WorldWideScience

Sample records for al virus dengue

  1. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012

    OpenAIRE

    Rezza, Giovanni; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-01-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen.

  2. Respuesta neuroinmunológica en la encefalitis asociada al virus del dengue

    Directory of Open Access Journals (Sweden)

    Bárbara Padilla-Docal

    2013-12-01

    Full Text Available El virus del dengue es un virus ARN miembro de la familia Flaviviridae, la cual incluye, además, el de la fiebre amarilla, el del Nilo del Oeste y la encefalitis japonesa. Se realizó un estudio retrospectivo con tres pacientes diagnosticados de encefalitis asociada al dengue, en cuyas muestras de suero y líquido cefalorraquídeo se cuantificaron los niveles de las clases mayores de inmunoglobulinas por inmunodifusión radial y la manosa de unión a lectina, proteína de la vía de las lectinas del sistema del complemento por fluorometría. En el reibergrama se muestra la presencia de síntesis intratecal de las tres clases de inmunoglobulinas y ausencia de síntesis intratecal de lectina de unión a manosa. Existieron diferencias en cuanto al por ciento de síntesis intratecal de inmunoglobulinas, las cuales estuvieron relacionadas con el momento de la infección por el virus y la aparición de las manifestaciones neurológicas compatibles con una encefalitis. Este es el primer reporte de afectaciones neurológicas en pacientes cubanos con dengue. La respuesta inmune intratecal puede ser utilizada para el mejor conocimiento de la enfermedad y contribuir al desarrollo de posibles candidatos vacunales.

  3. Dengue Virus Infection in Africa

    OpenAIRE

    Amarasinghe, Ananda; Kuritsky, Joel N.; Letson, G. William; Margolis, Harold S

    2011-01-01

    Reported incidence of dengue has increased worldwide in recent decades, but little is known about its incidence in Africa. During 1960–2010, a total of 22 countries in Africa reported sporadic cases or outbreaks of dengue; 12 other countries in Africa reported dengue only in travelers. The presence of disease and high prevalence of antibody to dengue virus in limited serologic surveys suggest endemic dengue virus infection in all or many parts of Africa. Dengue is likely underrecognized and u...

  4. Dengue Virus Tropism in Humanized Mice Recapitulates Human Dengue Fever

    OpenAIRE

    Javier Mota; Rebeca Rico-Hesse

    2011-01-01

    Animal models of dengue virus disease have been very difficult to develop because of the virus' specificity for infection and replication in certain human cells. We developed a model of dengue fever in immunodeficient mice transplanted with human stem cells from umbilical cord blood. These mice show measurable signs of dengue disease as in humans (fever, viremia, erythema and thrombocytopenia), and after infection with the most virulent strain of dengue serotype 2, humanized mice showed infec...

  5. New Dengue Virus Vaccine Shows Promise

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_157799.html New Dengue Virus Vaccine Shows Promise Research may also aid ... 16, 2016 (HealthDay News) -- An experimental vaccine against dengue -- the mosquito-borne virus behind a very painful ...

  6. Dengue Virus May Bolster Zika's Attack

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159534.html Dengue Virus May Bolster Zika's Attack Prior exposure to ... 23, 2016 (HealthDay News) -- Prior exposure to the dengue fever virus may increase the severity of Zika ...

  7. The dengue viruses.

    OpenAIRE

    Henchal, E A; Putnak, J R

    1990-01-01

    Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the...

  8. Inhibition of interferon signaling by dengue virus

    OpenAIRE

    Muñoz-Jordán, Jorge L.; Sánchez-Burgos, Gilma G.; Laurent-Rolle, Maudry; García-Sastre, Adolfo

    2003-01-01

    Dengue virus is a worldwide-distributed mosquito-borne flavivirus with a positive strand RNA genome. Its transcribed polyprotein is cleaved by host- and virus-encoded peptidases into 10 proteins, some of which are of unknown function. Although dengue virus-infected cells seem to be resistant to the antiviral action of IFN, the viral products that mediate this resistance are unknown. Therefore, we have analyzed the ability of the 10 dengue virus-encoded proteins to antagonize the IFN response....

  9. Dengue viruses – an overview

    Directory of Open Access Journals (Sweden)

    Anne Tuiskunen Bäck

    2013-08-01

    Full Text Available Dengue viruses (DENVs cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF, and dengue shock syndrome (DSS are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.

  10. Dengue-1 Virus Isolation during First Dengue Fever Outbreak on Easter Island, Chile

    OpenAIRE

    Perret, Cecilia; Abarca, Katia; Ovalle, Jimena; Ferrer, Pablo; Godoy, Paula; Olea, Andrea; Aguilera, Ximena; Ferrés, Marcela

    2003-01-01

    Dengue virus was detected for the first time in Chile, in an outbreak of dengue fever on Easter Island. The virus was isolated in tissue culture and characterized by reverse transcription–polymerase chain reaction as being dengue type 1.

  11. STAT2 signaling and dengue virus infection

    OpenAIRE

    Morrison, Juliet; García-Sastre, Adolfo

    2014-01-01

    Dengue virus (DENV) is an important human pathogen whose byzantine relationship with the immune response is poorly understood. DENV causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, diseases for which palliative care is the only treatment. DENV immunopathogenesis studies are complicated by the lack of an immunocompetent small-animal model, and this has hindered anti-DENV drug and vaccine development. This review describes strategies that DENV uses to evade the type I int...

  12. Lethal Dengue Virus Infection: A Forensic Overview.

    Science.gov (United States)

    Byard, Roger W

    2016-06-01

    Dengue virus is a single-stranded RNA virus that is a member of the family Flaviviridae, genus Flavivirus. It is usually transmitted by the female Aedes aegypti mosquito. Dengue fever is a febrile illness caused by 1 of 4 serotypes of the virus, which may progress to dengue hemorrhagic fever or dengue shock syndrome. The mortality rate of untreated dengue shock syndrome is more than 20%. The reported incidence has increased 30-fold for the past 50 years with an estimated 50 to 100 million dengue infections globally each year, which includes 22,000 deaths. Because of this rapid increase in numbers, more cases will be seen in forensic mortuaries, with diagnostic problems arising from nonspecific or unusual manifestations. In this review, the clinicopathological features of dengue viral infection are evaluated. Adequate blood and tissue sampling at the time of autopsy is mandatory for successful microbiological identification and characterization. PMID:27093563

  13. Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses

    Science.gov (United States)

    Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses B Z Z Z Z . Aside from being ... or Aedes albopictus ) can spread dengue, chikungunya, or Zika viruses. People become infected with dengue, chikungunya, or Zika ...

  14. Dengue virus growth, purification, and fluorescent labeling.

    Science.gov (United States)

    Zhang, Summer; Chan, Kuan Rong; Tan, Hwee Cheng; Ooi, Eng Eong

    2014-01-01

    The early events of the dengue virus life cycle involve virus binding, internalization, trafficking, and fusion. Fluorescently labeled viruses can be used to visualize these early processes. As dengue virus has 180 identical copies of the envelope protein attached to the membrane surface and is surrounded by a lipid membrane, amine-reactive (Alexa Fluor) or lipophilic (DiD) dyes can be used for virus labeling. These dyes are highly photostable and are ideal for studies involving cellular uptake and endosomal transport. To improve virus labeling efficiency and minimize the nonspecific labeling of nonviral proteins, virus concentration and purification precede fluorescent labeling of dengue viruses. Besides using these viruses for single-particle tracking, DiD-labeled viruses can also be used to distinguish serotype-specific from cross-neutralizing antibodies. Here the details of virus concentration, purification, virus labeling, applications, and hints of troubleshooting are described. PMID:24696327

  15. RNAi:antiviral therapy against dengue virus

    Institute of Scientific and Technical Information of China (English)

    Sobia Idrees; Usman A Ashfaq

    2013-01-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection.

  16. Comparative Amino Acid Sequences of Dengue Viruses

    OpenAIRE

    Haishi, Shozo; TANAKA Mariko; Igarashi, Akira

    1990-01-01

    Amino acid (AA) sequences of 4 serotype of dengue viruses deduced from their nucleotide (nt) sequences of genomic RNA were analyzed for each genome segment and each stretch of 10 AA residues. Precursor of membrane protein (pM), and 4 nonstructural proteins (NS1, NS3, NS4B, NS5) were highly conserved, while another nonstructural protein (NS2A) was least conserved among 5 strains of dengue viruses. When homology was compared among heterotypic viruses, type 1 and type 3 dengue viruses showed clo...

  17. Identifizierung neuer Dengue Virus Typ-2 Proteaseinhibitoren

    OpenAIRE

    Snitko, Mariya

    2015-01-01

    Weltweit leben ca. 2,5 Mrd. Menschen im Dengue Virus Verbreitungsgebiet. Dengue Virus Infektionen führen zum Dengue Fieber und können bei Re-Infektionen mit anderen Serotypen das sog. Dengue Schocksyndrom mit einer Letalität von 10% verursachen. Momentan stehen jedoch weder Impfstoffe noch antivirale Substanzen zur Verfügung. In der vorliegenden Arbeit sollten DENV2-Proteaseinhibitoren entwickelt werden. Dazu wurde ein in vitro DENV Proteasetest etabliert, für den die DENV Protease i...

  18. Dengue Virus Serotype 2 from a Sylvatic Lineage Isolated from a Patient with Dengue Hemorrhagic Fever

    OpenAIRE

    Jane Cardosa; Mong How Ooi; Phaik Hooi Tio; David Perera; Edward C Holmes; Khatijar Bibi; Zahara Abdul Manap

    2009-01-01

    Author Summary Dengue viruses are mosquito-borne RNA viruses that cause a spectrum of illness from mild disease to life-threatening dengue hemorrhagic fever (DHF). Dengue viruses exist in two separate cycles in nature, circulating in either non-human primates or humans. The viruses that are endemic in humans today most likely evolved from non-human primate dengue viruses a few hundred years ago and have since established themselves as four distinct serotypes in human populations, causing peri...

  19. Evasion of the human innate immune system by dengue virus

    OpenAIRE

    Pagni, Sarah; Fernandez-Sesma, Ana

    2012-01-01

    Dengue virus is a worldwide health problem, with billions of people at risk annually. Dengue virus causes a spectrum of diseases, namely dengue fever, dengue hemorrhagic fever and dengue shock syndrome with the latter two being linked to death. Understanding how dengue is able to evade the immune system and cause enhanced severity of disease is the main topics of interest in the Fernandez-Sesma laboratory at Mount Sinai School of Medicine. Using primary human immune cells, our group investiga...

  20. n Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method

    OpenAIRE

    Rizky I. Taufik; Hendra; Parikesit, Arli A; Usman S.F. Tambunan; Fitri Amelia; Syamsudin

    2009-01-01

    Problem statement: Dengue fever, which was caused by Dengue virus infection, had became a major public health problem in the tropic and subtropical countries. Dengue virus (DENV) had four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4), based on their immunogenic in the human body. Preventive measure will be necessary to decrease the prevalence of dengue fever, by developing modern vaccine. Approach: This research was focused on in silico study of dengue viru...

  1. Dengue virus identification by transmission electron microscopy and molecular methods in fatal dengue hemorrhagic fever.

    Science.gov (United States)

    Limonta, D; Falcón, V; Torres, G; Capó, V; Menéndez, I; Rosario, D; Castellanos, Y; Alvarez, M; Rodríguez-Roche, R; de la Rosa, M C; Pavón, A; López, L; González, K; Guillén, G; Diaz, J; Guzmán, M G

    2012-12-01

    Dengue virus is the most significant virus transmitted by arthropods worldwide and may cause a potentially fatal systemic disease named dengue hemorrhagic fever. In this work, dengue virus serotype 4 was detected in the tissues of one fatal dengue hemorrhagic fever case using electron immunomicroscopy and molecular methods. This is the first report of dengue virus polypeptides findings by electron immunomicroscopy in human samples. In addition, not-previously-documented virus-like particles visualized in spleen, hepatic, brain, and pulmonary tissues from a dengue case are discussed. PMID:22527878

  2. Heterotypic Dengue Infection with Live Attenuated Monotypic Dengue Virus Vaccines: Implications for Vaccination of Populations in Areas Where Dengue Is Endemic

    OpenAIRE

    Durbin, Anna P.; Schmidt, Alexander; Elwood, Dan; Wanionek, Kimberli A.; Lovchik, Janece; Thumar, Bhavin; Murphy, Brian R.; Whitehead, Stephen S.

    2011-01-01

    Background. Because infection with any of the 4 Dengue virus serotypes may elicit both protective neutralizing antibodies and nonneutralizing antibodies capable of enhancing subsequent heterotypic Dengue virus infections, the greatest risk for severe dengue occurs during a second, heterotypic Dengue virus infection. It remains unclear whether the replication of live attenuated vaccine viruses will be similarly enhanced when administered to Dengue-immune individuals.

  3. Urban Epidemic of Dengue Virus Serotype 3 Infection, Senegal, 2009

    OpenAIRE

    Faye, Ousmane; Ba, Yamar; Faye, Oumar; Talla, Cheikh; Diallo, Diawo; Chen, Rubing; Mondo, Mireille; Ba, Rouguiétou; Macondo, Edgard; Siby, Tidiane; Weaver, Scott C.; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-01-01

    An urban epidemic of dengue in Senegal during 2009 affected 196 persons and included 5 cases of dengue hemorrhagic fever and 1 fatal case of dengue shock syndrome. Dengue virus serotype 3 was identified from all patients, and Aedes aegypti mosquitoes were identified as the primary vector of the virus.

  4. Dengue Virus 3 Genotype 1 Associated with Dengue Fever and Dengue Hemorrhagic Fever, Brazil

    OpenAIRE

    Figueiredo, Leandra Barcelos; Cecílio, Alzira Batista; Ferreira, Gustavo Portela; Drumond, Betânia Paiva; Germano de Oliveira, Jaquelline; Bonjardim, Cláudio Antônio; Ferreira, Paulo César Peregrino; Kroon, Erna Geessien

    2008-01-01

    Dengue serotype 3 viruses were isolated from patients in Brazil from 2002 through 2004. On the basis of phylogenetic analyses, these isolates were assigned genotype 1. This genotype had never been reported in South America before. Its appearance indicates a major risk factor for dengue epidemics and severe disease.

  5. RNAi: antiviral therapy against dengue virus

    OpenAIRE

    Idrees, Sobia; Ashfaq, Usman A

    2013-01-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of...

  6. Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes.

    OpenAIRE

    Bukowski, J F; Kurane, I; Lai, C J; Bray, M; Falgout, B; Ennis, F A

    1989-01-01

    Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type...

  7. New Dengue Virus Type 1 Genotype in Colombo, Sri Lanka

    OpenAIRE

    Tissera, HA; Ooi, EE; Gubler, DJ; Tan, Y.; Logendra, B; Wahala, W; Silva, AM; Abeysinghe, MRN; Palihawadana, P; Gunasena, S; Tam, CC; Amarasinghe, A; Letson, GW; Margolis, HS; De Silva, AD

    2011-01-01

    The number of cases and severity of disease associated with dengue infection in Sri Lanka has been increasing since 1989, when the first epidemic of dengue hemorrhagic fever was recorded. We identified a new dengue virus 1 strain circulating in Sri Lanka that coincided with the 2009 dengue epidemic.

  8. Dengue-1 virus isolation during first dengue fever outbreak on Easter Island, Chile.

    Science.gov (United States)

    Perret, Cecilia; Abarca, Katia; Ovalle, Jimena; Ferrer, Pablo; Godoy, Paula; Olea, Andrea; Aguilera, Ximena; Ferrés, Marcela

    2003-11-01

    Dengue virus was detected for the first time in Chile, in an outbreak of dengue fever on Easter Island. The virus was isolated in tissue culture and characterized by reverse transcription-polymerase chain reaction as being dengue type 1. PMID:14718094

  9. All Serotypes of Dengue Viruses Circulating in Kuala Lumpur, Malaysia

    OpenAIRE

    M.H. Chew; Rahman, M. M.; J. Jelip; M. R. Hassan; Isahak, I.

    2012-01-01

    Dengue is a severe disease caused by dengue virus (DENV), transmitted to human being by infected Aedes mosquitoes. It is a major public health concern in Southeast Asia due to its fatality in the form of hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The objective of the study was to isolate and identify dengue virus serotypes prevalent in endemic areas of Kuala Lumpur and Selangor in Malaysia by virus culture, indirect immunoflurecent assay and molecular techniques. A total number ...

  10. Molecular epidemiology of dengue viruses from complete genome sequences

    OpenAIRE

    Ong, Swee Hoe

    2010-01-01

    The availability of the complete genetic blueprint of the dengue virus is essential in molecular epidemiological studies to uncover the role of the virus in dengue pathogenesis. During the course of this project, over two hundred complete genomes of the dengue virus were generated from clinical samples collected in three dengue-endemic Southeast Asian countries. In addition, a bioinformatics platform integrating a sequence database, sequence retrieval tools, sequence annotation data and a var...

  11. Dengue virus. Fast Diagnosis of dengue virus by molecular analysis

    International Nuclear Information System (INIS)

    This article is about a regional project in the assurance and quality control of molecular diagnosis. It allows the identification of parasites genotypes that infect humans, particularly dengue that is a viral disease transmitted by mosquitoes

  12. Dengue Virus Genome Uncoating Requires Ubiquitination

    Science.gov (United States)

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  13. Dengue

    Science.gov (United States)

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  14. Dengue virus serotype in Aceh Province

    Directory of Open Access Journals (Sweden)

    Paisal

    2015-06-01

    Full Text Available WHO estimated 50 million dengue infections happen every year in the world. In Indonesia, there were 90,245 DHF cases on 2012 with 816 deaths. In the Province of Aceh, 2,269 cases happened in the same year. This study aimed to identify dengue virus serotype in Aceh. Sampling was done in Kota Banda Aceh Hospital, Kota Lhokseumawe Hospital, Kabupaten Aceh Tamiang Hospital, Kabupaten Aceh Barat Hospital, and Kabupaten Simeulue Hospital between May to December 2012. This was a clinical laboratory research with observation design using cross sectional approach. Research’s population was sample from patients with dengue clinical symptom. Using purposive sampling technique, we have collected 100 samples from the five hospitals (20 samples from each hospital. From RT-PCR, we found 16 positive samples (9 samples were DENV-4, 3 samples were DENV-1, 2 samples were DENV-2, and 2 samples were DENV-3.

  15. Seroepidemiology of Asymptomatic Dengue Virus Infection in Jeddah, Saudi Arabia

    OpenAIRE

    Jamjoom, Ghazi A.; Azhar, Esam I.; Moujahid A. Kao; Radadi, Raja M.

    2016-01-01

    BACKGROUND Although virologically confirmed dengue fever has been recognized in Jeddah, Saudi Arabia, since 1994, causing yearly outbreaks, no proper seroepidemiologic studies on dengue virus have been conducted in this region. Such studies can define the extent of infection by this virus and estimate the proportion that may result in disease. The aim of this study was to measure the seroprevalence of past dengue virus infection in healthy Saudi nationals from different areas in the city of J...

  16. Isolation of ancestral sylvatic dengue virus type 1, Malaysia.

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina; AbuBakar, Sazaly

    2010-11-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  17. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    OpenAIRE

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina; AbuBakar, Sazaly

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle.

  18. Reemergence and Autochthonous Transmission of Dengue Virus, Eastern China, 2014

    OpenAIRE

    Wang, Wen; Yu, Bin; Lin, Xian-Dan; Kong, De-Guang; Wang, Jian; Tian, Jun-Hua; Li, Ming-Hui; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    In 2014, 20 dengue cases were reported in the cities of Wenzhou (5 cases) and Wuhan (15 cases), China, where dengue has rarely been reported. Dengue virus 1 was detected in 4 patients. Although most of these cases were likely imported, epidemiologic analysis provided evidence for autochthonous transmission.

  19. Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India

    OpenAIRE

    Guleria Randeep; Dar Lalit; Diddi Kavita; Pandey Anubhav; Chahar Harendra S; Bharaj Preeti; Kabra Sushil K; Broor Shobha

    2008-01-01

    Abstract Background Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating d...

  20. Dengue virus serotype 2 from a sylvatic lineage isolated from a patient with dengue hemorrhagic fever.

    Directory of Open Access Journals (Sweden)

    Jane Cardosa

    Full Text Available Dengue viruses circulate in both human and sylvatic cycles. Although dengue viruses (DENV infecting humans can cause major epidemics and severe disease, relatively little is known about the epidemiology and etiology of sylvatic dengue viruses. A 20-year-old male developed dengue hemorrhagic fever (DHF with thrombocytopenia (12,000/ul and a raised hematocrit (29.5% above baseline in January 2008 in Malaysia. Dengue virus serotype 2 was isolated from his blood on day 4 of fever. A phylogenetic analysis of the complete genome sequence revealed that this virus was a member of a sylvatic lineage of DENV-2 and most closely related to a virus isolated from a sentinel monkey in Malaysia in 1970. This is the first identification of a sylvatic DENV circulating in Asia since 1975.

  1. Dengue virus type 1 clade replacement in recurring homotypic outbreaks

    OpenAIRE

    Teoh, Boon-Teong; Sam, Sing-Sin; Tan, Kim-Kee; Johari, Jefree; Shu, Meng-Hooi; Danlami, Mohammed Bashar; Abd-Jamil, Juraina; MatRahim, NorAziyah; Mahadi, Nor Muhammad; AbuBakar, Sazaly

    2013-01-01

    Background Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control. Results We used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the p...

  2. The Medicinal Chemistry of Dengue Virus.

    Science.gov (United States)

    Behnam, Mira A M; Nitsche, Christoph; Boldescu, Veaceslav; Klein, Christian D

    2016-06-23

    The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents. PMID:26771861

  3. The incubation periods of Dengue viruses.

    Directory of Open Access Journals (Sweden)

    Miranda Chan

    Full Text Available Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP, in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission.

  4. Dengue Virus in Bats from Southeastern Mexico

    OpenAIRE

    Sotomayor-Bonilla, Jesús; Chaves, Andrea; Rico-Chávez, Oscar; Rostal, Melinda K.; Ojeda-Flores, Rafael; Salas-Rojas, Mónica; Aguilar-Setien, Álvaro; Ibáñez-Bernal, Sergio; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguilar-Faisal, J Leopoldo; Aguirre, A Alonso; Daszak, Peter; Suzán, Gerardo

    2014-01-01

    To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2:...

  5. Animal Models of Dengue Virus Infection

    OpenAIRE

    Eva Harris; Simona Zompi

    2012-01-01

    The development of animal models of dengue virus (DENV) infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs) can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe deng...

  6. Dengue Epidemiology

    Science.gov (United States)

    ... and dengue shock syndrome (DSS). Transmission of the Dengue Virus Dengue is transmitted between people by the ... the vectors is too infrequent to sustain transmission. Dengue is an Emerging Disease The four dengue viruses ...

  7. Phylogenetic reconstruction of dengue virus type 2 in Colombia

    OpenAIRE

    Méndez Jairo A; Usme-Ciro José A; Domingo Cristina; Rey Gloria J; Sánchez Juan A; Tenorio Antonio; Gallego-Gomez Juan C

    2012-01-01

    Abstract Background Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and sub-tropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2) has been involved in the most important outbreaks during the last 20 years, including 2010 when the fa...

  8. Co-infections with Chikungunya Virus and Dengue Virus in Delhi, India

    OpenAIRE

    Chahar, Harendra S; Bharaj, Preeti; Dar, Lalit; Guleria, Randeep; Kabra, Sushil K; Broor, Shobha

    2009-01-01

    Aedes aegypti mosquitoes are common vectors for dengue virus and chikungunya virus. In areas where both viruses cocirculate, they can be transmitted together. During a dengue outbreak in Delhi in 2006, 17 of 69 serum samples were positive for chikungunya virus by reverse transcription–PCR; 6 samples were positive for both viruses.

  9. Partial maturation : an immune-evasion strategy of dengue virus?

    NARCIS (Netherlands)

    Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    2011-01-01

    Cleavage of the precursor membrane (prM) protein is required for the activation of flavivirus infectivity. However, many studies have shown that, for dengue virus in particular, prM cleavage and maturation is inefficient. Heterogeneity of wild-type dengue virus preparations with regard to the presen

  10. Dengue virus and dengue fever%登革病毒和登革热

    Institute of Scientific and Technical Information of China (English)

    崔晓云; 吴艳花; 安静

    2014-01-01

    Dengue fever(DF) is the most widespread mosquito-borne diseases worldwide, caused by Dengue virus(DV). There are nearly half of the world's populations at the risk of infection in tropical and subtropical countries. DF is divided into Dengue and severe Dengue, which include Dengue hemorrhagic fever(DHF) and Dengue shock syndrome(DSS). With an estimated 500 000 cases of life-threatening disease in the form of severe Dengue every year, most of them are children. Notably, there is the most serious DF outbreak in southern China at 2014. This review will summarize several aspects of Dengue virus and Dengue fever to provide the information to the colleagues.%登革热(Dengue fever,DF)是由登革病毒(Dengue virus,DV)引起的一种虫媒传染病,主要在热带亚热带地区流行,全世界将近一半的人口有罹患 DF 的风险。 DF 在临床上分为 DF 和重症登革( severe Dengue),后者包括登革出血热( Dengue hemorrhagic fever,DHF)和登革休克综合征(Dengue shock syndrome,DSS)。每年重症登革病例达500000例,其中大多数患者为儿童。2014年 DF 在我国的南方地区出现历史上最严重的疫情,对人类健康和社会经济造成了严重损失。为此,本文对 DV 和DF 的概况作一综述,供广大同行参考。

  11. MULTIPLICATION OF DENGUE AND CHIKUNGUNYA VIRUSES IN AEDES MOSQUITOES

    OpenAIRE

    Soedarto Soekiman

    2012-01-01

    Colonies of Aedes aegypti (Surabaya strain) and Aedes albopictus (Malang strain) were studied to compare their susceptibility to oral infection with dengue type 3 and Chikungunya viruses. Growth curves of dengue type 3 and Chikungunya viruses in these mosquitoes indicated that both mosquito species were susceptible to oral infection with these viruses. Electron microscopic observation of the salivary glands of A. aegypti and A. albopictus infected with Chikungunya virus showed that this organ...

  12. Seroprevalence of dengue virus antibodies in healthy Jamaicans.

    Science.gov (United States)

    Brown, Michelle G; Vickers, Ivan E; Salas, Rose Alba; Smikle, Monica F

    2009-01-01

    Dengue fever, a mosquito borne viral infection, is endemic to Jamaica. The seroprevalence of dengue IgG and IgM antibodies were determined in 277 healthy Jamaicans by enzyme linked immunosorbent assay (ELISA). The seroprevalence of dengue IgG antibodies was 100% (277/277) while dengue IgM antibodies were found in 3.6% (10/277). A statistically significant association was found between the presence of dengue IgM antibodies and gender (males 10/105, 9.5% vs females 0/172, 0.0%); chi(2) = 17.0, p=0.000.The high seroprevalence rate of dengue IgG antibodies and the presence of dengue IgM in the healthy population are in keeping with the endemicity of the virus in Jamaica. Therefore tests for dengue IgG antibodies are of limited usefulness in Jamaica and can be safely excluded from diagnostic testing as a cost saving measure. Serological diagnosis of current dengue infection should be centred around the dengue IgM tests although the limitations in the predictive values of such tests should also be considered. The results also suggest that the risk of emergence of the more severe forms of dengue, dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) in the Jamaican population, due to the presence of enhancing antibodies, is high. PMID:19996526

  13. All Serotypes of Dengue Viruses Circulating in Kuala Lumpur, Malaysia

    Directory of Open Access Journals (Sweden)

    M.H. Chew

    2012-03-01

    Full Text Available Dengue is a severe disease caused by dengue virus (DENV, transmitted to human being by infected Aedes mosquitoes. It is a major public health concern in Southeast Asia due to its fatality in the form of hemorrhagic fever (DHF and dengue shock syndrome (DSS. The objective of the study was to isolate and identify dengue virus serotypes prevalent in endemic areas of Kuala Lumpur and Selangor in Malaysia by virus culture, indirect immunoflurecent assay and molecular techniques. A total number of 232 sera samples were obtained from patients with clinical manifestations of dengue fever reported to University Kebangsaan Malaysia Medical Centre (UKMMC. The sera samples collected, were analyzed for IgM/IgG detection for the assessment of primary and secondary dengue fever, propagation in cell-line C36/36, Indirect Immunoflurecent Assay (IFA and RT-PCR. The study confirmed 46 dengue cases where 15 (32.61% were dual infections with DENV-1 and DENV- 4, 12 (26.09% dual infections with DENV-3 and DENV-4, and 11 (23.91% were dual infection with DENV-2 and DENV-4. Only 1 (2.17% was dengue infection with DENV-3 and 7 (15.22% were with DENV-4. Dengue serotype 4 was the most common serotype identified in the present study .The highest number of dengue cases detected in Cheras, Kuala Lumpur where all 4 types of dengue virus were prevalent. All serotypes of dengue viruses circulation only in Kuala Lumpur and Selangor Malaysia, needs further strengthening of the dengue preventive measure in the city areas and in the country.

  14. Secondary dengue virus type 4 infections in Vietnam.

    Science.gov (United States)

    Buchy, Philippe; Vo, Van Luong; Bui, Khanh Toan; Trinh, Thi Xuan Mai; Glaziou, Philippe; Le, Thi Thu Ha; Le, Viet Lo; Bui, Trong Chien

    2005-01-01

    This study was designated to describe clinical and biological features of patients with a suspected diagnosis of dengue fever/dengue hemorrhagic fever during an outbreak in Central Vietnam. One hundred and twenty-five consecutive patients hospitalized at Khanh Hoa and Binh Thuan Provincial hospitals between November 2001 and January 2002 with a diagnosis of suspected dengue infection were included in the present study. Viruses were isolated in C6/36 and VERO E6 cell cultures or detected by RT-PCR. A hemagglutination-inhibition test (HI) was done on each paired sera using dengue antigens type 1-4, Japanese encephalitis (JE) virus antigen, Chickungunya virus antigen and Sindbis virus antigen. Anti-dengue and anti-JE virus IgM were measured by a capture enzyme-linked immunosorbent assay (MAC-ELISA). Anti-dengue and anti-JE virus IgG were measured by an ELISA test. Dengue viruses were isolated in cell culture and/or detected by RT-PCR in 20.8% of blood samples. DEN-4 and DEN-2 serotypes were found in 18.4% and 2.4% of the patients, respectively. A total of 86.4% of individuals had a diagnosis of acute dengue fever by using the HI test and/or dengue virus-specific IgM capture-ELISA and/or virus isolation and/or RT-PCR. The prevalence of primary and secondary acute dengue infection was 4% and 78.4%, respectively. Anti-dengue IgG ELISA test was positive in 88.8% of the patients. In 5 cases (4%), Japanese encephalitis virus infection was positive by serology but the cell culture was negative. No Chickungunya virus or Sindbis virus infection was detected by the HI test. In patients with acute dengue virus infection, the most common presenting symptom was headache, followed by conjunctivitis, petechial rash, muscle and joint pain, nausea and abdominal pain. Four percent of hospitalized patients were classified as dengue hemorrhagic fever. The clinical presentation and blood cell counts were similar between patients hospitalized with acute dengue fever and patients with other

  15. EMERGENCE OF DENGUE VIRUS INFECTION IN NEPAL

    Directory of Open Access Journals (Sweden)

    S. K. Mishra

    2013-09-01

    Full Text Available This article reviews Dengue, a common viral disease in humans and is an emerging public health problem in Tarai Region of Nepal. The most affected are among the poorest populations living in remote, rural areas and urban slums who have even no access for medical treatment, acquired by bite of infected mosquito. Aedes Aegypti infected with dengue virus is the major source of infections for humans and cannot be transmitted from person-to-person because human are the dead end host. DENV-1 was first isolated by Ren Kimura and Susumu Hotta in Japan in 1943. An epidemic of DF involving at least 200,000 cases had occurred between 1942 and 1944 during World War II in Japanese port cities such as Nagasaki, Kobe, and Osaka. First case of dengue was reported in 2004 in Nepal. The seroprevalence study were done in different part of Nepal by IgM antibody capture ELISA and positive rate was highest (50.0% in Biratnagar, and lowest (19.6% in Chitwan male to female ratio was 2:1. IgM-positive rate was 29.0% at ages 21-30, 25.4% at ages 11-20 and 23.6% at ages 0-10, but 10.9% at ages 31-40, and ages over 40. There was not significant association between occupation of the patients and positive rate among farmer, labour, service, business and student. The epidemiological studies of Dengue virus infection and the knowledge of the pattern of the disease outbreak can guide therapy and effective preventive measures against this disease.

  16. Carbohydrate-Related Inhibitors of Dengue Virus Entry

    Directory of Open Access Journals (Sweden)

    Takashi Suzuki

    2013-02-01

    Full Text Available Dengue virus (DENV, which is transmitted by Aedes mosquitoes, causes fever and hemorrhagic disorders in humans. The virus entry process mediated through host receptor molecule(s is crucial for virus propagation and the pathological progression of dengue disease. Therefore, elucidation of the molecular mechanisms underlying virus entry is essential for an understanding of dengue pathology and for the development of effective new anti-dengue agents. DENV binds to its receptor molecules mediated through a viral envelope (E protein, followed by incorporation of the virus-receptor complex inside cells. The fusion between incorporated virus particles and host endosome membrane under acidic conditions is mediated through the function of DENV E protein. Carbohydrate molecules, such as sulfated glycosaminoglycans (GAG and glycosphingolipids, and carbohydrate-recognition proteins, termed lectins, inhibit virus entry. This review focuses on carbohydrate-derived entry inhibitors, and also introduces functionally related compounds with similar inhibitory mechanisms against DENV entry.

  17. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-04-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever. PMID:26635182

  18. Clinical Evaluation of a Rapid Immunochromatographic Test for the Diagnosis of Dengue Virus Infection

    OpenAIRE

    Sang, Chew Theng; Hoon, Lim Siew; Cuzzubbo, Andrea; Devine, Peter

    1998-01-01

    A rapid immunochromatographic test was compared to the hemagglutination inhibition assay for separate determinations of dengue virus-specific immunoglobulin M (IgM) and IgG levels in paired serum specimens from 92 patients (34 with primary dengue virus infection, 35 with secondary dengue virus infection, and 23 without dengue virus infection). The rapid test showed 99% sensitivity in the diagnosis of dengue virus infection. The majority (30 of 34 [88%]) of patients with primary infection show...

  19. Animal Models of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Eva Harris

    2012-01-01

    Full Text Available The development of animal models of dengue virus (DENV infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe dengue in humans. Humanized mouse models can sustain DENV replication and show some signs of disease, but further development is needed to validate the immune response. Classically, immunocompetent mice infected with DENV do not manifest disease or else develop paralysis when inoculated intracranially; however, a new model using high doses of DENV has recently been shown to develop hemorrhagic signs after infection. Overall, each model has its advantages and disadvantages and is differentially suited for studies of dengue pathogenesis and immunopathogenesis and/or pre-clinical testing of antiviral drugs and vaccines.

  20. Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India

    Directory of Open Access Journals (Sweden)

    Guleria Randeep

    2008-01-01

    Full Text Available Abstract Background Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating during one outbreak. Results Acute phase sera from patients were tested for the presence of dengue virus RNA by RT-PCR assay. Of the 69 samples tested for dengue virus RNA, 48 (69.5% were found to be positive. All the four dengue virus serotypes were found to be co-circulating in this outbreak with DENV-3 being the predominant serotype. In addition in 9 of 48 (19% dengue virus positive samples, concurrent infection with more than one dengue virus serotype were identified. Conclusion This is the first report in which concurrent infections with different dengue virus serotypes is being reported during an outbreak from India. Delhi is now truly hyperendemic for dengue.

  1. Dengue virus type 3 in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Nogueira Rita Maria R

    2001-01-01

    Full Text Available Dengue virus type 3 was isolated for the first time in the country as an indigenous case from a 40 year-old woman presenting signs and symptoms of a classical dengue fever in the municipality of Nova Iguaçu, State of Rio de Janeiro. This serotype has been associated with dengue haemorrhagic epidemics and the information could be used to implement appropriate prevention and control measures. Virological surveillance was essential in order to detected this new serotype.

  2. Dengue virus: A global human threat: Review of literature.

    Science.gov (United States)

    Hasan, Shamimul; Jamdar, Sami Faisal; Alalowi, Munther; Al Ageel Al Beaiji, Sadun Mohammad

    2016-01-01

    Dengue is an acute viral illness caused by RNA virus of the family Flaviviridae and spread by Aedes mosquitoes. Presenting features may range from asymptomatic fever to dreaded complications such as hemorrhagic fever and shock. A cute-onset high fever, muscle and joint pain, myalgia, cutaneous rash, hemorrhagic episodes, and circulatory shock are the commonly seen symptoms. Oral manifestations are rare in dengue infection; however, some cases may have oral features as the only presenting manifestation. Early and accurate diagnosis is critical to reduce mortality. Although dengue virus infections are usually self-limiting, dengue infection has come up as a public health challenge in the tropical and subtropical nations. This article provide a detailed overview on dengue virus infections, varied clinical manifestations, diagnosis, differential diagnosis, and prevention and treatment. PMID:27011925

  3. Cross-Reactive T-Cell Responses to the Nonstructural Regions of Dengue Viruses among Dengue Fever and Dengue Hemorrhagic Fever Patients in Malaysia▿

    OpenAIRE

    Appanna, Ramapraba; Huat, Tan Lian; See, Lucy Lum Chai; Tan, Phoay Lay; Vadivelu, Jamuna; Devi, Shamala

    2007-01-01

    Dengue virus infections are a major cause of morbidity and mortality in tropical and subtropical areas in the world. Attempts to develop effective vaccines have been hampered by the lack of understanding of the pathogenesis of the disease and the absence of suitable experimental models for dengue viral infection. The magnitude of T-cell responses has been reported to correlate with dengue disease severity. Sixty Malaysian adults with dengue viral infections were investigated for their dengue ...

  4. Eventual Role of Asymptomatic Cases of Dengue for the Introduction and Spread of Dengue Viruses in Non-Endemic Regions

    OpenAIRE

    Claude eChastel

    2012-01-01

    In dengue virus infections the asymptomatic cases are much more frequent than the symptomatic ones, but their true role in the introduction and subsequent spread of dengue viruses in non-endemic regions remains to de clarified. We analysed data from English and French literatures to assess if viraemia in asymptomatic dengue infections might be sufficient to represent a true risk. During outbreaks of dengue a large number of individuals are infected and since viraemia levels in symptomatic pa...

  5. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  6. Complete genome sequencing and comparative analysis of three dengue virus type 2 Pakistani isolates.

    Science.gov (United States)

    Akram, Madiha; Idrees, Muhammad

    2016-03-01

    Dengue is currently one of the most important arthropod borne human viral diseases caused by a flavivirus named as dengue virus. It is now endemic in Pakistan since many dengue fever outbreaks have been observed in Pakistan during the last three decades. Major serotype of dengue virus circulating in Pakistan is serotype 2. Complete genome sequences of three Pakistani dengue virus serotype 2 isolates were generated. Analysis of complete genome sequences showed that Pakistani isolates of dengue virus serotype 2 belonged to cosmopolitan genotype. This study identifies a number of amino acid substitutions that were introduced in local dengue virus serotype 2 isolate over the years. The study provides a significant insight into the evolution of serotype 2 of dengue virus in Pakistan. This is the first report of complete genome sequence information of dengue virus from the most recent outbreak (2013) in Punjab, Pakistan. PMID:26925441

  7. Diagnostic Options and Challenges for Dengue and Chikungunya Viruses

    OpenAIRE

    Mardekian, Stacey K.; Roberts, Amity L.

    2015-01-01

    Dengue virus (DENV) and Chikungunya virus (CHIKV) are arboviruses that share the same Aedes mosquito vectors and thus overlap in their endemic areas. These two viruses also cause similar clinical presentations, especially in the initial stages of infection, with neither virus possessing any specific distinguishing clinical features. Because the outcomes and management strategies for these two viruses are vastly different, early and accurate diagnosis is imperative. Diagnosis is also important...

  8. ROLE OF THE SEROLOGIC TEST FOR DENGUE VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ni Luh Sinta Purnama Dewi

    2013-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Dengue virus infection is infection disease cause by dengue virus. Dengue virus infection can cause a broad spectrum disease such as : dengue fever (DF, dengue hemorrhagic fever (DHF, and dengue shock syndrome (DSS. Currently dengue virus ranks eighth as a cause of illness in the State of South-East Asia and Western Pacific. Epidemic dengue hemorrhagic fever (DHF occur each year in Indonesia with a tendency incident and the affected area is increasing. Laboratory tests can be done to detect the dengue virus infection: a complete blood count and serology. Of serology test, positive IgM antibody showed that patients had a primary infection, whereas patients with secondary infections showed positive IgG antibodies, usually accompanied by antibody IgM positive. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  9. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  10. Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses

    OpenAIRE

    Feldstein, Leora R.; John S Brownstein; Brady, Oliver J.; Simon I Hay; Johansson, Michael A.

    2015-01-01

    Background: Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. Methods: We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbrea...

  11. Investigation of Dengue and Japanese Encephalitis Virus Transmission in Hanam, Viet Nam

    OpenAIRE

    Fox, A.; Whitehead, S.; Anders, K. L.; Hoa, L. N. M.; Mai, L. Q.; Thai, P. Q.; Yen, N. T.; Duong, T. N.; Thoang, D. D.; Farrar, J.; Wertheim, H; Simmons, C.; Hien, N. T.; Horby, P.

    2014-01-01

    This study investigated whether a large dengue epidemic that struck Hanoi in 2009 also affected a nearby semirural area. Seroconversion (dengue virus-reactive immunoglobulin G enzyme-linked immunosorbent assay) was high during 2009 compared with 2008, but neutralization assays showed that it was caused by both dengue virus and Japanese encephalitis virus infections. The findings highlight the importance of continued Japanese encephalitis virus vaccination and dengue surveillance.

  12. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2

    OpenAIRE

    Tambunan, Usman S. F.; Hilyatuz Zahroh; Parikesit, Arli A; Syarifuddin Idrus; Djati Kerami

    2015-01-01

    Dengue is an infectious disease caused by dengue virus (DENV) and transmitted between human hosts by mosquitoes. Recently, Indonesia was listed as a country with the highest cases of dengue by the Association of Southeast Asian Nations. The current treatment for dengue disease is supportive therapy; there is no antiviral drug available in the market against dengue. Therefore, a research on antiviral drug against dengue is very important, especially to prevent outbreak explosion. In this resea...

  13. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    OpenAIRE

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses.

  14. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Science.gov (United States)

    2013-03-15

    ...: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and Prevention (CDC), Department of... license, in the field of use of in vitro diagnostics for dengue virus infection, to practice the... Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses;''...

  15. Development, Characterization and Application of Monoclonal Antibodies against Brazilian Dengue Virus Isolates

    OpenAIRE

    Camila Zanluca; Giovanny Augusto Camacho Antevere Mazzarotto; Juliano Bordignon; Claudia Nunes Duarte Dos Santos

    2014-01-01

    Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolat...

  16. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  17. Temporal distribution of dengue virus serotypes in Colombian endemic area and dengue incidence: re-introduction of dengue-3 associated to mild febrile illness and primary infection

    OpenAIRE

    Raquel Elvira Ocazionez; Fabián Mauricio Cortés; Luis Angel Villar; Sergio Yebrail Gómez

    2006-01-01

    We have investigated the temporal distribution of dengue (DEN) virus serotypes in the department (state) of Santander, Colombia, in relation to dengue incidence, infection pattern, and severity of disease. Viral isolation was attended on a total of 1452 acute serum samples collected each week from 1998 to 2004. The infection pattern was evaluated in 596 laboratory-positive dengue cases using an IgG ELISA, and PRNT test. The dengue incidence was documented by the local health authority. Predom...

