WorldWideScience

Sample records for al coated a2

  1. Oxidation behaviour of a Ti2AlN MAX-phase coating

    International Nuclear Information System (INIS)

    Wang Qimin; Kim, Kwangho; Garkas, W; Renteria, A Flores; Leyens, C; Sun Chao

    2011-01-01

    In this paper, we reported the oxidation behaviour of Ti 2 AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti 2 AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti 2 AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  2. Oxidation behaviour of a Ti{sub 2}AlN MAX-phase coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qimin; Kim, Kwangho [National Core Research Center for Hybrid Materials Solution, Pusan National University, Busan 609-735 (Korea, Republic of); Garkas, W; Renteria, A Flores [Chair of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, 03046 Cottbus (Germany); Leyens, C [Institute of Materials Science, Technical University of Dresden, Helmholtzstrasse 7, 01069 Dresden (Germany); Sun Chao, E-mail: qmwang@pusan.ac.kr, E-mail: kwhokim@pusan.ac.kr [Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-29

    In this paper, we reported the oxidation behaviour of Ti{sub 2}AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti{sub 2}AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti{sub 2}AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  3. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  4. Wear protection in cutting tool applications by PACVD (Ti,Al)N and Al2O3 coatings

    International Nuclear Information System (INIS)

    Kathrein, M.; Heiss, M.; Rofner, R.; Schleinkofer, U.; Schintlmeister, W.; Schatte, J.; Mitterer, C.

    2001-01-01

    Various (Ti,Al)N-, Al 2 O 3 -, and (Ti,Al)N/Al 2 O 3 multilayer coatings were deposited onto cemented carbide cutting tool inserts by a plasma assisted chemical vapor deposition (PACVD) technique. Al 2 O 3 coatings were deposited using the gaseous mixture AlCl 3 , Ar, H 2 , and O 2 . (Ti,Al)N intermediate layers were deposited in the same device using the process mentioned and the gases AICl 3 , Ar, H 2 , TiCl 4 and N 2 . The unique properties of (Ti,Al)N/Al 2 O 3 multilayer coatings result in superior wear protection for cutting inserts applied in severe multifunction cutting processes. The influence of different deposition temperatures an structure and properties of the coatings like crystallographic phases, chemical composition, mechanical and technological properties is shown. PACVD (Ti,Al)N/Al 2 O 3 coated cutting inserts with fine grained crystalline α/κ-Al 2 O 3 offer performance advantages which are superior with respect to coatings deposited by chemical vapor deposition (CVD) due to the low deposition temperature applied. (author)

  5. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  6. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  7. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  8. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  9. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    Science.gov (United States)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  10. Characterisation of the Microstructure of Fe–Al/Cr3C2 Composite Coatings

    Science.gov (United States)

    Liu, Xiaoming; JunhuiDong; Yang, Yuehong; Sun, Changming; Tuo, Ya; Li, Yanwei

    2018-03-01

    An Fe-Al/Cr3C2 composite coating is investigated to assess its suitability for treating high-temperature components in a power plant. The coating exhibits excellent high- temperature properties including good corrosion, erosion and friction-wear resistance at high temperatures. To deduce the formation of the Fe-Al/Cr3C2 composite coating and to provide an adequate theoretical basis for its extensive application, its structures and microstructures are investigated. Scanning electronic microscopy (SEM)is used along with energy-dispersive X-ray analysis (EDAX) to analyse the surface of the coating. Energy-dispersive spectroscopy (EDS) is used to analyse the cross-section of the coating. Further, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to analyse the phases and micro structural features within the coating. The results reveal that the basic phases are two orderly inter metallic compounds (Fe3Al and FeAl) and that the reinforcement includes two oxides (Al2O3 and Cr2O3) as well as substantial quantities of Cr3C2. Al2O3is formed using two mechanisms: oxidation of aluminium in the coating and separation of Al2O3crystals from Fe3Al and FeAl. The grain size of Al2O3 and Cr2O3 in the coatings is nanometric. These two oxides may increase the corrosion-erosion and wear resistances of the coating when they are used as reinforcements.

  11. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  12. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    Science.gov (United States)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  13. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Zhiyong; Lai, Yanqing; Zhang, Zhian; Zhang, Kai; Li, Jie

    2014-01-01

    Graphical abstract: Al2O3-coated separator with developed porous channels is prepared by coating Al2O3 polymer solution on routine separator. The batteries with Al2O3-coated separator exhibited a reversible capacity of as high as 593 mAh g-1 at the rate of 0.2 C after 50th charge/discharge cycle. The enhancement in the electrochemical performance could be attributed to the reduced charge transfer resistance after the introduction of Al2O3 coating layer. Besides, the Al2O3 coating layer, acting as a physical barrier for polysulfides, can effectively prevent polysulfides shuttling between the cathode and the anode. We believe that the Al2O3-coated separator is promising in the lithium sulfur battery applications. - Highlights: • Al 2 O 3 -coated separator is used as the separator of lithium sulfur battery. • The cell with Al 2 O 3 -coated separator exhibits excellent cycling stability and high rate capability. • Al 2 O 3 -coated separator is promising in the lithium sulfur battery applications. - Abstract: In this paper, Al 2 O 3 -coated separator with developed porous channels is prepared to improve the electrochemical performance of lithium sulfur batteries. It is demonstrated that the Al 2 O 3 -coating layer is quite effective in reducing shuttle effect and enhancing the stability of the sulfur electrode. The initial discharge capacity of the cell with Al 2 O 3 -coated separator can reach 967 mAh g −1 at the rate of 0.2 C. After 50th charge/discharge cycle, this cell can also deliver a reversible capacity of as high as 593.4 mAh g −1 . Significantly, the charge-transfer resistance of the electrode tends to be reducing after using Al 2 O 3 -coated separator. The improved cell performance is attributed to the porous architecture of the Al 2 O 3 -coating layer, which serves as an ion-conducting skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X

  14. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-05-01

    Full Text Available Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  15. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  16. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  17. Characterization of Ni-P-SiO_2-Al_2O_3 nanocomposite coatings on aluminum substrate

    International Nuclear Information System (INIS)

    Rahemi Ardakani, S.; Afshar, A.; Sadreddini, S.; Ghanbari, A.A.

    2017-01-01

    In the present work, nano-composites of Ni-P-SiO_2-Al_2O_3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO_2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO_2 and Al_2O_3 in Ni-P coating at the SiO_2 concentration of 10 g/L and 14 g/L Al_2O_3 led to the lowest corrosion rate (i_c_o_r_r = 0.88 μA/cm"2), the most positive E_c_o_r_r and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE_d_l and improve porosity. - Highlights: • The maximum content of Al_2O_3 and SiO_2 in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO_2-Al_2O_3 was measured to be 537 μHV.

