2011-10-01

    Physical vapor deposition (PVD) techniques offer tremendous possibilities for easy fabrication of nanostructure arrays for use in thin film electronics. In this study we examine inorganic/organic heterojunctions produced by growing conductive Zn and semiconductive ZnO nanowire arrays on organic conductive PEDOT:PSS polymer thin films using simple and cost-effective PVD methods. Understanding the electrical properties of these hybrid films are of particular interest for applications in organic electronics. However, traditional systems for measuring conductivity and resistivity of thin films by the Van Der Pauw method prove problematic when dealing with soft polymeric surfaces. We present here electrical studies of ZnO- and Zn-nanowire/PEDOT:PSS heterojunctions using a modified 2-point probe method constructed from inexpensive and easily available materials.

  2. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    Science.gov (United States)

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  3. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    Science.gov (United States)

    Shaik, Ummar Pasha; Purkayastha, Debarun Dhar; Krishna, M. Ghanashyam; Madhurima, V.

    2015-03-01

    Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15-0.8 GPa and 18-300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic-hydrophilic transit