  18. 78 FR 43219 - Prospective Grant of Exclusive License: Live Attenuated Dengue Tetravalent Vaccine Containing a...

    Science.gov (United States)

    2013-07-19

    ... means for prevention of dengue infection and dengue hemorrhagic fever (DHF) by immunization with... Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1, 2... et al., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue...

  19. Seroprevalence 0f Dengue Virus Infection in Nepal

    OpenAIRE

    Gupta, B P; S.K. Mishra; K. D. Manandhar; R. Malla; C S Tamarakar; P P Raut; S.K. Sah; Pokhrel, S; R Rauniyar; A. Bajaracharya

    2013-01-01

    Dengue Virus infection is an emerging mosquito-borne disease. It is a global health problem and its expanding endemicity towards new territories is a serious concern. Relatively a new disease in Nepalese context, dengue abruptly appeared as massive outbreak in 2010, merely four years after its first introduction. It is a nagging public health problem in the low lands of Terai, expanding to new areas of Nepal in recent years. A cross-sectional study was conducted to determine anti-Dengue IgM ...

  20. Origin and Evolution of Dengue Virus Type 3 in Brazil

    OpenAIRE

    Josélio Maria Galvão de Araújo; Gonzalo Bello; Hector Romero; Rita Maria Ribeiro Nogueira

    2012-01-01

    The incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3) at the early 2000s. Despite the major public health concerns, there have been very few studies of the molecular epidemiology and time-scale of this DENV lineage in Brazil. In this study, we investigated the origin and dispersion dynamics of DENV-3 genotype III in Brazil by examining a large number (n = 107) of E gene sequences sampled betw...

  1. Dengue virus: A global human threat: Review of literature

    OpenAIRE

    Hasan, Shamimul; Jamdar, Sami Faisal; Alalowi, Munther; Al Ageel Al Beaiji, Sadun Mohammad

    2016-01-01

    Dengue is an acute viral illness caused by RNA virus of the family Flaviviridae and spread by Aedes mosquitoes. Presenting features may range from asymptomatic fever to dreaded complications such as hemorrhagic fever and shock. A cute-onset high fever, muscle and joint pain, myalgia, cutaneous rash, hemorrhagic episodes, and circulatory shock are the commonly seen symptoms. Oral manifestations are rare in dengue infection; however, some cases may have oral features as the only presenting mani...

  2. Peptide inhibitors of dengue virus and West Nile virus infectivity

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2005-06-01

    Full Text Available Abstract Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV, contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E of flaviviruses, such as West Nile virus (WNV and dengue virus (DENV, are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS 1 in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50 in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb, and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of 99% inhibition at

  3. Analysis of the dengue disease model with two virus strains

    Science.gov (United States)

    Adi-Kusumo, F.; Aini, A. N.; Ridwan, M.

    2014-02-01

    Dengue fever (DF) and dengue haemorrhagic fever (DHF) are the disease caused by the dengue virus which is transmitted to the human by infected female mosquitoes. The disease is endemic in more than 100 countries over the world. Dengue virus has four distinct serotypes which are closely related to each other antigenically. A person who infected by the dengue virus will never be infected again by the same serotype, but he looses immunity from the three other serotypes. Infection with one serotype does not provide cross-protective immunity against to others. Here we assume that there are two serotypes exist in the population. Someone who has recovered from one serotype become susceptible to the other serotype and can be reinfected. In this paper we analyze the model of dengue fever with two infections from the different serotype by linear analysis. Then we study the effect of vaccination to the model. In numerical simulation, we use Runge-Kutta order 4 to integrate the solution of the system.

  4. Profile of hepatic involvement by dengue virus in dengue infected children

    Directory of Open Access Journals (Sweden)

    Amrita Roy

    2013-01-01

    Full Text Available Background: The spectrum of liver dysfunction in children with dengue infection is wide and has been associated with disease severity. Aims: This study was undertaken to estimate the range of hepatic involvement in dengue infection in children. Materials and Methods: This study assessed the biochemical and clinical profile of hepatic involvement by dengue virus in 120 children with serologically positive dengue fever (DF, aged 2 months to 14 years. Results: All cases were grouped into DF without warning signs (Group 1, DF with warning signs (Group 2 and severe dengue (Group 3 according to revised World Health Organization 2009 criteria. The spectrum of hepatic manifestations included hepatomegaly (80.8%, hepatic tenderness (46.3%, jaundice (60%, raised aspartate transaminase (AST, alanine transaminase (ALT and prolonged prothrombin time (41.7% and reduced serum albumin (56%. Conclusions: Hepatic dysfunction was observed more in Groups 2 and 3. There was 84.4% and 93.75% ALT and AST elevation respectively in Group 2 and 94.5% and 95.9% ALT and AST elevation respectively in Group 3 and fulminant hepatic failure was observed in Group 3. Therefore in a child with fever, jaundice, hepatomegaly and altered liver function tests, the diagnosis of dengue infection should be strongly considered in areas where dengue infection is endemic.

  5. Trend of dengue virus infection at Lucknow, north India (2008- 2010): A hospital based study

    OpenAIRE

    Pandey, Nidhi; Nagar, Rachna; Gupta, Shikha; Omprakash,; Khan, Danish; Singh, Desh Deepak; Mishra, Gitika; Prakash, Shantanu; Singh, K. P.; Singh, Mastan; Jain, Amita

    2012-01-01

    Background & objectives: Dengue virus (DV) infection has emerged as a major health problem in north India. Here, we report the annual trend of dengue virus infection as seen in Lucknow, Uttar Pradesh, during 2008-2010. Methods: Blood samples from clinically suspected cases of dengue virus infection were collected and history was taken on structured clinical data sheet. All samples were tested for dengue IgM by antibody capture ELISA. Selected samples were tested by conventional RT-PCR for den...

  6. Comparative Susceptibility of Mosquito Populations in North Queensland, Australia to Oral Infection with Dengue Virus

    OpenAIRE

    Ye, Yixin H; Ng, Tat Siong; Frentiu, Francesca D.; Walker, Thomas; van den Hurk, Andrew F.; O' Neill, Scott L; Beebe, Nigel W; McGraw, Elizabeth A.

    2014-01-01

    Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than m...

  7. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  8. Phylogeography of Dengue Virus Serotype 4, Brazil, 2010-2011

    OpenAIRE

    Nunes, Marcio Roberto Teixeira; Faria, Nuno Rodrigues; Vasconcelos, Helena Baldez; Medeiros, Daniele Barbosa de Almeida; Silva de Lima, Clayton Pereira; Carvalho, Valéria Lima; Pinto da Silva, Eliana Vieira; Cardoso, Jedson Ferreira; Sousa, Edivaldo Costa; Nunes, Keley Nascimento Barbosa; Rodrigues, Sueli Guerreiro; Abecasis, Ana Barroso; Suchard, Marc A.; Lemey, Philippe; Vasconcelos, Pedro Fernando da Costa

    2012-01-01

    Dengue virus serotype 4 (DENV-4) reemerged in Roraima State, Brazil, 28 years after it was last detected in the country in 1982. To study the origin and evolution of this reemergence, full-length sequences were obtained for 16 DENV-4 isolates from northern (Roraima, Amazonas, Pará States) and northeastern (Bahia State) Brazil during the 2010 and 2011 dengue virus seasons and for an isolate from the 1982 epidemic in Roraima. Spatiotemporal dynamics of DENV-4 introductions in Brazil were applie...

  9. Dengue Virus Infection Triggering Thrombotic Thrombocytopenic Purpura in Pregnancy.

    Science.gov (United States)

    Deepanjali, Surendran; Naik, Raghuramulu R; Mailankody, Sharada; Kalaimani, Sivamani; Kadhiravan, Tamilarasu

    2015-11-01

    We report a case of thrombotic thrombocytopenic purpura (TTP) that immediately followed symptomatic dengue virus infection in a pregnant lady. The patient developed dengue fever at 16 weeks of gestation, resulting in spontaneous abortion. Subsequently, fever reappeared with persistent thrombocytopenia and jaundice. Investigations revealed microangiopathic hemolysis; there was no evidence of disseminated intravascular coagulation. The TTP episode resolved after six cycles of therapeutic plasma exchange with fresh-frozen plasma. An ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motif 13 repeats) activity assay, done during convalescence, showed normal activity. The patient had an uneventful second pregnancy and has remained free of TTP recurrence for more than 2 years now. We review the pathophysiological basis of TTP in dengue infection, and suggest that jaundice with disproportionate elevation of serum aspartate aminotransferase level in a patient with dengue should arouse the suspicion of TTP. PMID:26283741

  10. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus

    Science.gov (United States)

    Swanstrom, J. A.; Plante, J. A.; Plante, K. S.; Young, E. F.; McGowan, E.; Gallichotte, E. N.; Widman, D. G.; Heise, M. T.; de Silva, A. M.

    2016-01-01

    ABSTRACT Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], 1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. PMID:27435464

  11. Novel Dengue Virus Type 1 from Travelers to Yap State, Micronesia

    OpenAIRE

    Nukui, Yoko; Tajima, Shigeru; Kotaki, Akira; Ito, Mikako; Takasaki, Tomohiko; Koike, Kazuhiko; Kurane, Ichiro

    2006-01-01

    Dengue virus type 1 (DENV-1), which was responsible for the dengue fever outbreak in Yap State, Micronesia, in 2004, was isolated from serum samples of 4 dengue patients in Japan. Genome sequencing demonstrated that this virus belonged to genotype IV and had a 29-nucleotide deletion in the 3´ noncoding region.

  12. Complete Genome Sequencing of Dengue Virus Type I from Zhuhai City, China.

    Science.gov (United States)

    Chen, Chao; Wei, Quande

    2016-01-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever are important for stopping outbreaks and preventing the recurrence of this virus. In this study, we reported complete genomic sequences of DENV-1 isolated from Zhuhai patients, providing basic information for future epidemic dengue disease detection. PMID:26868388

  13. Dengue Virus Type 3, Brazil, 2002

    OpenAIRE

    NOGUEIRA, Rita Maria Ribeiro; Schatzmayr, Hermann Gonçalves; Bispo de Filippis, Ana Maria; Barreto dos Santos, Flávia; Venâncio da Cunha, Rivaldo; Coelho, Janice Oliveira; José de Souza, Luiz; Guimarães, Flávia Ramos; Machado de Araújo, Eliane Saraiva; De Simone, Thatiane Santos; Baran, Meri; Teixeira, Gualberto; Miagostovich, Marize Pereira

    2005-01-01

    During the summer of 2002, Rio de Janeiro had a large epidemic of dengue fever; 288,245 cases were reported. A subset of 1,831 dengue hemorrhagic fever cases occurred. In this study, performed in the first half of 2002, samples from 1,559 patients with suspected cases of dengue infection were analyzed. From this total, 1,497 were obtained from patients with nonfatal cases, and 62 were obtained from patients with fatal cases. By the use of different methods, 831 (53.3%) cases, including 40 fat...

  14. Characterization of the 2013 dengue epidemic in Myanmar with dengue virus 1 as the dominant serotype.

    Science.gov (United States)

    Ngwe Tun, Mya Myat; Kyaw, Aung Kyaw; Makki, Nader; Muthugala, Rohitha; Nabeshima, Takeshi; Inoue, Shingo; Hayasaka, Daisuke; Moi, Meng Ling; Buerano, Corazon C; Thwe, Saw Myat; Thant, Kyaw Zin; Morita, Kouichi

    2016-09-01

    In 2013 in Myanmar, dengue epidemic occurred with 20,255 cases including 84 deaths. This study aimed to determine the serological and molecular characteristics of dengue virus (DENV) infection among children with clinical diagnosis of dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) during this period. Single acute serum samples were collected from 300 children in Mandalay Children Hospital, Mandalay, Myanmar. Out of the 300 children, 175 (58.3%) and 183 (61%) were positive for anti-dengue IgM and anti-dengue IgG, respectively. Among the IgM positives, 41 (23.4%) had primary DENV infection. Thirty-nine DENV strains (23 DENV-1, 10 DENV-2 and 6 DENV-4) were successfully isolated after inoculation of the patient serum samples onto C6/36 cells. DENV 1 was the dominant serotype in the 2013 epidemic. There was no correlation between the infecting serotypes and clinical severities. The DENV-1 strains belonged to three lineages of the genotype 1; the DENV-2 strains were of the Asian I genotype and were separated into two lineages; and DENV-4 strains belonged to the same lineage of genotype I. It is of interest to note the diversity of DENV-1 and -2 circulating in the same location during June-August 2013. These DENV isolates were genetically close (98%-100%) to the other previously reported isolates from Myanmar and its neighboring countries, namely China, Thailand, Sri Lanka, Cambodia and Vietnam. Primary DENV infection was still high among the severe dengue cases. Different serotypes of DENV were co-circulating in 2013, however, genotype shift was not observed. Additionally, amino acid mutations were detected in the study strains not seen in the previously reported strains from other countries and Myanmar. This paper provided information on the circulating serotypes for the last 15years and the recent dengue situation in Mandalay, Myanmar after 2006. PMID:27154331

  15. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection

    OpenAIRE

    Tsai, Tsung-Ting; Chuang, Yi-Jui; Lin, Yee-Shin; Wan, Shu-Wen; Chen, Chia-Ling; Lin, Chiou-Feng

    2013-01-01

    Infection with dengue virus (DENV) causes both mild dengue fever and severe dengue diseases, such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms for DENV are complicated, involving viral cytotoxicity, immunopathogenesis, autoimmunity, and underlying host diseases. Viral load correlates with disease severity, while the antibody-dependent enhancement of infection largely determines the secondary effects of DENV infection. Epidemiological and experimental studie...

  16. Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors

    OpenAIRE

    Carolina De La Guardia; Ricardo Lleonart

    2014-01-01

    Dengue fever, a reemerging disease, is putting nearly 2.5 billion people at risk worldwide. The number of infections and the geographic extension of dengue fever infection have increased in the past decade. The disease is caused by the dengue virus, a flavivirus that uses mosquitos Aedes sp. as vectors. The disease has several clinical manifestations, from the mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, there is no approved drug fo...

  17. Antiviral actions of flavanoid-derived compounds on dengue virus type-2

    OpenAIRE

    Muhamad, Mudiana; Kee, Lee Yean; Rahman, Noorsaadah Abd; Yusof, Rohana

    2010-01-01

    Dengue viruses, mosquito-borne members of the Flaviviridae family, are the causative agents of dengue fever and its associated complications, dengue haemorrhagic fever and dengue shock syndrome. To date, more than 2.5 billion people in over 100 countries are at risk of infection, and approximately 20 million infections were reported annually. There is currently no treatment or vaccine available for dengue infection. This study employed a whole-cell organism model or in vitro methods to study ...

  18. Virus-Specific Differences in Rates of Disease during the 2010 Dengue Epidemic in Puerto Rico

    OpenAIRE

    Sharp, Tyler M.; Elizabeth Hunsperger; Santiago, Gilberto A.; Jorge L Muñoz-Jordan; Santiago, Luis M.; Aidsa Rivera; Rodríguez-Acosta, Rosa L.; Lorenzo Gonzalez Feliciano; Margolis, Harold S; Tomashek, Kay M.

    2013-01-01

    BACKGROUND: Dengue is a potentially fatal acute febrile illness (AFI) caused by four mosquito-transmitted dengue viruses (DENV-1-4) that are endemic in Puerto Rico. In January 2010, the number of suspected dengue cases reported to the passive dengue surveillance system exceeded the epidemic threshold and an epidemic was declared soon after. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the epidemic, surveillance and laboratory diagnostic data were compiled. A suspected case was a dengue-lik...

  19. Serological study of dengue virus infection in Terai region, Nepal.

    Science.gov (United States)

    Sah, O P; Subedi, S; Morita, K; Inone, S; Kurane, I; Pandey, B D

    2009-06-01

    A cross-sectional study was conducted to determine dengue virus IgM-positive rate in Terai region, Nepal from August to December 2007. Serum samples were collected from 183 symptomatic cases. The samples were examined for dengue virus specific IgM using particle agglutination test. Of 183 serum samples, 55 (30.0%) had positive for dengue IgM antibody. The positive rate was highest (50.0%) in Biratnagar, and lowest (19.6%) in Chitwan male to female ratio was 2:1 in IgM-positive populations. IgM-positive rate was 29.0% at ages 21-30, 25.4% at ages 11-20 and 23.6% at ages 0-10, but 10.9% at ages 31-40, and ages over 40. There was not significant association between occupation of the patients and positive rate among farmer, labour, service, business and student. PMID:19968149

  20. Exantema hemorrágico por virus dengue inducido por ácido acetil-salicílico Haemorrhagic exanthema due to dengue virus induced by acetylsalicylic acid

    OpenAIRE

    Valerio, L.; X. Balanzó; Jiménez, O.; M. L. Pedro-Botet

    2006-01-01

    El dengue, enfermedad infecciosa vírica propia de los climas tropicales, se considera una patología reemergente que ha dado lugar a graves epidemias en la última década. En la expansión del virus y de su mosquito vector se barajan factores relacionados con la alteración humana del medio, con la rapidez en el tránsito de mercancias y personas y debidos al cambio climático. Como reflejo de ello, se asiste a un aumento de casos importados que, al ser una enfermedad con periodo de incubación cort...

  1. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    Science.gov (United States)

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  2. Molecular epidemiology and phylogenetic analysis of Dengue virus type-1 and 2 isolated in Malaysia

    OpenAIRE

    Chew, Muhd Hasyim; Rahman, Md. Mostafizur; Hussin, Salasawati

    2015-01-01

    Objective: Detection of different serotypes of dengue virus and provide information on origin, distribution and genotype of the virus. Methods: Dengue virus serotypes identified as DEN-1 and DEN-2 were amplified and sequenced with E gene. The consensus sequences were aligned with references E gene sequences of globally available GenBank. Phylogenetic analysis was performed using Neighbor-joining and Kimura 2-parameter model to construct phylogenetic tree. Results: A total of 53 dengue virus i...

  3. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    OpenAIRE

    Zhang Quanfu; Zhang Fushun; Zhang Li; Jin Cong; Wang Xiaofang; Miao Fang; Li Chuan; Gu Wen; Liang Mifang; Zhang Shuo; Jiang Lifang; Li Mengfeng; Li Dexin

    2011-01-01

    Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV), has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs) has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has...

  4. Evaluation of Four Methods for Detection of Immunoglobulin M Antibodies to Dengue Virus

    OpenAIRE

    Branch, Songee L.; Levett, Paul N

    1999-01-01

    Dengue has become hyperendemic in many islands of the Caribbean region. The performance in a diagnostic laboratory of four commercial assays for detection of immunoglobulin M (IgM) antibodies was evaluated. Sera from 62 patients with dengue virus infection were studied. These included 18 patients from whom dengue virus type 2 was isolated in a 1997 outbreak (specimens collected a mean of 14 days after onset of symptoms), 8 patients with dengue hemorrhagic fever (me...

  5. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production.

    OpenAIRE

    Kurane, I; Innis, B L; Nisalak, A; Hoke, C; Nimmannitya, S; Meager, A.; Ennis, F A

    1989-01-01

    The severe complications of dengue virus infections, hemorrhagic manifestations and shock, are more commonly observed during secondary dengue virus infections than during primary infections. It has been speculated that these complications are mediated by cross-reactive host-immune responses. We have begun to analyze human T cell responses to dengue antigens in vitro to explain the possible role of T lymphocytes in the pathogenesis of these complications. Dengue antigens induce proliferative r...

  6. Dengue virus life cycle : viral and host factors modulating infectivity

    NARCIS (Netherlands)

    Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    2010-01-01

    Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited de

  7. Titration of dengue viruses by immunofluorescence in microtiter plates.

    OpenAIRE

    Schoepp, R.J.; Beaty, B J

    1984-01-01

    A fast, reliable, and inexpensive method was developed for titration of dengue viruses in microtiter plates with an indirect fluorescent-antibody technique. No significant differences were found in median infectious dose endpoints of samples titrated in microtiter plates as compared with titrations in multichambered slides.

  8. n Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method

    Directory of Open Access Journals (Sweden)

    Rizky I. Taufik

    2009-01-01

    Full Text Available Problem statement: Dengue fever, which was caused by Dengue virus infection, had became a major public health problem in the tropic and subtropical countries. Dengue virus (DENV had four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4, based on their immunogenic in the human body. Preventive measure will be necessary to decrease the prevalence of dengue fever, by developing modern vaccine. Approach: This research was focused on in silico study of dengue virus vaccines, by using envelope (E protein of DENV-2 and DENV-3 as their backbones. T cell epitope prediction was determined by using MULTIPRED server and B cell epitope prediction was determined by using Conformational Epitope Prediction server (CEP. Homology modeling study of E DENV-3 protein as the vaccine backbone had produced six dengue vaccine peptides (HMM Vaccine 1-6. Moreover, homology modeling study of E DENV-2 protein as vaccine backbone had produced six dengue vaccine peptides (ANN vaccine 1-6. Results: The BLAST analysis of HMM and ANN vaccines had produced 93% and 91% identity, respectively. The Ramachandran Plot of both vaccines had shown less than 15% non glycine residue in the disallowed region, therefore it showed the solid stability of the proteins. The VAST analysis of E DENV-3 backbone vaccines had determined, that HMM4 and HMM6 had the highest structure similarity with native E DENV-3. HMM4 and HMM6 had the highest VAST score of 64.5. Moreover, the VAST analysis of E DENV-2 backbone vaccines had determined, that ANN1, ANN3, ANN4, ANN5 and ANN6 had the highest structure similarity with native E DENV-2. ANN1, ANN3, ANN4, ANN5 and ANN6 have the highest VAST score of 64.7. Conclusion/Recommendation: It could be inferred from this research that HMM4; HMM6; ANN1; ANN3; ANN4; ANN5; and ANN6 were the best in silico vaccine design, based on their similarity with native E DENV Proteins. This research could be applied for the wet

  9. Observation on dengue cases from a virus diagnostic laboratory of a tertiary care hospital in North India

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2015-01-01

    Interpretation & conclusions: Change in circulating serotype of dengue virus; a distinct adult dengue involvement; and a remarkable number of cases presenting with severe dengue manifestations are the main findings of this study.

  10. Seroprevalence 0f Dengue Virus Infection in Nepal

    Directory of Open Access Journals (Sweden)

    B P Gupta

    2013-12-01

    Full Text Available Dengue Virus infection is an emerging mosquito-borne disease. It is a global health problem and its expanding endemicity towards new territories is a serious concern. Relatively a new disease in Nepalese context, dengue abruptly appeared as massive outbreak in 2010, merely four years after its first introduction. It is a nagging public health problem in the low lands of Terai, expanding to new areas of Nepal in recent years. A cross-sectional study was conducted to determine anti-Dengue IgM positive rate in Lumbini, Dhading and Chitwan district. The study was carried from June 2012 to November 2012. The total number of Serum samples was collected from 275 patients visiting hospitals with history of fever, headache and suspected DF. The samples were examined by ELISA. The anti-Dengue IgM positivity was found to be 29.09 %. The positive rate was highest in Dhading (70.37% followed by Bharatpur (37.6% and Lumbini (11.38%. The Dengue positive cases were higher in males (32.5 % than female (24.8 %. The highest positive cases (41.6% were from age group less than 15 years. Dengue has substantial expansion in Western and Far Western Terai region of Nepal which was limited to the middle Terai region in the past and mostly infects older people.

  11. Understanding the dengue viruses and progress towards their control

    OpenAIRE

    Gould, Ernest A.; Rosmari Rodriguez-Roche

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the contex...

  12. Dengue Virus RNA Structure Specialization Facilitates Host Adaptation

    OpenAIRE

    Villordo, Sergio M.; Filomatori, Claudia V.; Sánchez-Vargas, Irma; Blair, Carol D; Gamarnik, Andrea V.

    2015-01-01

    Many viral pathogens cycle between humans and insects. These viruses must have evolved strategies for rapid adaptation to different host environments. However, the mechanistic basis for the adaptation process remains poorly understood. To study the mosquito-human adaptation cycle, we examined changes in RNA structures of the dengue virus genome during host adaptation. Deep sequencing and RNA structure analysis, together with fitness evaluation, revealed a process of host specialization of RNA...

  13. Distribution of Fitness in Populations of Dengue Viruses

    OpenAIRE

    Choudhury, Md Abu; Lott, William B.; Aaskov, John

    2014-01-01

    Genetically diverse RNA viruses like dengue viruses (DENVs) segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved l...

  14. Genetic characterization of dengue viruses prevalent in Kerala State, India.

    Science.gov (United States)

    Kumar, N Pradeep; Jayakumar, P R; George, Kochurani; Kamaraj, T; Krishnamoorthy, K; Sabesan, S; Jambulingam, P

    2013-04-01

    Dengue fever is re-emerging as a major scourge in south-east Asian countries, affecting about 50-100 million people and causing about 25,000 deaths annually. The Indian population as a whole is at risk of succumbing to this disease. This study genetically characterized viruses causing dengue infection in Kerala, one of the worst affected states of the country, during the disease outbreaks in 2008-2010. All four serotypes of dengue virus (DENV), DENV-1, DENV-2, DENV-3 and DENV-4, were found to be prevalent in the state. The genotypes recognized for these were III, IV, III and I, respectively. Phylogenetic analysis showed that the re-emergence of serotype DENV-4 reported in Maharashtra and Andhra Pradesh recently is spreading to different regions of the country. The circulation of all four DENV serotypes in Kerala may lead to an increase in the prevalence of more severe complications of this emerging disease, such as dengue haemorrhagic fever and dengue shock syndrome. PMID:23288429

  15. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus

    OpenAIRE

    Hussin A. Rothan; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-01-01

    Background Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLK...

  16. Penentuan Serotipe Virus Dengue dan Gambaran Manifestasi Klinis serta Hematologi Rutin pada Infeksi Virus Dengue

    OpenAIRE

    Basti Andriyoko; Ida Parwati; Anna Tjandrawati; Leni Lismayanti

    2012-01-01

    All DENV serotypes can cause a spectrum of disease from dengue fever (DF) to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It is difficult to differentiate clinical characteristicand hematologic result for each serotype. Aim of this study were to determine dengue serotype and describe clinical manifestation of DF, DHF, DSS and routine hematologic results, i.e.haemoglobin, hematocrit, leukocyte, and thrombocyte in each serotype. This study was conducted at Dr. Hasan Sadikin H...

  17. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus.

    Science.gov (United States)

    Olagnier, David; Amatore, Donatella; Castiello, Luciano; Ferrari, Matteo; Palermo, Enrico; Diamond, Michael S; Palamara, Anna Teresa; Hiscott, John

    2016-08-28

    Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus. PMID:27130436

  18. Phylogenetic reconstruction of dengue virus type 2 in Colombia

    Directory of Open Access Journals (Sweden)

    Méndez Jairo A

    2012-03-01

    Full Text Available Abstract Background Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and sub-tropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2 has been involved in the most important outbreaks during the last 20 years, including 2010 when the fatality rate highly increased. As there are no major studies reviewing virus origin and genotype distribution in this country, the present study attempts to reconstruct the phylogenetic history of DENV-2 using a sequence analysis from a 224 bp PCR-amplified product corresponding to the carboxyl terminus of the envelope (E gene from 48 Colombian isolates. Results As expected, the oldest isolates belonged to the American genotype (subtype V, but the strains collected since 1990 represent the American/Asian genotype (subtype IIIb as previously reported in different American countries. Interestingly, the introduction of this genotype coincides with the first report of dengue hemorrhagic fever in Colombia at the end of 1989 and the increase of cases during the next years. Conclusion After replacement of the American genotype, several lineages of American/Asian subtype have rapidly spread all over the country evolving in new clades. Nevertheless, the direct association of these new variants in the raise of lethality rate observed during the last outbreak has to be demonstrated.

  19. Typing of Dengue Viruses in Clinical Specimens and Mosquitoes by Single-Tube Multiplex Reverse Transcriptase PCR

    OpenAIRE

    Harris, Eva; Roberts, T. Guy; Smith, Leila; Selle, John; Kramer, Laura D; Valle, Sonia; Sandoval, Erick; Balmaseda, Angel

    1998-01-01

    In recent years, dengue viruses (serotypes 1 to 4) have spread throughout tropical regions worldwide. In many places, multiple dengue virus serotypes are circulating concurrently, which may increase the risk for the more severe form of the disease, dengue hemorrhagic fever. For the control and prevention of dengue fever, it is important to rapidly detect and type the virus in clinical samples and mosquitoes. Assays based on reverse transcriptase (RT) PCR (RT-PCR) amplification of dengue viral...

  20. Dengue Virus Serotypes in Three Districts/Municipalities with Different Endemicity Level of Dengue in West Java

    Directory of Open Access Journals (Sweden)

    Heni Prasetyowati

    2010-12-01

    Full Text Available The incidence rate of Dengue Hemorrhagic Fever (DHF disease in Indonesia is increasing over years. DHF outbreaks happen in many provinces of Indonesia. West Java is a DHF endemic province. Nearly all districts/municipalities at the West Java Province are endemic areas and have reported DHF outbreaks. Factors supporting high incidence rate of DHF are tropical climate of Indonesia and the circulation of four dengue virus serotypes. The study aimed to identify dengue virus serotype distribution in the districts with different DHF endemic at the Province of Jawa Barat.The study was observational with cross sectional design. Samples consisted of 60 samples of blood serum of patients serologically infected by dengue virus. Samples came from three districts/municipalities with different DHF endemic. Dengue virus serotype of samples was detected using nested RT-PCR (Reserve Transcription Polymerase Chain Reaction examination.Results showed that, four serotypes of dengue virus could be isolated from serum samples. Out of all positive samples, Den-2 was the serotype most frequently appeared (55% followed by Den-3 (29%, Den-1 (9.6% and Den-4 (6.4%. At dengue high endemic areas there were 4 serotypes of dengue virus Den-3 (6 times, Den-2(twice, Den-4 and Den-1 (once each. At medium endemic areas there were 4 serotypes of dengue virus, i.e. Den-2 (9 times, Den-3 (twice, Den-1 and Den-4 (once each. At low endemic areas there were two serotypes, i.e. Den-2 (6 times and Den-1 (once.

  1. Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses.

    OpenAIRE

    Sum Magdline; Wang Seok; Cardosa Mary; Tio Phaik

    2002-01-01

    Abstract Background In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses. Results Convalescent sera from 69 individuals who were known to have had dengue or Japanese encephalitis virus infection were tested by western blotting against dengue, Japanese encephalitis and ...

  2. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand

    OpenAIRE

    Fansiri, Thanyalak; Pongsiri, Arissara; Klungthong, Chonticha; Ponlawat, Alongkot; Thaisomboonsuk, Butsaya; Lambrechts, Louis; Jarman, Richard G; Scott, Thomas W.

    2016-01-01

    International audience Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype 9 genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito p...

  3. New Mouse Model for Dengue Virus Vaccine Testing

    OpenAIRE

    Johnson, Alison J.; Roehrig, John T.

    1999-01-01

    Several dengue (DEN) virus vaccines are in development; however, the lack of a reliable small animal model in which to test them is a major obstacle. Because evidence suggests that interferon (IFN) is involved in the human anti-DEN virus response, we tested mice deficient in their IFN functions as potential models. Intraperitoneally administered mouse-adapted DEN 2 virus was uniformly lethal in AG129 mice (which lack alpha/beta IFN and gamma IFN receptor genes), regardless of age. Immunized m...

  4. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki.

    Science.gov (United States)

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2-9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2'CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS-NP computational analysis. The ChemGPS-NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  5. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki

    Science.gov (United States)

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2–9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  6. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  7. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Science.gov (United States)

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  8. Dengue hemorrhagic fever

    Science.gov (United States)

    Hemorrhagic dengue; Dengue shock syndrome; Philippine hemorrhagic fever; Thai hemorrhagic fever; Singapore hemorrhagic fever ... Four different dengue viruses are known to cause dengue hemorrhagic fever. Dengue hemorrhagic fever occurs when a person is bitten by ...

  9. Biological characteristics of dengue virus and potential targets for drug design

    Institute of Scientific and Technical Information of China (English)

    Rui-feng Qi; Ling Zhang; Cheng-wu Chi

    2008-01-01

    Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antiviral drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the progress on studies of vaccines and drugs based on potential targets of the dengue virus.

  10. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1.

    Directory of Open Access Journals (Sweden)

    Sukmal Fahri

    Full Text Available Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.

  11. Unusual dengue virus 3 epidemic in Nicaragua, 2009.

    Directory of Open Access Journals (Sweden)

    Gamaliel Gutierrez

    2011-11-01

    Full Text Available The four dengue virus serotypes (DENV1-4 cause the most prevalent mosquito-borne viral disease affecting humans worldwide. In 2009, Nicaragua experienced the largest dengue epidemic in over a decade, marked by unusual clinical presentation, as observed in two prospective studies of pediatric dengue in Managua. From August 2009-January 2010, 212 dengue cases were confirmed among 396 study participants at the National Pediatric Reference Hospital. In our parallel community-based cohort study, 170 dengue cases were recorded in 2009-10, compared to 13-65 cases in 2004-9. In both studies, significantly more patients experienced "compensated shock" (poor capillary refill plus cold extremities, tachycardia, tachypnea, and/or weak pulse in 2009-10 than in previous years (42.5% [90/212] vs. 24.7% [82/332] in the hospital study (p<0.001 and 17% [29/170] vs. 2.2% [4/181] in the cohort study (p<0.001. Signs of poor peripheral perfusion presented significantly earlier (1-2 days in 2009-10 than in previous years according to Kaplan-Meier survival analysis. In the hospital study, 19.8% of subjects were transferred to intensive care, compared to 7.1% in previous years - similar to the cohort study. DENV-3 predominated in 2008-9, 2009-10, and 2010-11, and full-length sequencing revealed no major genetic changes from 2008-9 to 2010-11. In 2008-9 and 2010-11, typical dengue was observed; only in 2009-10 was unusual presentation noted. Multivariate analysis revealed only "2009-10" as a significant risk factor for Dengue Fever with Compensated Shock. Interestingly, circulation of pandemic influenza A-H1N1 2009 in Managua was shifted such that it overlapped with the dengue epidemic. We hypothesize that prior influenza A H1N1 2009 infection may have modulated subsequent DENV infection, and initial results of an ongoing study suggest increased risk of shock among children with anti-H1N1-2009 antibodies. This study demonstrates that parameters other than serotype, viral

  12. Automated type specific ELISA probe detection of amplified NS3 gene products of dengue viruses.

    OpenAIRE

    Chow, V T; Yong, R Y; Ngoh, B L; Chan, Y. C.

    1997-01-01

    AIM: To apply an automated system of nucleic acid hybridisation coupled with the enzyme linked immunosorbent assay (ELISA) for the type specific detection of amplification products of dengue viruses. METHODS: Non-structural 3 (NS3) gene targets of reference strains of all four dengue and other flaviviruses, as well as dengue patient viraemic sera, were subjected to reverse transcription and polymerase chain reaction using consensus and dengue type specific primers and digoxigenin-11-dUTP labe...

  13. A Cluster of Transverse Myelitis Following Dengue Virus Infection in the Brazilian Amazon Region

    OpenAIRE

    de Sousa, Adriano Miranda; Alvarenga, Marina Papais; Alvarenga, Regina Maria Papais

    2014-01-01

    Background and Purpose: During the last two decades, clinical reports have begun to place increasing emphasis on the possible neurological complications related to dengue. However, reports of cases with myelitis post dengue are rare. This study describes an unprecedented cluster of transverse myelitis following a dengue virus infection. Methods: 51 possible cases of neurological complications related to dengue were identified by the epidemiological surveillance of the State of Rondônia, Brazi...

  14. KDEL Receptors Assist Dengue Virus Exit from the Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    Ming Yuan Li

    2015-03-01

    Full Text Available Membrane receptors at the surface of target cells are key host factors for virion entry; however, it is unknown whether trafficking and secretion of progeny virus requires host intracellular receptors. In this study, we demonstrate that dengue virus (DENV interacts with KDEL receptors (KDELR, which cycle between the ER and Golgi apparatus, for vesicular transport from ER to Golgi. Depletion of KDELR by siRNA reduced egress of both DENV progeny and recombinant subviral particles (RSPs. Coimmunoprecipitation of KDELR with dengue structural protein prM required three positively charged residues at the N terminus, whose mutation disrupted protein interaction and inhibited RSP transport from the ER to the Golgi. Finally, siRNA depletion of class II Arfs, which results in KDELR accumulation in the Golgi, phenocopied results obtained with mutagenized prME and KDELR knockdown. Our results have uncovered a function for KDELR as an internal receptor involved in DENV trafficking.

  15. Dengue Virus Detection Using Whole Blood for Reverse Transcriptase PCR and Virus Isolation▿

    OpenAIRE

    Klungthong, Chonticha; Gibbons, Robert V.; Thaisomboonsuk, Butsaya; Nisalak, Ananda; Kalayanarooj, Siripen; Thirawuth, Vipa; Nutkumhang, Naowayubol; Mammen, Mammen P; Jarman, Richard G.

    2007-01-01

    Dengue is one of the most important diseases in the tropical and subtropical regions of the world, with an estimated 2.5 billion people being at risk. Detection of dengue virus infections has great importance for the clinical management of patients, surveillance, and clinical trial assessments. Traditionally, blood samples are collected in serum separator tubes, processed for serum, and then taken to the laboratory for analysis. The use of whole blood has the potential advantages of requiring...

  16. Characteristics of Mild Dengue Virus Infection in Thai Children

    OpenAIRE

    Yoon, In-Kyu; Srikiatkhachorn, Anon; Hermann, Laura; Buddhari, Darunee; Scott, Thomas W; Jarman, Richard G.; Aldstadt, Jared; Nisalak, Ananda; Thammapalo, Suwich; Bhoomiboonchoo, Piraya; Mammen, Mammen P.; Green, Sharone; Gibbons, Robert V.; Endy, Timothy P.; Alan L Rothman

    2013-01-01

    A four-year longitudinal cohort and geographic cluster study in rural Thailand was conducted to characterize the clinical spectrum of dengue virus (DENV) infection. Symptomatic DENV infections in the cohort were detected by active school absence–based surveillance that triggered cluster investigations around ill cohort children. Data from 189 cohort children with symptomatic DENV infection and 126 contact children in the clusters with DENV infection were analyzed. Of infected contacts, only 1...

  17. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses

    OpenAIRE

    Wang, Eryu; Ni, Haolin; Xu, Renling; Barrett, Alan D. T.; Watowich, Stanley J.; Gubler, Duane J.; Weaver, Scott C.

    2000-01-01

    Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested...

  18. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    OpenAIRE

    Maurice Demanou; Régis Pouillot; Marc Grandadam; Pascal Boisier; Basile Kamgang; Jean Pierre Hervé; Christophe Rogier; Dominique Rousset; Christophe Paupy

    2014-01-01

    Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon.A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characterist...

  19. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon

    OpenAIRE

    Demanou, Maurice; Pouillot, Régis; Grandadam, Marc; Boisier, Pascal; Kamgang, Basile; Hervé, Jean Pierre; Rogier, Christophe; Rousset, Dominique; Paupy, Christophe

    2014-01-01

    Background: Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon. Methodology/Principal Findings: A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sa...

  20. Mouse models to study dengue virus immunology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Raphaël M. Zellweger

    2014-04-01

    Full Text Available The development of a compelling murine model of dengue virus (DENV infection has been challenging, because dengue virus clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows to investigate questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of antiviral drug or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.

  1. Dengue

    Science.gov (United States)

    ... take... Epidemiology Transmission, information on epidemics and stats... Entomology & Ecology Mosquito that spreads dengue and its ecology... ... Prevention If You Think You Have Dengue Epidemiology Entomology/Ecology Mosquito Life-Cycle Mosquito Aquatic Habitats Dengue ...

  2. Screening of Tephrosia purpurea Compounds as Potential Inhibitor for Dengue Virus NS2B / NS3 Protease

    OpenAIRE

    Dhanushkodi Athirstalaxmi; Sakkanan Ilango; Palraj Sugapriya Menaga

    2015-01-01

    Dengue is a mosquito-borne viral disease caused by dengue virus and the infection becomes a serious health concern globally because of the high mortality rate. Due to the high prevalence of dengue viral infections and having no specific treatment, the development of novel antiviral agents is essential to control of dengue virus. Antiviral substances obtained from natural products and are commonly prescribed for the dengue patients but there are no scientific evidences for its activity against...

  3. Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity

    OpenAIRE

    1989-01-01

    The severe complications of dengue virus infections, hemorrhagic manifestation and shock, are much more commonly observed during secondary infections caused by a different serotype of dengue virus than that which caused the primary infections. It has been speculated, therefore, that dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are caused by serotype crossreactive immunopathological mechanisms. We analyzed clones of dengue serotype crossreactive T lymphocytes derived from the...

  4. Transmission of dengue virus without a mosquito vector: nosocomial mucocutaneous transmission and other routes of transmission.

    Science.gov (United States)

    Chen, Lin H; Wilson, Mary E

    2004-09-15

    We report a case of dengue fever in a Boston-area health care worker with no recent history of travel but with mucocutaneous exposure to infected blood from a febrile traveler who had recently returned from Peru. Serologic tests confirmed acute dengue virus infection in both the traveler and the health care worker. We believe that this is the first documented case of dengue virus transmission via the mucocutaneous route. We present case reports and review other ways that dengue virus has been transmitted without a mosquito vector. PMID:15472803

  5. Evaluation of an Enzyme Immunoassay for Detection of Dengue Virus NS1 Antigen in Human Serum▿

    OpenAIRE

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R. T.; Rodrigues, Sueli G.; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-01-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the ...

  6. Identification of covalent active site inhibitors of dengue virus protease

    Science.gov (United States)

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  7. Identification of covalent active site inhibitors of dengue virus protease.

    Science.gov (United States)

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  8. Comparison of Rapid Centrifugation Assay with Conventional Tissue Culture Method for Isolation of Dengue 2 Virus in C6/36-HT Cells

    OpenAIRE

    Roche, Rosmari Rodríguez; Alvarez, Mayling; María G. Guzmán; Morier, Luis; Kourí, Gustavo

    2000-01-01

    A rapid centrifugation assay was compared with conventional tube cell culture for dengue virus isolation in both sera and autopsy samples from dengue and dengue hemorrhagic fever/dengue shock syndrome fatal cases. The rapid centrifugation assay allowed isolation of virus from 16.6% more samples than the conventional method, and it shortened the time for dengue virus detection. Finally, it allowed the isolation of dengue 2 virus in 42.8% of tissue samples from five fatal cases. Our results sug...

  9. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    Science.gov (United States)

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  10. Dengue virus-infected Aedes aegypti in the home environment.

    Science.gov (United States)

    Garcia-Rejon, Julian; Loroño-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis; Del Pilar Rosado-Paredes, Elsy; Rivero-Cardenas, Nubia; Najera-Vazquez, Rosario; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Gonzalez-Martinez, Pedro; Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Beaty, Barry J; Eisen, Lars

    2008-12-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes. PMID:19052309

  11. The cellular bases of antibody responses during dengue virus infection

    Directory of Open Access Journals (Sweden)

    Juan Carlos Yam-Puc

    2016-06-01

    Full Text Available Dengue virus (DENV is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell dependent processes, we know rather little about the (acute, chronic or memory B cell responses and the complex cellular mechanisms generating these Abs during DENV infections.This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events like the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation and germinal centers (GCs formation (the source of affinity-matured class-switched memory Abs, till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  12. Co-distribution and Co-infection of Chikungunya and Dengue Viruses.