  18. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    Science.gov (United States)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  19. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy

    International Nuclear Information System (INIS)

    García Ferré, Francisco; Bertarelli, Emanuele; Chiodoni, Angelica; Carnelli, Davide; Gastaldi, Dario; Vena, Pasquale; Beghi, Marco G.; Di Fonzo, Fabio

    2013-01-01

    In this work, ellipsometry, Brillouin spectroscopy and nanoindentation are combined to assess the mechanical properties of a nanocrystalline Al 2 O 3 /a-Al 2 O 3 composite coating with high accuracy and precision. The nanocomposite is grown by pulsed laser deposition at either room temperature or 600 °C. The adhesive strength is evaluated by nanoscratch tests. In the room temperature process the coating attains an unusual combination of compactness, strong interfacial bonding, moderate stiffness (E = 195 ± 9 GPa and ν = 0.29 ± 0.02) and significant hardness (H = 10 ± 1 GPa), resulting in superior plastic behavior and a relatively high ratio of hardness to elastic modulus (H/E = 0.049). These features are correlated to the nanostructure of the coating, which comprises a regular dispersion of ultrafine crystalline Al 2 O 3 nanodomains (2–5 nm) in a dense and amorphous alumina matrix, as revealed by transmission electron microscopy. For the coating grown at 600 °C, strong adhesion is also observed, with an increase of stiffness and a significant enhancement of hardness (E = 277 ± 9 GPa, ν = 0.27 ± 0.02 and H = 25 ± 1 GPa), suggesting an outstanding resistance to wear (H/E = 0.091)

  20. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  1. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  2. Atomic layer deposition of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/TiO{sub 2} barrier coatings to reduce the water vapour permeability of polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzada, Tamkin, E-mail: tahm4852@uni.sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); McKenzie, David R.; James, Natalie L.; Yin, Yongbai [School of Physics, University of Sydney, NSW 2006 (Australia); Li, Qing [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2015-09-30

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/TiO{sub 2} nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al{sub 2}O{sub 3}/TiO{sub 2} coating to PEEK, while the single layer Al{sub 2}O{sub 3} coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al{sub 2}O{sub 3}/TiO{sub 2} coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al{sub 2}O{sub 3}/TiO{sub 2} bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al{sub 2}O{sub 3}/TiO{sub 2} coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  3. Microstructure and wear characterization of self-lubricating Al2O3 - MoS2 composite ceramic coatings

    International Nuclear Information System (INIS)

    Koshkarian, K.A.; Kriven, W.M.

    1989-01-01

    The authors report the results of composite ceramic coatings of alumina Al 2 O 3 containing some molybdenum disulfide MoS 2 electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of Al 2 O 3 and electrophoresis of MoS 2 . The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS, TEM, SAD and relative wear resistance measurements. The coatings consisted mostly of Al 2 O 3 with some and present as well. The coatings were porous and microcracked. SEM showed them to consist of circular splats which had rapidly crystallized from the molten state in areas of dielectric breakdown in the coating. In the TEM the microstructure was seen to contain sets of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS 2 was incorporated in coatings fabricated from 5g/1 solutions. SEM/EDS as well as TEM/SAD/EDS identified 1-3 μ particles of MoS 2 incorporated into the 5g/1 solution derived coatings. These coatings exhibited 50% lower wear rate than pure alumina coatings deposited under the same condition

  4. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  5. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    Science.gov (United States)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating coating coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  6. Tribological Properties of New Cu-Al/MoS2 Solid Lubricant Coatings Using Magnetron Sputter Deposition

    Directory of Open Access Journals (Sweden)

    Ming Cao

    2018-04-01

    Full Text Available The increasing demands of environmental protection have led to solid lubricant coatings becoming more and more important. A new type of MoS2-based coating co-doped with Cu and Al prepared by magnetron sputtering, including Cu/MoS2 and Cu-Al/MoS2 coatings, for lubrication applications is reported. To this end, the coatings were annealed in an argon atmosphere furnace. The microstructure and the tribological properties of the coatings prior to and following annealing were analyzed using scanning electron microscopy, energy dispersive spectrometry, X-ray diffractometry (XRD and with a multi-functional tester for material surface properties. The results demonstrated that the friction coefficient of the Cu/MoS2 coating was able to reach as low as 0.07, due to the synergistic lubrication effect of the soft metal Cu with MoS2. However, the wear resistance of the coating was not satisfied. Although the lowest friction coefficient of the Cu-Al/MoS2 coatings was 0.083, the wear resistance was enhanced, which was attributed to the improved the toughness of the coatings due to the introduction of aluminum. The XRD results revealed that the γ2-Cu9Al4 phase was formed in the specimen of Cu-Al/MoS2 coatings. The comprehensive performance of the Cu-Al/MoS2 coatings after annealing was improved in comparison to substrate heating, since the heat-treatment was beneficial for the strengthening of the solid solution of the coatings.

  7. The oxidation behaviour of sprayed MCrAlY coatings

    International Nuclear Information System (INIS)

    Brandl, W.; Toma, D.; Krueger, J.

    1996-01-01

    Turbine blades are protected against high temperature oxidation by thermal barrier coating (TBC) systems, which consist of a ceramic top coating (ZrO 2 /Y 2 O 3 ) and a metal bond coating (MCrAlY, M = Ni, Co). At high temperatures and under oxidative conditions, between the MCrAlY and the ceramic top coating an oxide scale is formed, which protects the metal against further oxidation. The oxidation behaviour of the thermally sprayed MCrAlY is influenced by the coating process and the composition of the metal alloys. This work is concerned with the isothermal oxidation behaviour of vacuum plasma sprayed (VPS) MCrAlY coatings. The MCrAlY powders used have different aluminium contents: 8 and 12 wt.%. The MCrAlY specimens are oxidized at 1050 C in air as well as in helium with 1% O 2 and the oxidation kinetics are determined thermogravimetrically. The microstructure, morphology and thickness of the oxide scales formed are characterized by metallography, SEM, TEM and XRD. After short time oxidation (6 h) θ-Al 2 O 3 is the main constituent of the oxide scale. Exposure times of 500 h and more lead to oxide scales consisting of α-Al 2 O 3 . Moreover, after a long time oxidation, Cr 2 O 3 and CoO (CoO on the coatings with 8 wt.% Al) are formed. The oxidation rates of both MCrAlY coatings are the same. Beneath the oxide scale an Al-depleted zone is formed and this zone is considerably thicker within the coating with 8 wt.% Al, because the amount of β-NiAl phase in this coating is lower than that in the coating with 12 wt.% Al. The oxide scale formed in He-1% O 2 consists of α-Al 2 O 3 and Cr 2 O 3 on both MCrAlY coatings. (orig.)

  8. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment

    International Nuclear Information System (INIS)

    Li, J.J.; Qian, Y.H.; Niu, D.; Zhang, M.M.; Liu, Z.M.; Li, M.S.