    OpenAIRE

    Furuya-Kanamori, L.; Liang, S.; Milinovich, G; Soares Magalhaes, RJ; Clements, AC; Hu, W; Brasil, P; Frentiu, FD; Dunning, R.; Yakob, L

    2016-01-01

    Background Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. Methods Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in ...

  13. DENVirDB: A web portal of Dengue Virus sequence information on Asian isolates

    OpenAIRE

    Mary J. Asnet; Amal GP Rubia; G. Ramya; R. Nithya Nagalakshmi; R Shenbagarathai

    2014-01-01

    DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV), the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates...

  14. Co-distribution and co-infection of chikungunya and dengue viruses.

    OpenAIRE

    Furuya-Kanamori, L.; Liang, S.; Milinovich, G; Soares Magalhaes, RJ; Clements, AC; Hu, W; Brasil, P; Frentiu, FD; Dunning, R; Yakob, L

    2016-01-01

    Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same pati...

  15. Co-distribution and Co-infection of Chikungunya and Dengue Viruses.

    OpenAIRE

    Furuya-Kanamori, Luis; Liang, Shaohong; Milinovich, Gabriel; Soares Magalhaes, Ricardo J.; Archie C.A. Clements; Hu, Wenbiao; Brasil, Patricia; Frentiu, Francesca D.; Dunning, Rebecca; Yakob, Laith

    2016-01-01

    Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. A...

  16. Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J.; Kroeger, Axel

    2015-01-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control. PMID:25625483

  17. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  18. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones.

    OpenAIRE

    Kurane, I; Brinton, M A; Samson, A L; Ennis, F A

    1991-01-01

    Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone re...

  19. Microevolutionary trends of dengue virus-3 in Kerala, India.

    Science.gov (United States)

    Thomas, Mittu; Kumar, N Pradeep

    2015-04-01

    Envelope gene is of great evolutionary significance and had been targeted as the vaccine candidate for dengue virus. We analyzed partial sequences of this gene to understand its genetic variability among viral isolates from Kerala state, India, if any. The current study focused on the evolutionary trends of this phylogenetically important gene among DENV-3 isolates through 2008 to 2010 outbreaks. The results gave an insight into the microevolutionary trends of the dengue viral genome. A unique mutation was recorded in the Domain II of the Envelope gene (EDII) of the viral genome at the amino acid position 219 (A219T). The evolutionary implication of this non-synonymous mutation near the EDI/EDII hinge remains to be explored. The study also provided knowledge on the genetic ancestral history of the viral isolates. Two variants of different phylogenetic origin were recorded in Kerala State. The findings in the study have significant implications on the development of dengue vaccines based on the Envelope gene of the virus. PMID:26011986

  20. Castanospermine, a Potent Inhibitor of Dengue Virus Infection In Vitro and In Vivo

    OpenAIRE

    Whitby, Kevin; Pierson, Theodore C.; Geiss, Brian; Lane, Kelly; Engle, Michael; Zhou, Yi; Doms, Robert W.; Diamond, Michael S

    2005-01-01

    Previous studies have suggested that α-glucosidase inhibitors such as castanospermine and deoxynojirimycin inhibit dengue virus type 1 infection by disrupting the folding of the structural proteins prM and E, a step crucial to viral secretion. We extend these studies by evaluating the inhibitory activity of castanospermine against a panel of clinically important flaviviruses including all four serotypes of dengue virus, yellow fever virus, and West Nile virus. Using in vitro assays we demonst...

  1. Kinetics of dengue virus-specific serum immunoglobulin classes and subclasses correlate with clinical outcome of infection.

    NARCIS (Netherlands)

    P. Koraka (Penelopie); C. Suharti (Catarina); T.E. Setiati (Tatty); A.T.A. Mairuhu; E.C.M. van Gorp (Eric); C.E. Hack (Erik); M. Juffrie; J. Sutaryo; G.M. van der Meer; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2001-01-01

    textabstractThe kinetics of dengue virus (DEN)-specific serum immunoglobulin classes (immunoglobulin M [IgM] and IgA) and subclasses (IgG1 to IgG4) were studied in patients suffering from dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Serum samples from non-DEN f

  2. Penentuan Serotipe Virus Dengue dan Gambaran Manifestasi Klinis serta Hematologi Rutin pada Infeksi Virus Dengue

    Directory of Open Access Journals (Sweden)

    Basti Andriyoko

    2012-12-01

    Full Text Available All DENV serotypes can cause a spectrum of disease from dengue fever (DF to dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. It is difficult to differentiate clinical characteristicand hematologic result for each serotype. Aim of this study were to determine dengue serotype and describe clinical manifestation of DF, DHF, DSS and routine hematologic results, i.e.haemoglobin, hematocrit, leukocyte, and thrombocyte in each serotype. This study was conducted at Dr. Hasan Sadikin Hospital Bandung from March 2010 until July 2011. Subjects were dengue patients aged >14 years with a history of fever <5 days. Blood samples were taken for serotype determination by reverse transcription polymerase chain reaction (RT-PCR followed by semi-nested PCR. Clinical manifestation data and haematologic result were obtained from medical records. This was a descriptive study. Seventy five patients were included in this study. Dengue serotype can be detected in 27 (36% samples with DENV-3 (13 were dominating followed by DENV-2 (8, DENV-4 (4, and DENV-1 (2. DHF was mainly found in DENV-3. DENV-2 gavethe highest decrease in hemoglobin, highest percentage increase in haematocrit, lowest leukocyte, and lowest thrombocyte. In conclusion, all 4 serotypes are found in RSUP Dr. Hasan Sadikin Hospital Bandung with DENV-3 domination. DHF is mainly caused by DENV-3.

  3. Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.

    Science.gov (United States)

    Ye, Yixin H; Ng, Tat Siong; Frentiu, Francesca D; Walker, Thomas; van den Hurk, Andrew F; O'Neill, Scott L; Beebe, Nigel W; McGraw, Elizabeth A

    2014-03-01

    Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination. PMID:24420782

  4. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    Science.gov (United States)

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  5. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses.

    Science.gov (United States)

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-07-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  6. Molecular epidemiological study of dengue virus type 1 in Taiwan.

    Science.gov (United States)

    Hwang, Kao-Pin; Chu, Pei-Yu; Tung, Yi-Ching; Wang, Heng-Lin; Yueh, Yi-Yun; Wu, Ying-Chang; Chin, Chuan; Lin, Kuei-Hsiang

    2003-07-01

    Taiwan has experienced several major outbreaks of dengue (DEN) virus since 1981. The predominant virus type involved has been dengue virus type one (DEN-1), which first appeared in 1987. To understand the molecular epidemiology of this virus, 15 strains of DEN-1 isolated during 1987-1991 and 1994-1995, including 11 epidemic strains, two sporadic strains, and two imported strains have been studied. Fragments of 490 nucleotides (nt) from the E/NS1 junction were amplified by reverse transcription-polymerase chain reaction and the nt sequences were determined. Of the 490 nt of the E/NS1 junction, 240 nt (nt 2282-2521) were aligned and compared. Nucleotide substitutions were found at 54 positions among 15 isolates. Most nt changes were synonymous substitutions, and only three amino acid changes were found. A total of 61 strains isolated worldwide were analyzed by the Neighbor-joining method, and separated phylogenetically into three distinct genotypes, I-III. Genotype I comprised isolates from Japan and Hawaii collected in the 1940s. Genotype II included most strains isolated from Asia in 1977-1995. Genotype III consisted of isolates from three continents in 1964-1995: Asia, the Americas, and Africa. Genotype III was divided further into two subgenotypes, IIIA and IIIB. Most recent isolates from Taiwan, except for the sporadic strain isolated in 1995, were similar genetically and have been classified as Genotype II. PMID:12767004

  7. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java

    OpenAIRE

    Herman Kosasih; Bachti Alisjahbana; Nurhayati,; Quirijn de Mast; Irani F Rudiman; Susana Widjaja; Ungke Antonjaya; Harli Novriani; Susanto, Nugroho H.; Hadi Jusuf; Andre van der Ven; Beckett, Charmagne G.; Blair, Patrick J; Burgess, Timothy H.; Maya Williams

    2016-01-01

    Background Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology o...

  8. Enhanced performance of an innovative dengue IgG/IgM rapid diagnostic test using an anti-dengue EDI monoclonal antibody and dengue virus antigen

    OpenAIRE

    Jihoo Lee; Young-Eun Kim; Hak-Yong Kim; Mangalam Sinniah; Chom-Kyu Chong; Hyun-Ok Song

    2015-01-01

    High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first ...

  9. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A;

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...

  10. Evaluation of the MRL diagnostics dengue fever virus IgM capture ELISA and the PanBio Rapid Immunochromatographic Test for diagnosis of dengue fever in Jamaica.

    Science.gov (United States)

    Palmer, C J; King, S D; Cuadrado, R R; Perez, E; Baum, M; Ager, A L

    1999-05-01

    We evaluated two new commercial dengue diagnostic tests, the MRL Diagnostics Dengue Fever Virus IgM Capture ELISA and the PanBio Rapid Immunochromatographic Test, on serum samples collected during a dengue epidemic in Jamaica. The MRL ELISA method correctly identified 98% (78 of 80) of the samples as dengue positive, while the PanBio test identified 100% (80 of 80). Both tests were 100% (20 samples of 20) specific. PMID:10203534

  11. Evaluation of the MRL Diagnostics Dengue Fever Virus IgM Capture ELISA and the PanBio Rapid Immunochromatographic Test for Diagnosis of Dengue Fever in Jamaica

    OpenAIRE

    Palmer, Carol J.; King, S. Dorothy; Cuadrado, Raul R.; Perez, Eddy; Baum, Mariana; Ager, Arba L.

    1999-01-01

    We evaluated two new commercial dengue diagnostic tests, the MRL Diagnostics Dengue Fever Virus IgM Capture ELISA and the PanBio Rapid Immunochromatographic Test, on serum samples collected during a dengue epidemic in Jamaica. The MRL ELISA method correctly identified 98% (78 of 80) of the samples as dengue positive, while the PanBio test identified 100% (80 of 80). Both tests were 100% (20 samples of 20) specific.

  12. Dengue em crianças: da notificação ao óbito Dengue en niños: de la notificación al óbito Dengue in children: from notification to death

    Directory of Open Access Journals (Sweden)

    Adriana Helena M. Abe

    2012-06-01

    , además de documentos oficiales del Ministerio de Salud. La búsqueda incluyó trabajos publicados en el periodo de enero de 1980 a marzo de 2011. Los descriptores utilizados fueron: dengue, dengue en niño, dengue en pediatría y notificación de enfermedades. SÍNTESIS DE LOS DATOS: Todos los artículos encontrados fueron evaluados y se buscó establecer una línea de tiempo y principales informaciones alusivas al tema, factores referentes al virus y al vector también fueron incluidos; informaciones sobre las características clínicas y la importancia de las notificaciones fueron señaladas, además de la relevante investigación y elucidación de todos los óbitos notificados. Existe un gran número de estudios sobre el tema, pero se dio más énfasis a aquellos relativos a los niños. CONCLUSIONES: El conocimiento de esta enfermedad, que se configura como principal enfermedad emergente y reemergente en la actualidad, es fundamental para diagnóstico temprano, tratamiento oportuno y prevención de óbitos. Hay una laguna en la notificación adecuada en Pediatría, así como en el detallar los óbitos en niños víctimas de dengue.OBJECTIVES: To report the historical aspects, epidemiological and clinical features of dengue fever in children, stressing the importance of disease reporting for prevention of deaths and morbidity in children. DATA SOURCE: A review of the major studies published on dengue and dengue in children was performed. The following databases Lilacs, SciELO, Medline and Scopus were studied along with official documents of the Ministry of Health of Brazil. The search covered the period from January 1980 to March 2011 and a combination of the following terms was applied: dengue, dengue in children, pediatric dengue, and disease notification. DATA SYNTHESIS: All studied found were evaluated and a timeline and key information connected to the theme were established; factors related to the virus and the vector were also included, and information on the

  13. Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors

    Directory of Open Access Journals (Sweden)

    Carolina De La Guardia

    2014-01-01

    Full Text Available Dengue fever, a reemerging disease, is putting nearly 2.5 billion people at risk worldwide. The number of infections and the geographic extension of dengue fever infection have increased in the past decade. The disease is caused by the dengue virus, a flavivirus that uses mosquitos Aedes sp. as vectors. The disease has several clinical manifestations, from the mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, there is no approved drug for the treatment of dengue disease or an effective vaccine to fight the virus. Therefore, the search for antivirals against dengue virus is an active field of research. As new possible receptors and biological pathways of the virus biology are discovered, new strategies are being undertaken to identify possible antiviral molecules. Several groups of researchers have targeted the initial step in the infection as a potential approach to interfere with the virus. The viral entry process is mediated by viral proteins and cellular receptor molecules that end up in the endocytosis of the virion, the fusion of both membranes, and the release of viral RNA in the cytoplasm. This review provides an overview of the targets and progress that has been made in the quest for dengue virus entry inhibitors.

  14. Drug repurposing of minocycline against dengue virus infection.

    Science.gov (United States)

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-01

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. PMID:27396621

  15. Dengue virus type 3 in Brazil: a phylogenetic perspective

    Directory of Open Access Journals (Sweden)

    Josélio Maria Galvão de Araújo

    2009-05-01

    Full Text Available Circulation of a new dengue virus (DENV-3 genotype was recently described in Brazil and Colombia, but the precise classification of this genotype has been controversial. Here we perform phylogenetic and nucleotide-distance analyses of the envelope gene, which support the subdivision of DENV-3 strains into five distinct genotypes (GI to GV and confirm the classification of the new South American genotype as GV. The extremely low genetic distances between Brazilian GV strains and the prototype Philippines/L11423 GV strain isolated in 1956 raise important questions regarding the origin of GV in South America.

  16. Dengue virus presence and surveillance in Okinawa (Review).

    Science.gov (United States)

    Sakudo, Akikazu; Onodera, Takashi; Shintani, Hideharu; Ikuta, Kazuyoshi

    2012-01-01

    Recent reports have shown that the dengue virus (DENV) is a serious concern worldwide, especially in subtropical areas such as South-East Asia. With the development of transportation systems, the risk of DENV infection spreading is increasing. Since mosquitoes transmit DENV to humans, surveillance of DENV-infected mosquito vectors is the most effective approach for preventing DENV. Okinawa is the only prefecture located in a subtropical region in Japan and historically shows continuous importation of DENV-related mosquito vectors. In this review, we describe the current and historical status of DENV in Okinawa. PMID:22969837

  17. A portable approach for the surveillance of dengue virus-infected mosquitoes.

    Science.gov (United States)

    Muller, David A; Frentiu, Francesca D; Rojas, Alejandra; Moreira, Luciano A; O'Neill, Scott L; Young, Paul R

    2012-07-01

    Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses. PMID:22575689

  18. DETECTABLE ANTI-DENGUE VIRUS IGM ANTIBODIES AMONG HEALTHY INDIVIDUALS IN OGBOMOSO, OYO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    E. K. Oladipo

    2014-01-01

    Full Text Available Dengue fever is a zoonosis maintained in nature by mosquitoes transmitting virus between non-human primate species, most of which develop clinically in apparent infection. It has been found to be endemic in Africa and beyond. A survey for Dengue virus IgM antibody was carried out in Ogbomoso (urban and rural areas using Enzyme Linked Immunosorbent Assay (WKEA Med Supplies Corp, Dengue fever virus ELISA Kit (China, to determine the seroprevalence and true incidence of dengue virus in Ogbomoso. A total of 186 apparently healthy individuals were recruited into the study. The sera of 93 subjects who consented to participate were collected. The mean age of the subjects tested was 37.6±1.67. Anti-Dengue virus IgM antibodies were found in 16/93, (17.2%. The highest prevalence of anti-Dengue 28.6% was found in persons whose ages were between 0-15 years, males (18.9%, civil servants (26.3% and urban dwellers (21.3%. The findings from this study show that there is primary infection of this virus in Ogbomoso and suggest the need for preventive and control measures against dengue fever virus.

  19. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication.

    Science.gov (United States)

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  20. Apropos: ‘Preliminary evaluation on the efficiency of the kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus in dried Aedes aegypti: a potential tool to improve dengue surveillance’

    OpenAIRE

    Arya, Subhash C.; Agarwal, Nirmala

    2014-01-01

    Only simple, point-of-care, assay formats of the Platellia Dengue NS1 Ag-ELISA would be suitable to identify Dengue virus in Aedes aegypti mosquitoes in dengue-endemic areas lacking sophisticated laboratory infrastructure and trained laboratory personnel.

  1. Tipificación molecular del virus dengue 3 durante el brote epidémico de dengue clásico en Lima, Perú, 2005

    Directory of Open Access Journals (Sweden)

    Enrique Mamani Z

    2005-07-01

    Full Text Available Objetivos: Identificar mediante trascripción reversa-reacción en cadena de la polimerasa (RT-PCR y sitios específicos de restricción - reacción en cadena de la polimerasa (RSS-PCR al agente causal del brote epidémico presentado en el distrito de Comas, Lima en abril del año 2005. Materiales y métodos: veinte muestras de suero colectadas durante el brote de dengue fueron procesados por RT-PCR para determinar el serotipo, esta técnica se realizó en un solo paso. Luego se aplicó la técnica RSS-PCR para la identificación del genotipo circulante y se corroboraron los resultados posteriormente con aislamiento viral y secuenciamiento. Resultados: El análisis del RTPCR del ARN extraído de las muestras presentó un producto amplificado de 290pb que corresponden al dengue serotipo 3 (DEN 3. El análisis de los productos de RSS-PCR del ARN extraído a partir de aislamientos de DEN 3 correspondió al patrón C, incluido en el genotipo III. Los aislamientos de los virus dengue 3 en líneas celulares C6/36, tipificadas por IFI y el secuenciamiento genético confirmaron los resultados obtenidos por las pruebas previamente descritas. Conclusión: Durante el brote epidémico de dengue clásico en Lima, circuló el genotipo III del virus DEN 3.

  2. Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2

    OpenAIRE

    Lee, Sau Har; Tang, Yin Quan; Rathkrishnan, Anusyah; Wang, Seok Mui; Ong, Kien Chai; Manikam, Rishya; Payne, Bobby Joe; Jaganath, Indu Bala; Sekaran, Shamala Devi

    2013-01-01

    Background The absence of commercialized vaccines and antiviral agents against dengue has made the disease a major health concern around the world. With the current dengue virus transmission rate and incidences, the development of antiviral drugs is of vital need. The aim of this project was to evaluate the possibility of developing a local medicinal plant, Phyllanthus as an anti-dengue agent. Methods Cocktail (aqueous and methanolic) extracts were prepared from four species of Phyllanthus (P...

  3. Susceptibility and Response of Human Blood Monocyte Subsets to Primary Dengue Virus Infection

    OpenAIRE

    Wong, Kok Loon; Chen, Weiqiang; Balakrishnan, Thavamalar; Toh, Ying Xiu; Fink, Katja; Wong, Siew-Cheng

    2012-01-01

    Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16− and CD16+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16− and CD16+ blood monocyte subsets to primary dengue viru...

  4. Human Immune Responses to Dengue Virus Infection: Lessons Learned from Prospective Cohort Studies

    OpenAIRE

    Endy, Timothy P.

    2014-01-01

    Dengue virus (DENV) continues to spread globally and is a major cause of morbidity and mortality. Currently, there is no antiviral treatment to diminish severe illness or a vaccine to induce protection from infection. An effective dengue vaccine that protects against all four DENV serotypes is a high priority for endemic countries and several candidates are in development by various United States Federal Agencies and private pharmaceutical companies. Challenges faced by dengue vaccine develop...

  5. Global spread of dengue virus types: mapping the 70 year history

    OpenAIRE

    Messina, Jane P; Brady, Oliver J.; Scott, Thomas W; Zou, Chenting; Pigott, David M.; Duda, Kirsten A.; Bhatt, Samir; Katzelnick, Leah; Howes, Rosalind E; Battle, Katherine E.; Cameron P. Simmons; Simon I Hay

    2014-01-01

    Since the first isolation of dengue virus (DENV) in 1943, four types have been identified. Global phenomena such as urbanization and international travel are key factors in facilitating the spread of dengue. Documenting the type-specific record of DENV spread has important implications for understanding patterns in dengue hyperendemicity and disease severity as well as vaccine design and deployment strategies. Existing studies have examined the spread of DENV types at regional or local scales...

  6. Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations

    OpenAIRE

    Halsey, Eric S; Marks, Morgan A.; Gotuzzo, Eduardo; Fiestas, Victor; Suarez, Luis; Vargas, Jorge; Aguayo, Nicolas; Madrid, Cesar; Vimos, Carlos; Kochel, Tadeusz J.; Laguna-Torres, V. Alberto

    2012-01-01

    Background Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence ...

  7. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Directory of Open Access Journals (Sweden)

    Dumrong Mairiang

    Full Text Available The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  8. Immunologic hypo- or non-responder in natural dengue virus infection

    OpenAIRE

    Perng, Guey Chuen; Chokephaibulkit, Kulkanya

    2013-01-01

    Serologically defined primary dengue virus infection and/or subsequent homologous serotype infection is known to be associated with less severe disease as compared with secondary subsequent heterologous serotype infection. In geographical locales of high dengue endemicity, almost all individuals in the population are infected at some point in time and should therefore are at high risk of secondary infection. Interestingly, dengue viremia in healthy blood donors whose sera apparently lack dete...

  9. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs. PMID:26808727

  10. Dengue encephalitis

    OpenAIRE

    Kapil Borawake; Parikshit Prayag; Atul Wagh; Swati Dole

    2011-01-01

    We report a case of dengue fever with features of encephalitis. The diagnosis of dengue was confirmed by the serum antibodies to dengue and the presence of a dengue antigen in the cerebrospinal fluid. This patient had characteristic magnetic resonance imaging brain findings, mainly involving the bilateral thalami, with hemorrhage. Dengue is not primarily a neurotropic virus and encephalopathy is a common finding in Dengue. Hence various other etiological possibilities were considered before c...

  11. Dengue Virus Transmission from Living Donor to Recipient in Liver Transplantation: A Case Report.

    Science.gov (United States)

    Gupta, Raman K; Gupta, Gaurav; Chorasiya, Vishal K; Bag, Pradyut; Shandil, Rajeev; Bhatia, Vikram; Wadhawan, Manav; Vij, Vivek; Kumar, Ajay

    2016-03-01

    Many infections are transmitted from a donor to a recipient through organ transplantations. The transmission of dengue virus from a donor to a recipient in liver transplantation is a rare entity, and currently, there is no recommendation for screening this virus prior to transplantation. We report a case of transmission of dengue virus from donor to recipient after liver transplantation. The recipient had a history of multiple admissions for hepatic encephalopathy and ascites. He was admitted in the ICU for 15 days for chronic liver disease, ascites, and acute kidney injury before transplantation. The donor was admitted 1 day before transplantation. The donor spiked fever on postoperative day 2 followed by thrombocytopenia and elevated liver enzymes. The donor blood test was positive for dengue NS1 antigen. The recipient also had a similar clinical picture on postoperative day 5 and his blood test was also positive for dengue NS1 antigen. Hence, the diagnosis for posttransplant donor-derived allograft-related transmission of dengue infection was made. Both recipient and donor were treated with supportive measures and discharged after their full recovery on postoperative days 9 and 18, respectively. The effect of immunosuppression on dengue presentation is still unclear and there is lack of literature available. In our case, the recipient developed dengue fever similar to general population without showing any feature of severe graft dysfunction. We have concluded that dengue virus can also be transmitted from donor to recipient, and immunosuppression did not have any adverse effect on the evolution of dengue fever within the recipient. Delhi being a hyperendemic zone, screening for donors (especially in season time) for dengue virus seems to be the best preventive method to control donor-derived transmission of dengue to recipient. PMID:27194898

  12. Incidence of dengue virus infection among Japanese travellers, 2006 to 2010

    Directory of Open Access Journals (Sweden)

    Yuki Tada

    2012-06-01

    Full Text Available Introduction: Dengue continues to be a global public health concern. In Japan, although dengue cases are currently seen only among travellers returning from endemic areas, the number of reported cases is rising according to the national case-based surveillance system. We evaluated the characteristics of dengue cases imported into Japan and the relationship between the incidence of infection and season of travel to popular destinations.Methods: Dengue cases reported to the national surveillance system were retrospectively examined. The number of reported cases per number of Japanese travellers to a dengue-endemic country was calculated to estimate the country-specific incidence of imported dengue virus infection. The incidence of dengue infection among Japanese travellers was compared between dengue high season and low season in each country using relative risk (RR and associated 95% confidence intervals (CI.Results: Among 540 Japanese residents who were reported as dengue cases from 2006 to 2010, the majority had travelled to Indonesia, India, the Philippines and Thailand. The RR of dengue infection among Japanese travellers during dengue high season versus low season was 4.92 (95% CI: 3.01–8.04 for the Philippines, 2.76 (95% CI: 1.67–4.54 for Thailand and 0.37 (95% CI: 0.15–0.92 for Indonesia.Discussion: Overall, higher incidence of imported cases appeared to be related to historic dengue high seasons. Travellers planning to visit dengue-endemic countries should be aware of historic dengue seasonality and the current dengue situation.

  13. A prospective evaluation of diagnostic methodologies for the acute diagnosis of dengue virus infection on the Thailand-Myanmar border

    OpenAIRE

    Watthanaworawit, Wanitda; Turner, Paul; Turner, Claudia L.; Tanganuchitcharnchai, Ampai; Jarman, Richard G; Blacksell, Stuart D; Nosten, François H.

    2011-01-01

    Summary Clinically useful diagnostic tests of dengue virus infection are lacking. We prospectively evaluated the performance of real-time reverse transcriptase (rRT)-PCR, NS-1 antigen and IgM antibody tests to confirm dengue virus infection in acute blood specimens from 162 patients presenting with undifferentiated febrile illness compatible with dengue infection. rRT-PCR was the most sensitive test (89%) and potentially could be used as a single test for confirmation of dengue infection. NS-...

  14. Membranotropic regions of the dengue virus prM protein.

    Science.gov (United States)

    Nemésio, Henrique; Villalaín, José

    2014-08-19

    The Dengue virus (DENV) prM protein consists of two moieties, the pr and M domains. Apart from preventing the premature fusion activity of the DENV E protein, prM has several other unknown biological roles, displaying both protein-protein and membrane-protein interactions. Although the prM protein is an essential component of the DENV viral cycle, little is known about its biological functions and what regions of this protein are responsible for said functions. By performing an exhaustive study of membrane rupture induced by a prM peptide library on simple and complex model membranes as well as their ability to modulate the phospholipid phase transitions of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine and 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-glycerol], we identified six membranotropic regions on the prM protein. Apart from the previously identified two transmembrane segments of the protein, one of these regions probably interacts with the fusion E protein and another one, the stem segment, would interact with the membrane modulating its structure. These data will help us understand the molecular mechanism of viral entry and morphogenesis, allow the identification of new targets for the treatment of Dengue virus infection, and make possible the future development of DENV entry inhibitors. PMID:25076193

  15. Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome

    Directory of Open Access Journals (Sweden)

    Buchy Philippe

    2011-08-01

    Full Text Available Abstract Background Dengue virus (DENV infection is the most common arthropod-borne viral disease in man and there are approximately 100 million infections annually. Despite the global burden of DENV infections many important questions regarding DENV pathogenesis remain unaddressed due to the lack of appropriate animal models of infection and disease. A major problem is the fact that no non-human species naturally develop disease similar to human dengue fever (DF or dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Apart from other risk factors for severe dengue such as host genetics and secondary infection with a heterologous DENV, virus virulence is a risk factor that is not well characterized. Results Three clinical DENV-1 isolates from Cambodian patients experiencing the various forms of dengue disease (DF, DHF, and DSS were inoculated in BALB/c mice at three different concentrations. The DENV-1 isolates had different organ and cell tropism and replication kinetics. The DENV-1 isolate from a DSS patient infected the largest number of mice and was primarily neurotropic. In contrast, the DENV-1 isolates from milder clinical dengue cases infected predominantly lungs and liver, and to a lesser extent brain. In addition, infection with the DENV isolate derived from a DSS patient persisted for more than two weeks in a majority of mice compared to the other DENV-1 isolates that peaked during the first week. Conclusions These results confirm the in vitro findings of the same DENV-1 isolates, that showed that the isolate derived from a DSS patient can be distinguished based on phenotypic characteristics that differ from the isolates derived from a DF and DHF case 1. We observed in this study that the DSS virus isolate persist longer in vivo with extensive neuroinvasion in contrast to the other DENV-1 isolates originating in milder human cases. Genomic characterization of the three clinical isolates identified six amino acid substitutions

  16. Dengue virus serotype infection specifies the activation of the unfolded protein response

    Directory of Open Access Journals (Sweden)

    Chevet Eric

    2007-09-01

    Full Text Available Abstract Background Dengue and Dengue hemorrhagic fever have emerged as some of the most important mosquito-borne viral diseases in the tropics. The mechanisms of pathogenesis of Dengue remain elusive. Recently, virus-induced apoptosis mediated by the Unfolded Protein Response (UPR has been hypothesised to represent a crucial pathogenic event in viral infection. In an attempt to evaluate the contribution of the UPR to virus replication, we have characterized each component of this signalling pathway following Dengue virus infection. Results We find that upon Dengue virus infection, A549 cells elicit an UPR which is observed at the level of translation attenuation (as visualized by the phosphorylation of eIF2alpha and activation of specific pathways such as nuclear translocation of ATF-6 and splicing of XBP-1. Interestingly, we find that specific serotype of virus modulate the UPR with different selectivity. In addition, we demonstrate that perturbation of the UPR by preventing the dephosphorylation of the translation initiation factor eIF2alpha using Salubrinal considerably alters virus infectivity. Conclusion This report provides evidence that Dengue infection induces and regulates the three branches of the UPR signaling cascades. This is a basis for our understanding of the viral regulation and conditions beneficial to the viral infection. Furthermore, modulators of UPR such as Salubrinal that inhibit Dengue replication may open up an avenue toward cell-protective agents that target the endoplasmic reticulum for anti-viral therapy.

  17. Associations between Nutritional Status and Age Groups with Dengue Virus Infection Status

    Directory of Open Access Journals (Sweden)

    Asep Jajang Kusnandar

    2012-06-01

    Full Text Available Dengue virus infection not always cause dengue hemorrhagic fever in humans because it depends on other factors, one of which is the immune system that affected by nutritional status and age. This study aims to determine the relationship of nutritional status and age on the dengue virus infection status. The study was conducted in Cirebon regency with cross sectional design. The height and weight was measured and body mass index (BMI was calculated to determine the nutritional status. The results are grouped into two categories, abnormal and normal. Age groups are determined based on the interview, then grouped in the 5 years age groups. Examination of blood samples using a rapid diagnostic test to find out the status of dengue virus infection. The resulting data, then analyzed to determine the relationship between nutritional status and age group with the status of dengue virus infection. The respondents was 200 persons consisting of 86 men and 114 women. Respondents with abnormal nutritional status is 68 respondents (34% and 132 (66% was normal; in < 5 years age group there is 193 respondents (96.50% and 7 respondents (3.5% in < 5 years age group. Blood examination showed 39 respondents (19.50% with positive dengue virus antibody and 161 respondents (80.50% is negative. Bivariate analysis showed the nutritional status and age groups are each associated with dengue virus infection status, with age group as the most influential. It was concluded, nutritional status and age group shown to be associated with dengue virus infection status. Abnormal nutritional status and age group < 5 years are a risk factor for the transmission of dengue virus.

  18. Circulation of Dengue virus-1 (DENV-1 serotype in Delhi, during 2010–11 after Dengue virus-3 (DENV-3 predominance: A single centre hospital-based study

    Directory of Open Access Journals (Sweden)

    Ekta Gupta , Sweta Mohan , Meenu Bajpai , Aashish Choudhary & Gaurav Singh

    2012-06-01

    Full Text Available Background: Delhi, a city in north India, has so far witnessed several reported outbreaks of dengue. Dengue inDelhi from being epidemic is slowly changing towards being endemic and hyper-endemic. Circulating type ofthe virus is also changing over the years. In the absence of an effective vaccine, dengue prevention to a majorextent relies on virological surveillance, and development of effective, locally adapted control programmes. Inthe present study, we tried to identify the between-year non-epidemic serotype of dengue virus circulating inDelhi, during 2010–11.Methods: Acute-phase samples were collected from the patients attending the Institute of Liver & Biliary Sciences,New Delhi, India. Dengue diagnosis was done using WHO case definitions. All the samples were subjected toDengue NS1 Ag ELISA and modified nested RT-PCR.Results: A total of 75 acute-phase samples were received, of which 19 (25.3% were positive for dengue NS1antigen. Dengue RT-PCR was positive in 14.6% (11/75 samples. All the RT-PCR isolates were of DENV-1serotype. No case of concomitant infection with more than one serotype was observed. Median age of involvementwas 23 yr (range10–86. Maximum number of cases were seen in the age group of 21–30 yr. Male to female ratiowas 1.2 : 1. Maximum number of suspected dengue cases (n=79 was seen during September and October.Conclusions: DENV-1 was circulating in Delhi in the year 2010–11 in non-epidemic period following reportedpredominance of DENV-3 and co-circulation of all dengue serotypes in the epidemic years 2003, 2006 and 2007.

  19. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections

    Science.gov (United States)

    Khalid, Bahariah; Ching, Siew-Mooi; Chee, Hui-Yee

    2016-01-01

    Introduction Dengue virus (DENV) infection is currently a major cause of morbidity and mortality in the world; it has become more common and virulent over the past half-century and has gained much attention. Thus, this review compared the percentage of severe cases of both primary and secondary infections with different serotypes of dengue virus. Methods Data related to the number of cases involving dengue fever (DF), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords “(dengue* OR dengue virus*) AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS*) AND (serotypes* OR serogroup*)”, according to the MESH terms suggested by PUBMED and OVID. Results Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA) region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI), 31.22–53.67, 9 studies, n = 598, I2 = 71.53%), whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64–80.89, 4–14 studies, n = 668–3,149, I2 = 14.77–96.20%). Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS) (95% CI, 10.47–40.24, 5–8 studies, n = 642–2,530, I2 = 76.93–97.70%), while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF) (95% CI, 31.86–54.58, 9 studies, n = 674–2,278, I2 = 55.74–88.47%), according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4

  20. El citoesqueleto en la infección con virus dengue

    Directory of Open Access Journals (Sweden)

    Francisco Javier Díaz Castrillón

    2004-03-01

    Full Text Available

    El dengue constituye la enfermedad viral transmitida por artrópodos más frecuente en Colombia y otros países en vías de desarrollo del trópico. La incidencia anual en Colombia es de aproximadamente 50.000 casos. Aunque el dengue tiene baja mortalidad, es una enfermedad con gran impacto económico en países en vía de desarrollo; inclusive podría postularse como un indicador de subdesarrollo.

    Durante los últimos años, debido principalmente al aumento en la temperatura global, el crecimiento de la población humana con planes de urbanización precarios y la alteración de los ecosistemas naturales, ha sido notorio un incremento en la frecuencia del dengue (DF, y la aparición de cuadros clínicos severos, como dengue hemorrágico (DHF y síndrome de choque por dengue (DSS. Las diferencias en la severidad han sido asociadas a infecciones con los diferentes serotipos del virus, potenciación dependiente de anticuerpos (ADE producto de infecciones secundarias con distintos serotipos y al nivel molecular, por la variabilidad genotípica de los virus.

    Con el surgimiento de una nueva rama “Biología Celular de la Infección Viral”, se abren nuevas posibilidades para el estudio de la patogénesis viral, en el contexto de la interacción virus-célula. Dentro de la familia Flaviviridae, algunas publicaciones reportan alteraciones del citoesqueleto en células infectadas con diversos virus, siendo estos resultados claves para el entendimiento de la utilización de la célula por los virus y la comprensión de la relación entre las proteínas celulares y las virales.

    La diferenciación entre DHF y DF ha sido difícil, por lo que nuevos

  1. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV

    Directory of Open Access Journals (Sweden)

    Dayton Andrew I

    2001-11-01

    Full Text Available Abstract Background Toward the goals of providing an additional vector to add to the armamentarium available to HIV vaccinologists and of creating a bivalent vaccine effective against dengue virus and HIV, we have attempted to create vectors which express dengue virus non-structural proteins and HIV immunogens. Previously we reported the successful construction of dengue virus replicons which lack structural genes necessary for virion release and spreading infection in culture but which can replicate intracellularly and abundantly produce dengue non-structural proteins. Here we attempted to express heterologous genetic material from these replicons. Results We cloned into a Δpre-M/E dengue virus replicon genes for either green fluorescent protein (GFP, HIV gp160 or HIV gp120 and tested the ability of these constructs to express dengue virus proteins as well as the heterologous proteins in tissue culture after transfection of replicon RNA. Conclusions Heterologous proteins were readily expressed from these constructs. GFP and gp120 demonstrated minimal or no toxicity. Gp160 expressing replicons were found to express proteins abundantly at 36 hours post transfection, but after 50 hrs of transfection, few replicon positive cells could be found despite the presence of cellular debris positive for replicon proteins. This suggested that gp160 expressed from dengue virus replicons is considerably more toxic than either GFP or gp120. The successful expression of heterologous proteins, including HIV gp120 for long periods in culture suggests this vector system may be useful as a vaccine vector, given appropriate delivery methods.

  2. Callithrix penicillata: a feasible experimental model for dengue virus infection.

    Science.gov (United States)

    Ferreira, Milene Silveira; de Castro, Paulo Henrique Gomes; Silva, Gilmara Abreu; Casseb, Samir Mansur Moraes; Dias Júnior, Antônio Gregório; Rodrigues, Sueli Guerreiros; Azevedo, Raimunda do Socorro da Silva; Costa e Silva, Matheus Fernandes; Zauli, Danielle Alves Gomes; Araújo, Márcio Sobreira Silva; Béla, Samantha Ribeiro; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Vasconcelos, Pedro Fernando da Costa

    2014-01-01

    Although the murine models have the feasibility to reproduce some signs of dengue Virus (DENV) infection, the use of isogenic hosts with polarized immune response patterns does not reproduce the particularities of human disease. Our goal was to investigate the kinetics of peripheral blood biomarkers in immunocompetent Callithrix penicillata non-human primates subcutaneously infected with DENV-3. The viral load of infected animals was determinated by quantitative real time PCR. Measurements of DENV-3/IgM were performed, and several parameters were assessed by hemogram: red blood cells count, hemoglobin, hematocrit, white blood cells count, neutrophils, monocytes, lymphocytes, and platelets count. The coagulogram was performed by prothrombin time (PT), and activated partial thromboplastin time (APTT) assays. The renal function was monitored by urea and creatinine, and the liver function by the aspartate (AST), and alanine (ALT) aminotransferases. Also, the level of the cytokines IL-6, TNF-α, IL-2, IFN-γ, IL-4 and IL-5 was quantified during the experimental study. Data analysis was performed considering relevant differences when baseline fold changes were found outside from 0.75 to 1.5 range. Our data demonstrated that infected animals presented relevant signs of dengue disease, including peaks of viremia at 5 days-post-infection (dpi), peaks of anti-DENV-3 IgM at 15 dpi and hemaglutination inhibition assay (HIA) from 15 to at 60 dpi. Despite early monocytosis, slight neutrophilia and lymphocytosis, animals developed persistent leucopenia starting at 4 dpi. Anemia episodes were steady at 3-4 dpi. Patent thrombocytopenia was observed from 1 to 15 dpi with sporadic decrease of APTT. A substantial increase of ALT and AST was observed with higher peak at 4 dpi. Moreover, early increases of TNF-alpha and IFN-gamma besides late increase of IFN-gamma were observed. The analysis of biomarkers network pointed out two relevant strong axes during early stages of dengue fever

  3. Evaluation of Commercially Available Diagnostic Tests for the Detection of Dengue Virus NS1 Antigen and Anti-Dengue Virus IgM Antibody

    OpenAIRE

    Hunsperger, Elizabeth A.; Sutee Yoksan; Philippe Buchy; Van Vinh Chau Nguyen; Shamala Devi Sekaran; Delia A Enria; Susana Vazquez; Elizabeth Cartozian; Pelegrino, Jose L.; Harvey Artsob; Guzman, Maria G.; Piero Olliaro; Julien Zwang; Martine Guillerm; Susie Kliks

    2014-01-01

    Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed chara...

  4. Dengue Fever/Dengue Haemorrhagic Fever : Case Management

    OpenAIRE

    Nimmannitya, Suchitra

    1995-01-01

    Dengue infections caused by the four antigenically distinct dengue virus serotypes (dengue virus 1, dengue virus 2, dengue virus 3, dengue virus 4) of the family Flavivindae, are the most important arbovirus disease in man, both in terms of morbidity and mortality. The infection is transmitted from man to man by Aedes mosquitoes. Since 1956, dengue virus infection has resulted in more than 3 million hospital admissions and more than 50,000 deaths in Southeast Asia, Western Pacific countries, ...

  5. Evolution of dengue virus in Mexico is characterized by frequent lineage replacement.

    Science.gov (United States)

    Carrillo-Valenzo, Erik; Danis-Lozano, Rogelio; Velasco-Hernández, Jorge X; Sánchez-Burgos, Gilma; Alpuche, Celia; López, Irma; Rosales, Claudia; Baronti, Cécile; de Lamballerie, Xavier; Holmes, Edward C; Ramos-Castañeda, José

    2010-09-01

    Both dengue fever and its more serious clinical manifestation, dengue hemorrhagic fever, represent major public health concerns in the Americas. To understand the patterns and dynamics of virus transmission in Mexico, a country characterized by a marked increase in dengue incidence in recent years, we undertook a molecular evolutionary analysis of the largest sample of Mexican strains of dengue virus compiled to date. Our E gene data set comprises sequences sampled over a period of 27 years and representing all of the Mexican states that are endemic for dengue. Our phylogenetic analysis reveals that, for each of the four dengue viruses (DENV-1 to DENV-4), there have been multiple introductions of viral lineages in Mexico, with viruses similar to those observed throughout the Americas, but there has been strikingly little co-circulation. Rather, dengue virus evolution in Mexico is typified by frequent lineage replacement, such that only a single viral lineage dominates in a specific serotype at a specific time point. Most lineage replacement events involve members of the same viral genotype, although a replacement event involving different genotypes was observed with DENV-2, and viral lineages that are new to Mexico are described for DENV-1, DENV-3 and DENV-4. PMID:20549264

  6. Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells

    Directory of Open Access Journals (Sweden)

    del Angel Rosa M

    2008-04-01

    Full Text Available Abstract Current methods for dengue virus quantitation are either time consuming, technically demanding or costly. As an alternative, the commercial enzyme immunoassay Platelia™ Dengue NS1 AG (Bio-Rad Laboratories was used to monitor semiquantitatively dengue virus replication in cultured cells. The presence of NS1 protein was evaluated in supernatants from Vero and C6/36 HT cells infected with dengue virus. The amount of NS1 detected in the supernatants of infected cells was proportional to the initial MOI used and to the time of post infection harvest. This immunoassay was also able to detect the presence of NS1 in the supernatants of infected human macrophages. Inhibition of dengue virus replication in C6/36 HT cells treated with lysosomotropic drugs was readily monitored with the use of this assay. These results suggest that the Platelia™ Dengue NS1 AG kit can be used as a fast and reliable surrogate method for the relative quantitation of dengue virus replication in cultured cells.

  7. A molecular evaluation of dengue virus pathogenesis and its latest vaccine strategies.

    Science.gov (United States)

    Faheem, Muhammad; Raheel, Ummar; Riaz, Muhammad Nasir; Kanwal, Naghmana; Javed, Farakh; us Sahar Sadaf Zaidi, Najam; Qadri, Ishtiaq

    2011-08-01

    More than one third of the world's population living in tropical and subtropical areas of the world is at risk of dengue infections and as many as 100 million people are yearly infected. This disease has reemerged during the past 20 years in the form of an epidemic. Dengue is caused by one of four related serotypes of dengue virus and often leads to severe forms of the disease, resulting commonly from secondary infections. Dengue virus is a mosquito borne virus, belongs to the family Flaviviridae and consists of a single stranded positive sense RNA genome. Like other RNA viruses it escapes defense mechanisms and neutralization attempts by mutations, which make it more resistant and adaptable to its environment. Antiviral strategies and vaccine development is thus impaired and hence to date there is no licensed vaccine available for dengue virus. Here we discuss various efforts made towards the identification of potential vaccine targets for dengue as well as various strategies employed by research groups/pharmaceutical companies towards the development of a successful dengue vaccine. PMID:21107723

  8. Principle of Laboratory Diagnosis and Epidemiological Surveillance on Dengue and Japanese Encephalitis Viruses

    OpenAIRE

    Igarashi, Akira

    1995-01-01

    Laboratory diagnoses on viral infection are indispensable in order to obtain precise information on the disease agents, including dengue and Japanese encephalitis viruses. Such information is indispensable for proper clinical case management, epidemiology, and strategy to control viral diseases.

  9. Vírus dengue em larvas de Aedes aegypti e sua dinâmica de infestação, Roraima, Brasil Virus dengue en larvas de Aedes aegypti y su dinámica de infestación, Roraima, Brasil Dengue virus in Aedes aegypti larvae and infestation dynamics in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Julianna Dias Zeidler

    2008-12-01

    Full Text Available OBJETIVO: Identificar a presença do vírus dengue em formas larvais de Aedes aegypti e relacionar a presença do vetor com índice pluviométrico e número de casos de dengue. MÉTODOS: Dezoito domicílios foram selecionados aleatoriamente para coleta de ovos em um bairro da cidade de Boa Vista (RR. Foram instaladas duas ovitrampas por domicílio e removidas após uma semana, mensalmente, de novembro de 2006 a maio de 2007. Foram calculados o índice de positividade de ovitrampa e o índice de densidade dos ovos. Após eclosão de 1.422 ovos coletados, foram formados 44 pools de no máximo 30 larvas para teste de presença do vírus dengue por meio de RT-PCR e hemi-nested PCR. O índice de incidência de dengue no período foi correlacionado com a precipitação pluvial. A associação entre essas variáveis e número de ovos coletados foi analisada pelo coeficiente de Pearson. RESULTADOS: Nenhum dos pools apresentou positividade para o vírus dengue, apesar do bairro ter apresentado elevados índices de incidência de dengue no período estudado. A densidade da população de Ae. aegypti aumentou conforme a pluviosidade, mas não apresentou correlação com índices de incidência de casos de dengue. CONCLUSÕES: Os resultados sugerem que a transmissão transovariana do vírus em mosquitos ocorre a uma freqüência muito baixa e por isso sua persistência em meio urbano pode não depender desse fenômeno. A população do mosquito aumentou no período de chuvas devido à formação de criadouros; a não-correlação com o índice de incidência de dengue deve-se à possibilidade desse dado ser subestimado em períodos de epidemia.OBJETIVO: Identificar la presencia del virus dengue en forma larvales de Aedes aegypti y relacionar la presencia del vector con índice pluviométrico y número de casos de dengue en el período estudiado. MÉTODOS: Dieciocho domicilios fueron seleccionados al azar para colectar huevos en una urbanización de la

  10. Characterization of in vitro dengue virus resistance to carrageenan.

    Science.gov (United States)

    Talarico, Laura B; Damonte, Elsa B

    2016-07-01

    The λ-carrageenan (λ-car) is a potent and selective inhibitor of dengue virus (DENV) infection targeted to virus adsorption and internalization, due to the structural similarities with the mammalian cell receptor heparan sulfate. To further characterize the antiviral activity of λ-car, the selection and the phenotypic and genomic features of λ-car resistant DENV-2 variants are studied here in comparison to control virus. Resistant variants were rapidly selected in Vero cells after three passages in presence of the drug. No difference was detected in the growth profiles in Vero and C6/36 cells between resistant and control viruses. By contrast, the kinetics of adsorption and internalization of resistant variants in Vero cells was significantly diminished whereas entry to C6/36 cells was unaffected. By plaque purification and sequence analysis of the population, two types of resistant clones were found: some clones presented two mutations in E protein, K126E, and F422L; but other equally λ-car resistant clones had no mutations in E. Furthermore, no mutations were found in other viral proteins like prM, C, or NS1. The genomic disparity in E protein was also associated to differences in phenotype stability. The stable genomic resistance here described provides information about determinants in E protein involved in receptor binding and membrane fusion for uncoating. PMID:26694200

  11. Origin and evolution of dengue virus type 3 in Brazil.

    Directory of Open Access Journals (Sweden)

    Josélio Maria Galvão de Araújo

    Full Text Available The incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3 at the early 2000s. Despite the major public health concerns, there have been very few studies of the molecular epidemiology and time-scale of this DENV lineage in Brazil. In this study, we investigated the origin and dispersion dynamics of DENV-3 genotype III in Brazil by examining a large number (n=107 of E gene sequences sampled between 2001 and 2009 from diverse Brazilian regions. These Brazilian sequences were combined with 457 DENV-3 genotype III E gene sequences from 29 countries around the world. Our phylogenetic analysis reveals that there have been at least four introductions of the DENV-3 genotype III in Brazil, as signified by the presence of four phylogenetically distinct lineages. Three lineages (BR-I, BR-II, and BR-III were probably imported from the Lesser Antilles (Caribbean, while the fourth one (BR-IV was probably introduced from Colombia or Venezuela. While lineages BR-I and BR-II succeeded in getting established and disseminated in Brazil and other countries from the Southern Cone, lineages BR-III and BR-IV were only detected in one single individual each from the North region. The phylogeographic analysis indicates that DENV-3 lineages BR-I and BR-II were most likely introduced into Brazil through the Southeast and North regions around 1999 (95% HPD: 1998-2000 and 2001 (95% HPD: 2000-2002, respectively. These findings show that importation of DENV-3 lineages from the Caribbean islands into Brazil seems to be relatively frequent. Our study further suggests that the North and Southeast Brazilian regions were the most important hubs of introduction and spread of DENV-3 lineages and deserve an intense epidemiological surveillance.

  12. Origin and evolution of dengue virus type 3 in Brazil.

    Science.gov (United States)

    de Araújo, Josélio Maria Galvão; Bello, Gonzalo; Romero, Hector; Nogueira, Rita Maria Ribeiro

    2012-01-01

    The incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3) at the early 2000s. Despite the major public health concerns, there have been very few studies of the molecular epidemiology and time-scale of this DENV lineage in Brazil. In this study, we investigated the origin and dispersion dynamics of DENV-3 genotype III in Brazil by examining a large number (n=107) of E gene sequences sampled between 2001 and 2009 from diverse Brazilian regions. These Brazilian sequences were combined with 457 DENV-3 genotype III E gene sequences from 29 countries around the world. Our phylogenetic analysis reveals that there have been at least four introductions of the DENV-3 genotype III in Brazil, as signified by the presence of four phylogenetically distinct lineages. Three lineages (BR-I, BR-II, and BR-III) were probably imported from the Lesser Antilles (Caribbean), while the fourth one (BR-IV) was probably introduced from Colombia or Venezuela. While lineages BR-I and BR-II succeeded in getting established and disseminated in Brazil and other countries from the Southern Cone, lineages BR-III and BR-IV were only detected in one single individual each from the North region. The phylogeographic analysis indicates that DENV-3 lineages BR-I and BR-II were most likely introduced into Brazil through the Southeast and North regions around 1999 (95% HPD: 1998-2000) and 2001 (95% HPD: 2000-2002), respectively. These findings show that importation of DENV-3 lineages from the Caribbean islands into Brazil seems to be relatively frequent. Our study further suggests that the North and Southeast Brazilian regions were the most important hubs of introduction and spread of DENV-3 lineages and deserve an intense epidemiological surveillance. PMID:22970331

  13. Seroprevalence of dengue virus in a tertiary care hospital, Andhra Pradesh, South India

    Directory of Open Access Journals (Sweden)

    Srinivas Rao M.S.

    2013-08-01

    Full Text Available Background: Dengue fever and Dengue Haemorrhagic fever (DF/DHF is an acute viral disease caused by Dengue virus. The infection is transmitted by the bite of an infected female mosquito- Aedes aegypti. The Dengue virus causes significant morbidity and mortality in many parts of the world, including India, where it was first isolated in Calcutta, West Bengal during 1945. This study was conducted to know the seroprevalence of Dengue virus in a tertiary care hospital, Hyderabad Methods: Blood for serological studies are carefully collected taking due universal precautions from suspected DF/DHF cases (a as soon as possible after hospital admission or attendance. All the patients were screened for anti-Dengue IgG and IgM antibodies By Enzyme Immunoassay. The study period was 18 months from 2012. Results: From a total of 1327serum samples tested were screened for Dengue IgM and IgG among which 706(53.2% were positive. 125(17.7% were only IgM positive and 198(28.05% of the tested samples showed only IgG positive. 383(54.25% of the tested samples revealed positive for both IgM and IgG antibodies. Conclusion: Surveillance is prerequisite for monitoring the dengue situation in the area and should be carried out regularly for early detection of an impending outbreak and to initiate timely preventive and control measures. [Int J Res Med Sci 2013; 1(4.000: 448-450

  14. ELEVATED LEVELS OF SOLUBLE ST2 PROTEIN IN DENGUE VIRUS INFECTED PATIENTS

    Science.gov (United States)

    Becerra, Aniuska; Warke, Rajas V.; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2008-01-01

    Levels of the soluble form of the interleukin-1 receptor like 1 protein (IL-1RL-1 / ST2) are elevated in the serum of patients with diseases characterized by an inflammatory response. The objective of this study was to determine the concentration of soluble ST2 (sST2) in dengue infected patients during the course of the disease. Twenty four patients with confirmed dengue infection, classified as dengue fever, and eleven patients with other febrile illness (OFI) were evaluated. Levels of sST2 in serum and laboratory variables usually altered during dengue infections were measured. Dengue infected patients had higher serum sST2 levels than OFI at the end of the febrile stage and at defervescence (p=0.0088 and p=0.0004 respectively). Patients with secondary dengue infections had higher serum sST2 levels compared with patients with primary dengue infections (p=0.047 at last day of fever and p=0.030 at defervescence). Furthermore, in dengue infected patients, we found a significant negative correlation of sST2 with platelet and WBC counts, and positive correlation with thrombin time and transaminases activity. We suggest that sST2 could be a potential marker of dengue infection, could be associated with severity or could play a role in the immune response in secondary dengue virus infection. PMID:18226917

  15. Sources of Dengue Viruses Imported into Queensland, Australia, 2002–2010

    OpenAIRE

    Warrilow, David; Judith A Northill; Alyssa T. Pyke

    2012-01-01

    To assess risk for importation of dengue virus (DENV) into Queensland, Australia, and sources of imported viruses, we sequenced the envelope region of DENV isolates from symptomatic patients with a history of travel during 2002–2010. The number of imported dengue cases greatly increased over the surveillance period, some of which were associated with domestic outbreaks. Patients reported traveling to (in order) Asia, Papua New Guinea, Pacific Island countries, and non–Asia-Pacific countries. ...

  16. Three-dimensional reconstruction of mature dengue virus cultured in neutral medium

    Institute of Scientific and Technical Information of China (English)

    LI Kunpeng; LI Yinyin; LI Jing; WEI wei; FANG Meiyu; LIU Jianwei

    2005-01-01

    @@ Dengue virus (DEN), a single positively stranded RNA virus, is a family member of Flaviviridae; it uses the mosquito A(e)des aegypti as its principle vector to cause what is known as Dengue fever. Its genome is ~10.8-kb in size and has one open reading frame encoding three structural proteins: capsid (C), precursor of the membrane (prM) and envelope (E), as well as seven non-structural proteins from a single polypeptide.

  17. Characterization of antigenetic serotypes from the dengue virus in Venezuela by means of Grid Computing.

    Science.gov (United States)

    Isea, Raúl; Montes, Esther; Rubio-Montero, Antonio J; Rosales, José D; Rodríguez-Pascual, Manuel A; Mayo, Rafael

    2010-01-01

    This work determines the molecular epidemiology of dengue virus in Venezuela by means of phylogenetic calculations performed on the EELA-2 Grid infrastructure with the PhyloGrid application, an open source tool that allows users performing phylogeny reconstruction in their research. In this study, a total of 132 E nucleotide gene sequences of dengue virus from Venezuela recorded in GenBank(R) have been processed in order to reproduce and validate the topology described in the literature. PMID:20543442

  18. Pathologic study of a fatal case of dengue-3 virus infection in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    C.A. Basílio-de-Oliveira

    2005-08-01

    Full Text Available Dengue hemorrhagic fever (DHF is a severe febrile disease, characterized by abnormalities in hemostasis and increased vascular permeability, which in some cases results in hypovolemic shock syndrome and in dengue shock syndrome. The clinical features of DHF include plasma leakage, bleeding tendency and liver involvement. We studied the histopathological features of a fatal case of dengue-3 virus infection. The patient, a 63-year old male, presented with an acute onset of severe headache, myalgia and maculopapular rash. Tissue fragments (liver, spleen, lung, heart, kidney and lymph nodes were collected for light microscopy studies and stained by standard methods. Histopathology revealed severe tissue damage, caused by intense hemorrhage, interstitial edema and inflammation. Some tissue sections were also processed with the immunoperoxidase reaction, which revealed the dengue viral antigen. Dengue-3 virus was isolated and identified with electron microscopy in a C6/36 cell culture inoculated with the patient's serum. Viral particles were detected in the infected cell culture.

  19. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Chen, Chen; van der Ende-Metselaar, Heidi; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2008-01-01

    Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, an

  20. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005-2006.

    Science.gov (United States)

    Vilela, Ana P P; Figueiredo, Leandra B; dos Santos, João R; Eiras, Alvaro E; Bonjardim, Cláudio A; Ferreira, Paulo C P; Kroon, Erna G

    2010-06-01

    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002-2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance. PMID:20507754

  1. Complete nucleotide sequence analysis of a Dengue-1 virus isolated on Easter Island, Chile.

    Science.gov (United States)

    Cáceres, C; Yung, V; Araya, P; Tognarelli, J; Villagra, E; Vera, L; Fernández, J

    2008-01-01

    Dengue-1 viruses responsible for the dengue fever outbreak in Easter Island in 2002 were isolated from acute-phase sera of dengue fever patients. In order to analyze the complete genome sequence, we designed primers to amplify contiguous segments across the entire sequence of the viral genome. RT-PCR products obtained were cloned, and complete nucleotide and deduced amino acid sequences were determined. This report constitutes the first complete genetic characterization of a DENV-1 isolate from Chile. Phylogenetic analysis shows that an Easter Island isolate is most closely related to Pacific DENV-1 genotype IV viruses. PMID:18815724

  2. Construction and identification of reverse genetics system of Dengue type 2 virus isolated in China

    Institute of Scientific and Technical Information of China (English)

    ZHU Wuyang; CHEN Shuiping; QIN Chenggeng; YU Man; JIANG Tao; DENG Yongqiang; QIN Ede

    2006-01-01

    To construct infectious full-length cDNA clone of dengue virus type 2 isolated in China (DEN2-43), according to the published nucleotide sequence of the virus strain, the approximately 11 kb full-length cDNAs of DEN2-43 were amplified by long RT-PCR and fusion PCR. Full-length cDNA clones were constructed by inserting the full-length cDNA into a low copy vector pWSK29, from which rescued virus D212 was acquired by transcription in vitro and electroporation. The full-length cDNA clone pD212 was infectious, and rescued virus acquired in C6/36 cells was indistinguishable from DEN2-43 virus in biological properties including suckling mice neurovirulence. The reverse genetics system helps elucidate the mechanism of pathogenesis of dengue virus and develop novel vaccine against dengue.

  3. Lactimidomycin is a broad-spectrum inhibitor of dengue and other RNA viruses.

    Science.gov (United States)

    Carocci, Margot; Yang, Priscilla L

    2016-04-01

    Dengue virus, a member of the Flaviviridae family, is a mosquito-borne pathogen and the causative agent of dengue fever. Despite the nearly 400 million new infections estimated annually, no vaccines or specific antiviral therapeutics are currently available. We identified lactimidomycin (LTM), a recently established inhibitor of translation elongation, as a potent inhibitor of dengue virus 2 infection in cell culture. The antiviral activity is observed at concentrations that do not affect cell viability. We show that Kunjin virus and Modoc virus, two other members of the Flavivirus genus, as well as vesicular stomatitis virus and poliovirus 1, are also sensitive to LTM. Our findings suggest that inhibition of translation elongation, an obligate step in the viral replication cycle, may provide a general antiviral strategy against fast-replicating RNA viruses. PMID:26872864

  4. Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti.

    Science.gov (United States)

    Hill, Casey L; Sharma, Avinash; Shouche, Yogesh; Severson, David W

    2014-12-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  5. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  6. CHIMERIC WEST NILE/DENGUE VIRUS VACCINE CANDIDATE: PRECLINICAL EVALUATION IN MICE, GEESE, AND MONKEYS FOR SAFETY AND IMMUNOGENICITY

    Science.gov (United States)

    A live attenuated virus vaccine is being developed to protect against West Nile virus (WN) disease in humans. Previously, it was found that chimeric West Nile/dengue viruses (WN/DEN4 and WN/DEN4-delta-30) bearing the membrane precursor and envelope protein genes of WN on a backbone of dengue type 4 ...

  7. Inhibition of dengue virus entry and multiplication into monocytes using RNA interference.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdelfatah Alhoot

    2011-11-01

    Full Text Available BACKGROUND: Dengue infection ranks as one of the most significant viral diseases of the globe. Currently, there is no specific vaccine or antiviral therapy for prevention or treatment. Monocytes/macrophages are the principal target cells for dengue virus and are responsible for disseminating the virus after its transmission. Dengue virus enters target cells via receptor-mediated endocytosis after the viral envelope protein E attaches to the cell surface receptor. This study aimed to investigate the effect of silencing the CD-14 associated molecule and clathrin-mediated endocytosis using siRNA on dengue virus entry into monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression analysis showed a significant down-regulation of the target genes (82.7%, 84.9 and 76.3% for CD-14 associated molecule, CLTC and DNM2 respectively in transfected monocytes. The effect of silencing of target genes on dengue virus entry into monocytes was investigated by infecting silenced and non-silenced monocytes with DENV-2. Results showed a significant reduction of infected cells (85.2%, intracellular viral RNA load (73.0%, and extracellular viral RNA load (63.0% in silenced monocytes as compared to non-silenced monocytes. CONCLUSIONS/SIGNIFICANCE: Silencing the cell surface receptor and clathrin mediated endocytosis using RNA interference resulted in inhibition of the dengue virus entry and subsequently multiplication of the virus in the monocytes. This might serve as a novel promising therapeutic target to attenuate dengue infection and thus reduce transmission as well as progression to severe dengue hemorrhagic fever.

  8. Dengue Virus Entry as Target for Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Marijke M. F. Alen

    2012-01-01

    Full Text Available Dengue virus (DENV infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed.

  9. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses.

    Science.gov (United States)

    Wang, E; Ni, H; Xu, R; Barrett, A D; Watowich, S J; Gubler, D J; Weaver, S C

    2000-04-01

    Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested that the endemic/epidemic lineages of these three DEN serotypes evolved independently from sylvatic progenitors. Time estimates for evolution of the endemic/epidemic forms ranged from 100 to 1,500 years ago, and the evolution of endemic/epidemic forms represents relatively recent events in the history of DEN evolution. Analysis of envelope protein amino acid changes predicted to have accompanied endemic/epidemic emergence suggested a role for domain III in adaptation to new mosquito and/or human hosts. PMID:10708439

  10. Microglia retard dengue virus-induced acute viral encephalitis.

    Science.gov (United States)

    Tsai, Tsung-Ting; Chen, Chia-Ling; Lin, Yee-Shin; Chang, Chih-Peng; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Huang, Chao-Ching; Ho, Chien-Jung; Lee, Yi-Chao; Lin, Liang-Tzung; Jhan, Ming-Kai; Lin, Chiou-Feng

    2016-01-01

    Patients with dengue virus (DENV) infection may also present acute viral encephalitis through an unknown mechanism. Here, we report that encephalitic DENV-infected mice exhibited progressive hunchback posture, limbic seizures, limbic weakness, paralysis, and lethality 7 days post-infection. These symptoms were accompanied by CNS inflammation, neurotoxicity, and blood-brain barrier destruction. Microglial cells surrounding the blood vessels and injured hippocampus regions were activated by DENV infection. Pharmacologically depleting microglia unexpectedly increased viral replication, neuropathy, and mortality in DENV-infected mice. In microglia-depleted mice, the DENV infection-mediated expression of antiviral cytokines and the infiltration of CD8-positive cytotoxic T lymphocytes (CTLs) was abolished. DENV infection prompted the antigen-presenting cell-like differentiation of microglia, which in turn stimulated CTL proliferation and activation. These results suggest that microglial cells play a key role in facilitating antiviral immune responses against DENV infection and acute viral encephalitis. PMID:27279150

  11. Altered immune response of immature dendritic cells upon dengue virus infection in the presence of specific antibodies

    NARCIS (Netherlands)

    Torres, Silvia; Flipse, Jacky; Upasani, Vinit C; van der Ende-Metselaar, Heidi; Urcuqui-Inchima, Silvio; Smit, Jolanda M; Rodenhuis-Zybert, Izabela A

    2016-01-01

    Dengue virus (DENV) replication is known to prevent maturation of infected DCs thereby impeding the development of adequate immunity. During secondary DENV infection, dengue-specific antibodies can suppress DENV replication in immature DCs (immDCs), however how dengue-antibody complexes (DENV-IC) in

  12. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus

    Science.gov (United States)

    Priyamvada, Lalita; Quicke, Kendra M.; Hudson, William H.; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J.; Wilson, Patrick C.; Ahmed, Rafi; Suthar, Mehul S.; Wrammert, Jens

    2016-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  13. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus.

    Science.gov (United States)

    Priyamvada, Lalita; Quicke, Kendra M; Hudson, William H; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J; Wilson, Patrick C; Ahmed, Rafi; Suthar, Mehul S; Wrammert, Jens

    2016-07-12

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  14. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity.

    Science.gov (United States)

    Messer, William B; de Alwis, Ruklanthi; Yount, Boyd L; Royal, Scott R; Huynh, Jeremy P; Smith, Scott A; Crowe, James E; Doranz, Benjamin J; Kahle, Kristen M; Pfaff, Jennifer M; White, Laura J; Sariol, Carlos A; de Silva, Aravinda M; Baric, Ralph S

    2014-02-01

    The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens. PMID:24385585

  15. Dengue NS1 antigen detection: A useful tool in early diagnosis of dengue virus infection

    Directory of Open Access Journals (Sweden)

    Datta S

    2010-01-01

    Full Text Available Purpose: This study was undertaken to evaluate the efficacy of NS1 antigen (Ag assay as an early marker for dengue virus (DV infection. Materials and Methods: Group I evaluated the performance of NS1 antigen (Ag assay in comparison to MAC-ELISA and their detection rate when performed together in a single sample. Six hundred acute/early convalescent sera were screened by both the assays. Group II evaluated the efficacy of a single assay in 30 acute phase sera of paediatric OPD patients screened only by NS1 Ag assay. Group III evaluated the specificity of NS1 assay in comparison to MAC-ELISA on 40 samples included as controls. Results: In Group I, 140 (23.3% and 235 (39.1% samples were positive by NS1 assay and MAC-ELISA respectively. The detection rate increased to 320 (53.3% when both the assays were used together on a single sample. NS1 Ag positivity varied from 71.42% to 28.4% in acute and early convalescent sera, conversely IgM detection rate was 93.61% and 6.38% in early convalescent and acute phase sera respectively (P < 0.0001. In Group II, 66.66% (20 samples were positive by NS1 assay. All the samples in Group III were negative showing 100% specificity of both the assays. Conclusion: NS1 Ag assay holds promise in early diagnosis of dengue infection. When used in combination with MAC-ELISA on a single sample it significantly improves the diagnostic algorithm without the requirement of paired sera.

  16. High rate of unrecognized dengue virus infection in parts of the rainforest region of Nigeria.

    Science.gov (United States)

    Onoja, A B; Adeniji, J A; Olaleye, O D

    2016-08-01

    Outbreaks and sporadic dengue virus infections continue to occur in Africa. Several reports of dengue among travellers returning from some African countries to Europe and North America have raised concerns about the epidemiological situation in Africa. We investigated recent dengue infections in febrile patients during the rainy season in various urban centres in the rainforest region of Nigeria, West Africa. This cross-sectional study was conducted for 8 months in 2014 with study participants from Adeoyo Hospital Yemetu - Ibadan, Nigeria. Plasma were collected from 274 febrile patients residing in 11 Local Government Areas of Oyo State. IgM antibodies were determined using semi-quantitative sandwich ELISA. Data was analyzed using Chi - Square and Fisher's exact test with SPSS 16.0. An overall prevalence of 23.4% dengue virus infection was found among study participants. Highest monthly prevalence of 40% was in April and August. The monthly distribution pattern of dengue virus infection indicates efficient virus transmission. Routine diagnosis will enhance dengue virus surveillance and improve patient care in West Africa. PMID:27140859

  17. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  18. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus

    Science.gov (United States)

    Singh, Jagbir; Kumar, Mahesh; Mansuri, Rani; Sahoo, Ganesh Chandra; Deep, Aakash

    2016-01-01

    Aim: Aim of this work was to design and identify some S-adenosyl-L-homocysteine (SAH) analogs as inhibitors of S-adenosyl-L-methionine-dependent methyltransferase (MTase) protein using computational approaches. Introduction: According to the current scenario the dengue has been a global burden. The people are being killed by dengue virus in an abundant number. Despite of lot of research being going on dengue worldwide, there is no single drug which can kill its virus. This creates an urge for new drug target identification and designing. MTase has been reported as an effective target against dengue virus as it catalyzes an essential step in methylation and capping of viral RNA for viral replication. Materials and Methods: The crystal structure of MTase in complex with SAH was used for designing new analogs of SAH. SAH analogs designed were analyzed on the basis of docking, ADMET, and toxicity analysis done using Discovery Studio 3.5. Results: Seventeen analogs found noncarcinogenic, nonmutagenic, as well as good ADMET properties and good drug-like profile. Conclusion: These SAH analogs, inhibitors of MTase may act as drugs against dengue virus. Further synthesis and biological testing against dengue virus is under observation. PMID:27413346

  19. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection. PMID:27068162

  20. Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance

    Science.gov (United States)

    Clapham, Hannah E; Dorigatti, Ilaria; Simmons, Cameron P; Ferguson, Neil M

    2016-01-01

    Dengue is an infection of increasing global importance, yet uncertainty remains regarding critical aspects of its virology, immunology and epidemiology. One unanswered question is how infection is controlled and cleared during a dengue infection. Antibody is thought to play a role, but little past work has examined the kinetics of both virus and antibody during natural infections. We present data on multiple virus and antibody titres measurements recorded sequentially during infection from 53 Vietnamese dengue patients. We fit mechanistic mathematical models of the dynamics of viral replication and the host immune response to these data. These models fit the data well. The model with antibody removing virus fits the data best, but with a role suggested for ADCC or other infected cell clearance mechanisms. Our analysis therefore shows that the observed viral and antibody kinetics are consistent with antibody playing a key role in controlling viral replication. This work gives quantitative insight into the relationship between antibody levels and the efficiency of viral clearance. It will inform the future development of mechanistic models of how vaccines and antivirals might modify the course of natural dengue infection. PMID:27213681

  1. Invariant NKT Cell Response to Dengue Virus Infection in Human

    OpenAIRE

    Matangkasombut, Ponpan; Chan-in, Wilawan; Opasawaschai, Anunya; Pongchaikul, Pisut; Tangthawornchaikul, Nattaya; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Duangchinda, Thaneeya; Screaton, Gavin; Mongkolsapaya, Juthathip

    2014-01-01

    Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their rol...

  2. Serum Galectin-9 and Galectin-3-Binding Protein in Acute Dengue Virus Infection.

    Science.gov (United States)

    Liu, Kuan-Ting; Liu, Yao-Hua; Chen, Yen-Hsu; Lin, Chun-Yu; Huang, Chung-Hao; Yen, Meng-Chi; Kuo, Po-Lin

    2016-01-01

    Dengue fever is a serious threat for public health and induces various inflammatory cytokines and mediators, including galectins and glycoproteins. Diverse immune responses and immunological pathways are induced in different phases of dengue fever progression. However, the status of serum galectins and glycoproteins is not fully determined. The aim of this study was to investigate the serum concentration and potential interaction of soluble galectin-1, galectin-3, galectin-9, galectin-3 binding protein (galectin-3BP), glycoprotein 130 (gp130), and E-, L-, and P-selectin in patients with dengue fever in acute febrile phase. In this study, 317 febrile patients (187 dengue patients, 150 non-dengue patients that included 48 patients with bacterial infection and 102 patients with other febrile illness) who presented to the emergency department and 20 healthy controls were enrolled. Our results showed the levels of galectin-9 and galectin-3BP were significantly higher in dengue patients than those in healthy controls. Lower serum levels of galectin-1, galectin-3, and E-, L-, and P-selectin in dengue patients were detected compared to bacteria-infected patients, but not to healthy controls. In addition, strong correlation between galectin-9 and galectin-3BP was observed in dengue patients. In summary, our study suggested galectin-9 and galectin-3BP might be critical inflammatory mediators in acute dengue virus infection. PMID:27240351

  3. MIOCARDITIS FULMINANTE EN UNA INFECCIÓN POR VIRUS DENGUE 1 EN NEIVA, HUILA COLOMBIA Fatal myocarditis during a viral dengue 1 infection in Neiva, Huila Colombia

    Directory of Open Access Journals (Sweden)

    Doris Martha Salgado

    2008-06-01

    Full Text Available Se presenta el caso de un niño de cinco años previamente sano quien fallece como consecuencia de un cuadro clínico compatible con miocarditis de curso fulminante asociada a fiebre dengue hemorrágica. Se demostró la presencia de virus dengue 1 en el tejido hepático mediante RT-PCR, por lo que se convierte en el primer caso reportado de miocarditis fulminante durante el curso de la infección por virus dengue en Neiva, Colombia.A five year old boy previously healthy dies as a consequence of a dengue hemorrhagic fever-associated fulminant myocarditis. DEN 1 was showed in the liver tissue by RT-PCR. To our knowledge this is the first case of fulminant myocarditis during the course of dengue virus infection in Neiva, Colombia.

  4. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; Meulen, Jan Ter; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  5. Antibody recognition of the dengue virus proteome and implications for development of vaccines.

    Science.gov (United States)

    Fernandez, Stefan; Cisney, Emily D; Tikhonov, Alexander P; Schweitzer, Barry; Putnak, Robert J; Simmons, Monika; Ulrich, Robert G

    2011-04-01

    Dengue is a mosquito-borne infection caused by four distinct serotypes of dengue virus, each appearing cyclically in the tropics and subtropics along the equator. Although vaccines are currently under development, none are available to the general population. One of the main impediments to the successful advancement of these vaccines is the lack of well-defined immune correlates of protection. Here, we describe a protein microarray approach for measuring antibody responses to the complete viral proteome comprised of the structural (capsid, membrane, and envelope) and nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) components of all four dengue virus serotypes (1 to 4). We examined rhesus macaques vaccinated with tetravalent vaccines consisting of live-attenuated virus (LAV) or purified inactivated virus (PIV), followed by boosting with LAV and challenging with wild-type dengue virus. We detected temporal increases in antibodies against envelope proteins in response to either vaccine, while only the PIV/LAV vaccination strategy resulted in anticapsid antibodies. In contrast to results from vaccination, naïve macaques challenged with wild-type viruses of each serotype demonstrated a balanced response to nonstructural and structural components, including responses against the membrane protein. Our results demonstrate discriminating details concerning the nature of antibody responses to dengue virus at the proteomic level and suggest the usefulness of this information for vaccine development. PMID:21270280

  6. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    Full Text Available BACKGROUND: Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using paired Wolbachia-infected and uninfected Aedes-derived cell lines and dengue virus, we confirm the phenomenon of viral inhibition at the cellular level. Although Wolbachia imposes a fitness cost to cells via reduced proliferation, it also provides a significant degree of protection from virus-induced mortality. The extent of viral inhibition is related to the density of Wolbachia per cell, with highly infected cell lines showing almost complete protection from dengue infection and dramatically reduced virus titers compared to lines not infected with the bacteria. CONCLUSIONS/SIGNIFICANCE: We have shown that cells infected with Wolbachia display inhibition of dengue virus replication, that the extent of inhibition is related to bacterial density and that Wolbachia infection, although costly, will provide a fitness benefit in some circumstances. Our results parallel findings in mosquitoes and flies, indicating that cell line models will provide useful and experimentally tractable models to study the mechanisms underlying Wolbachia-mediated protection from viruses.

  7. Immature dengue virus : functional properties and potential contribution to disease

    NARCIS (Netherlands)

    Da Silva-Voorham, Júlia Maria

    2013-01-01

    Beter inzicht in mechanismen achter infectieziekte dengue Dengue (‘knokkelkoorts’) is een veelvoorkomende, tropische infectieziekte die wordt overgebracht door muggen. Naar schatting raken jaarlijks zo’n vijftig tot honderd miljoen mensen besmet. Meestal gaat dengue vanzelf over, maar in zo’n 500.00

  8. Morphological studies in a model for dengue-2 virus infection in mice

    Directory of Open Access Journals (Sweden)

    Ortrud Monika Barth

    2006-12-01

    Full Text Available One of the main difficulties in studying dengue virus infection in humans and in developing a vaccine is the absence of a suitable animal model which develops the full spectrum of dengue fever, dengue haemorrhagic fever, and dengue shock syndrome. It is our proposal to present morphological aspects of an animal model which shows many similarities with the dengue infection in humans. BALB/c mice were intraperitoneally infected with non-neuroadapted dengue virus serotype 2 (DENV-2. Histopathological and morphometrical analyses of liver tissue revealed focal alterations along the infection, reaching wide-ranging portal and centrolobular veins congestion and sinusoidal cell death. Additional ultrastructural observations demonstrated multifocal endothelial injury, platelet recruitment, and alterated hepatocytes. Dengue virus antigen was detected in hepatocytes and in the capillar endothelium of the central lobular vein area. Liver function tests showed high levels of aspartate transaminase and alanine transaminase enzyme activity. Lung tissue showed interstitial pneumonia and mononuclear cells, interseptal oedema, hyperplasia, and hypertrophy of the bronchiolar epithelial cells. DENV-2 led to a transient inflammatory process, but caused focal alterations of the blood-exchange barrier. Viremia was observed from 2nd to 11th day p.i. by isolation of DENV-2 in C6/36 mosquito cell line inoculated with the supernatant of macerated liver, lung, kidney, and cerebellum tissues of the infected mice.

  9. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  10. Research progress of dengue virus and dengue vaccines%登革病毒及登革热疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    李玉华

    2012-01-01

    Dengue virus can cause dengue fever,dengue hemorrhagic fever,and dengue shock syndrome.In recent years,dengue virus infection is posing a great threat to people's health.In order to research and develop safe and effective dengue vaccines,the updated biological characteristics and pathogenesis of dengue virus and research advance of dengue virus vaccines are summarized in this review.%登革病毒是引起人类疾病最重要的虫媒病毒,其感染可导致登革热、登革出血热、登革休克综合征,甚至危及患者生命.近年来,登革病毒的感染地域不断扩大,越来越多的国家和地区出现登革热流行或暴发,给公共卫生事业造成了很大的经济负担,对全球人类健康构成了极大威胁.为了加快安全有效的登革热疫苗的研发,此文就登革病毒结构、流行病学、致病机制、动物模型及疫苗的研究进展进行综述.

  11. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  12. Changing pattern of dengue virus serotypes circulating during 2008-2012 and reappearance of dengue serotype 3 may cause outbreak in Kolkata, India.

    Science.gov (United States)

    Saha, Kallol; Ghosh, Monika; Firdaus, Rushna; Biswas, Aritra; Seth, Bikash; Bhattacharya, Debojyoti; Mukherjee, Kheya; Sadhukhan, Provash Chandra

    2016-10-01

    Dengue virus infection is a major cause of morbidity within the endemic tropical and subtropical regions of the world. Dengue virus has four distinct serotypes with specific clinical manifestations. In this study, we observed the changing pattern of dengue serotypes, age-wise dengue infection and useful sero-detection methods needed in a dengue endemic region. We identified dengue serotypes during a period of 5 years among patients with dengue symptoms visiting one of the largest tertiary care infectious disease hospitals of eastern India in Kolkata. A total of 433 dengue RNA positive samples were isolated from 712 acute dengue suspected cases. Age wise distribution highlighted the susceptible age group being >21 years (24.02%) followed by 11-15 years (21.71%) and 5-10 years (21.02%) of the total infected population. Higher numbers of infected cases were found within females as they are involved in more indoor works. The period of study experienced two dengue outbreaks one in 2008 and another in 2012. For early dengue detection, NS1 was found to be more confirmatory than IgM ELISA regarding sensitivity and specificity. DENV-1, 2, and 4 serotypes were the common circulating strains from 2008 until 2010, after which DENV-3 serotype infections rise and led to a massive dengue outbreak in Kolkata with increased numbers of DHF and DSS cases in 2012. The finding within our study emphasizes the public health importance of such prospective surveillance programs with respect to the changing dengue viral etiology and serotypes. J. Med. Virol. 88:1697-1702, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991505

  13. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Vazquez-Prokopec

    Full Text Available BACKGROUND: Dengue infection spread in naive populations occurs in an explosive and widespread fashion primarily due to the absence of population herd immunity, the population dynamics and dispersal of Ae. aegypti, and the movement of individuals within the urban space. Knowledge on the relative contribution of such factors to the spatial dimension of dengue virus spread has been limited. In the present study we analyzed the spatio-temporal pattern of a large dengue virus-2 (DENV-2 outbreak that affected the Australian city of Cairns (north Queensland in 2003, quantified the relationship between dengue transmission and distance to the epidemic's index case (IC, evaluated the effects of indoor residual spraying (IRS on the odds of dengue infection, and generated recommendations for city-wide dengue surveillance and control. METHODS AND FINDINGS: We retrospectively analyzed data from 383 DENV-2 confirmed cases and 1,163 IRS applications performed during the 25-week epidemic period. Spatial (local k-function, angular wavelets and space-time (Knox test analyses quantified the intensity and directionality of clustering of dengue cases, whereas a semi-parametric Bayesian space-time regression assessed the impact of IRS and spatial autocorrelation in the odds of weekly dengue infection. About 63% of the cases clustered up to 800 m around the IC's house. Most cases were distributed in the NW-SE axis as a consequence of the spatial arrangement of blocks within the city and, possibly, the prevailing winds. Space-time analysis showed that DENV-2 infection spread rapidly, generating 18 clusters (comprising 65% of all cases, and that these clusters varied in extent as a function of their distance to the IC's residence. IRS applications had a significant protective effect in the further occurrence of dengue cases, but only when they reached coverage of 60% or more of the neighboring premises of a house. CONCLUSION: By applying sound statistical analysis to a

  14. Multiplex real-time RT-PCR for detecting chikungunya virus and dengue virus

    Institute of Scientific and Technical Information of China (English)

    Piyathida Pongsiri; Kesmanee Praianantathavorn; Apiradee Theamboonlers; Sunchai Payungporn; Yong Poovorawan

    2012-01-01

    ABSTRACT Objective:To develop diagnostic test for detection chikungunya virus (CHIKV and Dengue virus (DENV)infection.Methods:We have performed a rapid, accurate laboratory confirmative method to simultaneously detect, quantify and differentiateCHIKV and DENV infection by single-step multiplex real-timeRT-PCR.Results: The assay’s sensitivity was97.65%, specificity was 92.59% and accuracy was95.82% when compared to conventional RT-PCR. Additionally, there was no cross-reaction betweenCHIKV, DENV, Japanese encephalitis virus, hepatitis C, hepatitis A or hepatitis E virus.Conclusions:This rapid and reliable assay provides a means for simultaneous early diagnosis ofCHIKV andDENV in a single-step reaction.

  15. Structural basis of potent Zika-dengue virus antibody cross-neutralization.

    Science.gov (United States)

    Barba-Spaeth, Giovanna; Dejnirattisai, Wanwisa; Rouvinski, Alexander; Vaney, Marie-Christine; Medits, Iris; Sharma, Arvind; Simon-Lorière, Etienne; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Haouz, Ahmed; England, Patrick; Stiasny, Karin; Mongkolsapaya, Juthathip; Heinz, Franz X; Screaton, Gavin R; Rey, Félix A

    2016-08-01

    Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections. PMID:27338953

  16. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia.

    Science.gov (United States)

    Sasmono, R Tedjo; Wahid, Isra; Trimarsanto, Hidayat; Yohan, Benediktus; Wahyuni, Sitti; Hertanto, Martin; Yusuf, Irawan; Mubin, Halim; Ganda, Idham J; Latief, Rachmat; Bifani, Pablo J; Shi, Pei-Yong; Schreiber, Mark J

    2015-06-01

    Dengue fever is currently the most important mosquito-borne viral disease in Indonesia. In South Sulawesi province, most regions report dengue cases including the capital city, Makassar. Currently, no information is available on the serotypes and genotypes of the viruses circulating in the area. To understand the dynamic of dengue disease in Makassar, we carried out dengue fever surveillance study during 2007-2010. A total of 455 patients were recruited, in which antigen and serological detection revealed the confirmed dengue cases in 43.3% of patients. Molecular detection confirmed the dengue cases in 27.7% of patients, demonstrating that dengue places a significant disease burden on the community. Serotyping revealed that dengue virus serotype 1 (DENV-1) was the most predominant serotype, followed by DENV-2, -3, and -4. To determine the molecular evolution of the viruses, we conducted whole-genome sequencing of 80 isolates. Phylogenetic analysis grouped DENV-2, -3 and -4 to the Cosmopolitan genotype, Genotype I and Genotype II, respectively. Intriguingly, each serotype paints a different picture of evolution and transmission. DENV-1 appears to be undergoing a clade replacement with Genotype IV being supplanted by Genotype I. The Cosmopolitan DENV-2 isolates were found to be regionally endemic and is frequently being exchanged between countries in the region. By contrast, DENV-3 and DENV-4 isolates were related to strains with a long history in Indonesia although the DENV-3 strains appear to have been following a distinct evolutionary path since approximately 1998. To assess whether the various DENV serotypes/genotypes possess different growth characteristics, we performed growth kinetic assays on selected viruses. We observed the relatively higher rate of replication for DENV-1 and -2 compared to DENV-3 and -4. Within the DENV-1, viruses from Genotype I grow faster than that of Genotype IV. This higher replication rate may underlie their ability to replace the

  17. Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988.