    2012-01-01

    Highlights: ► Cr 2 AlC coating was prepared by arc ion plating combined with post annealing. ► The coating deposited by arc ion plating without heating was amorphous. ► Amorphous coating transformed to crystalline Cr 2 AlC after annealing at 620 °C in Ar. - Abstract: Due to the excellent oxidation and hot corrosion resistance and matched thermal expansion coefficient to normal alloys, Cr 2 AlC has potential applications as high-temperature protective coating. In the present work, the preparation of Cr 2 AlC coating has been achieved through cathodic arc deposition method combined with heat post-treatment. It was found that the coating, deposited from Cr 2 AlC compound target in the unintentional heating condition, was amorphous. After annealing at 620 °C in Ar for 20 h, the amorphous Cr–Al–C coating happened to crystallize and transformed to crystalline Cr 2 AlC as the major phase. It is obvious that the formation temperature of Cr 2 AlC was decreased from about 1050 °C for sintered bulk to around 620 °C for the as-deposited coating, resulting from the homogeneous mixture of the Cr, Al and C at atomic level in the Cr–Al–C coating. Apart from crystalline Cr 2 AlC, the annealed coating also contained AlCr 2 and little Cr 7 C 3 . AlCr 2 formed due to the loss of C during deposition, and little Cr 7 C 3 always existed in the sintered Cr 2 AlC compound target as impurity phase.

  9. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  10. Hot corrosion of the ceramic composite coating Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO plasma sprayed on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Amir Khodaparast; Kiahosseini, Seyed Rahim [Islamic Azad Univ., Damghan (Iran, Islamic Republic of). Dept. of Engineering

    2017-08-15

    Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO three-layered coatings with thicknesses of 50, 100, and 150 μm for Al{sub 2}O{sub 3}/MgO and 100 μm for the other layers were deposited on 316L stainless steel using plasma spraying. X-ray diffraction, atomic force microscopy, furnace hot corrosion testing in the presence of a mixture of Na{sub 2}SO{sub 4} and V{sub 2}O{sub 5} corrosive salts and scanning electron microscopy were used to determine the structural, morphological and hot corrosion resistance of samples. Results revealed that the crystalline grains of MgO and Al{sub 2}O{sub 3} coating were very small. Weight loss due to hot corrosion decreased from approximately 4.267 g for 316L stainless steel without coating to 2.058 g. The samples with 150 μm outer coating showed improved resistance with the increase in outer layer thickness. Scanning electron microscopy of the coated surface revealed that the coating's resistance to hot corrosion is related to the thickness and the grain size of Al{sub 2}O{sub 3}/MgO coatings.

  11. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  12. Characterization of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings on aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi Ardakani, S., E-mail: saeed.rahemi69@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afshar, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghanbari, A.A. [Department of Materials Science and Engineering, Sharif University of Technology, International Campus, Kish Island (Iran, Islamic Republic of)

    2017-03-01

    In the present work, nano-composites of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO{sub 2} and Al{sub 2}O{sub 3} in Ni-P coating at the SiO{sub 2} concentration of 10 g/L and 14 g/L Al{sub 2}O{sub 3} led to the lowest corrosion rate (i{sub corr} = 0.88 μA/cm{sup 2}), the most positive E{sub corr} and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE{sub dl} and improve porosity. - Highlights: • The maximum content of Al{sub 2}O{sub 3} and SiO{sub 2} in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} was measured to be 537 μHV.

  13. Oxidation behavior of Ru–Al multilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Zheng, Zhi-Ting; Kai, Wu; Huang, Yu-Ren

    2017-06-01

    Highlights: • Ru{sub 0.63}Al{sub 0.37} multilayer coatings were fabricated using cosputtering. • Oxidation behavior of Ru{sub 0.63}Al{sub 0.37} coatings in 1% O{sub 2}–99% Ar was studied. • Internal oxidation of Ru{sub 0.63}Al{sub 0.37} coatings at 400–600 °C was multi stage parabolic. • External oxidation of Ru{sub 0.63}Al{sub 0.37} was conducted after annealing at 700–800 °C. - Abstract: Ru{sub 0.63}Al{sub 0.37} coatings were deposited through a cyclical gradient concentration deposition at 400 °C with a substrate-holder rotation speed of 1 rpm by direct current magnetron cosputtering. Scanning electron microscopy revealed that the as-deposited coatings exhibited a multilayer structure along with the columnar structure. The oxidation behavior of the Ru{sub 0.63}Al{sub 0.37} coatings was examined through X-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Oxidation kinetics was measured using a thermogravimetric analyzer. Internal oxidation was observed for Ru{sub 0.63}Al{sub 0.37} coatings annealed in a 1% O{sub 2}–99% Ar atmosphere at 400–600 °C accompanied with activation energies of 72–84 kJ/mol. By contrast, external oxidation was observed after annealing at 700–800 °C, resulting in the formation of a continuous alumina scale consisting of crystalline δ-Al{sub 2}O{sub 3} domains, which can be attributable to the outward diffusion of Al.

  14. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  15. Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-03-01

    Full Text Available Surface coating processing of industrial component with thermal spray coatings have been applied in many industrial fields. Ceramic matrix composite coating which consists of Cr3C2-Al2O3-NiAl had been carried out to obtain layers of material that has superior mechanical properties to enhance component performance. Deposition of CMC with High Velocity Oxygen Fuel (HVOF thermal spray coating has been employed. This study aims to determine the effect of powder particle size on the microstructure, surface roughness and hardness of the layer, by varying the NiAl powder particle size. Test results show NiAl powder particle size has an influence on the mechanical properties of CMC coating. Hardness of coating increases and surface roughness values of coating decrease with smaller NiAl particle size.  

  16. Formation of Al{sub 2}O{sub 3}/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanjib, E-mail: sanjib@barc.gov.in [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Paul, Bhaskar [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Chakraborty, Poulami [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Kishor, Jugal; Kain, Vivekanand [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Dey, Gautam Kumar [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe{sub 2}Al{sub 5}, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4–6 μm thick Al{sub 2}O{sub 3} scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al{sub 2}O{sub 3}/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation. - Highlights: •Al{sub 2}O{sub 3}/FeAl coating produced on P91 steel by pack aluminizing and heat treatment. •Corrosion tests of coated steel conducted in flowing Pb-17Li loop at 500 °C for 5000 h. •Coating was protective against molten metal corrosion during prolonged exposure. •Self-healing protective oxides formed in the cracks generated in aluminide layers.