    Science.gov (United States)

    Sjatha, Fithriyah; Takizawa, Yamato; Yamanaka, Atsushi; Konishi, Eiji

    2012-12-01

    Dengue viruses are mosquito-borne viruses that cause dengue fever and dengue hemorrhagic fever, both of which are globally important diseases. These viruses have evolved in a transmission cycle between human hosts and mosquito vectors in various tropical and subtropical environments. We previously isolated three strains of dengue type 1 virus (DENV1) and 14 strains of dengue type 3 virus (DENV3) during an outbreak of dengue fever and dengue hemorrhagic fever in Jakarta, Indonesia in 1988. Here, we compared the nucleotide sequences of the entire envelope protein-coding region among these strains. The isolates were 97.6-100% identical for DENV1 and 98.8-100% identical for DENV3. All DENV1 isolates were included in two different clades of genotype IV and all DENV3 isolates were included in a single clade of genotype I. For DENV1, three Yap Island strains isolated in 2004 were the only strains closely related to the present isolates; the recently circulated Indonesian strains were in different clades. Molecular clock analyses estimated that ancestors of the genotype IV strains of DENV1 have been indigenous in Indonesia since 1948. We predict that they diverged frequently around 1967 and that their offspring distributed to Southeast Asia, the Western Pacific, and Africa. For DENV3, the clade containing all the present isolates also contained strains isolated from other Indonesian regions and other countries including Malaysia, Singapore, China, and East Timor from 1985-2010. Molecular clock analyses estimated that the common ancestor of the genotype I strains of DENV3 emerged in Indonesia around 1967 and diverged frequently until 1980, and that their offspring distributed mainly in Southeast Asia. The first dengue outbreak in 1968 and subsequent outbreaks in Indonesia might have influenced the divergence and distribution of the DENV1 genotype IV strains and the DENV3 genotype I strains in many countries. PMID:22959957

  18. Human antibody response to dengue virus: implications for dengue vaccine design.

    Science.gov (United States)

    Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro

    2016-01-01

    Dengue, a global health threat, is a leading cause of morbidity and mortality in most tropical and subtropical countries. Dengue can range from asymptomatic, relatively mild dengue fever to severe and life-threatening dengue hemorrhagic fever. Disease severity and outcome is largely associated with the host immune response. Several candidate vaccines in clinical trials appear promising as effective measures for dengue disease control. Vaccine development has been hampered by safety and efficacy issues, driven by a lack of understanding of the host immune response. This review focuses on recent research findings on the dengue host immune response, particularly in humans, and the relevance of these findings to challenges in vaccine development. PMID:27398060

  19. Role of human GRP75 in miRNA mediated regulation of dengue virus replication.

    Science.gov (United States)

    Kakumani, Pavan Kumar; Medigeshi, Guruprasad R; Kaur, Inderjeet; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-07-15

    In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle. PMID:27039024

  20. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Science.gov (United States)

    Afreen, Nazia; Naqvi, Irshad H; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama

    2016-03-01

    Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India. PMID:26977703

  1. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Directory of Open Access Journals (Sweden)

    Nazia Afreen

    2016-03-01

    Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  2. Phylogeography and population dynamics of dengue viruses in the Americas.

    Science.gov (United States)

    Allicock, Orchid M; Lemey, Philippe; Tatem, Andrew J; Pybus, Oliver G; Bennett, Shannon N; Mueller, Brandi A; Suchard, Marc A; Foster, Jerome E; Rambaut, Andrew; Carrington, Christine V F

    2012-06-01

    Changes in Dengue virus (DENV) disease patterns in the Americas over recent decades have been attributed, at least in part, to repeated introduction of DENV strains from other regions, resulting in a shift from hypoendemicity to hyperendemicity. Using newly sequenced DENV-1 and DENV-3 envelope (E) gene isolates from 11 Caribbean countries, along with sequences available on GenBank, we sought to document the population genetic and spatiotemporal transmission histories of the four main invading DENV genotypes within the Americas and investigate factors that influence the rate and intensity of DENV transmission. For all genotypes, there was an initial invasion phase characterized by rapid increases in genetic diversity, which coincided with the first confirmed cases of each genotype in the region. Rapid geographic dispersal occurred upon each genotype's introduction, after which individual lineages were locally maintained, and gene flow was primarily observed among neighboring and nearby countries. There were, however, centers of viral diversity (Barbados, Puerto Rico, Colombia, Suriname, Venezuela, and Brazil) that were repeatedly involved in gene flow with more distant locations. For DENV-1 and DENV-2, we found that a "distance-informed" model, which posits that the intensity of virus movement between locations is inversely proportional to the distance between them, provided a better fit than a model assuming equal rates of movement between all pairs of countries. However, for DENV-3 and DENV-4, the more stochastic "equal rates" model was preferred. PMID:22319149

  3. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  4. Isolation, identification, and phylogenetic analysis of a dengue virus strain from Aedes albopictus collected in Mawei town in Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    左丽; 舒莉萍

    2004-01-01

    @@ Dengue virus (DEN), a single-stranded RNA virus of the family Flaviviridae, is transmitted from one infected person or animal to another by the mosquitos Aedes albopictus and Aedes aegypti. There are four serotypes of the dengue virus (serotypes 1-4). The virus is responsible for dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the recent years, the incidence rate of DF/DHF has been increasing around the world, particularly in tropical and subtropical zones. Dengue is the most significant arthropod-borne viral disease affecting public health.1

  5. Rapid Detection and Quantification of RNA of Ebola and Marburg Viruses, Lassa Virus, Crimean-Congo Hemorrhagic Fever Virus, Rift Valley Fever Virus, Dengue Virus, and Yellow Fever Virus by Real-Time Reverse Transcription-PCR

    OpenAIRE

    Drosten, Christian; Göttig, Stephan; Schilling, Stefan; Asper, Marcel; Panning, Marcus; Schmitz, Herbert; Günther, Stephan

    2002-01-01

    Viral hemorrhagic fevers (VHFs) are acute infections with high case fatality rates. Important VHF agents are Ebola and Marburg viruses (MBGV/EBOV), Lassa virus (LASV), Crimean-Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), dengue virus (DENV), and yellow fever virus (YFV). VHFs are clinically difficult to diagnose and to distinguish; a rapid and reliable laboratory diagnosis is required in suspected cases. We have established six one-step, real-time reverse transcripti...

  6. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    Science.gov (United States)

    Drumond, Betania Paiva; da Silva Fagundes, Luiz Gustavo; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. PMID:26887252

  7. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Betania Paiva Drumond

    2016-03-01

    Full Text Available Abstract Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4 are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population.

  8. Detection antigen virus den on monocyts by streptavidin biotin test as early diagnostic for dengue fever hemorrhagic

    Directory of Open Access Journals (Sweden)

    Y NINING SRI WURYANINGSIH

    2007-07-01

    Full Text Available Dengue virus infection is the main cause of morbidity and mortality in the tropical and sub-tropical countries of the world. Clinically it may manifest as asymtomastic,undifferentiated fever,dengue ever,dengue haemorrhagic fever and dengue shock syndrome cases. The mechanism underlying the disease with severe complication is not clear yet,however it has been previosus reported that primary and secondary infections of dengue virus play an important role in the patogenesis of this diseases. Early diagnosis of dengue virus infection has a great contribution for appropriate management of the disease, especialy for the prognosis of the patient. Laboratory investigations for such cases will be methods on serological investigation as well as virus isolation and identification.of dengue virus infection could be made by detection of specific virus ,viral antigen,genomic sequence and or detection of antibodies. These methods are sensitive and precise for detecting dengue virus infection,but there need special equipment,costly and detection of IgM and IgG often positive or negative false the dengue virus in the blood stream There for, this study was performed in order to develop a method to detect dengue virus antigen on the monocytes using Streptavidin biotin technique. The result of Streptavidin biotin study demonstrated that 32 sera from patient suspected with DHF 78,1% were positive DHF,and 21,9% were negative DHF. These results are consistent with the result from WHO criteria as standard .The Chi Square analysis showed that the presentage of sensitivity and specificity of Streptavidin biotin methode were 88% and 87,7% respectively. In conclusions, immunocytochemistry method using streptavidin biotin technique could be used as a method to detect antigen dengue virus on monocytes in the serum patient suspected with DHF. This technique has high sensitivity and specivicity and consistent with the clinical WHO criteria for DHF.

  9. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    OpenAIRE

    Mendez Jairo A; Usme-Ciro Jose A; Domingo Cristina; Rey Gloria J; Sanchez Juan A; Tenorio Antonio; Gallego-Gomez Juan C

    2010-01-01

    Abstract Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not s...

  10. Observation on dengue cases from a virus diagnostic laboratory of a tertiary care hospital in north India

    OpenAIRE

    Om Prakash; Desh Deepak Singh; Geetika Mishra; Shantanu Prakash; Arvind Singh; Shikha Gupta; Jasmeet Singh; Danish Nasar Khan; Parul Jain; Anamika Vishal; Manoj Kumar Pandey; Amita Jain

    2015-01-01

    Background & objectives: The epidemiology of dengue fever (DF) is complex in the Indian subcontinent as all the four serotypes are circulating. This study reports observations on dengue cases from a virus diagnostic laboratory of a north Indian tertiary care hospital catering to areas in and around Lucknow, Uttar Pradesh. Methods: Serum samples were obtained from suspected cases of dengue referred to the virus diagnostic laboratory during 2011 to 2013, and detailed history was taken on a ...

  11. First Complete Genome Sequence of a Chikungunya Virus Strain Isolated from a Patient Diagnosed with Dengue Virus Infection in Malaysia.

    Science.gov (United States)

    Ooi, Man Kwan; Gan, Han Ming; Rohani, Ahmad; Syed Hassan, Sharifah

    2016-01-01

    Here, we report the complete genome sequence of a chikungunya virus coinfection strain isolated from a dengue virus serotype 2-infected patient in Malaysia. This coinfection strain was determined to be of the Asian genotype and contains a novel insertion in the nsP3 gene. PMID:27563048

  12. Molecular mechanisms of dengue virus infection : cell tropism, antibody-dependent enhancement, and cytokines

    NARCIS (Netherlands)

    Flipse, Jacobus

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease in humans. Although most infections occur in the (sub)tropical areas, recent outbreaks in Italy and Madeira indicate that the virus is spreading into Europe. Despite its relevance, no vaccine or medications are available against this virus. T

  13. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007

    OpenAIRE

    Leroy, Eric M.; Nkoghe Mba, Dieudonne; Ollomo, Benjamin; Nze-Nkogue, Chimene; Becquart, Pierre; Grard, Gilda; Pourrut, Xavier; Charrel, Remi; Moureau, Gregory; Ndjoyi-Mbiguino, Angelique; De-Lamballerie, Xavier

    2009-01-01

    An outbreak of febrile illness occurred in Gabon in 2007, with 20,000 suspected cases. Chikungunya or dengue-2 virus infections were identified in 321 patients; 8 patients had documented co-infections. Aedes albopictus was identified as the principal vector for the transmission of both viruses.

  14. Detection of Hepatitis C Virus Coinfection in Patients with Dengue Diagnosis

    Directory of Open Access Journals (Sweden)

    Carlos Machain-Williams

    2014-01-01

    Full Text Available Coinfection produced by dengue virus (DENV and hepatitis C virus (HCV is a serious problem of public health in Mexico, as they both circulate in tropical zones and may lead to masking or complicating symptoms. In this research, we detected active coinfected patients by HCV residing in the endemic city of Mérida, Yucatán, Mexico, with positive diagnosis to dengue during the acute phase. We performed a retrospective analysis of 240 serum samples from dengue patients. The IgM-ELISA serological test was used for dengue diagnosis, as well as viral isolation to confirm infection. DENV and HCV were detected by RT-PCR. Thus, 31 (12.9% samples showed DENV-HCV coinfection, but interestingly the highest frequency of coinfection cases was found in male patients presenting hemorrhagic dengue in 19/31 (61.29%, with a predominance of 12 : 7 in males. Firstly, coinfection of DENV-HCV in Mérida, Mexico, was detected in young dengue patients, between 11 and 20 years old (38.7%, followed by those between 21 and 30 years old (32%; only 16.13% were between 0 and 10 years of age. Diagnosis of HCV infection in patients with dengue is highly recommended in order to establish potential risk in clinical manifestations as well as dictate patients' special care.

  15. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014.

    Science.gov (United States)

    Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun

    2016-04-01

    We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. PMID:26880779

  16. Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    We present the optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Raman spectra were acquired from 18 blood serum samples using a laser at 532 nm as the excitation source. A multivariate regression model based on partial least-squares regression is developed that uses Raman spectra to predict dengue infection with leave-one-sample-out cross validation. The prediction of dengue infection by our model yields correlation coefficient r2 values of 0.9998 between the predicted and reference clinical results. The model was tested for six unknown human blood sera and found to be 100% accurate in accordance with the clinical results. (letter)

  17. Evaluation of two diagnostic methods for dengue virus infection and its correlation with thrombocytopenia

    OpenAIRE

    Tanvi H Panwala; Mulla, Summaiya A.

    2016-01-01

    Context: Early definitive diagnosis of dengue virus (DENV) infections is essential for the timely management of dengue infections. Aims: The aim of the present study is to compare results of both tests (IgM enzyme-linked immunosorbent assay [ELISA] and nonstructural protein 1 [NS1]) and to prove that use of NS1 with IgM ELISA tests improves the dengue laboratory diagnosis. Settings and Design: Tertiary Care Hospital, Gujarat and retrospective cross-sectional study. Subjects and Methods: One t...

  18. Complete genetic characterization of a Brazilian dengue virus type 3 strain isolated from a fatal outcome

    Directory of Open Access Journals (Sweden)

    Marize Pereira Miagostovich

    2006-05-01

    Full Text Available We have determined the complete nucleotide and the deduced amino acid sequences of Brazilian dengue virus type 3 (DENV-3 from a dengue case with fatal outcome, which occurred during an epidemic in the state of Rio de Janeiro, Brazil, in 2002. This constitutes the first complete genetic characterization of a Brazilian DENV-3 strain since its introduction into the country in 2001. DENV-3 was responsible for the most severe dengue epidemic in the state, based on the highest number of reported cases and on the severity of clinical manifestations and deaths reported.

  19. An Adjuvanted, Tetravalent Dengue Virus Purified Inactivated Vaccine Candidate Induces Long-Lasting and Protective Antibody Responses Against Dengue Challenge in Rhesus Macaques

    OpenAIRE

    Fernandez, Stefan; Thomas, Stephen J.; De La Barrera, Rafael; Im-Erbsin, Rawiwan; Jarman, Richard G.; Baras, Benoît; Toussaint, Jean-François; Mossman, Sally; Bruce L. Innis; Schmidt, Alexander; Malice, Marie-Pierre; Festraets, Pascale; Warter, Lucile; Putnak, J. Robert; Eckels, Kenneth H.

    2015-01-01

    The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented vire...

  20. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    Science.gov (United States)

    Sim, Shuzhen; Hibberd, Martin L

    2016-01-01

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring. PMID:26931545

  1. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    OpenAIRE

    Sim, S; Hibberd, ML

    2016-01-01

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances...

  2. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    OpenAIRE

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora an...

  3. Use of Recombinant Envelope Proteins for Serological Diagnosis of Dengue Virus Infection in an Immunochromatographic Assay

    OpenAIRE

    Cuzzubbo, Andrea J.; Endy, Timothy P.; Nisalak, Ananda; Kalayanarooj, Siripen; Vaughn, David W.; Ogata, Steven A.; Clements, David E.; Devine, Peter L.

    2001-01-01

    An immunochromatographic test that incorporates recombinant antigens (Dengue Duo Rapid Strip Test; PanBio, Brisbane, Australia) has recently become commercially available. This assay is performed in 15 min and detects both immunoglobulin M (IgM) and IgG in a capture format. The four recombinant proteins used represent the N-terminal 80% of the viral envelope glycoproteins of dengue viruses 1, 2, 3, and 4, respectively. The sensitivity and specificity of the recombinant-antigen-based assay wer...

  4. Coexistence of two dengue virus serotypes and forecasting for Madeira island

    OpenAIRE

    Rocha, Filipa Portugal; Rodrigues, Helena Sofia; Monteiro, M. Teresa T.; Torres, Delfim F. M.

    2015-01-01

    The first outbreak of dengue occurred in Madeira Island on 2012, featuring one virus serotype. Aedes aegypti was the vector of the disease and it is unlikely that it will be eliminated from the island. Therefore, a new outbreak of dengue fever can occur and, if it happens, risk to the population increases if two serotypes coexist. In this paper, mathematical modeling and numerical simulations are carried out to forecast what may happen in Madeira Island in such scenario.

  5. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Directory of Open Access Journals (Sweden)

    Maurice Demanou

    2014-07-01

    Full Text Available Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon.A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699, 24.2% in Garoua (n = 728 and 9.8% in Yaounde (n = 603. IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100 in Douala, 80% (n = 94 in Garoua and 77% (n = 66 in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2. Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde.In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  6. Acute febrile illness surveillance in a tertiary hospital emergency department: comparison of influenza and dengue virus infections.

    Science.gov (United States)

    Lorenzi, Olga D; Gregory, Christopher J; Santiago, Luis Manuel; Acosta, Héctor; Galarza, Ivonne E; Hunsperger, Elizabeth; Muñoz, Jorge; Bui, Duy M; Oberste, M Steven; Peñaranda, Silvia; García-Gubern, Carlos; Tomashek, Kay M

    2013-03-01

    In 2009, an increased proportion of suspected dengue cases reported to the surveillance system in Puerto Rico were laboratory negative. As a result, enhanced acute febrile illness (AFI) surveillance was initiated in a tertiary care hospital. Patients with fever of unknown origin for 2-7 days duration were tested for Leptospira, enteroviruses, influenza, and dengue virus. Among the 284 enrolled patients, 31 dengue, 136 influenza, and 3 enterovirus cases were confirmed. Nearly half (48%) of the confirmed dengue cases met clinical criteria for influenza. Dengue patients were more likely than influenza patients to have hemorrhage (81% versus 26%), rash (39% versus 9%), and a positive tourniquet test (52% versus 18%). Mean platelet and white blood cell count were lower among dengue patients. Clinical diagnosis can be particularly difficult when outbreaks of other AFI occur during dengue season. A complete blood count and tourniquet test may be useful to differentiate dengue from other AFIs. PMID:23382160

  7. Differential Oxidative Stress Induced by Dengue Virus in Monocytes from Human Neonates, Adult and Elderly Individuals

    Science.gov (United States)

    Valero, Nereida; Mosquera, Jesús; Añez, Germán; Levy, Alegria; Marcucci, Rafael; de Mon, Melchor Alvarez

    2013-01-01

    Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO) has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group) were infected with different dengue virus types (DENV- 1 to 4) and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease. PMID:24069178

  8. Allosteric inhibition of the NS2B-NS3 protease from dengue virus.

    Science.gov (United States)

    Yildiz, Muslum; Ghosh, Sumana; Bell, Jeffrey A; Sherman, Woody; Hardy, Jeanne A

    2013-12-20

    Dengue virus is the flavivirus that causes dengue fever, dengue hemorrhagic disease, and dengue shock syndrome, which are currently increasing in incidence worldwide. Dengue virus protease (NS2B-NS3pro) is essential for dengue virus infection and is thus a target of therapeutic interest. To date, attention has focused on developing active-site inhibitors of NS2B-NS3pro. The flat and charged nature of the NS2B-NS3pro active site may contribute to difficulties in developing inhibitors and suggests that a strategy of identifying allosteric sites may be useful. We report an approach that allowed us to scan the NS2B-NS3pro surface by cysteine mutagenesis and use cysteine reactive probes to identify regions of the protein that are susceptible to allosteric inhibition. This method identified a new allosteric site utilizing a circumscribed panel of just eight cysteine variants and only five cysteine reactive probes. The allosterically sensitive site is centered at Ala125, between the 120s loop and the 150s loop. The crystal structures of WT and modified NS2B-NS3pro demonstrate that the 120s loop is flexible. Our work suggests that binding at this site prevents a conformational rearrangement of the NS2B region of the protein, which is required for activation. Preventing this movement locks the protein into the open, inactive conformation, suggesting that this site may be useful in the future development of therapeutic allosteric inhibitors. PMID:24164286

  9. Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth.

    Directory of Open Access Journals (Sweden)

    Wing-Hong Kwan

    Full Text Available BACKGROUND: An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection. METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes. CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.

  10. Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses

    OpenAIRE

    Leparc Goffart, I.; Baragatti, M.; Temmam, S.; Tuiskunen, A.; Moureau, G.; Charrel, R.; De Lamballerie, Xavier

    2009-01-01

    Background: Dengue virus, transmitted by mosquitoes, causes every year 50 million cases of dengue fever. A standardize method for early diagnosis is still needed for clinical diagnosis and epidemiological Studies. Objective: To develop and validate for sensitivity, specificity, linearity and precision real-time one-step RT-PCR for the detection of dengue viruses. Study design: Multiple alignments of dengue virus sequence for each serotype were done and used to develop five systems of real-tim...

  11. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Shee-Mei; Kostyuchenko, Victor; Nybakken, Grant E.; Holdaway, Heather A.; Battisti, Anthony J.; Sukupolvi-Petty, Soila; Sedlak, Dagmar; Fremont, Daved H.; Chipman, Paul R.; Roehrig, John T.; Diamond, Michael S.; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (WU-MED); (CDC)

    2008-04-02

    The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization of the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.

  12. Discovery of Dengue Virus NS4B Inhibitors.

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W; Shi, Pei-Yong

    2015-08-01

    The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50,>20 M). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. PMID:26018165

  13. Clinical and laboratory profile of different dengue sub types in dengue virus infection

    Directory of Open Access Journals (Sweden)

    Niloy Gan Chaudhuri

    2016-03-01

    Results: On comparison of clinical signs in different dengue subgroups it was observed that the mean value of pulse, blood pressure and respiratory rate were significantly more deranged in the DSS group as compared to the DF group. Platelet count was significantly lower in all the sub groups whereas PT/aPTT was more dearranged in the DSS and DHF group as compared to the DF group. Comparison between the mean values of liver function test in different dengue sub groups had been shown, elevated transaminases, hypoproteinaemia and hypoalbuminaemia, in higher frequency in dengue haemorrhagic fever (DHF and dengue shock syndrome (DSS as compared to classical dengue fever (DF (P values significant. SGOT was significantly higher than the SGPT levels and SGOT was much more elevated in the DSS sub group compared to the DFS and DF group. Conclusions: The liver enzymes serum aminotransferase levels were significantly raised in patients with dengue shock syndrome compared to other two groups. Serum aminotransferases directly correlate with severity of infection in all the sub groups. Patients with secondary dengue infection were more prone for developing bleeding manifestations and shock syndrome. [Int J Res Med Sci 2016; 4(3.000: 743-748

  14. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    International Nuclear Information System (INIS)

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained

  15. IL-18 and IL-18 binding protein levels in patients with dengue virus infection

    Institute of Scientific and Technical Information of China (English)

    Chintana Chirathaworn; Yong Poovorawan; Viboonsak Vuthitanachot

    2010-01-01

    Objective:To determine the levels ofIL-18 andIL-18binding protein(BP) in patients with dengue virus infection.Methods: Acute and convalescent sera were collected from each patient. Control group was sera from blood donors. The levels of both IL-18 andIL-18BP were measured byELISA assays.Results: It was shown thatIL-18 andIL-18BPlevels were significantly higher in patients when compared with controls. In addition, the level ofIL-18BP was lower in convalescent than in acute sera.Conclusions: These data suggest that bothIL-18 andIL-18BP production was induced following dengue virus infection. Investigating the regulation of IL-18 by its natural regulator could lead to further understanding of the immune response or immunopathogenesis following dengue virus infection.

  16. How Important is Vertical Transmission of Dengue Viruses by Mosquitoes (Diptera: Culicidae)?

    Science.gov (United States)

    Grunnill, Martin; Boots, Michael

    2016-01-01

    Vertical transmission of dengue viruses by mosquitoes was discovered at the end of the late 1970s and has been suggested to be a means by which these viruses persist. However, it is unclear how widespread it is in nature, and its importance in the epidemiology of this disease is still debated. Here, we review the literature on vertical transmission and discuss its role in dengue's epidemiology and control. We conclude that given the number of studies that failed to find evidence of vertical transmission, as well as mathematical models and its mechanistic basis, it is unlikely that vertical transmission is important for the epidemiological persistence of dengue viruses. A combination of asymptomatic infection in humans and movement of people are likely to be more important determinants of dengue's persistence. We argue, however, that there may be some need for further research into the prevalence of dengue viruses in desiccated, as well as diapausing, eggs and the role of horizontal transmission through larval cannibalism. PMID:26545718

  17. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    International Nuclear Information System (INIS)

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  18. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro

    OpenAIRE

    Raquel Elvira Ocazionez; Rocio Meneses; Flor Ángela Torres; Elena Stashenko

    2010-01-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37ºC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was...

  19. Antiviral activity of Ellagic Acid against envelope proteins from Dengue Virus through Insilico Docking

    OpenAIRE

    Giridharan Bupesh; Ramalingam Senthil Raja; Krishnan Saravanamurali; Vijayan Senthil Kumar; Natrajan Saran; Mohan Kumar; Subramanian Vennila; Kaleefathulah Sheriff; Krishnasamy Kaveri; Palani Gunasekaran

    2014-01-01

    Arbo viral infection such as dengue, chikungunya, japanese encephalitis, west nile viruses and other flaviviruses have transmemberane envelope proteins. These proteins (glycoproteins) form spike-like projections responsible for virus attachment to target cells and acid-activated membrane fusion. Further it targets numerous serologic reactions and tests including neutralization and hemagglutination inhibition. These viruses showed wide range of antigenic cross reactions and caused by seven ant...

  20. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java.

    Directory of Open Access Journals (Sweden)

    Herman Kosasih

    2016-02-01

    Full Text Available Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies.Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000-2004 and 2006-2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%. The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections.Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The

  1. Antiviral activity of Ellagic Acid against envelope proteins from Dengue Virus through Insilico Docking

    Directory of Open Access Journals (Sweden)

    Giridharan Bupesh

    2014-06-01

    Full Text Available Arbo viral infection such as dengue, chikungunya, japanese encephalitis, west nile viruses and other flaviviruses have transmemberane envelope proteins. These proteins (glycoproteins form spike-like projections responsible for virus attachment to target cells and acid-activated membrane fusion. Further it targets numerous serologic reactions and tests including neutralization and hemagglutination inhibition. These viruses showed wide range of antigenic cross reactions and caused by seven antigenic complexes from 30 species, huge subtypes and varieties. This protein is the chief site for most neutralizing epitopes, highly conserved with cross-reactive epitopes. In the present study, the ellagic acid (4,4,5,5,6,6-Hexahydroxydiphenic acid 2,6,2,6-dilactone was evaluated for the antiviral activity through Insilico docking against drug target envelope proteins from dengue viruses. Ellagic acid showed good docking score with all the four glycoproteins from dengue 1-4 viruses. Among the glycoprotein receptors the glycoprotein-1 and 4 demonstrates the highest docking score with energy minimization. This highlights that the ellagic acid have potent antiviral activity against the dengue viruses.

  2. The search for nucleoside/nucleotide analog inhibitors of dengue virus.

    Science.gov (United States)

    Chen, Yen-Liang; Yokokawa, Fumiaki; Shi, Pei-Yong

    2015-10-01

    Nucleoside analogs represent the largest class of antiviral agents and have been actively pursued for potential therapy of dengue virus (DENV) infection. Early success in the treatment of human immunodeficiency virus (HIV) infection and the recent approval of sofosbuvir for chronic hepatitis C have provided proof of concept for this class of compounds in clinics. Here we review (i) nucleoside analogs with known anti-DENV activity; (ii) challenges of the nucleoside antiviral approach for dengue; and (iii) potential strategies to overcome these challenges. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. PMID:26241002

  3. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    OpenAIRE

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J; Steinhoff, Daniel F; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities ...

  4. Comparison of Two Rapid Diagnostic Assays for Detection of Immunoglobulin M Antibodies to Dengue Virus

    OpenAIRE

    Wu, Shuenn-Jue L.; Paxton, Helene; Hanson, Barbara; Kung, Cheryl G.; Chen, Timothy B.; Rossi, Cindy; David W Vaughn; Murphy, Gerald S.; Hayes, Curtis G.

    2000-01-01

    Two easy-to-use commercial diagnostic assays, a dipstick enzyme-linked immunosorbent assay (ELISA) (Integrated Diagnostics, Baltimore, Md.) and an immunochromatographic card assay (PanBio, Brisbane, Australia) were evaluated for detection of immunoglobulin M (IgM) antibody to dengue virus with an in-house IgM antibody capture microplate ELISA as a reference assay. The dipstick ELISA was based on the indirect-ELISA format using dengue 2 virus as the only antigen and enzyme-labeled goat anti-hu...

  5. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics.

    Science.gov (United States)

    Savidis, George; McDougall, William M; Meraner, Paul; Perreira, Jill M; Portmann, Jocelyn M; Trincucci, Gaia; John, Sinu P; Aker, Aaron M; Renzette, Nicholas; Robbins, Douglas R; Guo, Zhiru; Green, Sharone; Kowalik, Timothy F; Brass, Abraham L

    2016-06-28

    The flaviviruses dengue virus (DENV) and Zika virus (ZIKV) are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF), heparin sulfation (NDST1 and EXT1), and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC). We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication. PMID:27342126

  6. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available The flaviviruses dengue virus (DENV and Zika virus (ZIKV are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF, heparin sulfation (NDST1 and EXT1, and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC. We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication.

  7. Re-emergence of dengue virus serotype 2 strains in the 2013 outbreak in Nepal

    Directory of Open Access Journals (Sweden)

    Birendra Prasad Gupta

    2015-01-01

    Full Text Available Background & objectives: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. Methods: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR, nucleotide sequencing and phylogenetic analysis. Results: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%, headache (59.1%, rashes (18.2%, retro-orbital pain (30.3%, vomiting (15.1%, joint pain (28.8% and thrombocytopenia (74.3%. Fifteen (7.5% of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. Interpretations & conclusions: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region.

  8. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23 and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.

  9. Development and Characterization of a Reverse Genetic System for Studying Dengue Virus Serotype 3 Strain Variation and Neutralization

    OpenAIRE

    Messer, William B.; Boyd Yount; Kari E Hacker; Donaldson, Eric F.; Huynh, Jeremy P.; de Silva, Aravinda M.; Baric, Ralph S.

    2012-01-01

    Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny an...

  10. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine–loaded microspheres against dengue 2 virus

    Directory of Open Access Journals (Sweden)

    Huang SS

    2013-08-01

    Full Text Available Shih-shiung Huang,1 I-Hsun Li,2,3 Po-da Hong,1 Ming-kung Yeh1,2 1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, and Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan; 2School of Pharmacy, National Defence Medical Center and Bureau of Pharmaceutical Affairs, Military of National Defence Medical Affairs Bureau, Taipei, Taiwan; 3Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan Abstract: Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic acid/polyethylene glycol (PLGA/PEG microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1 in deoxyribonucleic acid (DNA vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w, yield (85.2%, and entrapment efficiency (39%, the mean particle size 4.8 µm, and a controlled in vitro release profile with a low initial burst (18.5%, lag time (4 days, and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 µg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 µg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 µg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was

  11. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis.

    Science.gov (United States)

    Wang, Qing-Yin; Bushell, Simon; Qing, Min; Xu, Hao Ying; Bonavia, Aurelio; Nunes, Sandra; Zhou, Jing; Poh, Mee Kian; Florez de Sessions, Paola; Niyomrattanakit, Pornwaratt; Dong, Hongping; Hoffmaster, Keith; Goh, Anne; Nilar, Shahul; Schul, Wouter; Jones, Susan; Kramer, Laura; Compton, Teresa; Shi, Pei-Yong

    2011-07-01

    Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC(50)) of 2.4 nM and a 50% cytotoxic concentration (CC(50)) of >5 μM. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC(90)s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compound-mediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound. PMID:21507975

  12. Aislamiento rápido del virus dengue 3 por el método de shell vial en el brote de dengue en Lima

    OpenAIRE

    Victoria Gutiérrez P; Miryam Palomino R; Marcela Olivares S; Gissella Noroña C

    2005-01-01

    El aislamiento de virus dengue con los métodos tradicionales demora hasta un mes, en situaciones de emergencia como el brote de dengue clásico en el distrito de Comas-Lima entre abril y mayo de 2005, es necesario un diagnóstico precoz. Se procesaron 117 muestras de sueros de pacientes con diagnóstico clínico de dengue clásico en fase virémica procedentes la zona del brote, mediante el método de shell vial para el aislamiento del virus dengue en la línea celular C6-36, se identificó el serotip...

  13. Physicians, primary caregivers and topical repellent: all under-utilised resources in stopping Dengue virus transmission in affected households

    OpenAIRE

    Nguyet Minh Nguyen; Whitehorn, James S.; Tai Luong Thi Hue; Truong Nguyen Thanh; Thong Mai Xuan; Huy Vo Xuan; Huong Nguyen Thi Cam; Lan Nguyen Thi Hong; Nguyen, Hoa L.; Tam Dong Thi Hoai; Chau Nguyen Van Vinh; Marcel Wolbers; Bridget Wills; Simmons, Cameron P.; Carrington, Lauren B.

    2016-01-01

    Background Primary health care facilities frequently manage dengue cases on an ambulatory basis for the duration of the patient’s illness. There is a great opportunity for specific messaging, aimed to reduce dengue virus (DENV) transmission in and around the home, to be directly targeted toward this high-risk ambulatory patient group, as part of an integrated approach to dengue management. The extent however, to which physicians understand, and can themselves effectively communicate strategie...

  14. Incidence of Dengue Virus Infection in Adults and Children in a Prospective Longitudinal Cohort in the Philippines.

    OpenAIRE

    Maria Theresa Alera; Anon Srikiatkhachorn; John Mark Velasco; Tac-An, Ilya A.; Catherine B Lago; Hannah E Clapham; Stefan Fernandez; Levy, Jens W; Butsaya Thaisomboonsuk; Chonticha Klungthong; Macareo, Louis R.; Ananda Nisalak; Laura Hermann; Daisy Villa; In-Kyu Yoon

    2016-01-01

    The mean age of dengue has been increasing in some but not all countries. We sought to determine the incidence of dengue virus (DENV) infection in adults and children in a prospective cohort study in the Philippines where dengue is hyperendemic.A prospective cohort of subjects ≥6 months old in Cebu City, Philippines, underwent active community-based surveillance for acute febrile illnesses by weekly contact. Fever history within the prior seven days was evaluated with an acute illness visit f...

  15. Physicians, Primary Caregivers and Topical Repellent: All Under-Utilised Resources in Stopping Dengue Virus Transmission in Affected Households

    OpenAIRE

    Nguyen, Nguyet Minh; Whitehorn, James S.; Luong Thi Hue, Tai; Nguyen Thanh, Truong; Mai Xuan, Thong; Vo Xuan, Huy; Nguyen Thi Cam, Huong; Nguyen Thi Hong, Lan; Nguyen, Hoa L; Dong Thi Hoai, Tam; Nguyen Van Vinh, Chau; Wolbers, Marcel; Wills, Bridget; Simmons, Cameron P; Carrington, Lauren B

    2016-01-01

    Background Primary health care facilities frequently manage dengue cases on an ambulatory basis for the duration of the patient’s illness. There is a great opportunity for specific messaging, aimed to reduce dengue virus (DENV) transmission in and around the home, to be directly targeted toward this high-risk ambulatory patient group, as part of an integrated approach to dengue management. The extent however, to which physicians understand, and can themselves effectively communicate strategie...

  16. Incidence of Dengue Virus Infection in Adults and Children in a Prospective Longitudinal Cohort in the Philippines

    OpenAIRE

    Maria Theresa Alera; Anon Srikiatkhachorn; John Mark Velasco; Ilya A Tac-An; Lago, Catherine B.; Clapham, Hannah E; Stefan Fernandez; Levy, Jens W.; Butsaya Thaisomboonsuk; Chonticha Klungthong; Macareo, Louis R.; Ananda Nisalak; Laura Hermann; Daisy Villa; In-Kyu Yoon

    2016-01-01

    Background The mean age of dengue has been increasing in some but not all countries. We sought to determine the incidence of dengue virus (DENV) infection in adults and children in a prospective cohort study in the Philippines where dengue is hyperendemic. Methodology/Principal Findings A prospective cohort of subjects ≥6 months old in Cebu City, Philippines, underwent active community-based surveillance for acute febrile illnesses by weekly contact. Fever history within the prior seven days ...

  17. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  18. NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus

    Directory of Open Access Journals (Sweden)

    Satheesh Natarajan

    2010-01-01

    Full Text Available The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein.

  19. Establishment and preliminary application of Dengue virus envelope domain Ⅲ IgG antibody capture enzyme-linked immuno-absorbent assay

    Institute of Scientific and Technical Information of China (English)

    胡冬梅

    2013-01-01

    Objective To establish a highly sensitive and specific assay to detect Dengue virus(DENV) envelope protein domainⅢ(EDⅢ) IgG antibody,and to explore its value in the diagnosis and seroepidemiological survey of dengue

  20. Miscarriage following dengue virus 3 infection in the first six weeks of pregnancy of a dengue virus-naive traveller returning from Bali to Italy, April 2016.

    Science.gov (United States)

    Zavattoni, Maurizio; Rovida, Francesca; Campanini, Giulia; Percivalle, Elena; Sarasini, Antonella; Cristini, Graziella; Tomasoni, Lina Rachele; Castelli, Francesco; Baldanti, Fausto

    2016-08-01

    We report miscarriage following dengue virus (DENV)-3 infection in a pregnant woman returning from Bali to Italy in April 2016. On her arrival, the woman had fever, rash, asthenia and headache. DENV RNA was detected in plasma and urine samples collected the following day. Six days after symptom onset, she had a miscarriage. DENV RNA was detected in fetal material, but in utero fetal infection cannot be demonstrated due to possible contamination by maternal blood. PMID:27526349

  1. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  2. Evaluation of the Dengue NS1 Ag Strip® for Detection of Dengue Virus Antigen in Aedes aegypti (Diptera: Culicidae)

    OpenAIRE

    Tan, Cheong-Huat; Wong, Pei-Sze Jeslyn; Li, Mei-Zhi Irene; Vythilingam, Indra; Ng, Lee-Ching

    2011-01-01

    Dengue fever is currently one of the most important mosquito-borne diseases that affect humans. With neither vaccines nor treatment available, prevention of the disease relies heavily on surveillance and control of mosquito vectors. In the present study, we have evaluated and showed the potential use of the Dengue NS1 Ag Strip® for the detection of dengue virus (DENV) in Aedes aegypti. Initial results showed that the sensitivity of the test kit in detecting DENV in wild-caught mosquitoes is c...

  3. Identification of sequence motifs involved in Dengue virus-host interactions.

    Science.gov (United States)

    Asnet Mary, J; Paramasivan, R; Shenbagarathai, R

    2016-03-01

    Dengue fever is a rapidly spreading mosquito-borne virus infection, which remains a serious global public health problem. As there is no specific treatment or commercial vaccine available for effective control of the disease, the attempts on developing novel control strategies are underway. Viruses utilize the surface receptor proteins of host to enter into the cells. Though various proteins were said to be receptors of Dengue virus (DENV) using Virus Overlay Protein Binding Assay, the precise interaction between DENV and host is not explored. Understanding the structural features of domain III envelope glycoprotein would help in developing efficient antiviral inhibitors. Therefore, an attempt was made to identify the sequence motifs present in domain III envelope glycoprotein of Dengue virus. Computational analysis revealed that the NGR motif is present in the domain III envelope glycoprotein of DENV-1 and DENV-3. Similarly, DENV-1, DENV-2 and DENV-4 were found to contain Yxxphi motif which is a tyrosine-based sorting signal responsible for the interaction with a mu subunit of adaptor protein complex. High-throughput virtual screening resulted in five compounds as lead molecules based on glide score, which ranges from -4.664 to -6.52 kcal/Mol. This computational prediction provides an additional tool for understanding the virus-host interactions and helps to identify potential targets in the host. Further, experimental evidence is warranted to confirm the virus-host interactions and also inhibitory activity of reported lead compounds. PMID:25905427

  4. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    Science.gov (United States)

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development. PMID:26856827

  5. Dengue Virus Transmission by Blood Stem Cell Donor after Travel to Sri Lanka; Germany, 2013

    Centers for Disease Control (CDC) Podcasts

    2014-09-22

    Dr. Mike Miller reads an abridged version of the article, Dengue Virus Transmission by Blood Stem Cell Donor after Travel to Sri Lanka; Germany, 2013.  Created: 9/22/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/8/2014.

  6. Evaluation of six immunoassays for detection of dengue virus-specific immunoglobulin M and G antibodies

    NARCIS (Netherlands)

    J. Groen (Jan); P. Koraka (Penelopie); J. Velzing (Jans); C. Copra (Cederick); A.D.M.E. Osterhaus (Ab)

    2000-01-01

    textabstractThe performance of six commercially available immunoassay systems for the detection of dengue virus-specific immunoglobulin M (IgM) and IgG antibodies in serum was evaluated. These included two IgM and IgG enzyme immunoassays (EIA) from MRL Laboratories and PanBio, a rapid immunochromato

  7. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    NARCIS (Netherlands)

    P. Koraka (Penelopie); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  8. Incidence and risk factors of probable dengue virus infection among Dutch travelers to Asia.

    NARCIS (Netherlands)

    F.G.J. Cobelens (Frank); J. Groen (Jan); A.D.M.E. Osterhaus (Albert); A. Leentvaar-Kuipers (Anne); P.E.M. Wertheim-van Dillen (Pauline); P.A. Kager (Piet)

    2002-01-01

    textabstractWe studied the incidence of dengue virus (DEN) infections in a cohort of Dutch short-term travellers to endemic areas in Asia during 1991-92. Sera were collected before and after travel. All post-travel sera were tested for DEN immunoglobulin M (IgM) [IgM capture (MAC)-enzyme-linked immu

  9. GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein.

    Science.gov (United States)

    Clark, Margaret J; Miduturu, Chandra; Schmidt, Aaron G; Zhu, Xuling; Pitts, Jared D; Wang, Jinhua; Potisopon, Supanee; Zhang, Jianming; Wojciechowski, Amy; Hann Chu, Justin Jang; Gray, Nathanael S; Yang, Priscilla L

    2016-04-21

    Dengue virus infects more than 300 million people annually, yet there is no widely protective vaccine or drugs against the virus. Efforts to develop antivirals against classical targets such as the viral protease and polymerase have not yielded drugs that have advanced to the clinic. Here, we show that the allosteric Abl kinase inhibitor GNF-2 interferes with dengue virus replication via activity mediated by cellular Abl kinases but additionally blocks viral entry via an Abl-independent mechanism. To characterize this newly discovered antiviral activity, we developed disubstituted pyrimidines that block dengue virus entry with structure-activity relationships distinct from those driving kinase inhibition. We demonstrate that biotin- and fluorophore-conjugated derivatives of GNF-2 interact with the dengue glycoprotein, E, in the pre-fusion conformation that exists on the virion surface, and that this interaction inhibits viral entry. This study establishes GNF-2 as an antiviral compound with polypharmacological activity and provides "lead" compounds for further optimization efforts. PMID:27105280

  10. Dengue Virus Specific Immune Response: Implications for laboratory diagnosis and vaccine development

    NARCIS (Netherlands)

    P. Koraka (Penelopie)

    2007-01-01

    textabstractDengue viruses (DENV 1-4) belong to the family Flaviviridae, genus Flavivirus. They are transmitted to humans through the bite of infected mosquitoes of the Aedes species. An estimated 100 million people are annually infected with DENV and over two billion people are at risk in acquiring

  11. Immunofluorescence assay method to detect dengue virus in Paniai-Papua

    Science.gov (United States)

    Sucipto, Teguh Hari; Ahwanah, Nur Laila Fitriati; Churrotin, Siti; Matake, Norifumi; Kotaki, Tomohiro; Soegijanto, Soegeng

    2016-03-01

    The dengue viruses (DENV), which include in the family Flaviviridae and the genus Flavivirus, was endemic in tropical areas and had been transmitted to humans by Aedes aegypti. An increasing number of immigrants from endemic areas to the non-endemic areas have emphasized the need for a simple and reliable test for the diagnosis of dengue virus infection. The purpose of this study was to detect the dengue virus by immunofluorescence assay (IFA) in the general population at Paniai-Papua. The results obtained from this study had showed a significantly better discrimination for DENV specific IgG antibodies. A total of 158 samples, 116 samples were IgG antibodies positive and 42 samples were negative. The conclusion of this study, Papua is not only a malaria endemic area, but also dengue virus infections were detected by IFA method. Therefore, the IFA can be used as an important diagnostic tool, which is a quick and an easy way to test samples from immigrants who come to the non-endemic areas.