  17. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  18. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  19. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  20. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  1. Dielectric and microwave absorption properties of TiO_2/Al_2O_3 coatings and improved microwave absorption by FSS incorporation

    International Nuclear Information System (INIS)

    Yang, Zhaoning; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-01-01

    In this paper, TiO_2/Al_2O_3 ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO_2/Al_2O_3 powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO_2/Al_2O_3 coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO_2 content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO_2/Al_2O_3 ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO_2/Al_2O_3 composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  2. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  3. Microstructure and Transparent Super-Hydrophobic Performance of Vacuum Cold-Sprayed Al2O3 and SiO2 Aerogel Composite Coating

    Science.gov (United States)

    Li, Jie; Zhang, Yu; Ma, Kai; Pan, Xi-De; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-02-01

    In this study, vacuum cold spraying was used as a simple and fast way to prepare transparent super-hydrophobic coatings. Submicrometer-sized Al2O3 powder modified by 1,1,2,2-tetrahydroperfluorodecyltriethoxysilane and mixed with hydrophobic SiO2 aerogel was employed for the coating deposition. The deposition mechanisms of pure Al2O3 powder and Al2O3-SiO2 mixed powder were examined, and the effects of powder structure on the hydrophobicity and light transmittance of the coatings were evaluated. The results showed that appropriate contents of SiO2 aerogel in the mixed powder could provide sufficient cushioning to the deposition of submicrometer Al2O3 powder during spraying. The prepared composite coating surface showed rough structures with a large number of submicrometer convex deposited particles, characterized by being super-hydrophobic. Also, the transmittance of the obtained coating was higher than 80% in the range of visible light.

  4. Structure and wear behavior of AlCrSiN-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Du, Hao [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Chen, Ming, E-mail: mchen@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Jun [Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Xiong, Ji [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhao, Haibo [The Analysis and Testing Centre, Sichuan University, Chengdu 610065 (China)

    2016-05-01

    Graphical abstract: - Highlights: • AlCrSiN based coating showed amorphous structure. • AlCrSiN/Me{sub x}N coatings obtained better wear resistance. • Molybdenum and niobium increased the coating hardness and wear resistance. - Abstract: AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC–Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N{sub 2} mixtures. Al{sub 0.6}Cr{sub 0.4}, Al{sub 0.6}Cr{sub 0.3}Si{sub 0.1}, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiN{sub x} peak were formed in the AlCrSiN/Me{sub x}N coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H{sup 3}/E{sup 2} ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  5. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  6. Effect of Gas Pressure and Temperature on Stereometric Properties of Al+Al2O3 Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2014-10-01

    Full Text Available The paper deals with effect of working gas pressure and temperature on surface stereometry of coatings deposited by low-pressure cold spray method. Examinations were focused on aluminium coatings which are commonly used to protect substrate against corrosion. A commercial Al spherical feedstock powder with admixture of Al2O3 (Al + 60vol.-% Al2O3, granulation -50+10 µm, was used to coat steel, grade S235JR. Thedeposited coatings were studied to determine their stereometry, i.e. roughness, transverse and longitudinal waviness, topography of surface and thickness as the functions of gas pressure and temperature. A profilometer and focal microscope were used to evaluate the stereometric properties. In order to reduce the number of variables, the remaining process parameters, i.e. shape and size of de Laval nozzle, nozzle-to-substrate distance, powder mass flow rate, linear velocity of spraying gun, were kept unchanged. The investigation confirmed influence of temperature and pressure on coating thickness as well as on the surface seterometry.

  7. Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, J; Zhang, Ji-Guang; Wang, Chong-Min

    2016-02-09

    Surface coating has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin coating layer, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration-corrected scanning transmission electron microscopy and high-efficiency spectroscopy to probe the delicate functioning mechanism of an Al2O3 coating layer on a Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between the cathode and the electrolyte during battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore preventing the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will be initiated from the particle surface and propagate toward the interior of the particle with the progression of battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight into the optimized design of a coating layer on a cathode to enhance the battery properties.

  8. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  9. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes

    Directory of Open Access Journals (Sweden)

    Ping Luo

    2015-03-01

    Full Text Available To improve electrode life during the resistance spot welding of galvanized steel plates, an Al2O3–TiB2 composite coating was synthesized on the surfaces of spot-welding electrodes through an electrospark deposition process. The microstructure, elemental composition, phase structure, and mechanical properties of the coating were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and microhardness testing. It was found that extensive cracking occurred in the monolithic Al2O3–TiB2 coating and at the coating–electrode interface. When the Al2O3–TiB2 coating was deposited on electrodes precoated with Ni, the number of defects decreased significantly. Further, delamination did not occur, and fewer cracks were formed. The average hardness of the multilayered Al2O3–TiB2/Ni coating was approximately 2200 HV and higher than that of the monolithic Al2O3–TiB2 coating (1100 HV.

  10. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  11. Synthesis and characterization of nanocrystalline Cu-Al coatings

    International Nuclear Information System (INIS)

    Lau, M.L.; He, J.; Schweinfest, R.; Ruehle, M.; Levi, C.G.; Lavernia, E.J.

    2003-01-01

    Commercially pure Cu and Al powders were blended in a 90:10 ratio by weight and then mechanically milled in methanol or in liquid nitrogen. The milled powders, as well as as-blended (non-milled) powder, were deposited as coatings using high velocity oxygen fuel thermal spraying. Scanning and transmission electron microscopy techniques were used to investigate the microstructure of the powders and coatings. The results showed that milling of the powders in methanol induced the conversion of most of the Al into amorphous Al 2 O 3 , precluding the desired mechanical alloying. This experimental observation was consistent with available thermodynamic data. In contrast, cryomilling exhibited no significant oxidation and induced mechanical alloying of the powders, albeit incomplete. The non-milled powder generated a coating with a bimodal grain structure consisting of fine Cu grains and coarse Al grains. Amorphous oxide regions and coarse Al grains were observed intermixed with the finer Cu matrix in the coatings sprayed using the powders milled in methanol. Coatings based on cryomilled powders consisted primarily of equiaxed Cu grains and twinned martensite regions, with occasional inclusion of elongated amorphous Al 2 O 3 regions

  12. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    Science.gov (United States)

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  13. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  14. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  15. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  16. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  17. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings

    International Nuclear Information System (INIS)

    Ciubotariu, Alina-Crina; Benea, Lidia; Lakatos-Varsanyi, Magda; Dragan, Viorel

    2008-01-01

    In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al 2 O 3 -Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al 2 O 3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al 2 O 3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year)

  18. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c-Al

  19. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  20. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  1. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  2. Preparation and characterization of Al{sub 2}O{sub 3} coating by MOD method on CLF-1 RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Yang, J.J., E-mail: jjyang@scu.edu.cn [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Feng, Y.J. [Southwestern Institute of Physics, Chengdu 614000 (China); Li, F.Z.; Liao, J.L.; Yang, Y.Y. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Feng, K.M. [Southwestern Institute of Physics, Chengdu 614000 (China); Liu, N. [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-04-15

    Metal organic decomposition (MOD) method was proposed to prepare Al{sub 2}O{sub 3} TPB coatings on CLF-1 RAFM steel. A comprehensive characterization of SEM, XPS, and XRD demonstrated the formation of Al{sub 2}O{sub 3} coatings. The effect of the preparation parameters, including annealing temperature T{sub a}, withdrawal speed V{sub w} and immersion time t{sub i} on the microstructure and properties of the coatings was investigated. It showed that amorphous aluminum oxide coating began to transform to γ-Al{sub 2}O{sub 3} at temperature of T{sub a} = 600 °C. The Al{sub 2}O{sub 3} coating with T{sub a} = 700 °C and T{sub b} = 500 °C performed the best crystallization feature. The hardness of the coatings gradually increased with increasing V{sub w}, while the corrosion resistance exhibited a reverse trend. Meanwhile, the nanohardness and corrosion resistance of the coating with t{sub i} = 300 s was improved as compared to the coating with t{sub i} = 0 s. Moreover, the effect of particle size and substrate oxidation on the mechanical property and corrosion resistance of the coatings was discussed. - Highlights: •MOD method was proposed to prepare Al{sub 2}O{sub 3} TPB on CLF-1 RAFM steel. •Effect of preparation parameters on the coating microstructure and properties was studied preliminary. •High quality MOD coating can be developed by multi-baking process.

  3. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  4. Electrodeposition of Ni–W–Al{sub 2}O{sub 3} nanocomposite coating with functionally graded microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Allahyarzadeh, M.H.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Rouhaghdam, A.R. Sabour; Torabinejad, V.

    2016-05-05

    Electrodeposition of functionally graded (FG) Ni–W–Al{sub 2}O{sub 3} nanocomposite coatings is investigated in current research. These types of coatings were applied in a way that alumina content was increased from the substrate towards the surface of the coating; hence, Ni–W would possess improved wear and corrosion resistance properties. FG-coatings were developed by the variation of duty cycle and frequency. The microstructure and elemental analysis of the coating as a function of thickness was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis, respectively. The corrosion resistance of the FG-coatings was evaluated using potentiodynamic polarization and the wear behavior was also studied using pin-on-disk wear tests. In order to investigate hardness properties of the coating, microhardness measurements were carried out on cross-section of coatings. Results revealed that the alumina content and the microhardness increased towards the surface. Results also showed the corrosion and wear resistance of FG-coatings were significantly improved by addition of α-Al{sub 2}O{sub 3} nanoparticles. Profilometery and AFM results also revealed that surface roughness was influenced by pulse plating parameters. - Highlights: • Functionally graded structures have been synthesized using adjusting pulse parameters. • Al{sub 2}O{sub 3} and W contents increases gradually as a function of coating thickness. • Alumina increased the corrosion resistance by moderating i{sub corr} and E{sub corr}. • Wear behavior has been enhanced in functionally graded structure.

  5. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  6. Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy

    Directory of Open Access Journals (Sweden)

    LIU Xiao-hui

    2018-02-01

    Full Text Available Micro-arc oxidation (MAO ceramic coatings were prepared on Ti2AlNb alloy in silicate/phosphate electrolytes with different concentrations of Na2WO4. The influence of Na2WO4 on the coating growth process, coating structure and composition was analyzed by SEM, XRD and XPS. The tribological behavior of MAO coatings was evaluated by the ball-disc wear test. The results show that the growth rate of MAO coating in electrolyte without Na2WO4 is only 0.08μm/min, meanwhile, the coating is loose and rough, and "networks" connecting with big pores exist on the coating surface.The main phase compositions of this coating are rutile TiO2, anatase TiO2, Al2O3, and Nb2O5. The addition of Na2WO4 in the electrolyte shortens the time before sparking of Ti2AlNb alloy, increases the growth rate of the coating, improves the uniformity of coating and meanwhile, a small amount of WO3 is introduced in the coating. Besides, MAO coatings formed in the participation of Na2WO4 have better wear resistance. Severe abrasive wear occurs when the test is made on Ti2AlNb alloy with Si3N4, the friction coefficient reaches 0.5-0.7. Both the friction coefficient and wear rate decrease obviously when Ti2AlNb is treated by MAO. The friction coefficient and wear rate of MAO coating prepared in the electrolyte with 4g/L Na2WO4 are 0.24 and 6.2×10-4mm3/(N·m, respectively. Only "fish scales" caused by fatigue wear appears on the coating surface.

  7. Biocorrosion of TiO2 nanoparticle coating of Ti-6Al-4V in DMEM under specific in vitro conditions

    Science.gov (United States)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-02-01

    A TiO2 nanoparticle coating was prepared on a biomedical Ti-6Al-4V alloy using "spin-coating" technique with a colloidal suspension of TiO2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO2. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti-6Al-4V shows a complete coverage by a Ca-phosphate layer in contrast to the non-coated Ti-6Al-4V alloy. Hence, the TiO2-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO2-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti-6Al-4V alloy is significant for at least 28 days of immersion in DMEM.

  8. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  9. Effect of Al2Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    International Nuclear Information System (INIS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-01-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al 2 Gd led to further grain refining and elevated mechanical properties. • Al 2 Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al 2 Gd phase as well as suppressed the precipitation of eutectic Mg 17 Al 12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al 2 Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation

  10. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  11. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  12. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  13. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  14. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique

    Science.gov (United States)

    Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying

    2017-02-01

    Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.

  15. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  16. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  17. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

    International Nuclear Information System (INIS)

    PalDey, S.; Deevi, S.C.

    2003-01-01

    We review the status of (Ti,Al)N based coatings obtained by various physical vapor deposition (PVD) techniques and compare their properties. PVD techniques based on sputtering and cathodic arc methods are widely used to deposit wear resistant (Ti,Al)N coatings. These techniques were further modified to improve the metal ionization rate and to eliminate macrodroplets from plasma streams. We summarize manufacture of target/cathode, substrate materials for deposition of coatings, deposition parameters, and the effect of deposition parameters on the physical and mechanical properties of (Ti,Al)N coatings. It is shown that (Ti,Al)N coatings by PVD enhance the wear, thermal, and oxidation resistance of a wide variety of tool materials. We discuss the wear resistant properties of (Ti,Al)N for various machining applications as compared with coatings such as TiN, Ti(C,N) and (Ti,Zr)N. High hardness (∼28-32 GPa), relatively low residual stress (∼5 GPa), superior oxidation resistance, high hot hardness, and low thermal conductivity make (Ti,Al)N coatings most desirable in dry machining and machining of abrasive alloys at high speeds. Multicomponent coatings based on different metallic and nonmetallic elements combine the benefit of individual components leading to a further refinement of coating properties. Alloying additions such as Cr and Y drastically improve the oxidation resistance, Zr and V improve the wear resistance, whereas, Si increases the hardness and resistance to chemical reactivity of the film. Addition of boron improves the abrasive wear behavior of Ti-Al based coatings due to the formation of TiB 2 and BN phases depending on the deposition conditions. Hafnium based nitrides and carbides have potential for resistance to flank and crater wear. The presence of a large number of interfaces between individual layers of a multilayered structure results in a drastic increase in hardness and strength. (Ti,Al)N multilayer super lattice coatings with lattice

  18. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jingpeng; Du, Chunyu; Yan, Chunqiu; He, Xiaoshu; Song, Bai; Yin, Geping; Zuo, Pengjian; Cheng, Xinqun