  12. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection.

    Science.gov (United States)

    Chan, Kuan Rong; Zhang, Summer Li-Xin; Tan, Hwee Cheng; Chan, Ying Kai; Chow, Angelia; Lim, Angeline Pei Chiew; Vasudevan, Subhash G; Hanson, Brendon J; Ooi, Eng Eong

    2011-07-26

    The interaction of antibodies, dengue virus (DENV), and monocytes can result in either immunity or enhanced virus infection. These opposing outcomes of dengue antibodies have hampered dengue vaccine development. Recent studies have shown that antibodies neutralize DENV by either preventing virus attachment to cellular receptors or inhibiting viral fusion intracellularly. However, whether the antibody blocks attachment or fusion, the resulting immune complexes are expected to be phagocytosed by Fc gamma receptor (FcγR)-bearing cells and cleared from circulation. This suggests that only antibodies that are able to block fusion intracellularly would be able to neutralize DENV upon FcγR-mediated uptake by monocytes whereas other antibodies would have resulted in enhancement of DENV replication. Using convalescent sera from dengue patients, we observed that neutralization of the homologous serotypes occurred despite FcγR-mediated uptake. However, FcγR-mediated uptake appeared to be inhibited when neutralized heterologous DENV serotypes were used instead. We demonstrate that this inhibition occurred through the formation of viral aggregates by antibodies in a concentration-dependent manner. Aggregation of viruses enabled antibodies to cross-link the inhibitory FcγRIIB, which is expressed at low levels but which inhibits FcγR-mediated phagocytosis and hence prevents antibody-dependent enhancement of DENV infection in monocytes. PMID:21746897

  13. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Jarupathirun, Patsaporn; Kaptein, Suzanne; Neyts, Johan; Smit, Jolanda

    2013-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier tha

  14. Signaling Pathways Involved In Dengue-2 Virus Infection Induced RANTES Overexpression

    Directory of Open Access Journals (Sweden)

    Ying-Ray Lee

    2008-01-01

    Full Text Available Dengue viruses participate in liver inflammation by inducting the expression of various chemokines including Regulated on Activation Normal T-cell Expressed and Secreted (RANTES. However, the underlying signaling remains unknown. Here, we reveal that Ras, Raf-1 and three mitogen-activated protein kinases (MAPKs p38, extracellular signal-regulated kinase (Erk, and c-jun-NH2-terminal kinase (JNK can be activated or phosphorylated in dengue-2 virus infected hepatocyte and epithelial cells by western blotting and confirmed by dominant negative mutants of ras, raf-1, p38, Erk, and JNK. The Tet-off inducible plasmids harboring dengue-2 virus prM, core, E or NS1 gene were utilized to reveal their role in RANTES activation. However, no effect was detected among the genes tested indicating that they are either dispensable or not sufficient for RANTES activation. Taken-together, Ras, Raf-1, JNK, Erk and p38 related signaling pathways are essential for the activation of RANTES by dengue-2 virus. The knowledge gathered will shed light on developing a novel therapeutic approach to block inflammatory infiltrates through decreasing RANTES expression.

  15. Acute hepatitis due to dengue virus in a chronic hepatitis patient

    Directory of Open Access Journals (Sweden)

    L.J Souza

    2008-10-01

    Full Text Available We present a case of acute hepatitis caused by dengue virus, with a significant increase in aspartate transferase and alanine transferase levels in a chronic hepatitis patient attended at the Cane Sugar Planters Hospital of Campos dos Goytacazes, RJ.

  16. Simulated Transmission of the Dengue Virus Across the US-Mexico Border Using Remotely Sensed and Ground Based Weather Data

    Science.gov (United States)

    Morin, Cory; Quattrochi, Dale A.

    2015-01-01

    Incidence of dengue fever, caused by a mosquito transmitted virus, have increased in the Americas during recent decades. In the US, local transmission has been reported in southern Texas and Florida. However, despite its close proximity to dengue endemic areas in Mexico and the presence of a primary mosquito vector, there are no reports of local transmission in Arizona. Many studies have demonstrated that weather influences dengue virus transmission by regulating vector development rates, vector habitat availability, and the duration of the virus extrinsic incubation period (EIP). The EIP, the period between mosquito infection and the ability for it to retransmit the virus, is especially important given its high sensitivity to temperature and the short lifespan of mosquitoes. Other studies, however, have suggested that human related factors such as socioeconomic status and herd immunity may explain much of the disparity in dengue incidence in the US-Mexico border region. Using a meteorologically driven model of vector population dynamics and virus transmission we compare simulations of dengue fever cases in southern Arizona and northern Mexico. A Monte Carlo approach is employed to select parameter values by evaluating simulations in Hermosillo Mexico with reported dengue fever case data. Simulations that replicate the case data best are retained and rerun using remotely sensed climate data from other Arizona and Mexico locations to determine the relative influence of weather on virus transmission. Although human and environmental factors undoubtedly influence dengue transmission in the US-Mexico border regions, weather is a major facilitator of the transmission process.

  17. Seroprevalence of antibodies against dengue virus among pregnant women in the Democratic Republic of Sao Tome and Principe.

    Science.gov (United States)

    Yen, Tsai-Ying; Trovoada Dos Santos, Maria de Jesus; Tseng, Lien-Feng; Chang, Shu-Feng; Cheng, Chien-Fu; Carvalho, Arlindo Vicente de Assunção; Shu, Pei-Yun; Lien, Jih-Ching; Tsai, Kun-Hsien

    2016-03-01

    Dengue fever has become a worldwide public health concern, threatening an estimated 40% of the world's population. However, most resources and attention are still focused on malaria, while dengue statuses are poorly recognized in many African countries. In this serological survey, dengue virus (DENV) transmission was demonstrated by using serum samples collected from 78 pregnant women in the Democratic Republic of Sao Tome and Principe (DRSTP) during 2003 to 2004. Immunofluorescence assay was performed and 31 samples (39.74%) were found positive for DENV antibodies. Indirect enzyme-linked immunosorbent assay (ELISA) showed that 53 samples (67.95%) were positive for dengue E IgG, and 38 samples (48.72%) were positive for NS1 IgG. A prevalence of 35.90% was therefore determined for dengue IgG by considering samples that yielded positive results by all three tests. Cross-reactions with other flaviviruses were examined by indirect ELISA against Japanese encephalitis virus, West Nile virus, and yellow fever virus. Only one sample exhibited stronger absorbance against Japanese encephalitis virus and West Nile virus. Moreover, one sample was positive for dengue IgM. These results agreed with the previous researches in neighboring countries and suggested DENV exposure. The study contributes to raising public awareness of dengue and supporting future control strategies. PMID:26739653

  18. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus.

    Science.gov (United States)

    Dejnirattisai, Wanwisa; Supasa, Piyada; Wongwiwat, Wiyada; Rouvinski, Alexander; Barba-Spaeth, Giovanna; Duangchinda, Thaneeya; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Malasit, Prida; Rey, Felix A; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2016-09-01

    Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV. PMID:27339099

  19. Modulation of inflammation and pathology during dengue virus infection by p38 MAPK inhibitor SB203580.

    Science.gov (United States)

    Fu, Yilong; Yip, Andy; Seah, Peck Gee; Blasco, Francesca; Shi, Pei-Yong; Hervé, Maxime

    2014-10-01

    Dengue virus (DENV) infection could lead to dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). The disease outcome is controlled by both viral and host factors. Inflammation mediators from DENV-infected cells could contribute to increased vascular permeability, leading to severe DHF/DSS. Therefore, suppression of inflammation could be a potential therapeutic approach for treatment of dengue patients. In this context, p38 MAPK (mitogen-activated protein kinase) is a key enzyme that modulates the initiation of stress and inflammatory responses. Here we show that SB203580, a p38 MAPK inhibitor, suppressed the over production of DENV-induced pro-inflammatory mediators such as TNF-α, IL-8, and RANTES from human PBMCs, monocytic THP-1, and granulocyte KU812 cell lines. Oral administration of SB203580 in DENV-infected AG129 mice prevented hematocrit rise and lymphopenia, limited the development of inflammation and pathology (including intestine leakage), and significantly improved survival. These results, for the first time, have provided experimental evidence to imply that a short term inhibition of p38 MAPK may be beneficial to reduce disease symptoms in dengue patients. PMID:25131378

  20. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Science.gov (United States)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  1. Two different dengue virus strains in the Japanese epidemics of 2014.

    Science.gov (United States)

    Nakayama, Eri; Kotaki, Akira; Tajima, Shigeru; Kawada, Miki; Miura, Kuniharu; Gemma, Aki; Adachi, Takuya; Sekizuka, Tsuyoshi; Kato, Kengo; Yamashita, Akifumi; Moi, Meng Ling; Ikeda, Makiko; Yagasaki, Kazumi; Shibasaki, Kenichi; Saijo, Masayuki; Kuroda, Makoto; Takasaki, Tomohiko

    2016-10-01

    In late August 2014, dengue cases were reported in Japan, and a total of 162 cases were confirmed. In the present study, the envelope (E) gene sequences of 12 specimens from the dengue patients were determined. A dengue virus serotype 1 (DENV1) strain (D1/Hu/Shizuoka/NIID181/2014), which was clearly different from the first reported strain (D1/Hu/Saitama/NIID100/2014), was identified, although the other 11 specimens showed the same nucleotide sequences as D1/Hu/Saitama/NIID100/2014. The E gene sequences of two different strains were compared with those of nine DENV1 strains of imported cases in Japan in 2014. Phylogenetic analysis based on the E gene sequences showed that the D1/Hu/Saitama/NIID100/2014 strain was closely related to a strain isolated from an imported case from Singapore. Although no strain closely related to D1/Hu/Shizuoka/NIID181/2014 was found in these imported strains, the strain was closely related to isolates in Thailand and Taiwan in 2009. These data indicate that the dengue cases in Japan were caused by two different dengue virus strains that entered Japan through different means. PMID:27229877

  2. Characterization of dengue virus infections in a sample of patients suggests unique clinical, immunological, and virological profiles that impact on the diagnosis of dengue and dengue hemorrhagic fever.

    Science.gov (United States)

    Senaratne, Thamarasi; Wimalaratne, Harith; Alahakoon, D G S; Gunawardane, Nirmali; Carr, Jillian; Noordeen, Faseeha

    2016-10-01

    Dengue virus (DENV) infections are increasing with respect to incidence and severity in the Central Province of Sri Lanka. The objective of this study was to define the clinical, immunological, and virological profiles of patients admitted to the General Hospital, Kandy with clinically apparent dengue. Demographic, clinical, hematological parameters, liver enzymes (ALT and AST), and blood samples were collected from 292 patients with fever dengue fever/dengue hemorrhagic fever (DF/DHF). Samples were analyzed for, anti-DENV IgM, IgG, and DENV nucleic acid. Myalgia was the commonest complaint by 65% of the patients. Packed cell volume was >45% in 27% of the patients while 42.12% had reduced platelets and 62.67% had reduced white blood cell counts. In contrast to other studies, positive tourniquet test (PTT) and petechiae were not major indicators of DENV infection or severity of the disease. Clinical profiles were significantly different between DF and DHF/DSS and showed many similarities to that reported elsewhere. Altogether, 43 patients (14.73%) were viremic as detected by RT-PCR; 181 patients (62%) were positive for anti-DENV IgM, and 245 (84%) patients were positive for anti-DENV IgG. In combination, anti-DENV IgM and RT-PCR assays detected 224 (77.5%) of DENV infected cases, thus improving the DENV diagnosis rate. Hence, the diagnostic utility of PTT, anti-DENV IgM/IgG serology, or RT-PCR used alone in the early phase of illness is low in Sri Lanka but the diagnostic value can be improved by a combination of serology and RT-PCR. J. Med. Virol. 88:1703-1710, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990973

  3. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  4. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission.

    Directory of Open Access Journals (Sweden)

    Louis Lambrechts

    Full Text Available The dramatic global expansion of Aedes albopictus in the last three decades has increased public health concern because it is a potential vector of numerous arthropod-borne viruses (arboviruses, including the most prevalent arboviral pathogen of humans, dengue virus (DENV. Ae. aegypti is considered the primary DENV vector and has repeatedly been incriminated as a driving force in dengue's worldwide emergence. What remains unresolved is the extent to which Ae. albopictus contributes to DENV transmission and whether an improved understanding of its vector status would enhance dengue surveillance and prevention. To assess the relative public health importance of Ae. albopictus for dengue, we carried out two complementary analyses. We reviewed its role in past dengue epidemics and compared its DENV vector competence with that of Ae. aegypti. Observations from "natural experiments" indicate that, despite seemingly favorable conditions, places where Ae. albopictus predominates over Ae. aegypti have never experienced a typical explosive dengue epidemic with severe cases of the disease. Results from a meta-analysis of experimental laboratory studies reveal that although Ae. albopictus is overall more susceptible to DENV midgut infection, rates of virus dissemination from the midgut to other tissues are significantly lower in Ae. albopictus than in Ae. aegypti. For both indices of vector competence, a few generations of mosquito colonization appear to result in a relative increase of Ae. albopictus susceptibility, which may have been a confounding factor in the literature. Our results lead to the conclusion that Ae. albopictus plays a relatively minor role compared to Ae. aegypti in DENV transmission, at least in part due to differences in host preferences and reduced vector competence. Recent examples of rapid arboviral adaptation to alternative mosquito vectors, however, call for cautious extrapolation of our conclusion. Vector status is a dynamic

  5. Comparison of Performance of Serum and Plasma in Panbio Dengue and Japanese Encephalitis Virus Enzyme-Linked Immunosorbent Assays

    OpenAIRE

    Blacksell, Stuart D; Lee, Sue J.; Chanthongthip, Anisone; Taojaikong, Thaksinaporn; Thongpaseuth, Soulignasack; Hübscher, Tanja; Newton, Paul N.

    2012-01-01

    We examined the comparative performance of serum and plasma (in dipotassium EDTA) in Panbio Dengue enzyme-linked immunosorbent assays (ELISAs) for detection of non-structural protein 1 (NS1), IgM, and IgG, and a dengue/Japanese encephalitis virus (JEV) combination IgM ELISA in a prospective series of 201 patients with suspected dengue in Laos. Paired comparisons of medians from serum and plasma samples were not significantly different for Dengue IgM, and NS1 which had the highest number of di...

  6. Susceptibility of Aedes flavopictus miyarai and Aedes galloisi mosquito species in Japan to dengue type 2 virus

    Institute of Scientific and Technical Information of China (English)

    Raweewan Srisawat; Ikuo Takashima; Tomohiko Takasaki; Ichiro Kurae; Narihiro Narita; Takashi Kobayashi; Yuki Eshita; Thipruethai Phanitchat; Narumon Komalamisra; Naoki Tamori; Lucky Runtuwene; Kaori Noguchi; Kyoko Hayashida; Shinya Hidano; Naganori Kamiyama

    2016-01-01

    Objective: To evaluate the potential of local mosquitoes to act as vectors for dengue transmission in Japan. Methods: Serotype 2 ThNH28/93 was used to test the dengue susceptibility profiles of Aedes flavopictus miyarai (Ae. f. miyarai), Aedes galloisi (Ae. galloisi) and Aedes albopictus (Ae. albopictus), which were collected in Japan. We used Aedes aegypti from Thailand as a positive control. The mosquitoes were infected with the virus intrathoracically or orally. At 10 or 14 days post infection, the mosquitoes were dissected and total RNA was extracted from their abdomens, thoraxes, heads and legs. Mosquito susceptibility to dengue virus was evaluated using RT-PCR with dengue virus-specific primers. Differences in the infection and mortality rates of the different mosquito species were tested using Fisher's exact probability test. Results: The infection rates for dengue virus administered intrathoracically to Ae. f. miyarai, Ae. galloisi and Aedes aegypti mosquitoes were identical by RT-PCR on Day 10 post infection. All of the body parts we tested were RT-PCR-positive for dengue virus. For the orally admin-istered virus, the infection rates in the different body parts of the Ae. f. miyarai mosquitoes were slightly higher than those of Ae. albopictus mosquitoes, but were similar to the control mosquitoes (P>0.05). The mortality rates for Ae. f. miyarai and Ae. albopictus mosquitoes were similar (P=0.19). Our data indicated that dengue virus was able to replicate and disseminate to secondary infection sites in all of the four mosquito species (Japanese and Thai). Conclusions: Ae. albopictus is a well-known candidate for dengue transmission in Japan. However, our data suggest that Ae. f. miyarai from Ishigaki Island (near Okinawa Island) and Ae. galloisi from Hokkaido (Northern Japan) should also be regarded as potential vectors for dengue transmission in these regions. Further studies on these mosquitoes should be conducted.

  7. [Detection of dengue virus antigen in post-mortem tissues].

    Science.gov (United States)

    Rivera, Jorge; Neira, Marcela; Parra, Edgar; Méndez, Jairo; Sarmiento, Ladys; Caldas, María Leonor

    2014-01-01

    The epidemiological situation of dengue has worsened over the last decade. The difficulties in preventing its transmission and the absence of a vaccine or specific treatment have made dengue a serious risk to public health, health centers and research systems at different levels. Currently, most studies on the pathogenesis of dengue infection focus on the T-cell immune response almost exclusively in secondary infections and are aimed at identifying the mechanisms involved in the development of vascular permeability and bleeding events that accompany the infection. This report describes the case of a baby girl less than 45 days of age with clinical signs of severe dengue, whose diagnosis was confirmed by reverse transcription polymerase chain reaction in post-mortem tissue samples and by the ancillary diagnostic use of immunohistochemistry, which detected viral antigens in all organs obtained at autopsy. This case highlights the importance of studying primary infections associated with severe dengue, particularly in children, who are more likely to develop the severe form of the disease without previous infection, and it further stresses the importance of a diagnosis that should not be based solely on the examination of liver tissue samples when studying the pathogenesis of the viral infection. PMID:25504239

  8. RNA interference mediated inhibition of dengue virus multiplication and entry in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdelfatah Alhoot

    Full Text Available BACKGROUND: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. METHODOLOGY/PRINCIPAL FINDINGS: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78 and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8% for GRP78, CLTC, and DNM2 respectively in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4% and extracellular viral RNA load (71.4% compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7% in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells. CONCLUSIONS/SIGNIFICANCE: Silencing the attachment receptor and clathrin-mediated endocytosis using siRNA could inhibit dengue virus entry and multiplication into HepG2 cells. This leads to reduction of infected cells as well as the viral load, which might function as a unique and promising therapeutic agent for attenuating dengue infection and prevent the development of dengue fever to the severe life-threatening DHF or DSS

  9. Optimization of the Cutoff Value for a Commercial Anti-Dengue Virus IgG Immunoassay

    OpenAIRE

    Marrero-Santos, Karla M.; Beltrán, Manuela; Carrión-Lebrón, Jessica; Sanchez-Vegas, Carolina; Hamer, Davidson H; Barnett, Elizabeth D.; Luis M Santiago; Hunsperger, Elizabeth A.

    2013-01-01

    A commercial anti-dengue virus (anti-DENV) indirect IgG enzyme-linked immunosorbent assay (ELISA) for serological diagnosis was evaluated for its utility in determining previous DENV exposure in U.S. travelers. The Boston Area Travel Medicine Network clinics used Focus Diagnostics anti-DENV IgG ELISA to measure anti-DENV IgG antibodies in 591 pretravel specimens from U.S. residents who had traveled to countries where dengue is endemic. When using the manufacturer's index cutoff value for this...

  10. Travel-related Dengue Virus Infection, the Netherlands, 2006–2007

    OpenAIRE

    Baaten, G.G.G.; Sonder, G.J.B.; Zaaijer, H L; Gool, van, A.C.M.; Kint, J.A.P.C.M.; Hoek, van den, J.A.R.

    2011-01-01

    To assess the incidence of and risk factors for clinical and subclinical dengue virus (DENV) infection, we prospectively studied 1,207 adult short-term travelers from the Netherlands to dengue-endemic areas. Participants donated blood samples for serologic testing before and after travel. Blood samples were tested for antibodies against DENV. Seroconversion occurred in 14 (1.2%) travelers at risk. The incidence rate was 14.6 per 1,000 person-months. The incidence rate was significantly higher...

  11. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    2014-02-01

    Full Text Available INTRODUCTION: Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV, is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. METHODOLOGY/PRINCIPAL FINDINGS: Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.

  12. Relationship between MMP Expression and Virulence of Dengue Virus Type-2 in Infected Mosquito and Mammalian Cells.

    Science.gov (United States)

    Leaungwutiwong, Pornsawan; Kelley, James F; Sachair, Aucha; Jittmittraphap, Akanitt; Luplertlop, Natthanej

    2016-01-21

    Dengue virus infections are mostly asymptomatic but can produce a mild, self-limiting acute febrile illness, dengue fever, or a life threatening severe illness, dengue hemorrhagic fever. Dengue hemorrhagic fever is associated with increased vascular permeability partly as a result of elevated levels of matrix metalloproteinases (MMPs). We characterized MMP-2 and MMP-9 production in mosquito and mammalian cells after infection with three strains of dengue virus type-2 (D2-) ranging in virulence: 16681, the prototype New Guinea C (NGC), and PDK-53 vaccine strain. These strains were used to test variations in viral properties in vaccine candidates and confirm the production of MMP as a possible marker for virulence. A zymogram gelatinolytic activity assay was used to assess MMP-2 and MMP-9 production. We found that dengue-infected mosquito and mammalian cell lines had unique MMP-2 and MMP-9 production patterns depending on the virulence of the infecting dengue strain and the duration infection. MMP levels were highest after infection with the most virulent strain D2-16681, followed by the prototype NGC strain, in both cell lines. The MMP levels appeared to correspond with the relative amounts of infectious virions produced later in infection. Our findings improve our understanding of dengue pathogenesis and may facilitate the selection of markers to further the development of dengue vaccines. PMID:26073730

  13. Aceites esenciales de plantas colombianas inactivan el virus del dengue y el virus de la fiebre amarilla Essential oils from Colombian plants inactive dengue virus and yellow fever virus

    OpenAIRE

    Rocío Meneses; Flor Ángela Torres; Elena Stashenko; Raquel E. Ocazionez

    2009-01-01

    Introducción: Un antiviral contra el virus del dengue (VDEN) y el virus de la fiebre amarilla (VFA) para tratamiento de los enfermos, no está disponible en el mercado a pesar de numerosas investigaciones con compuestos sintéticos. Objetivo: Evaluar el efecto inhibitorio in vitro sobre el VDEN y el VFA del aceite esencial obtenido de plantas cultivadas en Colombia. Materiales y métodos: Los virus se incubaron con el aceite esencial (100 μg/mL) 2 h a 37°C antes de la adsorción a la célula y ...

  14. Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms

    Science.gov (United States)

    Kato, Fumihiro; Hishiki, Takayuki

    2016-01-01

    Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro. PMID:27164125

  15. Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms.

    Science.gov (United States)

    Kato, Fumihiro; Hishiki, Takayuki

    2016-01-01

    Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro. PMID:27164125

  16. Quinic acid derivatives inhibit dengue virus replication in vitro

    OpenAIRE

    Zanello, Paula Rodrigues; Koishi, Andrea Cristine; Rezende Júnior, Celso de Oliveira; Oliveira, Larissa Albuquerque; Pereira, Adriane Antonia; de Almeida, Mauro Vieira; Duarte dos Santos, Claudia Nunes; Bordignon, Juliano

    2015-01-01

    Background Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers, neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk. Results With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic acid derivatives known as compound 2 and compoun...

  17. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.

    Science.gov (United States)

    Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R

    2014-06-01

    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation. PMID:25134897

  18. Genetic characterization of dengue virus type 3 isolates in the State of Rio de Janeiro, 2001

    Directory of Open Access Journals (Sweden)

    Miagostovich M.P.

    2002-01-01

    Full Text Available The genetic characterization of dengue virus type 3 (DEN-3 strains isolated from autochthonous cases in the State of Rio de Janeiro, Brazil, in 2001 is presented. Restriction site-specific (RSS-PCR performed on 22 strains classified the Brazilian DEN-3 viruses as subtype C, a subtype that contains viruses from Sri Lanka, India, Africa and recent isolates from Central America. Nucleic acid sequencing (positions 278 to 2550 of one DEN-3 strain confirmed the origin of these strains, since genotype III - classified by sequencing - and RSS-PCR subtype C are correlated. This genetic subtype has been associated with hemorrhagic dengue epidemics and the information provided here could be useful to implement appropriate prevention and control measures.

  19. Global spread of dengue virus types: mapping the 70 year history.

    Science.gov (United States)

    Messina, Jane P; Brady, Oliver J; Scott, Thomas W; Zou, Chenting; Pigott, David M; Duda, Kirsten A; Bhatt, Samir; Katzelnick, Leah; Howes, Rosalind E; Battle, Katherine E; Simmons, Cameron P; Hay, Simon I

    2014-03-01

    Since the first isolation of dengue virus (DENV) in 1943, four types have been identified. Global phenomena such as urbanization and international travel are key factors in facilitating the spread of dengue. Documenting the type-specific record of DENV spread has important implications for understanding patterns in dengue hyperendemicity and disease severity as well as vaccine design and deployment strategies. Existing studies have examined the spread of DENV types at regional or local scales, or described phylogeographic relationships within a single type. Here we summarize the global distribution of confirmed instances of each DENV type from 1943 to 2013 in a series of global maps. These show the worldwide expansion of the types, the expansion of disease hyperendemicity, and the establishment of an increasingly important infectious disease of global public health significance. PMID:24468533

  20. Epidemiological and Molecular Characterization of Dengue Virus Circulating in Bhutan, 2013-2014.

    Directory of Open Access Journals (Sweden)

    Sangay Zangmo

    Full Text Available Dengue is one of the most significant public health problems in tropical and subtropical countries, and is increasingly being detected in traditionally non-endemic areas. In Bhutan, dengue virus (DENV has only recently been detected and limited information is available. In this study, we analyzed the epidemiological and molecular characteristics of DENV in two southern districts in Bhutan from 2013-2014. During this period, 379 patients were clinically diagnosed with suspected dengue, of whom 119 (31.4% were positive for DENV infection by NS1 ELISA and/or nested RT-PCR. DENV serotypes 1, 2 and 3 were detected with DENV-1 being predominant. Phylogenetic analysis of DENV-1 using envelope gene demonstrated genotype V, closely related to strains from northern India.

  1. Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with nonspecific febrile illness

    Directory of Open Access Journals (Sweden)

    E. Moulin

    2016-05-01

    Full Text Available Zika virus is an emerging flavivirus that is following the path of dengue and chikungunya. The three Aedes-borne viruses cause simultaneous outbreaks with similar clinical manifestations which represents a diagnostic challenge in ill returning travellers. We report the first Zika virus infection case imported to Switzerland and present a diagnostic algorithm.

  2. Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with nonspecific febrile illness.

    Science.gov (United States)

    Moulin, E; Selby, K; Cherpillod, P; Kaiser, L; Boillat-Blanco, N

    2016-05-01

    Zika virus is an emerging flavivirus that is following the path of dengue and chikungunya. The three Aedes-borne viruses cause simultaneous outbreaks with similar clinical manifestations which represents a diagnostic challenge in ill returning travellers. We report the first Zika virus infection case imported to Switzerland and present a diagnostic algorithm. PMID:27006779

  3. Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with nonspecific febrile illness

    OpenAIRE

    Moulin, E.; Selby, K.; Cherpillod, P.; Kaiser, L; Boillat-Blanco, N.

    2016-01-01

    Zika virus is an emerging flavivirus that is following the path of dengue and chikungunya. The three Aedes-borne viruses cause simultaneous outbreaks with similar clinical manifestations which represents a diagnostic challenge in ill returning travellers. We report the first Zika virus infection case imported to Switzerland and present a diagnostic algorithm.

  4. Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with nonspecific febrile illness.

    OpenAIRE

    Moulin E.; Selby K.; Cherpillod P.; Kaiser L; Boillat-Blanco N.

    2016-01-01

    Zika virus is an emerging flavivirus that is following the path of dengue and chikungunya. The three Aedes-borne viruses cause simultaneous outbreaks with similar clinical manifestations which represents a diagnostic challenge in ill returning travellers. We report the first Zika virus infection case imported to Switzerland and present a diagnostic algorithm.

  5. Virus-specific differences in rates of disease during the 2010 Dengue epidemic in Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Tyler M Sharp

    Full Text Available BACKGROUND: Dengue is a potentially fatal acute febrile illness (AFI caused by four mosquito-transmitted dengue viruses (DENV-1-4 that are endemic in Puerto Rico. In January 2010, the number of suspected dengue cases reported to the passive dengue surveillance system exceeded the epidemic threshold and an epidemic was declared soon after. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the epidemic, surveillance and laboratory diagnostic data were compiled. A suspected case was a dengue-like AFI in a person reported by a health care provider with or without a specimen submitted for diagnostic testing. Laboratory-positive cases had: (i DENV nucleic acid detected by reverse transcriptase-polymerase chain reaction (RT-PCR in an acute serum specimen; (ii anti-DENV IgM antibody detected by ELISA in any serum specimen; or (iii DENV antigen or nucleic acid detected in an autopsy-tissue specimen. In 2010, a total of 26,766 suspected dengue cases (7.2 per 1,000 residents were identified, of which 46.6% were laboratory-positive. Of 7,426 RT-PCR-positive specimens, DENV-1 (69.0% and DENV-4 (23.6% were detected more frequently than DENV-2 (7.3% and DENV-3 (<0.1%. Nearly half (47.1% of all laboratory-positive cases were adults, 49.7% had dengue with warning signs, 11.1% had severe dengue, and 40 died. Approximately 21% of cases were primary DENV infections, and 1-4 year olds were the only age group for which primary infection was more common than secondary. Individuals infected with DENV-1 were 4.2 (95% confidence interval [CI]: 1.7-9.8 and 4.0 (95% CI: 2.4-6.5 times more likely to have primary infection than those infected with DENV-2 or -4, respectively. CONCLUSIONS/SIGNIFICANCE: This epidemic was long in duration and yielded the highest incidence of reported dengue cases and deaths since surveillance began in Puerto Rico in the late 1960's. This epidemic re-emphasizes the need for more effective primary prevention interventions to reduce the morbidity and

  6. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India

    OpenAIRE

    Bennet Angel; Vinod Joshi

    2008-01-01

    Background & objectives: Transovarial transmission of dengue virus is a crucial etiological phenomenon responsible for persistence of virus during inter-epidemic period of the disease. Distribution and seasonality of this phenomenon in disease endemic areas may contribute to explain emergence of dengue and its subsequent prevention. The study on seasonal and area distribution of transovarial transmission of dengue virus in Aedes aegypti, Ae. albopictus and Ae. vittatus has been made in desert...

  7. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    Science.gov (United States)

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell. PMID:20512244

  8. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro

    Directory of Open Access Journals (Sweden)

    Raquel Elvira Ocazionez

    2010-05-01

    Full Text Available The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50 was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37ºC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50. L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 μg/mL. Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 μg/mL and between 1.9-33.7 μg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  9. Preliminary study of dengue virus infection in Iran

    DEFF Research Database (Denmark)

    Chinikar, Sadegh; Ghiasi, Seyed Mojtaba; Shah-Hosseini, Nariman;

    2012-01-01

    travelling abroad. Of these, six cases were from the Sistan and Baluchistan province in southeast Iran and neighbouring Pakistan. Travellers play a key role in the epidemiology of dengue infection in Iran and it is recommended that travellers to endemic areas take precautionary measures to avoid mosquito...

  10. Modeled Forecasts of Dengue Fever in San Juan, PR Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, Cory; Quattrochi, Dale; Zavodsky, Bradley; Case, Jonathan

    2015-01-01

    Dengue virus is transmitted between humans and mosquitoes of the genus Aedes and causes approximately 96 million cases of disease (dengue fever) each year (Bhatet al. 2013). Symptoms of dengue fever include fever, headache, nausea, vomiting, and eye, muscle and joint pain (CDC). More sever manifestations such as abdominal pain, bleeding from nose and gums, vomiting of blood, and clammy skin occur in rare cases of dengue hemorrhagic fever (CDC). Dengue fever occurs throughout tropical and sub-tropical regions worldwide, however, the geographical range and size of epidemics is increasing. Weather and climate are drivers of dengue virus transmission dynamics (Morin et al. 2013) by affecting mosquito proliferation and the virus extrinsic incubation period (i.e. required time for the virus to replicate and disseminate within the mosquito before it can retransmit the virus).

  11. First Outbreak of Dengue Hemorrhagic Fever, Bangladesh

    OpenAIRE

    Rahman, Mahbubur; Rahman, Khalilur; Siddque, A. K.; Shoma, Shereen; A. H. M. Kamal; Ali, K.S.; Nisaluk, Ananda; Breiman, Robert F.

    2002-01-01

    During the first countrywide outbreak of dengue hemorrhagic fever in Bangladesh, we conducted surveillance for dengue at a hospital in Dhaka. Of 176 patients, primarily adults, found positive for dengue, 60.2% had dengue fever, 39.2% dengue hemorrhagic fever, and 0.6% dengue shock syndrome. The Dengue virus 3 serotype was detected in eight patients.

  12. Dengue Virus Infection Induced NF-kB-dependent Macrophage Migration Inhibitory Factor Production

    Directory of Open Access Journals (Sweden)

    Lien-Cheng Chen

    2008-01-01

    Full Text Available Dengue virus (DV infection can cause mild dengue fever or severe dengue hemorrhage fever and dengue shock syndrome. Macrophage migration inhibitory factor (MIF is a cytokine that plays an important role in the modulation of inflammatory and immune responses and serum levels of MIF are correlated with disease severity in dengue patients. However, the mechanism that induces MIF production during DV infection is unclear. In this study, we showed that DV infection, but not UV-inactivated DV stimulation, dose-and time-dependently induced MIF secretion in human A649 epithelial cells. MIF promoter assays and RT-PCR demonstrated that MIF gene transcription was activated during DV infection. Furthermore, DV infection induced NF-kB activation, and the NF-kB inhibitors dexamethasone and curcumin inhibited DV-induced MIF production. Finally, we found that different cells have different abilities to release MIF after DV infection. Interestingly, DV infection and MIF production in the human monocytic cell line THP-1 and peripheral blood mononuclear cells increased in the presence of antibodies against DV. Taken together, these results suggest that DV infection of human cells induces NF-kB activation and MIF production, which can be increased in the presence of pre-existing antibodies.

  13. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.

    Science.gov (United States)

    Sirisena, P D N N; Noordeen, F

    2014-02-01

    Despite the presence of dengue in Sri Lanka since the early 1960s, dengue has become a major public health issue, with a high morbidity and mortality. Aedes aegypti and Aedes albopictus are the vectors responsible for the transmission of dengue viruses (DENV). The four DENV serotypes (1, 2, 3, and 4) have been co-circulating in Sri Lanka for more than 30 years. The new genotype of DENV-1 has replaced an old genotype, and new clades of DENV-3 genotype III have replaced older clades. The emergence of new clades of DENV-3 in the recent past coincided with an abrupt increase in the number of dengue fever (DF)/dengue hemorrhagic fever (DHF) cases, implicating this serotype in severe epidemics. Climatic factors play a pivotal role in the epidemiological pattern of DF/DHF in terms of the number of cases, severity of illness, shifts in affected age groups, and the expansion of spread from urban to rural areas. There is a regular incidence of DF/DHF throughout the year, with the highest incidence during the rainy months. To reduce the morbidity and mortality associated with DF/DHF, it is important to implement effective vector control programs in the country. The economic impact of DF/DHF results from the expenditure on DF/DHF critical care units in several hospitals and the cost of case management. PMID:24334026

  14. Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication

    OpenAIRE

    Dechtawewat, Thanyaporn; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Puttikhunt, Chunya; Kasinrerk, Watchara; Saitornuang, Sawanan; Yenchitsomanus, Pa-Thai; Noisakran, Sansanee

    2015-01-01

    Background Host and viral proteins are involved in dengue virus (DENV) replication. Heterogeneous ribonucleoprotein (hnRNP) C1/C2 are abundant host cellular proteins that exhibit RNA binding activity and play important roles in the replication of positive-strand RNA viruses such as poliovirus and hepatitis C virus. hnRNP C1/C2 have previously been shown to interact with vimentin and viral NS1 in DENV-infected cells; however, their functional role in DENV replication is not clearly understood....

  15. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution.

    Science.gov (United States)

    Waman, Vaishali P; Kasibhatla, Sunitha Manjari; Kale, Mohan M; Kulkarni-Kale, Urmila

    2016-08-01

    The spread of dengue disease has become a global public health concern. Dengue is caused by dengue virus, which is a mosquito-borne arbovirus of the genus Flavivirus, family Flaviviridae. There are four dengue virus serotypes (1-4), each of which is known to trigger mild to severe disease. Dengue virus serotype 4 (DENV-4) has four genotypes and is increasingly being reported to be re-emerging in various parts of the world. Therefore, the population structure and factors shaping the evolution of DENV-4 strains across the world were studied using genome-based population genetic, phylogenetic and selection pressure analysis methods. The population genomics study helped to reveal the spatiotemporal structure of the DENV-4 population and its primary division into two spatially distinct clusters: American and Asian. These spatial clusters show further time-dependent subdivisions within genotypes I and II. Thus, the DENV-4 population is observed to be stratified into eight genetically distinct lineages, two of which are formed by American strains and six of which are formed by Asian strains. Episodic positive selection was observed in the structural (E) and non-structural (NS2A and NS3) genes, which appears to be responsible for diversification of Asian lineages in general and that of modern lineages of genotype I and II in particular. In summary, the global DENV-4 population is stratified into eight genetically distinct lineages, in a spatiotemporal manner with limited recombination. The significant role of adaptive evolution in causing diversification of DENV-4 lineages is discussed. The evolution of DENV-4 appears to be governed by interplay between spatiotemporal distribution, episodic positive selection and intra/inter-genotype recombination. PMID:27169727

  16. Early dengue virus interactions: the role of dendritic cells during infection.

    Science.gov (United States)

    Santos Souza, Higo Fernando; da Silva Almeida, Bianca; Boscardin, Silvia Beatriz

    2016-09-01

    Dengue is an acute infectious disease caused by dengue virus (DENV) that affects approximately 400 million people annually, being the most prevalent human arthropod-borne disease. DENV infection causes a wide variety of clinical manifestations that range from asymptomatic to dengue fever, and in some cases may evolve to the more severe dengue hemorrhagic fever and dengue shock syndrome. The exact reasons why some patients do not have symptoms while others develop the severe forms of disease are still elusive, but gathered evidence showed correlation between a secondary infection with a heterologous DENV serotype and the occurrence of severe symptoms. Despite several advances, the mechanisms of DENV infection are still not completely elucidated, and efforts have been made to understand the development of immunity and/or pathology to DENV. When a mosquito transmits DENV, the virus is initially deposited in the skin, where mononuclear phagocytic cells, such as dendritic cells (DCs), become infected. DCs play a critical role in the induction of immune responses, as they are able to rapidly detect pathogen-associated molecular patterns, endocytose and process antigens, and efficiently activate naïve-T and B cells. Recent findings have shown that DCs serve as DENV targets, but they are also important mediators of immunity against the virus. In this review, we will briefly discuss DENV infection pathogenesis, and introduce DCs as central players in the induction of anti-DENV immune responses. Then, we will review in more detail how DENV interacts with and is sensed by DCs, with particular emphasis in two classes of receptors implicated in viral entry. PMID:27381061

  17. SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication

    Science.gov (United States)

    Su, Chan-I; Tseng, Chung-Hsin

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to

  18. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    Science.gov (United States)

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. PMID:26645957

  19. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory

    Directory of Open Access Journals (Sweden)

    Adriana Ribeiro Carneiro

    2012-09-01

    Full Text Available Dengue fever is the most important arbovirus infection found in tropical regions around the world. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes, such as dengue haemorrhagic fever and dengue shock syndrome. This study analysed the genetic variability of the dengue virus serotype 1 (DENV-1 in Brazil with regard to the full-length structural genes C/prM/M/E among 34 strains isolated during epidemics that occurred in the country between 1994-2011. Virus phylogeny and time of divergence were also evaluated with only the E gene of the strains isolated from 1994-2008. An analysis of amino acid differences between these strains and the French Guiana strain (FGA/89 revealed the presence of important nonsynonymous substitutions in the amino acid sequences, including residues E297 (Met→Thr and E338 (Ser→Leu. A phylogenetic analysis of E proteins comparing the studied isolates and other strains selected from the GenBank database showed that the Brazilian DENV-1 strains since 1982 belonged to genotype V. This analysis also showed that different introductions of strains from the 1990s represented lineage replacement, with the identification of three lineages that cluster all isolates from the Americas. An analysis of the divergence time of DENV-1 indicated that the lineage circulating in Brazil emerged from an ancestral lineage that originated approximately 44.35 years ago.

  20. Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine.

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    Full Text Available The worldwide expansion of four serotypes of dengue virus (DENV poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII was proposed. Tandem EDIIIs of two serotypes (type 1-2 and type 3-4 of DENV connected by a Gly-Ser linker ((Gly4Ser3 were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.

  1. RNA Sensors Enable Human Mast Cell Anti-Viral Chemokine Production and IFN-Mediated Protection in Response to Antibody-Enhanced Dengue Virus Infection

    OpenAIRE

    Brown, Michael G.; McAlpine, Sarah M.; Huang, Yan Y.; Haidl, Ian D.; Al-Afif, Ayham; Jean S Marshall; Anderson, Robert

    2012-01-01

    Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell rec...

  2. Universal single-probe RT-PCR assay for diagnosis of dengue virus infections.

    Directory of Open Access Journals (Sweden)

    Erik Alm

    2014-12-01

    Full Text Available Dengue is a mosquito-borne viral disease that has become more prevalent in the last few decades. Most patients are viremic when they present with symptoms, and early diagnosis of dengue is important in preventing severe clinical complications associated with this disease and also represents a key factor in differential diagnosis. Here, we designed and validated a hydrolysis-probe-based one-step real-time RT-PCR assay that targets the genomes of dengue virus serotypes 1-4.The primers and probe used in our RT-PCR assay were designed to target the 3' untranslated region of all complete genome sequences of dengue virus available in GenBank (n = 3,305. Performance of the assay was evaluated using in vitro transcribed RNA, laboratory-adapted virus strains, external control panels, and clinical specimens. The linear dynamic range was found to be 104-1011 GCE/mL, and the detection limit was between 6.0×102 and 1.1×103 GCE/mL depending on target sequence. The assay did not cross-react with human RNA, nor did it produce false-positive results for other human pathogenic flaviviruses or clinically important etiological agents of febrile illnesses. We used clinical serum samples obtained from returning travelers with dengue-compatible symptomatology (n = 163 to evaluate the diagnostic relevance of our assay, and laboratory diagnosis performed by the RT-PCR assay had 100% positive agreement with diagnosis performed by NS1 antigen detection. In a retrospective evaluation including 60 archived serum samples collected from confirmed dengue cases 1-9 days after disease onset, the RT-PCR assay detected viral RNA up to 9 days after appearance of symptoms.The validation of the RT-PCR assay presented here indicates that this technique can be a reliable diagnostic tool, and hence we suggest that it be introduced as the method of choice during the first 5 days of dengue symptoms.