    2015-01-01

    Highlights: • Al 2 O 3 -coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al 2 O 3 -coating on concentration-gradient cathode is firstly studied. • Al 2 O 3 -coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al 2 O 3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al 2 O 3 layer onto the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al 2 O 3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material by the freeze drying procedure. The freeze drying Al 2 O 3 -coated (FD-Al 2 O 3 -coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al 2 O 3 -coated (HD-Al 2 O 3 -coated) samples. The capacity decay rate of FD-Al 2 O 3 -coated Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al 2 O 3 -coated samples. The superior electrochemical stability of the FD-Al 2 O 3 -coated sample is attributed to the synergistic protection of CGS and high-quality Al 2 O 3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  19. ZnO/Al{sub 2}O{sub 3} coatings for the photoprotection of polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Moustaghfir, A. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Tomasella, E. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Jacquet, M. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France)]. E-mail: jacquet@chimie.univ-bpclermont.fr; Rivaton, A. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Mailhot, B. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Gardette, J.L. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Beche, E. [PROMES, Odeillo, 66125 Font-Romeu Cedex (France)

    2006-10-25

    ZnO and ZnO/Al{sub 2}O{sub 3} thin films were deposited by r.f. magnetron sputtering on polycarbonate (PC) films in order to protect this polymer against photodegradation. The composition, structure and optical properties of the ceramic coatings were characterised. CO{sub 2}-plasma treatments were applied to PC in order to improve the coating adhesion. The PC surface energy was characterised by wettability measurements and the chemical bonds were analysed by XPS. It was found that ZnO coatings improve the stability of PC to UV radiations and that an intermediate alumina coating inhibits the photocatalytic oxidation of PC at the PC/ZnO interface. Additionally an external alumina coating brings a high hardness to the coating.

  20. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  1. Adhesion of Y2O3-Al2O3-SiO2 coatings to typical aerospace substrates

    International Nuclear Information System (INIS)

    Marraco-Borderas, C.; Nistal, A.; Garcia, E.; Sainz, M.A.; Martin de la Escalera, F.; Essa, Y.; Miranzo, P.

    2016-01-01

    High performance lightweight materials are required in the aerospace industry. Silicon carbide, carbon fiber reinforced carbon and slicon carbide composites comply with those requirements but they suffer from oxidation at the high temperature of the service conditions. One of the more effective approaches to prevent this problem is the use of protecting ceramic coatings, where the good adhesion between substrates and coatings are paramount to guarantee the optimal protection performance. In the present work, the adhesion between those substrates and glass coatings of the Y2O3-Al2O3-SiO2 system processed by oxyacetylene flame spraying is analyzed. Increasing load scratch tests are employed for determining the failure type, maximum load and their relation with the elastic and mechanical properties of the coatings. The results points to the good adhesion of the coatings to silicon carbide and carbon fibre reinforced silicon carbide while the carbon fiber reinforced carbon is not a suitable material to be coated. (Author)

  2. MCrAlY bond coat with enhanced Yttrium layer

    Science.gov (United States)

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  3. Effect of Al{sub 2}Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Zhang, Ke; Yao, Chengwu [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dong, Jie [National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Emmelmann, Claus [Institute of Laser and System Technologies, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2015-03-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al{sub 2}Gd led to further grain refining and elevated mechanical properties. • Al{sub 2}Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al{sub 2}Gd phase as well as suppressed the precipitation of eutectic Mg{sub 17}Al{sub 12} phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al{sub 2}Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  4. The effect of temperature, matrix alloying and substrate coatings on wettability and shear strength of Al/Al2O3 couples

    Science.gov (United States)

    Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.

    2004-03-01

    A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.

  5. The formation of tungsten doped Al_2O_3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    International Nuclear Information System (INIS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-01-01

    Highlights: • Tungsten doped Al_2O_3/ZnO coatings are formed by plasma electrolytic oxidation (PEO). • Coatings are mainly composed of alpha alumina, ZnO and metallic tungsten. • Photocatalytic activity of doped Al_2O_3/ZnO coatings is higher than of undoped ones. • The increase of photoluminescence corresponds to decrease of photocatalytic activity. • Tungsten acts as a charge trap to reduce the recombination rate of electron/hole pairs. - Abstract: Tungsten doped Al_2O_3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na_2WO_4·2H_2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al_2O_3, ZnO, metallic tungsten and WO_3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al_2O_3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al_2O_3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al_2O_3/ZnO coatings is higher thanof undoped Al_2O_3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na_2WO_4·2H_2O. Tungsten in Al_2O_3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  6. Effect of Al-B2O3-TiO2 Exothermic System on Performances of Fly Ash Glass/Ceramic Composite Coating

    Directory of Open Access Journals (Sweden)

    Yajun An

    2018-01-01

    Full Text Available Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B2O3 exothermic system, the morphology, phase, thermal shock resistance, and corrosion resistance of the coating were tested, and the influence of exothermic system on the structure and properties of the composite coating was studied. The experimental results show that the addition of exothermic system can promote the formation of NaB15, TiB2, Na2B4O7, Ca2Al2SiO7, and other new phases by thermo-chemical reaction; when compared to the composite coating without addition of exothermic system, combined with a good interface, higher compactness, and lower porosity. The highest micro hardness can be reached 725HV0.1. The number of thermal shock from 700 °C to room temperature can reach more than 50 times; acid, salt, oil immersion corrosion test, composite coating with exothermic system relative to the matrix increased by 27.40 times, 3.97 times, and 1.88 times, respectively. The overall performance is better than that of the composite coating without exothermic system.

  7. Comparative Study of the Corrosion Resistance of Air-Plasma-Sprayed Ca2SiO4 and Al2O3 Coatings in Salt Water

    Directory of Open Access Journals (Sweden)

    Yuan Xiao

    2018-03-01

    Full Text Available In this study, Ca2SiO4 coating was sprayed on stainless steel substrate and the corrosion resistance of the as-sprayed coating was studied in salt water. At the same time, Al2O3 coatings were produced by air-plasma-sprayed technology as comparison. Immersion test was carried out to evaluate the protection performance of coatings. Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS plots were also analyzed. The results indicated that Ca2SiO4 coatings showed a better protection performance than Al2O3 coatings. During the immersion, various calcium carbonate crystals appeared on the surface of Ca2SiO4 coatings. Ca(OH2 was released from Ca2SiO4 coatings into NaCl aqueous solution, increasing the alkalinity, which is in favor of the formation of passivation film, and thus improves the corrosion resistance. Ca2SiO4 coatings became denser after immersion due to the fact that the pores and micro cracks were filled with hydration products i.e., hydrated calcium silicate (C–S–H gel. On the contrary, the microstructure of Al2O3 coatings became loose and obvious rusty spots were observed on the surface after the immersion test.