  3. Evolutionary history of Dengue virus type 4: insights into genotype phylodynamics.

    Science.gov (United States)

    Villabona-Arenas, Christian Julián; Zanotto, Paolo Marinho de Andrade

    2011-07-01

    Dengue virus type 4 (DENV-4) circulates in tropical and subtropical countries from Asia and the Americas. Despite the importance of dengue virus distribution, little is known about the worldwide viral spread. Following a Bayesian phylogenetic approach we inferred the evolutionary history of 310 isolates sampled from 37 countries during the time period 1956-2008 and the spreading dynamics for genotypes I and II. The region (tropical rainforest biome) comprised by Malaysia-Thailand was the most likely ancestral area from which the serotype has originated and spread. Interestingly, cross-correlation analysis on demographic time series with the Asian sequences showed a statistically significant negative correlation that could be suggestive of competition among genotypes within the same serotype. PMID:21335103

  4. A rare case of dengue encephalitis

    OpenAIRE

    Rao, Sachin; Kumar, Manish; Ghosh, Soumik; Gadpayle, Adesh Kumar

    2013-01-01

    Dengue fever has a variable clinical spectrum ranging from asymptomatic infection to life-threatening dengue haemorrhagic fever and dengue shock syndrome. However, neurological complications, in general, are unusual. Dengue encephalopathy is not an unknown entity; however, dengue encephalitis, a direct neuronal infiltration by the dengue virus, is an extremely rare disease. Although dengue is classically considered a non-neurotropic virus, there is increasing evidence for dengue viral neurotr...

  5. Study on the determinants of suckling mice neurovirulence of dengue 2 virus

    Institute of Scientific and Technical Information of China (English)

    赵卫; 范宝昌; 胡志君; 陈水平; 王鹏程; 苑锡同; 李晓萸; 于曼; 秦鄂德; 杨佩英

    2003-01-01

    pDVWS501 was a genomic-length cDNA clone of dengue 2 virus, through which infectious virus (MON501) could be rescued. MON501 was neurovirulent in mice, whose E residues 62 and 203 were Lys and Asn, respectively. Two genomic-length cDNA clones (TB62 and TB203) were constructed by pointed mutation of pDVWS501 with OL-PCR, E62 of TB62 and E203 of TB203 were converted to Glu and Asp, respectively. RNA transcripts of pDVWS501, TB62 and TB203 were produced in vitro and electroporated into BHK-21 cells. The cultures were collected after 7 days and used as inoculum to infect C6/36 cells. The existence of rescued dengue viruses in the culture was proved by RT-PCR, and the typical cytopathic effect (CPE) of C6/36 caused by dengue virus emerged after 2-5 days' inoculation. Sequence analysis further confirmed the existence of recovered and recombinant DEN2 viruses, whose 5′ termini had an additional non-virus nucleotides "G", while the 3′ terminal sequences remained the same as natural. The neurovirulence of three viruses was evaluated in 1-day-old mice by the intracerebral route with 105-102 TCID50. Compared with MON501 group, the number of infected mice with the signs of encephalitis in HFT62 and HFT203 groups was less, and the surviving time was longer. The properties of these mutants demonstrated that E62 and E203 are determinants of suckling mice neurovirulence.

  6. Preliminary study of dengue virus infection in Iran.

    Science.gov (United States)

    Chinikar, Sadegh; Ghiasi, Seyed Mojtaba; Shah-Hosseini, Nariman; Mostafavi, Ehsan; Moradi, Maryam; Khakifirouz, Sahar; Rasi Varai, Fereshteh Sadat; Rafigh, Mahboubeh; Jalali, Tahmineh; Goya, Mohammad Mehdi; Shirzadi, Mohammad Reza; Zainali, Mohammad; Fooks, Anthony R

    2013-01-01

    Dengue fever is one of the most important arthropod-borne viral diseases of public health significance. It is endemic in most tropical and subtropical parts of the world, many of which are popular tourist destinations. The presence of dengue infection was examined in Iranian patients who were referred to the Arboviruses and Viral Haemorrhagic Fevers Laboratory of the Pasteur Institute of Iran and tested negative for Crimean-Congo Haemorrhagic Fever (CCHF) between 2000 and 2012. Serum samples from these patients were tested for the presence of specific IgG and IgM and viral nucleic acid in blood. Of the 300 sera tested, 15 (5%) were seropositive, and 3 (1%) were both serologically and PCR positive. Of the 15 seropositive cases, 8 (53.3%) had travelled to endemic areas including Malaysia (5, 62.5%), India (2, 25%) and Thailand (1, 12.5%). In contrast, 7 (46.7%) of the cases had not reported travelling abroad. Of these, six cases were from the Sistan and Baluchistan province in southeast Iran and neighbouring Pakistan. Travellers play a key role in the epidemiology of dengue infection in Iran and it is recommended that travellers to endemic areas take precautionary measures to avoid mosquito bites. PMID:23194952

  7. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2

    Directory of Open Access Journals (Sweden)

    Arora Upasana

    2012-07-01

    Full Text Available Abstract Background Dengue is a global public health problem for which no drug or vaccine is available. Currently, there is increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the major structural protein of dengue viruses (DENVs, known as envelope domain III (EDIII. The use of bio-nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs, has emerged as a potential platform technology for vaccine development. This work explores the feasibility of developing nanoparticles based on E. coli-expressed recombinant Hepatitis B virus core antigen (HBcAg designed to display EDIII moiety of DENV on the surface. Findings We designed a synthetic gene construct encoding HBcAg containing an EDIII insert in its c/e1 loop. The fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni+2 affinity chromatography and demonstrated to assemble into discrete 35–40 nm VLPs by electron microscopy. Competitive ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA, immunofluorescence and virus-neutralization assays. Conclusion This work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for dengue.

  8. Evolving RNA Virus Pandemics: HIV, HCV, Ebola, Dengue, Chikunguya, and now Zika!

    Science.gov (United States)

    Barreiro, Pablo

    2016-01-01

    The Zika virus (ZIKV), a flavivirus related to yellow fever, dengue, and West Nile, originated in the Zika forest in Uganda and was discovered in a rhesus monkey in 1947. The disease now has "explosive" pandemic potential, with outbreaks in Africa, Southeast Asia, the Pacific Islands, and the Americas. To date, the CDC has issued travel alerts for at least 30 countries and territories in Latin America, the Caribbean, Polynesia, and Cape Verde in Africa. PMID:27028271

  9. Flaviviruses, an expanding threat in public health: focus on Dengue, West Nile, and Japanese encephalitis virus

    OpenAIRE

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L.; Eugenin, Eliseo Alberto

    2014-01-01

    The flaviviruses Dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex sp), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contribute...

  10. Primary dengue virus infections induce differential cytokine production in Mexican patients

    Science.gov (United States)

    de la Cruz Hernández, Sergio Isaac; Puerta-Guardo, Henry Nelson; Flores Aguilar, Hilario; González Mateos, Silvia; López Martinez, Irma; Ortiz-Navarrete, Vianney; Ludert, Juan E; del Angel, Rosa María

    2016-01-01

    Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcription-polymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis. PMID:27008374

  11. Primary dengue virus infections induce differential cytokine production in Mexican patients.

    Science.gov (United States)

    de la Cruz Hernández, Sergio Isaac; Puerta-Guardo, Henry Nelson; Flores Aguilar, Hilario; González Mateos, Silvia; López Martinez, Irma; Ortiz-Navarrete, Vianney; Ludert, Juan E; Del Angel, Rosa María

    2016-03-01

    Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient's clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcription-polymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis. PMID:27008374

  12. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides.

    Science.gov (United States)

    Alhoot, Mohammed Abdelfatah; Rathinam, Alwin Kumar; Wang, Seok Mui; Manikam, Rishya; Sekaran, Shamala Devi

    2013-01-01

    Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection. PMID:23630436

  13. Novel dengue virus NS2B/NS3 protease inhibitors.

    Science.gov (United States)

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. PMID:25487800

  14. Sensitivity and specificity of immunocytochemical assay for detection of Dengue virus 3 infection in mosquito

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2012-07-01

    Full Text Available Latar belakang: Survei virologi pada nyamuk vektor dapat digunakan sebagai Sistem Kewaspadaan Dini untuk mencegah penularan Demam dengue di suatu daerah. Pemeriksaan laboratoris untuk deteksi virus Dengue pada nyamuk seperti isolasi virus, Polymerase Chain Reaction (PCR dan Direct Fluorescent-Antibody (DFA memerlukan keahlian yang tinggi, peralatan yang mahal dan waktu yang lama. Suatu metode berdasarkan imunositokimia menggunakan antibody monoclonal DSSE10 memiliki beberapa kelebihan. Tujuan penelitian ini untuk mengevaluasi sensitifitas dan spesifitas pemeriksaan imunositokimia dibandingkan metode Reverse Transcription-Polymerase Chain Reaction (RT-PCR untuk mendeteksi infeksi Virus Dengue 3. Metode: Penelitian eksperimental dilakukan di laboratorium Parasitologi Fakultas Kedokteran Universitas Gajah Mada (UGM pada bulan Mei 2009-Oktober 2010. Sebanyak 22 Ae. aegypti yang diinfeksi virus Dengue 3 digunakan sebagai  kelompok  infeksius dan  35  nyamuk  yang  tidak  diinfeksi  sebagai  kelompok  non infeksius.  Pemeriksaan imunositokimia  Streptavidin  Biotin Peroxidase  Complex  (SBPC  menggunakan  antibodi  monoklonal DSSE10 dilakukan pada sediaan head squash Ae .aegypti untuk mendeteksi antigen virus Dengue 3.  Pemeriksaan RT-PCR sebagai baku emas diaplikasikan pada toraks nyamuk.Hasil: Nilai Kappa menunjukkan kesepakatan yang baik antara dua orang pemeriksa (0,63. Imunositokimia mendeteksi antigen virus Dengue-3 dengan sensitivitas yang sama dengan RT-PCR (sensitivitas 100%. Namun spesifisitas IC lebih rendah dibanding RT-PCR (spesifisitas 91% karena beberapa hasil positif palsu muncul pada pemeriksaan ini. Kesimpulan: Metode IC memiliki nilai sensitivitas dan spesifisitas yang tinggi dibandingkan dengan metode RT-PCR. Metode IC ini dapat digunakan untuk surveilans virus Dengue pada nyamuk vektor. (Health Science Indones 2011;2:87-91.AbstractBackground: Virological  surveillance  provides  an

  15. Dengue encephalitis-A rare manifestation of dengue fever

    OpenAIRE

    Madi, Deepak; Achappa, Basavaprabhu; Ramapuram, John T; Chowta, Nityananda; Laxman, Mridula; Mahalingam, Soundarya

    2014-01-01

    The clinical spectrum of dengue fever ranges from asymptomatic infection to dengue shock syndrome. Dengue is classically considered a non-neurotropic virus. Neurological complications are not commonly seen in dengue. The neurological manifestations seen in dengue are encephalitis, meningitis, encephalopathy, stroke and Guillain-Barré syndrome. Dengue encephalitis is a rare disease. We report an interesting case of dengue encephalitis from Southern India. A 49-year-old gentleman presented with...

  16. The Risk of Dengue Virus Transmission in Dar es Salaam, Tanzania during an Epidemic Period of 2014.

    Directory of Open Access Journals (Sweden)

    Leonard E G Mboera

    2016-01-01

    Full Text Available In 2010, 2012, 2013 and 2014 dengue outbreaks have been reported in Dar es Salaam, Tanzania. However, there is no comprehensive data on the risk of transmission of dengue in the country. The objective of this study was to assess the risk of transmission of dengue in Dar es Salaam during the 2014 epidemic.This cross-sectional study was conducted in Dar es Salaam, Tanzania during the dengue outbreak of 2014. The study involved Ilala, Kinondoni and Temeke districts. Adult mosquitoes were collected using carbon dioxide-propane powered Mosquito Magnet Liberty Plus traps. In each household compound, water-holding containers were examined for mosquito larvae and pupae. Dengue virus infection of mosquitoes was determined using real-time reverse transcription polymerase chain reaction (qRT-PCR. Partial amplification and sequencing of dengue virus genome in infected mosquitoes was performed. A total of 1,000 adult mosquitoes were collected. Over half (59.9% of the adult mosquitoes were collected in Kinondoni. Aedes aegypti accounted for 17.2% of the mosquitoes of which 90.6% were from Kinondoni. Of a total of 796 houses inspected, 38.3% had water-holding containers in their premises. Kinondoni had the largest proportion of water-holding containers (57.7%, followed by Temeke (31.4% and Ilala (23.4%. The most common breeding containers for the Aedes mosquitoes were discarded plastic containers and tires. High Aedes infestation indices were observed for all districts and sites, with a house index of 18.1% in Ilala, 25.5% in Temeke and 35.3% in Kinondoni. The respective container indices were 77.4%, 65.2% and 80.2%. Of the reared larvae and pupae, 5,250 adult mosquitoes emerged, of which 61.9% were Ae. aegypti. Overall, 27 (8.18 of the 330 pools of Ae. aegypti were positive for dengue virus. On average, the overall maximum likelihood estimate (MLE indicates pooled infection rate of 8.49 per 1,000 mosquitoes (95%CI = 5.72-12.16. There was no significant

  17. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  18. Dengue and Severe Dengue

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Dengue and severe dengue Fact sheet Updated July 2016 Key facts Dengue ... risk of developing severe dengue. Global burden of dengue The incidence of dengue has grown dramatically around ...

  19. Induction of virus-neutralizing antibodies and T cell responses by dengue virus type 1 virus-like particles prepared from Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    TANG Yun-xia; JIANG Li-fang; ZHOU Jun-mei; YIN Yue; YANG Xiao-meng; LIU Wen-quan; FANG Dan-yun

    2012-01-01

    Background Dengue is currently a significant global health problem but no vaccines are available against the four dengue serotypes virus infections.The development of safe and effective vaccines has been hampered by the requirement of conferring complete protection against all four dengue serotypes and the lack of a convenient animal model.Virus-like particles (VLPs) have emerged as a promising subunit vaccine candidate.One strategy of vaccine development is to produce a tetravalent dengue subunit vaccine by mixing recombinant VLPs,corresponding to all four dengue virus serotypes.Towards this end,this study aimed to establish a Pichia pastoris (P.pastoris) expression system for production of dengue virus type 1 (DENV-1) VLPs and evaluate the humoral and cellular immune response of this particle in mice.Methods A recombinant yeast P.pastoris clone containing prM and E genes of DENV-1 was constructed and DENV-1 VLPs expressed by this clone were analyzed by sucrose density gradient centrifugation,Western blotting,and transmission electron microscope.Groups of mice were immunized by these particles plus adjuvant formulations,then mice were tested by ELISA and neutralization assay for humoral immune response,and by lymphocyte proliferation and cytokine production assays for a cellular immune response.Results Our data demonstrated that recombinant DENV-1 VLPs consisting of prM and E protein were successfully expressed in the yeast P.pastoris.Sera of VLPs immunized mice were shown to contain a high-titer of antibodies and the neutralization assay suggested that those antibodies neutralized virus infection in vitro.Data from the T lymphocyte proliferation assay showed proliferation of T cell,and ELISA found elevated secretion levels of interferon IFN-y and IL-4.Conclusions P.pastoris-expressed DENV-1 VLPs can induce virus neutralizing antibodies and T cell responses in immunized mice.Using P.pastoris to produce VLPs offers a promising and economic strategy for dengue virus

  20. Dengue and Dengue Hemorrhagic Fever

    OpenAIRE

    Gubler, Duane J.

    1998-01-01

    Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000...

  1. Cellufine sulfate column chromatography as a simple, rapid, and effective method to purify dengue virus.

    Science.gov (United States)

    Kanlaya, Rattiyaporn; Thongboonkerd, Visith

    2016-08-01

    Conventional method to purify/concentrate dengue virus (DENV) is time-consuming with low virus recovery yield. Herein, we applied cellufine sulfate column chromatography to purify/concentrate DENV based on the mimicry between heparan sulfate and DENV envelope protein. Comparative analysis demonstrated that this new method offered higher purity (as determined by less contamination of bovine serum albumin) and recovery yield (as determined by greater infectivity). Moreover, overall duration used for cellufine sulfate column chromatography to purify/concentrate DENV was approximately 1/20 of that of conventional method. Therefore, cellufine sulfate column chromatography serves as a simple, rapid, and effective alternative method for DENV purification/concentration. PMID:27155240

  2. Complete genome of a dengue virus serotype 4 strain from Amazonas, Brazil.

    Science.gov (United States)

    Nascimento, Valdinete Alves do; Souza, Victor Costa de; Naveca, Felipe Gomes

    2016-02-01

    Dengue virus (DENV) infections represent a significant concern for public health worldwide, being considered as the most prevalent arthropod-borne virus regarding the number of reported cases. In this study, we report the complete genome sequencing of a DENV serotype 4 isolate, genotype II, obtained in the city of Manaus, directly from the serum sample, applying Ion Torrent sequencing technology. The use of a massive sequencing technology allowed the detection of two variable sites, one in the coding region for the viral envelope protein and the other in the nonstructural 1 coding region within viral populations. PMID:26841048

  3. Autochthonous dengue virus infection in Japan imported into Germany, September 2013.

    Science.gov (United States)

    Schmidt-Chanasit, J; Emmerich, P; Tappe, D; Gunther, S; Schmidt, S; Wolff, D; Hentschel, K; Sagebiel, D; Schoneberg, I; Stark, K; Frank, C

    2014-01-01

    In September 2013, dengue virus (DENV) infection was diagnosed in a German traveller returning from Japan. DENV-specific IgM and IgG and DENV NS1 antigen were detected in the patient’s blood, as were DENV serotype 2-specific antibodies. Public health authorities should be aware that autochthonous transmission of this emerging virus may occur in Japan. Our findings also highlight the importance of taking a full travel history, even from travellers not returning from tropical countries, to assess potential infection risks of patients. PMID:24480059

  4. Autochthonous dengue virus infection in Japan imported into Germany, September 2013

    OpenAIRE

    Schmidt-Chanasit, Jonas; Emmerich, Petra; Tappe, D; Günther, Stephan; Schmidt, S.; Wolff, D; Hentschel, K.; Sagebiel, Daniel; Schöneberg, Irene; Stark, Klaus; Frank, Christina

    2014-01-01

    In September 2013, dengue virus (DENV) infection was diagnosed in a German traveller returning from Japan. DENV-specific IgM and IgG and DENV NS1 antigen were detected in the patient’s blood, as were DENV serotype 2-specific antibodies. Public health authorities should be aware that autochthonous transmission of this emerging virus may occur in Japan. Our findings also highlight the importance of taking a full travel history, even from travellers not returning from tropical countries, to asse...

  5. Quantitative Analysis of Replication and Tropisms of Dengue Virus Type 2 in Aedes albopictus

    OpenAIRE

    Zhang, Meichun; Zheng, Xiaoying; Wu, Yu; Gan, Ming; He, Ai; Li, Zhuoya; Liu, Jing; Zhan, Ximei

    2010-01-01

    Dengue virus serotype 2 (DENV-2) RNA replication profiles and tropisms were studied by using quantitative RT-PCR (q-RTPCR) in intrathoracically infected Aedes albopictus. The virus RNA replication profiles were diverse in mosquito organs. In fat body, brain, salivary gland, and malpighian tubes, it peaked at 8, 23, 23, and 27 days post-infection, respectively, and then, all declined. In midgut, it increased all the time and had no trend of decline. In ovary, it had no apparent increase. Subse...

  6. Targeted Mutagenesis as a Rational Approach to Dengue Virus Vaccine Development

    OpenAIRE

    Blaney, Joseph E.; Durbin, Anna P.; Murphy, Brian R.; Whitehead, Stephen S

    2010-01-01

    The recombinant dengue virus type 4 (rDEN4) vaccine candidate, rDEN4Δ30, was found to be highly infectious, immunogenic and safe in human volunteers. At the highest dose (105 PFU) evaluated in volunteers, 25% of the vaccinees had mild elevations in liver enzymes that were rarely seen at lower doses. Here, we describe the generation and selection of additional mutations that were introduced into rDEN4Δ30 to further attenuate the virus in animal models and ultimately human vaccinees. Based on t...

  7. Viral co-infection with dengue and H1N1 virus in a critical care setting

    Directory of Open Access Journals (Sweden)

    Biplob Borthakur

    2011-01-01

    Full Text Available We describe a 23-year-old man with no history of any other illness contacting H1N1 infection during convalescence from dengue fever. The patient had bilateral pneumonia with renal and hepatic dysfunction. The patient was treated successfully with osaltamivir and noninvasive ventilation along with other supportive measures. Despite multiorgan involvement and severe pulmonary involvement, he had a rapid improvement and did not require invasive ventilation. The possibility of the preceding or concomitant dengue viral infection reducing the severity of H1N1 infection was considered. It may be possible for two viruses to infect the same cell and as such, there may be interaction of the pathologic pathways of the two viruses, leading to change of virulence or altered host response. Such an interaction between the two viruses may be clinically important in the setting of the current H1N1 pandemic and the increased geographic distribution of the dengue virus.

  8. Dengue Virus Infection-Enhancing Activity in Serum Samples with Neutralizing Activity as Determined by Using FcγR-Expressing Cells

    OpenAIRE

    Meng Ling Moi; Chang-Kweng Lim; Kaw Bing Chua; Tomohiko Takasaki; Ichiro Kurane

    2012-01-01

    BACKGROUND: Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enha...

  9. Dengue Virus Infection-Enhancing Activity in Serum Samples with Neutralizing Activity as Determined by Using FcγR-Expressing Cells

    OpenAIRE

    Moi, Meng Ling; Lim, Chang-Kweng; Chua, Kaw Bing; Takasaki, Tomohiko; Kurane, Ichiro

    2012-01-01

    Background Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhan...

  10. Development of real time PCR for detection and quantitation of Dengue Viruses

    Directory of Open Access Journals (Sweden)

    Singh A

    2009-01-01

    Full Text Available Abstract Background Dengue virus (DENV, a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB probe approach was used to develop an improved real time RT-PCR (qRT-PCR for DENV in this study. Results The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE, West Nile (WN, Chikungunya (CHK viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples. Conclusion We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The

  11. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    NARCIS (Netherlands)

    Yoon, I.K.; Getis, A.; Aldstadt, J.; Rothman, A.L.; Tannitisupawong, D.; Koenraadt, C.J.M.; Fansiri, T.; Jones, J.W.; Morrison, A.C.; Jarman, R.G.; Nisalak, A.; Mammen Jr., M.P.; Thammapalo, S.; Srikiatkhachorn, A.; Green, S.; Libraty, D.H.; Gibbons, R.V.; Endy, T.; Pimgate, C.; Scott, T.W.

    2012-01-01

    Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that supp

  12. Characterization of dengue virus 2 growth in megakaryocyte-erythrocyte progenitor cells.

    Science.gov (United States)

    Clark, Kristina B; Hsiao, Hui-Mien; Bassit, Leda; Crowe, James E; Schinazi, Raymond F; Perng, Guey Chuen; Villinger, Francois

    2016-06-01

    Megakaryocyte-erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. PMID:27058763

  13. Insights into the molecular evolution of Dengue virus type 4 in Puerto Rico over two decades of emergence.

    Science.gov (United States)

    Martin, Estelle; Chirivella, Maritza; Co, Juliene K G; Santiago, Gilberto A; Gubler, Duane J; Muñoz-Jordán, Jorge L; Bennett, Shannon N

    2016-02-01

    Dengue has emerged globally as a major human health problem since the 1950s and is now the most important arboviral disease of humans, infecting nearly 400 million people annually. While some cases are asymptomatic, others can develop a febrile illness (dengue fever) or even progress to severe and fatal dengue. Dengue is caused by any of 4 closely related but distinct viruses, known as Dengue virus serotype 1 to 4 (DENV-1 to DENV-4) which are maintained in endemic transmission to humans in large urban centers of the tropics by Aedes mosquitoes. Since the early 1960s, Puerto Rico, a major metropolitan center in the Caribbean, has experienced increasingly larger and clinically more severe epidemics following the introduction of all four dengue serotypes. The first dengue hemorrhagic fever epidemic in 1986, and a particularly severe outbreak in 1998 were dominated by novel DENV-4 strains that evolved in Puerto Rico, replacing earlier strains and spreading throughout the region. Sequence characterization of 54 complete DENV-4 genomes and their comparative evolution against 74 previously published viral sequences from the region over several decades shows that DENV-4 strains from these periods were genetically distinct based on unique changes in the envelope and non-structural genes. Their replacement of earlier strains in Puerto Rico progressed rapidly, suggesting that strong natural selection played a role in their fixation. This study confirms that DENVs evolve through rapid lineage turnover driven in part by natural selection and genetic drift. PMID:26569594

  14. Extensive structural change of the envelope protein of dengue virus induced by a tuned ionic strength: conformational and energetic analyses

    OpenAIRE

    Degrève, Léo; Fuzo, Carlos A.; Caliri, Antonio

    2012-01-01

    The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication ...

  15. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  16. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    Science.gov (United States)

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. PMID:25564380

  17. Prevalencia de anticuerpos contra virus dengue en el cantón de Golfito (2005 y en el Distrito Central de Puntarenas (2005-2006, Costa Rica

    Directory of Open Access Journals (Sweden)

    Margarita Lee-Lui

    2008-09-01

    Full Text Available Justificación y objetivo: La primo infección con el virus dengue varía desde asintomática hasta cuadros muy severos, como el dengue hemorrágico o el síndrome de choque por dengue. El Distrito Primero de Puntarenas ha sido una de las poblaciones más afectadas desde 1993, cuando aparecieron los primeros brotes, hasta hoy, con una disminución de la incidencia en los últimos años. La región Brunca fue la segunda en incidencia en el país en 1998, y si bien la endemicidad se ha mantenido, no existen estudios epidemiológicos sobre la prevalencia de esta enfermedad; los datos que aporta el Ministerio de Salud corresponden a la incidencia de casos clínicos en un período determinado. El objetivo de este estudio fue determinar la seroprevalencia en el Distrito Primero de Puntarenas y en Golfito para conocer la vulnerabilidad de la población de sufrir fiebre hemorrágica por dengue y analizar la situación asociada a los datos epidemiológicos de estas regiones, tales como edad, sexo y ubicación geográfica, ya que una población susceptible es la que presenta una alta seroprevalencia, unida a condiciones de hacinamiento y alta densidad vectorial. Métodos: El muestreo se realizó con el método EPI descrito por la OMS. Se recolectaron 210 muestras de suero en cada distrito, se desarrolló y estandarizó una prueba de ELISA de captura de antígeno para la detección de anticuerpos tipo IgG contra dengue, usando como referencia el método de reducción de placas de Dulbecco considerado estándar de oro. Resultados: La seroprevalencia contra dengue fue del 43.8% (92 y del 90% (189 en los distritos de Golfito y Central de Puntarenas, respectivamente, sin diferencias significativas respecto al sexo, la edad y la localidad. Se obtuvo un 83% y un 95% de correlación en Golfito y Puntarenas, respectivamente, entre los casos sintomáticos y la serología con el método estandarizado. Un 32% y un 42% del total de seropositivos en cada localidad

  18. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  19. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development.

    Science.gov (United States)

    Acosta, Eliana G; Bartenschlager, Ralf

    2016-04-01

    Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions. PMID:26577689

  20. Functionality of dengue virus specific memory T cell responses in individuals who were hospitalized or who had mild or subclinical dengue infection.

    Directory of Open Access Journals (Sweden)

    Chandima Jeewandara

    2015-04-01

    Full Text Available Although antibody responses to dengue virus (DENV in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood.Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338, who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02, those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03 or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus.The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.

  1. DENVirDB: A web portal of Dengue Virus sequence information on Asian isolates

    Directory of Open Access Journals (Sweden)

    Mary J. Asnet

    2014-04-01

    Full Text Available DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV, the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates of Southeast Asia, viz. India, Bangladesh, Sri Lanka, East Timor, Philippines, Malaysia, Papua New Guinea, Brunei and China. DENVirDB also includes the structural and non-structural protein sequences of DENV. It intends to provide the integrated information on the physicochemical properties, topology, secondary structure, domain and structural properties for each protein sequences. It contains over 99 entries in complete genome sequences and 990 entries in protein sequences, respectively. Therefore, DENVirDB could serve as a user friendly database for researchers in acquiring sequences and proteomic information in one platform.

  2. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  3. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Science.gov (United States)

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  4. Dengue virus infection induces interferon-lambda1 to facilitate cell migration

    Science.gov (United States)

    Hsu, Yu-Lin; Wang, Mei-Yi; Ho, Ling-Jun; Lai, Jenn-Haung

    2016-01-01

    A marked increase in the rate of dengue virus (DENV) infection has resulted in more than 212 deaths in Taiwan since the beginning of 2015, mostly from fatal outcomes such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms of these fatal manifestations are poorly understood. Cytokines induce an overwhelming immune reaction and thus have crucial roles. Interferon-lambda (IFN-λ), a newly identified IFN subtype, has antiviral effects, but its immunologic effects in DENV infection have not been investigated. In the present study, we show that DENV infection preferentially induced production of IFN-λ1 in human dendritic cells (DCs) and human lung epithelial cells. Virus nonstructural 1 (NS1) glycoprotein was responsible for the effect. DENV-induced production of IFN-λ1 was dependent on signaling pathways involving toll-like receptor (TLR)-3, interferon regulation factor (IRF)-3, and nuclear factor-kappaB (NF-κB). Blocking interaction between IFN-λ1 and its receptor IFN-λR1 through siRNA interference reduced DENV-induced DC migration towards the chemoattractants CCL19 and CCL21, by inhibiting CCR7 expression. Furthermore, IFN-λ1 itself induced CCR7 expression and DC migration. Our study presents the first evidence of the mechanisms and effects of IFN-λ1 induction in DENV-infected DCs and highlights the role of this cytokine in the immunopathogenesis of DENV infection. PMID:27456172

  5. Dengue virus infection induces interferon-lambda1 to facilitate cell migration.

    Science.gov (United States)

    Hsu, Yu-Lin; Wang, Mei-Yi; Ho, Ling-Jun; Lai, Jenn-Haung

    2016-01-01

    A marked increase in the rate of dengue virus (DENV) infection has resulted in more than 212 deaths in Taiwan since the beginning of 2015, mostly from fatal outcomes such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms of these fatal manifestations are poorly understood. Cytokines induce an overwhelming immune reaction and thus have crucial roles. Interferon-lambda (IFN-λ), a newly identified IFN subtype, has antiviral effects, but its immunologic effects in DENV infection have not been investigated. In the present study, we show that DENV infection preferentially induced production of IFN-λ1 in human dendritic cells (DCs) and human lung epithelial cells. Virus nonstructural 1 (NS1) glycoprotein was responsible for the effect. DENV-induced production of IFN-λ1 was dependent on signaling pathways involving toll-like receptor (TLR)-3, interferon regulation factor (IRF)-3, and nuclear factor-kappaB (NF-κB). Blocking interaction between IFN-λ1 and its receptor IFN-λR1 through siRNA interference reduced DENV-induced DC migration towards the chemoattractants CCL19 and CCL21, by inhibiting CCR7 expression. Furthermore, IFN-λ1 itself induced CCR7 expression and DC migration. Our study presents the first evidence of the mechanisms and effects of IFN-λ1 induction in DENV-infected DCs and highlights the role of this cytokine in the immunopathogenesis of DENV infection. PMID:27456172

  6. Generation and characterization of potential dengue vaccine candidates based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus.

    Science.gov (United States)

    Suzarte, Edith; Marcos, Ernesto; Gil, Lázaro; Valdés, Iris; Lazo, Laura; Ramos, Yassel; Pérez, Yusleidi; Falcón, Viviana; Romero, Yaremis; Guzmán, María G; González, Sirenia; Kourí, Juan; Guillén, Gerardo; Hermida, Lisset

    2014-07-01

    Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity. The recombinant proteins were purified to more than 85 % purity and were recognized by anti-dengue mouse and human sera. Mass spectrometry analysis verified the identity of the proteins and the correct formation of the intracatenary disulfide bond in the domain III region. The chimeric DIIIC proteins were also serotype-specific, and in the presence of oligonucleotides, they formed aggregates that were visible by electron microscopy. These results support the future use of DIIIC recombinant chimeric proteins in preclinical studies in mice for assessing their immunogenicity and efficacy. PMID:24420159

  7. Patient-based dengue virus surveillance in Aedes aegypti from Recife, Brazil

    Directory of Open Access Journals (Sweden)

    D.R.D. Guedes

    2010-06-01

    Full Text Available Background & objectives: Dengue is currently one of the most important arthropod-borne diseasesand may be caused by four different dengue virus serotypes (DENV-1 to DENV-4, transmittedmainly by Aedes aegypti (Diptera: Culicidae mosquitoes. With the lack of a dengue vaccine,vector control strategies constitute a crucial mode to prevent or reduce disease transmission. Inthis context, DENV detection in natural Ae. aegypti populations may serve as a potential additionaltool for early prediction systems of dengue outbreaks, leading to an intensification of vector controlmeasures, aimed at reducing disease transmission. In Brazil, this type of surveillance has beenperformed sporadically by a few groups and has not been incorporated as a routine activity incontrol programs. This study aimed at detecting DENV in natural Ae. aegypti from Recife,Pernambuco, to check the circulating serotypes and the occurrence of transovarial transmission inlocal mosquito populations.Methods: From January 2005 to June 2006, mosquitoes (adults and eggs were collected in houseswhere people with clinical suspicion of dengue infection lived at. RNA was extracted from pooledmosquitoes and RT-PCR was performed in these samples for detection of the four DENV serotypes.Results & conclusion: Out of 83 pools of adult mosquitoes collected in the field, nine were positivefor DENV: five for DENV-1, two for DENV-2 and two for DENV-3. From 139 pools of adultmosquitoes reared from collected eggs, there were 17 positive pools: three for DENV-1, 10 forDENV-2, and four for DENV-3. These results are discussed in the paper in regard to the localdengue epidemiological data. The conclusions clearly point to the informative power and sensitivityof DENV entomological surveillance and to the importance of including mosquito immature formsin this strategy.

  8. A Heterologous DNA Prime-Venezuelan Equine Encephalitis Virus Replicon Particle Boost Dengue Vaccine Regimen Affords Complete Protection from Virus Challenge in Cynomolgus Macaques▿

    OpenAIRE

    Chen, Lan; Ewing, Dan; Subramanian, Hemavathy; Block, Karla; Rayner, Jonathan; Alterson, Kimberly D.; Sedegah, Martha; Hayes, Curtis; Porter, Kevin; Raviprakash, Kanakatte

    2007-01-01

    A candidate vaccine (D1ME-VRP) expressing dengue virus type 1 premembrane and envelope proteins in a Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) system was constructed and tested in conjunction with a plasmid DNA vaccine (D1ME-DNA) expressing identical dengue virus sequences. Cynomolgus macaques were vaccinated with three doses of DNA (DDD), three doses of VRP (VVV group), or a heterologous DNA prime-VRP boost regimen (DDV) using two doses of DNA vaccine and a third dos...

  9. Inhibition of dengue virus replication by diisopropyl chrysin-7-yl phosphate.

    Science.gov (United States)

    Du, Jiang; Chen, Zhe; Zhang, Ting; Wang, Jianmin; Jin, Qi

    2016-08-01

    Dengue fever is a tropical disease and caused by dengue virus (DENV), which is transmitted by mosquitoes and infects about 400 million people annually. With the development of international trade and travel, China is facing a growing threat. Over 40 thousands of people were infected during the 2014 DENV outbreak in Guangdong. Neither licensed vaccine nor therapeutic drug has been available. In this report, we isolated two clinical DENV strains. The full-length genome was sequenced and characterized. We also applied a flavonoid, CPI, into an anti-DENV assay. Replication of viral RNA and expression of viral protein was all strongly inhibited. These results indicated that CPI may serve as potential protective agents in the treatment of patients with chronic DENV infection. PMID:27106619

  10. Lead optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors.

    Science.gov (United States)

    Zou, Bin; Chan, Wai Ling; Ding, Mei; Leong, Seh Yong; Nilar, Shahul; Seah, Peck Gee; Liu, Wei; Karuna, Ratna; Blasco, Francesca; Yip, Andy; Chao, Alex; Susila, Agatha; Dong, Hongping; Wang, Qing Yin; Xu, Hao Ying; Chan, Katherine; Wan, Kah Fei; Gu, Feng; Diagana, Thierry T; Wagner, Trixie; Dix, Ina; Shi, Pei-Yong; Smith, Paul W

    2015-03-12

    Spiropyrazolopyridone 1 was identified, as a novel dengue virus (DENV) inhibitor, from a DENV serotype 2 (DENV-2) high-throughput phenotypic screen. As a general trend within this chemical class, chiral resolution of the racemate revealed that R enantiomer was significantly more potent than the S. Cell-based lead optimization of the spiropyrazolopyridones focusing on improving the physicochemical properties is described. As a result, an optimal compound 14a, with balanced in vitro potency and pharmacokinetic profile, achieved about 1.9 log viremia reduction at 3 × 50 mg/kg (bid) or 3 × 100 mg/kg (QD) oral doses in the dengue in vivo mouse efficacy model. PMID:25878766

  11. Isolation of dengue 2 virus from a patient with central nervous system involvement (transverse myelitis

    Directory of Open Access Journals (Sweden)

    Leão Raimundo N.Q.

    2002-01-01

    Full Text Available A dengue fever case is described in a 58-year-old male patient with febrile illness and thrombocytopenia complicated by neurological involvement characterized by transverse myelitis followed by weakness of both legs and flaccid paralysis. Muscle strength was much diminished and bilateral areflexia was observed. Dengue 2 (DEN-2 virus was isolated and the patient sero-converted by hemagglutination-inhibition and IgM-ELISA tests. The RT-PCR test was positive to DEN-2 in acute phase serum and culture supernatant, but negative in the cerebrospinal fluid. After three weeks of hospitalization the patient was discharged. No other infectious agent was detected in the blood and cerebrospinal fluid samples. The patient had full recovery from paralysis six months after the onset of DEN-2 infection.

  12. A novel dengue virus serotype 1 vaccine candidate based on Japanese encephalitis virus vaccine strain SA14-14-2 as the backbone.

    Science.gov (United States)

    Yang, Huiqiang; Li, Zhushi; Lin, Hua; Wang, Wei; Yang, Jian; Liu, Lina; Zeng, Xianwu; Wu, Yonglin; Yu, Yongxin; Li, Yuhua

    2016-06-01

    To develop a potential dengue vaccine candidate, a full-length cDNA clone of a novel chimeric virus was constructed using recombinant DNA technology, with Japanese encephalitis virus (JEV) vaccine strain SA14-14-2 as the backbone, with its premembrane (prM) and envelope (E) genes substituted by their counterparts from dengue virus type 1 (DENV1). The chimeric virus (JEV/DENV1) was successfully recovered from primary hamster kidney (PHK) cells by transfection with the in vitro transcription products of JEV/DENV1 cDNA and was identified by complete genome sequencing and immunofluorescent staining. No neuroinvasiveness of this chimeric virus was observed in mice inoculated by the subcutaneous route (s.c.) or by the intraperitoneal route (i.p.), while some neurovirulence was displayed in mice that were inoculated directly by the intracerebral route (i.c.). The chimeric virus was able to stimulate high-titer production of antibodies against DENV1 and provided protection against lethal challenge with neuroadapted dengue virus in mice. These results suggest that the chimeric virus is a promising dengue vaccine candidate. PMID:26976137

  13. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    Science.gov (United States)

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-01

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity. PMID:27240271

  14. SEROLOGICAL EVIDENCE OF RECENT DENGUE VIRUS INFECTION AMONG FEBRILE CHILDREN IN A SEMI ARID ZONE

    Directory of Open Access Journals (Sweden)

    Faneye Adedayo

    2013-01-01

    Full Text Available Presence of Dengue virus has been established in Nigeria; owing to the severity of this disease and its attendant complications we investigated the presence of this virus serologically in febrile Nigerian children under 5 years of age from Ilorin. Blood samples were tested from 130 children under the age of 5 years for the presence of IgM antibodies against all the Dengue virus serotypes using ELISA Kit by IVD research, Inc® California USA. A prevalence rate of 40(30.8% was recorded, with male children having a higher rate of 30(44.1% while female children recorded 10(16.1%. Age range distribution was highest in group 3>5 years with 10(62.5% and lowest in age group <1 with 12(16.2%. Our findings in this study indicate potential endemicity of this virus infection in some parts of Nigeria. We therefore recommend further studies into circulating serotypes in human populations and urgent preventive and control measures of this emerging infectious disease.

  15. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    Science.gov (United States)

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  16. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue.

    Science.gov (United States)

    Behnam, Mira A M; Graf, Dominik; Bartenschlager, Ralf; Zlotos, Darius P; Klein, Christian D

    2015-12-10

    The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that contain benzyl ethers of 4-hydroxyphenylglycine as non-natural peptidic building blocks synthesized via a copper-complex intermediate. A three-step optimization strategy, beginning with fragment growth of the C-terminal 4-hydroxyphenylglycine to the benzyloxy ether, followed by C- and N-terminal optimization, and finally fragment merging generated compounds with in vitro affinities in the low nanomolar range. The most promising derivative reached Ki values of 12 nM at the DENV-2 and 39 nM at the WNV proteases. Several of the newly discovered protease inhibitors yielded a significant reduction of dengue and West Nile virus titers in cell-based assays of virus replication, with an EC50 value of 3.4 μM at DENV-2 and 15.5 μM at WNV for the most active analogue. PMID:26562070

  17. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors.

    Science.gov (United States)

    Jadav, Surender Singh; Kaptein, Suzanne; Timiri, Ajaykumar; De Burghgraeve, Tine; Badavath, Vishnu Nayak; Ganesan, Ramesh; Sinha, Barij Nayan; Neyts, Johan; Leyssen, Pieter; Jayaprakash, Venkatesan

    2015-04-15

    The β-OG pocket is a cavity in the flavivirus envelope (E) protein that was identified by Proc. Natl. Acad. Sci. U.S.A.2003, 100, 6986 as a promising site for the design of antiviral agents that interfere with virus entry into the host cell. The availability of the X-ray crystal structure of the dengue virus (DENV) E protein provided an opportunity for in silico drug design efforts to identify candidate inhibitors. The present study was set up to explore whether it is possible to generate a novel class of molecules that are hybrids between two hit compounds that have been reported previously by ACS. Chem. Biol.2008, 3, 765 following an in silico screening effort against the DENV E protein. First, a library of twenty hybrid molecules were designed and synthesized to explore the feasibility of this strategy. Antiviral evaluation in a virus-cell-based assay for DENV proved this approach to be successful, after which another twenty-four molecules were produced to further explore and optimize the potency of this novel class of hybrid inhibitors. In the end, a molecule was obtained with an EC50 against dengue virus serotype 2 in the low micromolar range (23, 1.32±0.41μM). PMID:25791449

  18. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints.