  8. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    Science.gov (United States)

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  9. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  10. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    Science.gov (United States)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  11. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  12. Laboratory Investigations of Ni-Al Coatings Exposed to Conditions Simulating Biomass Firing

    DEFF Research Database (Denmark)

    Wu, Duoli; Okoro, Sunday Chukwudi; Dahl, Kristian Vinter

    2016-01-01

    Fireside corrosion is a key problem when using biomass fuels in power plants. A possible solution is to apply corrosion resistant coatings. The present paper studies the corrosion and interdiffusion behaviour of a Ni-Al diffusion coating on austenitic stainless steel (TP347H). Ni-Al coatings were...... prepared by electrolytic deposition of nickel followed by pack aluminizing performed at 650˚C. A uniform and dense Ni-Al coating with an outer layer of Ni2Al3 and an inner Ni layer was formed. Samples were exposed to 560°C for 168h in an atmosphere simulating biomass combustion. This resulted in localized...... corrosion attack. Interdiffusion was studied by isothermal heat treatment in static air at 650˚C or 700˚C for up to 3000h. The Ni2Al3 gradually transformed into NiAl and Ni3Al during the interdiffusion process. Porosity developed at the interface between the Ni-Al coating and the Ni layer and expanded...

  13. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid and its corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Xu Bajin [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling Guoping, E-mail: linggp@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-06-15

    Amorphous Al-Mn coating was electrodeposited on NdFeB magnets from AlCl{sub 3}-EMIC-MnCl{sub 2} ionic liquid with the pretreatment of anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl{sub 3}-EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al-Mn alloy coating to the NdFeB substrate. The amorphous Al-Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: Black-Right-Pointing-Pointer Amorphous Al-Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. Black-Right-Pointing-Pointer To remove the surface oxides of NdFeB, anodic etching pretreatment is used. Black-Right-Pointing-Pointer The deposited Al-Mn alloy coating shows high adhesion to the NdFeB substrate. Black-Right-Pointing-Pointer Corrosion tests show that amorphous Al-Mn alloy coating is anodic coating for NdFeB magnet.

  14. Antireflective bilayer coatings based on Al2O3 film for UV region

    Directory of Open Access Journals (Sweden)

    Marszałek Konstanty

    2015-03-01

    Full Text Available Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS. Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring system Inficon XTC/2. The experimental results of the optical measurements carried out during and after the deposition process have been presented. Physical thickness measurements were made during the deposition process and resulted in 44 nm/52 nm for Al2O3/MgF2 and 44 nm/50 nm for Al2O3/SiO2 system. Optimization was carried out for ultraviolet region with minimum of reflectance at 300 nm. The influence of post deposition annealing on the crystal structure was determined by X-ray measurements. In the range from ultraviolet to the beginning of visible region, the reflectance of both systems decreased and reached minimum at 290 nm. The value of reflectance at this point, for the coating Al2O3/MgF2 was equal to R290nm = 0.6 % and for Al2O3/SiO2R290nm = 1.1 %. Despite the difference between these values both are sufficient for applications in the UV optical systems for medicine and UV laser technology.

  15. Growth of permanganate conversion coating on 2024-Al alloy

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Akhtar, A.S.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2007-01-01

    The growth of permanganate conversion coating on aluminum 2024-T3 alloy has been studied by characterizing, with scanning Auger microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy, the coatings formed by immersion of the alloy in the coating bath (containing KMnO 4 and Na 2 B 4 O 7 , pH 9.1) for different periods of time and at different temperatures. At room temperature, during the first 1-5 min of immersion, MnO 2 deposits are formed only on the second-phase intermetallic particles (of Al-Cu-Mg and Al-Cu-Fe-Mn types), but the coating starts to develop on the Al matrix surface after 5-10 min. The coating slows down and stops after about 150 min, with a thinner deposit over the alloy matrix. The process is accelerated at higher temperatures, for example at 68 deg. C it self-limits after about 3 min. The electrochemical growth process appears to follow that established for the chromate conversion coatings, although XPS does not detect significant MnO 4 - incorporation into the permanganate coatings

  16. Electrochemical impedance spectroscopy and corrosion behaviour of Al{sub 2}O{sub 3}-Ni nano composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ciubotariu, Alina-Crina [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania)], E-mail: Alina.Ciubotariu@ugal.ro; Benea, Lidia [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania); Lakatos-Varsanyi, Magda [Bay Zoltan Foundation, Institute for Materials Science and Technology, Budapest H-1116 (Hungary); Dragan, Viorel [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania)

    2008-05-20

    In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al{sub 2}O{sub 3}-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 {mu}m on steel support and an average of nano Al{sub 2}O{sub 3} particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al{sub 2}O{sub 3} particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 {mu}m/year) and a little bit bigger in 0.5 M sodium chloride (5.03 {mu}m/year)

  17. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  18. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  19. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  20. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding

    Science.gov (United States)

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.

    2018-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.

  1. Antireflective bilayer coatings based on Al2O3 film for UV region

    OpenAIRE

    Marszałek Konstanty; Winkowski Paweł; Marszałek Marta

    2015-01-01

    Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS). Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring syste...

  2. A study of the nanostructure and hardness of electron beam evaporated TiAlBN Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.A., E-mail: m.baker@surrey.ac.u [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Monclus, M.A. [National Physical Laboratory, Hampton Road, Teddington, TW11 0LW (United Kingdom); Rebholz, C. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Gibson, P.N. [Institute for Health and Consumer Protection, Joint Research Centre, I-21027 Ispra (Italy); Leyland, A.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-05-31

    TiAlBN coatings have been deposited by electron beam (EB) evaporation from a single TiAlBN material source onto AISI 316 stainless steel substrates at a temperature of 450 {sup o}C and substrate bias of - 100 V. The stoichiometry and nanostructure have been studied by X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. The hardness and elastic modulus were determined by nanoindentation. Five coatings have been deposited, three from hot-pressed TiAlBN material and two from hot isostatically pressed (HIPped) material. The coatings deposited from the hot-pressed material exhibited a nanocomposite nc-(Ti,Al)N/a-BN/a-(Ti,Al)B{sub 2} structure, the relative phase fraction being consistent with that predicted by the equilibrium Ti-B-N phase diagram. Nanoindentation hardness values were in the range of 22 to 32 GPa. Using the HIPped material, coating (Ti,Al)B{sub 0.29}N{sub 0.46} was found to have a phase composition of 72-79 mol.% nc-(Ti,Al)(N,B){sub 1-x}+ 21-28 mol.% amorphous titanium boride and a hardness of 32 GPa. The second coating, (Ti,Al)B{sub 0.66}N{sub 0.25}, was X-ray amorphous with a nitride+boride multiphase composition and a hardness of 26 GPa. The nanostructure and structure-property relationships of all coatings are discussed in detail. Comparisons are made between the single-EB coatings deposited in this work and previously deposited twin-EB coatings. Twin-EB deposition gives rise to lower adatom mobilities, leading to (111) (Ti,Al)N preferential orientation, smaller grain sizes, less dense coatings and lower hardnesses.