    Directory of Open Access Journals (Sweden)

    October M Sessions

    Full Text Available Dengue viruses (DENV cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients' sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses.

  19. Larval Temperature-Food Effects on Adult Mosquito Infection and Vertical Transmission of Dengue-1 Virus.

    Science.gov (United States)

    Buckner, Eva A; Alto, Barry W; Lounibos, L Philip

    2016-01-01

    Temperature-food interactions in the larval environment can affect life history and population growth of container mosquitoes Aedes aegypti (L.) and Aedes albopictus Skuse, the primary vectors of chikungunya and dengue viruses. We used Ae. aegypti, Ae. albopictus, and dengue-1 virus (DENV-1) from Florida to investigate whether larval rearing temperature can alter the effects of larval food levels on Ae. aegypti and Ae. albopictus life history and DENV-1 infection and vertical transmission. Although we found no effect of larval treatments on survivorship to adulthood, DENV-1 titer, or DENV-1 vertical transmission, rates of vertical transmission up to 16-24% were observed in Ae. albopictus and Ae. aegypti, which may contribute to maintenance of this virus in nature. Larval treatments had no effect on number of progeny and DENV-1 infection in Ae. aegypti, but the interaction between temperature and food affected number of progeny and DENV-1 infection of the female Ae. albopictus parent. The cooler temperature (24°C) yielded the most progeny and this effect was accentuated by high food relative to the other conditions. Low and high food led to the highest (∼90%) and lowest (∼65%) parental infection at the cooler temperature, respectively, whereas intermediate infection rates (∼75-80%) were observed for all food conditions at the elevated temperature. These results suggest that temperature and food availability have minimal influence on rate of vertical transmission and a stronger influence on adults of Ae. albopictus than of Ae. aegypti, which could have consequences for dengue virus epidemiology. PMID:26489999

  20. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability.

    Science.gov (United States)

    Puerta-Guardo, Henry; Glasner, Dustin R; Harris, Eva

    2016-07-01

    Dengue is the most prevalent arboviral disease in humans and a major public health problem worldwide. Systemic plasma leakage, leading to hypovolemic shock and potentially fatal complications, is a critical determinant of dengue severity. Recently, we and others described a novel pathogenic effect of secreted dengue virus (DENV) non-structural protein 1 (NS1) in triggering hyperpermeability of human endothelial cells in vitro and systemic vascular leakage in vivo. NS1 was shown to activate toll-like receptor 4 signaling in primary human myeloid cells, leading to secretion of pro-inflammatory cytokines and vascular leakage. However, distinct endothelial cell-intrinsic mechanisms of NS1-induced hyperpermeability remained to be defined. The endothelial glycocalyx layer (EGL) is a network of membrane-bound proteoglycans and glycoproteins lining the vascular endothelium that plays a key role in regulating endothelial barrier function. Here, we demonstrate that DENV NS1 disrupts the EGL on human pulmonary microvascular endothelial cells, inducing degradation of sialic acid and shedding of heparan sulfate proteoglycans. This effect is mediated by NS1-induced expression of sialidases and heparanase, respectively. NS1 also activates cathepsin L, a lysosomal cysteine proteinase, in endothelial cells, which activates heparanase via enzymatic cleavage. Specific inhibitors of sialidases, heparanase, and cathepsin L prevent DENV NS1-induced EGL disruption and endothelial hyperpermeability. All of these effects are specific to NS1 from DENV1-4 and are not induced by NS1 from West Nile virus, a related flavivirus. Together, our data suggest an important role for EGL disruption in DENV NS1-mediated endothelial dysfunction during severe dengue disease. PMID:27416066

  1. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  2. The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti.

    Science.gov (United States)

    Ye, Yixin H; Carrasco, Alison M; Dong, Yi; Sgrò, Carla M; McGraw, Elizabeth A

    2016-04-01

    Dengue fever, caused by dengue virus (DENV), is endemic in more than 100 countries. The lack of effective treatment of patients and the suboptimal efficacies of the tetravalent vaccine in trials highlight the urgent need to develop alternative strategies to lessen the burden of dengue fever.Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits the replication of the DENV in the mosquito vector,Aedes aegypti However, several recent studies have demonstrated the sensitivity of pathogens, vectors, and their symbionts to temperature. To understand how the tripartite interactions between the mosquito, DENV, andWolbachiamay change under different temperature regimes, we assessed the vector competence and transmission potential of DENV-infected mosquitoes reared at a common laboratory setting of a constant 25°C and at two diurnal temperature settings with mean of 25°C and 28°C and a fluctuating range of 8°C (±4°C). Temperature significantly affected DENV infection rate in the mosquitoes. Furthermore, temperature significantly influenced the proportion of mosquitoes that achieved transmission potential as measured by the presence of virus in the saliva. Regardless of the temperature regimes,Wolbachiasignificantly and efficiently reduced the proportion of mosquitoes achieving infection and transmission potential across all the temperature regimes studied. This work reinforces the robustness of theWolbachiabiocontrol strategy to field conditions in Cairns, Australia, and suggests that similar studies are required for local mosquito genotypes and field relevant temperatures for emerging field release sites globally. PMID:26856916

  3. Dengue fever (image)

    Science.gov (United States)

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, rashes and muscle and joint aches. Treatment includes rehydration and recovery is expected. A second exposure to the virus can result in Dengue ...

  4. Dengue fever (image)

    Science.gov (United States)

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, ... second exposure to the virus can result in Dengue hemorrhagic fever, a life-threatening illness.

  5. Relaciones genéticas del virus dengue 3 aislado en la epidemia de FHD en Nicaragua, 1994

    Directory of Open Access Journals (Sweden)

    MARIA G GUZMAN

    1996-08-01

    Full Text Available Se reporta el aislamiento de 2 cepas de dengue, 3 en muestras de pacientes nicaragüenses con dengue con manifestaciones hemorrágicas, lo que significaba la reintroducción de este serotipo en la región después de 17 años sin circulación. Se reporta la caracterización genética de la cepa aislada la que se clasifica como perteneciente al grupo de cepas de dengue 3 aisladas en el sudeste asiático y que se han asociado a casos de dengue hemorrágico. Estos resultados sugieren el origen de esta cepa.It is reported the isolation of 2 dengue strains, 3 in samples from Nicaraguan patients suffering from dengue with hemorrhagic manifestations, which showed the reintroduction of this serotype in the region after being 17 years out of circulation. It is also reported the genetic characterization of the isolated strain, which, according to its classification, belongs to the group of dengue 2 strains isolated in Southeast Asi and which have been associated to hemorrhagic dengue. These results suggest the origin of this strain.

  6. Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study.

    Science.gov (United States)

    Mirza, Shaher Bano; Salmas, Ramin Ekhteiari; Fatmi, M Qaiser; Durdagi, Serdar

    2016-05-01

    Dengue virus is a major issue of tropical and sub-tropical regions. Dengue virus has been the cause behind the major alarming epidemics in the history with mass causalities from the decades. Unavailability of on-shelf drugs for the prevention of further proliferation of virus inside the human body results in immense number of deaths each year. This issue necessitates the design of novel anti-dengue drug. The protease enzyme pathway is the critical target for drug design due to its significance in the replication, survival and other cellular activities of dengue virus. Therefore, approximately eighteen million compounds from the ZINC database have been virtually screened against nonstructural protein 3 (NS3). The incremental construction algorithm of Glide docking program has been used with its features high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP) and in combination of Prime module, induced fit docking (IFD) approach has also been applied. Five top-ranked compounds were then selected from the IFD results with better predicted binding energies with the catalytic triad residues (His51, Asp75, and Ser135) that may act as potential inhibitors for the underlying target protease enzyme. The top-ranked compounds ZINC95518765, ZINC44921800, ZINC71917414, ZINC39500661, ZINC36681949 have shown the predicted binding energies of -7.55, -7.36, -8.04, -8.41, -9.18kcal/mol, respectively, forming binding interactions with three catalytically important amino acids. Top-docking poses of compounds are then used in molecular dynamics (MD) simulations. In computational studies, our proposed compounds confirm promising results against all the four serotypes of dengue virus, strengthening the opportunity of these compounds to work as potential on-shelf drugs against dengue virus. Further experimentation on the proposed compounds can result in development of strong inhibitors. PMID:27054972

  7. Dengue: factors driving the emerging epidemic

    Directory of Open Access Journals (Sweden)

    Ali M

    2013-11-01

    Full Text Available Muayad AliManufacturing Department, Australian Red Cross Blood Service, Dandenong, VIC, Australia I have read with great interest the article "Epidemiology of dengue: past, present and future prospects" by Murray et al.1 Dengue viruses are usually transmitted by Aedes mosquitoes, which are highly sensitive to environmental conditions. Temperature, rainfall, and humidity are critical to mosquito survival and reproduction; the higher temperatures minimize the required time for virus replication and dissemination in the mosquito.2 I accept that dengue will increase in the future as the article outlines, as climate change will contribute to a substantial increase in the number of people, and the proportion of the global population at risk of dengue fever.3View original paper by Murray et al.

  8. 5'-Silylated 3'-1,2,3-triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus.

    Science.gov (United States)

    Vernekar, Sanjeev Kumar V; Qiu, Li; Zhang, Jing; Kankanala, Jayakanth; Li, Hongmin; Geraghty, Robert J; Wang, Zhengqiang

    2015-05-14

    West Nile virus (WNV) and Dengue virus (DENV) are important human pathogens for which there are presently no vaccine or specific antivirals. We report herein a 5'-silylated nucleoside scaffold derived from 3'-azidothymidine (AZT) consistently and selectively inhibiting WNV and DENV at low micromolar concentrations. Further synthesis of various triazole bioisosteres demonstrated clear structure-activity relationships (SARs) in which the antiviral activity against WNV and DENV hinges largely on both the 5'-silyl group and the substituent of 3'-triazole or its bioisosteres. Particularly interesting is the 5' silyl group which turns on the antiviral activity against WNV and DENV while abrogating the previously reported antiviral potency against human immunodeficiency virus (HIV-1). The antiviral activity was confirmed through a plaque assay where viral titer reduction was observed in the presence of selected compounds. Molecular modeling and competitive S-adenosyl-l-methionine (SAM) binding assay suggest that these compounds likely confer antiviral activity via binding to methyltransferase (MTase). PMID:25909386

  9. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    Directory of Open Access Journals (Sweden)

    Natália Oliveira

    2015-07-01

    Full Text Available Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3. DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM. Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.

  10. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences.

    Science.gov (United States)

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  11. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains

    International Nuclear Information System (INIS)

    We have investigated the molecular basis for differences in the ability of natural variants of dengue virus type 2 (DEN2) to replicate in primary human cells. The rates of virus binding, virus entry, input strand translation, and RNA stability of low-passage Thai and Nicaraguan and prototype DEN2 strains were compared. All strains exhibited equivalent binding, entry, and uncoating, and displayed comparable stability of positive strand viral RNA over time in primary cells. However, the low-passage Nicaraguan isolates were much less efficient in their ability to translate viral proteins. Sequence analysis of the full-length low-passage Nicaraguan and Thai viral genomes identified specific differences in the 3' untranslated region (3'UTR). Substitution of the different sequences into chimeric RNA reporter constructs demonstrated that the changes in the 3'UTR directly affected the efficiency of viral translation. Thus, differences in infectivity among closely related DEN2 strains correlate with efficiency of translation of input viral RNA

  12. Severe Dengue Virus Infection in Pediatric Travelers Visiting Friends and Relatives after Travel to the Caribbean

    OpenAIRE

    Krishnan, Nivedita; Purswani, Murli; Hagmann, Stefan

    2012-01-01

    Of eight children given a diagnosis of dengue, a complicated course developed in three (38%), including one infant with dengue shock syndrome. Children visiting friends and relatives in dengue-endemic regions are at risk for severe dengue-associated morbidity. Children of families originally from these locations may benefit from pre-travel advice and may represent candidates for a future dengue vaccine.

  13. Structure-guided Discovery of a Novel Non-peptide Inhibitor of Dengue Virus NS2B-NS3 Protease.

    Science.gov (United States)

    Li, Linfeng; Basavannacharya, Chandrakala; Chan, Kitti Wing Ki; Shang, Luqing; Vasudevan, Subhash G; Yin, Zheng

    2015-09-01

    Dengue fever is a fast emerging epidemic-prone viral disease caused by dengue virus serotypes 1-4. NS2B-NS3 protease of dengue virus is a validated target to develop antiviral agents. A major limitation in developing dengue virus protease inhibitors has been the lack of or poor cellular activity. In this work, we extracted and refined a pharmacophore model based on X-ray crystal structure and predicted binding patterns, followed by a three-dimensional flexible database filtration. These output molecules were screened according to a docking-based protocol, leading to the discovery of a compound with novel scaffold and good cell-based bioactivity that has potential to be further optimized. The discovery of this novel scaffold by combination of in silico methods suggests that structure-guided drug discovery can lead to the development of potent dengue virus protease inhibitors. PMID:25533891

  14. Investigation Into an Outbreak of Dengue-like Illness in Pernambuco, Brazil, Revealed a Cocirculation of Zika, Chikungunya, and Dengue Virus Type 1.

    Science.gov (United States)

    Pessôa, Rodrigo; Patriota, João Veras; Lourdes de Souza, Maria de; Felix, Alvina Clara; Mamede, Nubia; Sanabani, Sabri S

    2016-03-01

    In April 2015, an outbreak of dengue-like illness occurred in Tuparetama, a small city in the northeast region of Brazil; this outbreak was characterized by its fast expansion. An investigation was initiated to identify the viral etiologies and advise the health authorities on implementing control measures to contain the outbreak. This is the first report of this outbreak in the northeast, even though a few cases were documented earlier in a neighboring city.Plasma samples were obtained from 77 suspected dengue patients attending the main hospital in the city. Laboratory assays, such as real-time reverse transcription polymerase chain reaction, virus cDNA sequencing, and enzyme-linked immunosorbent assay, were employed to identify the infecting virus and molecular phylogenetic analysis was performed to define the circulating viral genotypes.RNA of Zika virus (ZIKV) and Dengue virus (DENV) or IgM antibodies (Abs) to DENV or chikungunya (CHIKV) were detected in 40 of the 77 plasma samples (51.9%). DENV was found in 9 patients (11.7%), ZIKV was found in 31 patients (40.2%), CHIKV in 1 patient (1.3%), and coinfection of DENV and ZIKV was detected in 2 patients (2.6%). The phylogenetic analysis of 2 available partial DENV and 14 ZIKV sequences revealed the identities of genotype 1 and the Asiatic lineage, respectively.Consistent with recent reports from the same region, our results showed that the ongoing outbreak is caused by ZIKV, DENV, and CHIKV. This emphasizes the need for a routine and differential diagnosis of arboviruses in patients with dengue-like illness. Coordinated efforts are necessary to contain the outbreak. Continued surveillance will be important to assess the effectiveness of current and future prevention strategies. PMID:27015222

  15. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-01-01

    Full Text Available Abstract Background To be transmitted by its mosquito vector, dengue virus (DENV must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi. The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands differed in their response to DENV-2 infection.

  16. Rapid next-generation sequencing of dengue, EV-A71 and RSV-A viruses.

    Science.gov (United States)

    Baronti, Cécile; Piorkowski, Géraldine; Leparc-Goffart, Isabelle; de Lamballerie, Xavier; Dubot-Pérès, Audrey

    2015-12-15

    Accurate characterisation of viral strains constitutes a crucial objective for the management of modern virus collections. Next-generation sequencing (NGS) provides technical solution for fast and cost-effective full genome sequencing. Here, we report protocols for rapid full-genome characterisation of RNA viruses of medical importance: dengue virus, enterovirus A71 and respiratory syncytial virus A, based on a specific amplification step followed by NGS-sequencing. A subset of full-length genome sequences representing the genetic diversity of each virus type was selected in GenBank and used to design primer sets allowing the amplification of the complete genome in 3-8 overlapping PCR fragments. The technique was used for characterising 53 strains (33 DENV, 8 EV-A71, 12 RSV-A) from various genotypes and origins. In a single assay, and in just 4 days, it provided for all strains an excellent genomic coverage (∼ 99% including complete ORF for all strains) and accurate sequences with high number of reads per position (250-3500 on average). The elaboration of specific PCR-based full-genome sequencing protocols for diverse virus groups is likely to revolutionise the characterisation of viral isolates in modern collection, but also to contribute in the next future to the study of RNA viruses directly from biological samples. PMID:26376168

  17. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  18. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter (Scripps)

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  19. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  20. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus.

    Science.gov (United States)

    Alto, Barry W; Lord, Cynthia C

    2016-02-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  1. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells.

    Science.gov (United States)

    Dechtawewat, Thanyaporn; Paemanee, Atchara; Roytrakul, Sittiruk; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai; Saitornuang, Sawanan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Noisakran, Sansanee

    2016-09-01

    Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection. PMID:27108190

  2. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus.

    Science.gov (United States)

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M; Sorgine, Marcos H Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells - an immune responsive cell lineage - accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  3. Enzyme-linked immunoassay for dengue virus IgM and IgG antibodies in serum and filter paper blood

    Directory of Open Access Journals (Sweden)

    Tran Binh Q

    2006-01-01

    Full Text Available Abstract Background The reproducibilty of dengue IgM and IgG ELISA was studied in serum and filter paper blood spots from Vietnamese febrile patients. Methods 781 pairs of acute (t0 and convalescent sera, obtained after three weeks (t3 and 161 corresponding pairs of filter paper blood spots were tested with ELISA for dengue IgG and IgM. 74 serum pairs were tested again in another laboratory with similar methods, after a mean of 252 days. Results Cases were classified as no dengue (10 %, past dengue (55% acute primary (7% or secondary (28% dengue. Significant differences between the two laboratories' results were found leading to different diagnostic classification (kappa 0.46, p Conclusion Dengue virus IgG antibodies in serum and filter papers was not affected by duration of storage, but was subject to inter-laboratory variability. Dengue virus IgM antibodies measured in serum reconstituted from blood spots on filter papers were lower than in serum, in particular in the acute phase of disease. Therefore this method limits its value for diagnostic confirmation of individual patients with dengue virus infections. However the detection of dengue virus IgG antibodies eluted from filter paper can be used for sero-prevalence cross sectional studies.

  4. PAIgG and PAIgM levels in secondary dengue virus infections lead to thrombocytopenia in patients from KP, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Ibrar Alam; Said Hassan; Iftikhar Alam; Rahmat Gul; Farhad Ali; Ijaz Ali; Sana Ullah; Imtiaz Ali Khan; Aasif Awan

    2015-01-01

    Objective:To understand the impact of platelet associated immunoglobulin G (PAIgG)/ platelet associated immunoglobulin M (PAIgM) on severity of dengue virus infection leading to thrombocytopenia. Methods: In this study we examined a total of 52 patients who were having secondary infection of dengue in acute phase by using competitive ELISA. Results: A decrease in the platelet count was observed at the acute phase of infection while all along the recovery stage the count of platelet was significantly increased. A significant decrease was observed inPAIgG andPAIgM in these subjects. Inverse correlation was found between platelets count andPAIgG/PAIgM among the subjects studied. In the platelets elution from ten subjects, anti-dengue virus immunoglobulin G and immunoglobulin M were observed.PAIgG andPAIgM with inclined levels were higher in dengue hemorrhagic fever than the classical dengue fever. In the development of dengue hemorrhagic feverPAIgM inclined level was independently associated with high specificity, showing a possible indication of dengue hemorrhagic fever. Conclusions: This study suggests that in secondary dengue virus infection, thePAIgGand PAIgM levels, and the activity of anti-dengue virus play key roles, both in the development and severity of the disease.

  5. PAIgG and PAIgM levels in secondary dengue virus infections lead to thrombocytopenia in patients from KP, Pakistan简

    Institute of Scientific and Technical Information of China (English)

    Ibrar; Alam; Said; Hassan; Iftikhar; Alam; Rahmat; Gul; Farhad; Ali; Ijaz; Ali; Sana; Ullah; Imtiaz; Ali; Khan; Aasif; Awan

    2015-01-01

    Objective: To understand the impact of platelet associated immunoglobulin G(PAIg G)/platelet associated immunoglobulin M(PAIg M) on severity of dengue virus infection leading to thrombocytopenia.Methods: In this study we examined a total of 52 patients who were having secondary infection of dengue in acute phase by using competitive ELISA.Results: A decrease in the platelet count was observed at the acute phase of infection while all along the recovery stage the count of platelet was significantly increased. A significant decrease was observed in PAIg G and PAIg M in these subjects. Inverse correlation was found between platelets count and PAIg G/PAIg M among the subjects studied. In the platelets elution from ten subjects, anti-dengue virus immunoglobulin G and immunoglobulin M were observed. PAIg G and PAIg M with inclined levels were higher in dengue hemorrhagic fever than the classical dengue fever. In the development of dengue hemorrhagic fever PAIg M inclined level was independently associated with high specificity, showing a possible indication of dengue hemorrhagic fever.Conclusions: This study suggests that in secondary dengue virus infection, the PAIg G and PAIg M levels, and the activity of anti-dengue virus play key roles, both in the development and severity of the disease.

  6. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA.

    Science.gov (United States)

    Chapman, Erich G; Moon, Stephanie L; Wilusz, Jeffrey; Kieft, Jeffrey S

    2014-01-01

    Dengue virus is a growing global health threat. Dengue and other flaviviruses commandeer the host cell's RNA degradation machinery to generate the small flaviviral RNA (sfRNA), a noncoding RNA that induces cytopathicity and pathogenesis. Host cell exonuclease Xrn1 likely loads on the 5' end of viral genomic RNA and degrades processively through ∼10 kB of RNA, halting near the 3' end of the viral RNA. The surviving RNA is the sfRNA. We interrogated the architecture of the complete Dengue 2 sfRNA, identifying five independently-folded RNA structures, two of which quantitatively confer Xrn1 resistance. We developed an assay for real-time monitoring of Xrn1 resistance that we used with mutagenesis and RNA folding experiments to show that Xrn1-resistant RNAs adopt a specific fold organized around a three-way junction. Disrupting the junction's fold eliminates the buildup of disease-related sfRNAs in human cells infected with a flavivirus, directly linking RNA structure to sfRNA production. DOI: http://dx.doi.org/10.7554/eLife.01892.001. PMID:24692447

  7. Seroepidemiology of dengue virus infection in the adult population in tropical Singapore.

    Science.gov (United States)

    Ang, L W; Cutter, J; James, L; Goh, K T

    2015-06-01

    To assess the impact of past dengue epidemics in Singapore, we undertook a national seroepidemiological study to determine the prevalence of past dengue virus (DENV) infection in the adult population in 2010 and make comparisons with the seroprevalence in 2004. The study involved residual sera from 3293 adults aged 18-79 years who participated in a national health survey in 2010. The overall prevalence of anti-DENV IgG antibodies was 56·8% (95% confidence interval 55·1-58·5) in 2010. The seroprevalence increased significantly with age. Males had significantly higher seroprevalence than females (61·5% vs. 53·2%). Among the three major ethnic groups, Malays had the lowest seroprevalence (50·2%) compared to Chinese (57·0%) and Indians (62·0%). The age-standardized seroprevalence in adults was significantly lower in 2010 (54·4%) compared to 2004 (63·1%). Older age, male gender, Indian ethnicity, permanent residency and being home-bound were independent risk factors significantly associated with seropositivity. About 43% of the Singapore adult resident population remain susceptible to DENV infection as a result of the successful implementation of a comprehensive nationwide Aedes surveillance and control programme since the 1970s. Vector suppression and concerted efforts of all stakeholders in the community remain the key strategy in the prevention and control of dengue. PMID:25245094

  8. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors.

    Science.gov (United States)

    Timiri, Ajay Kumar; Selvarasu, Subasri; Kesherwani, Manish; Vijayan, Vishwanathan; Sinha, Barij Nayan; Devadasan, Velmurugan; Jayaprakash, Venkatesan

    2015-10-01

    Development of antivirals for dengue is now based on rational approach targeting the enzymes involved in its life cycle. Among the targets available for inhibition of dengue virus, non-structural protein NS2B-NS3 protease is considered as a promising target for the development of anti-dengue agents. In the current study we have synthesized a series of 4-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)benzene-1-sulphonamide derivatives and screened for DENV2 protease activity. Compounds 16 and 19 showed IC50 of DENV2 Protease activity with 48.2 and 121.9μM respectively. Molecular docking and molecular dynamic simulation studies were carried out to know the binding mode responsible for the activity. MD simulations revealed that, NS2B/NS3 protease was more stable when it binds with the active compound. Structure optimization of the lead compounds 16 and 19 and their co-crystallization studies are underway. PMID:26247308

  9. Persistence of Neutralizing Antibody Against Dengue Virus 2 After 70 Years from Infection in Nagasaki.

    Science.gov (United States)

    Ngwe Tun, Mya Myat; Muta, Yoshihito; Inoue, Shingo; Morita, Kouichi

    2016-01-01

    This study aimed to investigate the duration of humoral immune responses to dengue virus (DENV) infection in Japanese who experienced acute febrile illness with hemorrhagic manifestations 70 years ago, when an epidemic of dengue occurred in Nagasaki, Japan, from 1942 to 1944. A Japanese volunteer requested serological diagnosis of DENV infection in 2014 and donated blood sample to measure the antibody titer against DENV by antiflavi IgG indirect ELISA, focus reduction neutralization test, and plaque reduction neutralization test. The serum sample of the volunteer was positive in flavi IgG ELISA and it indicated primary infection. In the neutralization test, the highest neutralizing titer was ≥218 for DENV-2. We report here the existence of DENV-specific antibodies in the serum of a person after 70 years from infection. Published reports indicated that DENV-1 was responsible for the 1942-1944 outbreak in Nagasaki. However, our data suggested that DENV-2 also played a role in this Nagasaki dengue epidemic. PMID:27493841

  10. El Niño-Southern Oscillation, local weather and occurrences of dengue virus serotypes

    Science.gov (United States)

    Huang, Xiaodong; Clements, Archie C. A.; Williams, Gail; Devine, Gregor; Tong, Shilu; Hu, Wenbiao

    2015-11-01

    Severe dengue fever is usually associated with secondary infection by a dengue virus (DENV) serotype (1 to 4) that is different to the serotype of the primary infection. Dengue outbreaks only occur following importations of DENV in Cairns, Australia. However, the majority of imported cases do not result in autochthonous transmission in Cairns. Although DENV transmission is strongly associated with the El Niño-Southern Oscillation (ENSO) climate cycle and local weather conditions, the frequency and potential risk factors of infections with the different DENV serotypes, including whether or not they differ, is unknown. This study used a classification tree model to identify the hierarchical interactions between Southern Oscillation Index (SOI), local weather factors, the presence of imported serotypes and the occurrence of the four autochthonous DENV serotypes from January 2000-December 2009 in Cairns. We found that the 12-week moving average of SOI and the 2-week moving average of maximum temperature were the most important factors influencing the variation in the weekly occurrence of the four DENV serotypes, the likelihoods of the occurrence of the four DENV serotypes may be unequal under the same environmental conditions, and occurrence may be influenced by changes in global and local environmental conditions in Cairns.

  11. Seasonal and habitat effects on dengue and West Nile virus vectors in San Juan, Puerto Rico.

    Science.gov (United States)

    Smith, Joshua; Amador, Manuel; Barrera, Roberto

    2009-03-01

    The presence of West Nile (WNV) and dengue viruses and the lack of recent mosquito surveys in Puerto Rico prompted an investigation on the distribution and abundance of potential arbovirus vectors in the San Juan Metropolitan Area, and their variation with seasons and habitats. We sampled mosquitoes in early and late 2005 in 58 sites from forests, nonforest vegetation, wetlands, and high- and low-density housing areas using ovijars, Centers for Disease Control and Prevention miniature light/CO2 traps, and gravid traps. A total of 28 mosquito species was found. San Juan had potential WNV enzooticvectors (Culex nigripalpus) within and around the city in wetlands and forests, but few were captured in residential areas. A potential WNV bridge vector (Cx. quinquefasciatus) was abundant in urbanized areas, and it was positively correlated with the main dengue vector, Aedes aegypti. High-density housing areas harbored more Ae. aegypti. Container mosquitoes, including Aedes mediovittatus, were more abundant during the climax of the rainy season when most dengue occurs in Puerto Rico. The greatest risk for contracting WNV would be visiting forests and swamps at night. Culex (Culex) and Culex (Melanoconion) mosquito species were more abundant during the transition dry-wet seasons (March-May). PMID:19432067

  12. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Elzinandes Leal de Azeredo

    2015-01-01

    Full Text Available Dengue is an infectious disease caused by dengue virus (DENV. In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as “immune-like effector cells” will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.

  13. Structural and Functional Studies of the Promoter Element for Dengue Virus RNA Replication ▿

    OpenAIRE

    Lodeiro, María F.; Filomatori, Claudia V.; Andrea V Gamarnik

    2008-01-01

    The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replicatio...

  14. Air Travel Is Associated with Intracontinental Spread of Dengue Virus Serotypes 1-3 in Brazil

    OpenAIRE

    Nunes, Marcio R. T.; Palacios, Gustavo; Faria, Nuno Rodrigues; Sousa, Edivaldo Costa; Pantoja, Jamilla A; Rodrigues, Sueli G.; Carvalho, Valéria L.; Medeiros, Daniele B A; Savji, Nazir; Baele, Guy; Suchard, Marc A.; Lemey, Philippe; Pedro F. C. Vasconcelos; Lipkin, W. Ian

    2014-01-01

    Dengue virus and its four serotypes (DENV-1 to DENV-4) infect 390 million people and are implicated in at least 25,000 deaths annually, with the largest disease burden in tropical and subtropical regions. We investigated the spatial dynamics of DENV-1, DENV-2 and DENV-3 in Brazil by applying a statistical framework to complete genome sequences. For all three serotypes, we estimated that the introduction of new lineages occurred within 7 to 10-year intervals. New lineages were most likely to b...

  15. Production and testing of dengue virus strains suitable for human infection studies.

    Science.gov (United States)

    Eckels, Kenneth H

    2014-06-15

    Vaccine efficacy can be assessed in human subjects who have received dengue virus (DENV) candidate vaccines. Recent, published studies have been conducted with DENV strains that resulted in a spectrum of clinical disease. DENV-1 and DENV-3 strains were identified that could be used to test for protection against these serotypes. DENV strains that are intended for similar human clinical studies require production and preclinical testing that are the same as vaccines entering Phase 1 human clinical testing. Information on passage history, use of raw materials, testing for adventitious agents, complete characterization (including genetic sequence), and product stability are essential for DENV strain banks intended for human infection studies. PMID:24872395

  16. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis

    OpenAIRE

    Clyde, Karen; Barrera, Julio; Harris, Eva

    2008-01-01

    Dengue virus (DENV) and West Nile virus (WNV) are members of the Flavivirus genus of positive-strand RNA viruses. RNA sequences and structures, primarily in the untranslated regions, have been shown to modulate flaviviral gene expression and genome replication. Previously, we demonstrated that a structure in the DENV coding region (cHP) enhances translation start codon selection and is required for viral replication. Here we further characterize the role of the cHP in the DENV life cycle. We ...

  17. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  18. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy.

    Science.gov (United States)

    Chen, Hong-Ru; Chuang, Yung-Chun; Lin, Yee-Shin; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Perng, Guey-Chuen; Yeh, Trai-Ming

    2016-07-01

    Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS. PMID:27409803

  19. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy

    Science.gov (United States)

    Chen, Hong-Ru; Chuang, Yung-Chun; Lin, Yee-Shin; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Perng, Guey-Chuen

    2016-01-01

    Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS. PMID:27409803

  20. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  1. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  2. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cisneros Alejandro

    2009-12-01

    Full Text Available Abstract Background Dengue (DEN is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91-prM-E-NS1(2400 structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for

  3. Patient and Mouse Antibodies against Dengue Virus Nonstructural Protein 1 Cross-React with Platelets and Cause Their Dysfunction or Depletion

    OpenAIRE

    Chiou-Feng Lin; Huan-Yao Lei; Yee-Shin Lin; Ching-Chuan Liu; Robert Anderson

    2008-01-01

    Thrombocytopenia is a clinical manifestation in dengue virus (DV) infection, yet its pathogenic mechanisms are unresolved. We previously showed that dengue patient sera contained antibodies cross-reactive with platelets. In this study, we demonstrated that the anti-platelet activity of dengue patient sera was due to the antibodies against DV nonstructural protein 1 (NS1). Studies using DV-infected or recombinant NS1-immunized mouse sera showed that anti-NS1 antibodies cross-reacted with human...

  4. Zika virus infection-the next wave after dengue?

    Science.gov (United States)

    Wong, Samson Sai-Yin; Poon, Rosana Wing-Shan; Wong, Sally Cheuk-Ying

    2016-04-01

    Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control. PMID:26965962

  5. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Directory of Open Access Journals (Sweden)

    Mammen P Mammen

    2008-11-01

    Full Text Available Transmission of dengue viruses (DENV, the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters and without (negative clusters acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1 define the spatial and temporal dimensions of DENV transmission, (2 correlate these factors with variation in DENV transmission, and (3 determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8% dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between

  6. Optimization of the cutoff value for a commercial anti-dengue virus IgG immunoassay.

    Science.gov (United States)

    Marrero-Santos, Karla M; Beltrán, Manuela; Carrión-Lebrón, Jessica; Sanchez-Vegas, Carolina; Hamer, Davidson H; Barnett, Elizabeth D; Santiago, Luis M; Hunsperger, Elizabeth A

    2013-03-01

    A commercial anti-dengue virus (anti-DENV) indirect IgG enzyme-linked immunosorbent assay (ELISA) for serological diagnosis was evaluated for its utility in determining previous DENV exposure in U.S. travelers. The Boston Area Travel Medicine Network clinics used Focus Diagnostics anti-DENV IgG ELISA to measure anti-DENV IgG antibodies in 591 pretravel specimens from U.S. residents who had traveled to countries where dengue is endemic. When using the manufacturer's index cutoff value for this ELISA, false-positive results were observed that overestimated the perceived past DENV exposure in U.S. travelers. Validation of 121 of these anti-DENV IgG results by plaque reduction neutralization test (PRNT) was used for receiver operating characteristic (ROC) curve optimization of the index cutoff value from 1 to 3.0, improving the specificity of the anti-DENV IgG ELISA from 24% to 95.7%. Additionally, previous vaccination with yellow fever virus contributed to 52.8% of the false-positive rate in the anti-DENV IgG ELISA results. Optimization of the cutoff value of the anti-DENV IgG ELISA provided better interpretation and confidence in the results and eliminated the need for confirmation by PRNT. The travel history of U.S. travelers was also useful for categorizing these travelers into groups for analysis of previous DENV exposure. PMID:23302742

  7. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  8. Construction and characterisation of a complete reverse genetics system of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Jefferson Jose da Silva Santos

    2013-12-01

    Full Text Available Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.

  9. Dengue Virus (DENV) Neutralizing Antibody Kinetics in Children After Symptomatic Primary and Postprimary DENV Infection.

    Science.gov (United States)

    Clapham, Hannah E; Rodriguez-Barraquer, Isabel; Azman, Andrew S; Althouse, Benjamin M; Salje, Henrik; Gibbons, Robert V; Rothman, Alan L; Jarman, Richard G; Nisalak, Ananda; Thaisomboonsuk, Butsaya; Kalayanarooj, Siripen; Nimmannitya, Suchitra; Vaughn, David W; Green, Sharone; Yoon, In-Kyu; Cummings, Derek A T

    2016-05-01

    The immune response to dengue virus (DENV) infection is complex and not fully understood. Using longitudinal data from 181 children with dengue in Thailand who were followed for up to 3 years, we describe neutralizing antibody kinetics following symptomatic DENV infection. We observed that antibody titers varied by serotype, homotypic vs heterotypic responses, and primary versus postprimary infections. The rates of change in antibody titers over time varied between primary and postprimary responses. For primary infections, titers increased from convalescence to 6 months. By comparing homotypic and heterotypic antibody titers, we saw an increase in type specificity from convalescence to 6 months for primary DENV3 infections but not primary DENV1 infections. In postprimary cases, there was a decrease in titers from convalescence up until 6 months after infection. Beginning 1 year after both primary and postprimary infections, there was evidence of increasing antibody titers, with greater increases in children with lower titers, suggesting that antibody titers were boosted due to infection and that higher levels of neutralizing antibody may be more likely to confer a sterilizing immune response. These findings may help to model virus transmission dynamics and provide baseline data to support the development of vaccines and therapeutics. PMID:26704615

  10. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing.

    Science.gov (United States)

    De Maio, Federico A; Risso, Guillermo; Iglesias, Nestor G; Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G; Mammi, Pablo; Mancini, Estefania; Yanovsky, Marcelo J; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V

    2016-08-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  11. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelopie); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  12. First evidence of dengue virus infection in wild caught mosquitoes during an outbreak in Assam, Northeast India

    Directory of Open Access Journals (Sweden)

    Prafulla Dutta

    2015-01-01

    Interpretation & conclusion: This is the maiden report of detection of DENV in wild caught Ae. aegypti mosquitoes from Northeastern Region of India. The study also demonstrates the presence of transovarial transmission of dengue virus in this part of country. This information is useful in respect of both entomological as well as epidemiological point of view for taking appropriate vector control measures.

  13. Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity.

    NARCIS (Netherlands)

    Koraka, P.; Murgue, B.; Deparis, X.; Gorp, E. van; Setiati, T.E.; Osterhaus, A.D.M.E.; Groen, J.

    2004-01-01

    Approximately 1,000 million infections with dengue viruses are estimated to occur annually. The majority of the cases develop mild disease, whereas only small proportion of the infected individuals develop severe hemorrhagic manifestations at the end of the acute phase of illness. In this study, the

  14. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus.

    Science.gov (United States)

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L; Eugenin, Eliseo Alberto

    2014-12-01

    The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses. PMID:25287260

  15. Characterization of the activity of 2'-C-methylcytidine against dengue virus replication.

    Science.gov (United States)

    Lee, Jin-Ching; Tseng, Chin-Kai; Wu, Yu-Hsuan; Kaushik-Basu, Neerja; Lin, Chun-Kuang; Chen, Wei-Chun; Wu, Huey-Nan

    2015-04-01

    Dengue virus (DENV) is a severe mosquito-borne viral pathogen. Neither vaccines nor antiviral therapy is currently available to treat DENV infection. Nucleoside inhibitors targeting viral polymerase have proved promising for the development of drugs against viruses. In this study, we report a nucleoside analog, 2'-C-methylcytidine (2CMC), which exerts potent anti-DENV activity in DENV subgenomic RNA replicon and infectious systems, with an IC50 value of 11.2±0.3μM. This study utilized both cell-based and cell-free reporter assay systems to reveal the specific anti-DENV RNA polymerase activity of 2CMC. In addition, both xenograft bioluminescence-based DENV replicon and DENV-infected Institute of Cancer Research (ICR) suckling mice models evaluated the anti-DENV replication activity of 2CMC in vivo. Collectively, these findings provide a promising compound for the development of direct-acting antivirals against DENV infection. PMID:25614455

  16. Genetic and biological characterization of a densovirus isolate that affects dengue virus infection

    Directory of Open Access Journals (Sweden)

    Ana Luiza Pamplona Mosimann

    2011-05-01

    Full Text Available Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection.

  17. Dengue fever: natural management.

    Science.gov (United States)

    Qadir, Muhammad Imran; Abbas, Khizar; Tahir, Madeha; Irfan, Muhammad; Raza Bukhari, Syeda Fiza; Ahmed, Bilal; Hanif, Muhammad; Rasul, Akhtar; Ali, Muhammad

    2015-03-01

    Dengue fever is caused by the mosquito-borne dengue virus (DENV) serotypes 1-4, and is the most common arboviral infection of humans in subtropical and tropical regions of the world. Dengue virus infections can present with a spacious range of clinical signs, from a mild feverish illness to a life-threatening shock syndrome. Till now, there is no approved vaccine or drug against this virus. Therefore, there is an urgent need of development of alternative solutions for dengue. Several plant species have been reported with anti-dengue activity. Many herbal/natural drugs, most of which are commonly used as nutritional components, have been used as antiviral, larvicidal, mosquitocidal and mosquito repellents that may be used against dengue. The objective of this review article was to provide current approaches for the treatment and management/prevention of dengue fever by targeting viral proteins involved in replication cycle of the virus and different developmental stages of mosquito. PMID:25730815

  18. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    Directory of Open Access Journals (Sweden)

    Mendez Jairo A

    2010-09-01

    Full Text Available Abstract Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1, there are not studies about its origin, genetic diversity and distribution. Results We used 224 bp corresponding to the carboxyl terminus of envelope (E gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages.

  19. How antibodies alter the cell entry pathway of dengue virus particles in macrophages

    Science.gov (United States)

    Ayala-Nunez, Nilda V.; Hoornweg, Tabitha E.; van de Pol, Denise P.I.; Sjollema, Klaas A.; Flipse, Jacky; van der Schaar, Hilde M.; Smit, Jolanda M.

    2016-01-01

    Antibody-dependent enhancement of dengue virus (DENV) infection plays an important role in the exacerbation of DENV-induced disease. To understand how antibodies influence the fate of DENV particles, we explored the cell entry pathway of DENV in the absence and presence of antibodies in macrophage-like P388D1 cells. Recent studies unraveled that both mature and immature DENV particles contribute to ADE, hence, both particles were studied. We observed that antibody-opsonized DENV enters P388D1 cells through a different pathway than non-opsonized DENV. Antibody-mediated DENV entry was dependent on FcγRs, pH, Eps15, dynamin, actin, PI3K, Rab5, and Rab7. In the absence of antibodies, DENV cell entry was FcγR, PI3K, and Rab5-independent. Live-cell imaging of fluorescently-labeled particles revealed that actin-mediated membrane protrusions facilitate virus uptake. In fact, actin protrusions were found to actively search and capture antibody-bound virus particles distantly located from the cell body, a phenomenon that is not observed in the absence of antibodies. Overall, similar results were seen for antibody-opsonized standard and antibody-bound immature DENV preparations, indicating that the maturation status of the virus does not control the entry pathway. Collectively, our findings suggest that antibodies alter the cell entry pathway of DENV and trigger a novel mechanism of initial virus-cell contact. PMID:27385443

  20. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients.

    Science.gov (United States)

    Calvo, Eliana P; Sánchez-Quete, Fernando; Durán, Sandra; Sandoval, Isabel; Castellanos, Jaime E

    2016-11-01

    Dengue (DENV), chikungunya (CHIKV) and zika (ZIKV) are arthropod-borne viruses (arboviruses) sharing a common vector, the mosquito Aedes aegypti. At initial stages, patients infected with these viruses have similar clinical manifestations, however, the outcomes and clinical management of these diseases are different, for this reason early and accurate identification of the causative virus is necessary. This paper reports the development of a rapid and specific nested-PCR for detection of DENV, CHIKV and ZIKV infection in the same sample. A set of six outer primers targeting the C-preM, E1, and E gene respectively was used in a multiplex one-step RT-PCR assay, followed by the second round of amplification with specific inner primers for each virus. The specificity of the present assay was validated with positive and negative serum samples for viruses and supernatants of infected cells. The assay was tested using clinical samples from febrile patients. In these samples, we detected mono and dual infections and a case of triple co-infection DENV-CHIKV-ZIKV. This assay might be a useful and an inexpensive tool for detection of these infections in regions where these arboviruses co-circulate. PMID:27477452