  3. Photocatalytic sterilization of TiO2 films coated on Al fiber

    International Nuclear Information System (INIS)

    Luo Li; Miao Lei; Tanemura, Sakae; Tanemura, Masaki

    2008-01-01

    Photocatalytic TiO 2 films were coated on Al fiber by sol-gel dip-coating method, and then annealed. The crystal structure and morphology of the films were performed by XRD, TEM and SEM. Photocatalytic sterilization of the films was investigated in O 2 atmosphere through purifying the aqueous solution with facultative aerobe (Bacillus cereus), aerobe (Pseudomonas aeruginosa) and anaerobe (Staphylococcus aureus, Enterococcus faecalis and Escherichia coli). In the presence of O 2 , it benefits to generate O 2 · - and ·OH at the first stage of the photocatalytic reaction, while the excess O 2 restrains the anaerobe from reproducing and accelerates the reproducing for the aerobe at the second stage of reaction. As a result, it was found that the crystal of TiO 2 films is anatase phase and the films have excellent sterilization effect against facultative aerobe and anaerobe. Nevertheless, it only decreased the bioactivity against aerobe in a short time

  4. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  5. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    International Nuclear Information System (INIS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong

    2010-01-01

    The corrosion behaviors of the TiO 2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO 2 nanoparticles (50-100 nm). It was found that the TiO 2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  6. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Science.gov (United States)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  7. [Analysis of hydrogen isotopes by gas chromatography using a MnCl2 coated γ-Al2O3 capillary packed column].

    Science.gov (United States)

    Chen, Ping; Fu, Xiaolong; Hu, Peng; Xiao, Chengjian; Ren, Xingbi; Xia, Xiulong; Wang, Heyi

    2017-07-08

    The conventional packed column gas chromatographic analysis of hydrogen isotopes has low column efficiency, broad peak and long retention time. In this work, a γ -Al 2 O 3 with MnCl 2 coated capillary packed column was tested at cryogenic temperature. The systematic column efficiency analysis and the hydrogen isotopes analytical technique research had been carried out. The results showed that, the γ -Al 2 O 3 with MnCl 2 coating could greatly improve the surface degree of order, pore structure and adsorption properties. Also the o -H 2 peak and p -H 2 peak were eluted in a single area. The γ -Al 2 O 3 with MnCl 2 coating was packed into a 0.53 mm inner diameter and 1.0 m long fused silica capillary column. It had a good linear relationship used this column with thermal conductivity detector (TCD) to detect the volume concentrations of hydrogen isotopes from 1 to 10 mL/L, and the relative error was less than 5% for low concentration sample testing. For H 2 , HD and D 2 , the retention times can be shortened to 39, 46 and 60 s, respectively. The limits of detection were reduced to 0.046, 0.067 and 0.072 mL/L, respectively. Compared with conventional packed column, capillary packed column had sharper peak form, higher separation degree of adjacent components, shorter retention time and lower detection limits. The above results indicate that the capillary packed column with TCD detector can be used for fast detection of low concentration of hydrogen isotopes and their online analysis.

  8. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Kamran Ali

    2018-01-01

    Full Text Available This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement.

  9. Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method

    International Nuclear Information System (INIS)

    Xu, Guofeng; Li, Jianling; Xue, Qingrui; Dai, Yu; Zhou, Hongwei; Wang, Xindong; Kang, Feiyu

    2014-01-01

    A novel wet method of (NH 4 ) 3 AlF 6 coating was explored to enhance the electrochemical performance of Mn-based solid-solution cathode material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 . The X-ray powder diffraction patterns show that the coating material is pure-phase (NH 4 ) 3 AlF 6 and both pristine and coated samples can be indexed to hexagonal α-NaFeO 2 layered structure with space group of R-3 m. The field-emission scanning electron microscope images and the energy dispersive X-ray spectroscopy show that (NH 4 ) 3 AlF 6 is successfully coated on the surface of active particle. The (NH 4 ) 3 AlF 6 coated electrodes exhibit improved electrochemical performance, for instance, the initial charge-discharge efficiency was promoted by 5% (NH 4 ) 3 AlF 6 coating, the 1 wt.% and 3 wt.% coated electrodes deliver elevated cycling ability which is ascribed to the lower resistance between electrode and electrolyte as indicated by AC impedance measurement at different cycles. In addition, the coated-electrodes also give enhanced rate capability particularly for 1 wt.% NAF-coated electrode performing surprising capacity of 143.4 mAh g −1 at 5 C higher than that of 109.4 mAh g −1 for pristine electrode. Furthermore, the 1 wt.% NAF-coated electrode also shows improved cycle and rate performance at 55°C

  10. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  11. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method

    International Nuclear Information System (INIS)

    Sun, Peng; Ma, Ying; Zhai, Tianyou; Li, Huiqiao

    2016-01-01

    Highlights: • Metal Al was used as an electrical conductive coating material for LiNi 0.5 Mn 1.5 O 4 . • The uniform surface coating layer of metal Al was successfully achieved with adjusted thickness through a physical vapor deposition technology. • Al 3+ -doped LiNi 0.5 Mn 1.5 O 4 can be easily obtained by further directly annealing of Al-coated LiNi 0.5 Mn 1.5 O 4 in air. • The conductive Al-coating layer can greatly improve the rate performance and cycle stability of LiNi 0.5 Mn 1.5 O 4 . - Abstract: In this work, spinel LiNi 0.5 Mn 1.5 O 4 (LNMO) hollow microspheres are synthesized by an impregnation method using microsphere MnO 2 as both the precursor and template. To enhance the electrical conductivity of LNMO, metal Al was employed for the first time as a coating material for LNMO. Though an Electron-beam Vapor Deposition approach, the surface of LNMO can be easily coated by a tight layer of Al nanoparticles with adjusted thickness. Further annealing the Al-coated sample at 800 °C in air, the Al 3+ -doped LNMO can be obtained. The effects of Al-coating and Al 3+ -doping on the sample morphology and structure are investigated by SEM, TEM, XRD and FT-IR. The electrochemical properties of Al-coated LNMO and Al 3+ -doped LNMO are measured with comparison of bare LNMO by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results show that both Al-coating and Al 3+ -doping can greatly enhance the cycle performance and rate capability of LNMO. Especially for Al-coated LNMO, it shows the lowest battery impedance due to the existence of conductive Al coating layer, thus delivers the best rate performance among the three. The physical coating procedure used in this work may provide a new facile modification approach for other cathode materials.

  12. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  13. The formation of tungsten doped Al{sub 2}O{sub 3}/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2016-07-30

    Highlights: • Tungsten doped Al{sub 2}O{sub 3}/ZnO coatings are formed by plasma electrolytic oxidation (PEO). • Coatings are mainly composed of alpha alumina, ZnO and metallic tungsten. • Photocatalytic activity of doped Al{sub 2}O{sub 3}/ZnO coatings is higher than of undoped ones. • The increase of photoluminescence corresponds to decrease of photocatalytic activity. • Tungsten acts as a charge trap to reduce the recombination rate of electron/hole pairs. - Abstract: Tungsten doped Al{sub 2}O{sub 3}/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na{sub 2}WO{sub 4}·2H{sub 2}O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al{sub 2}O{sub 3}, ZnO, metallic tungsten and WO{sub 3}. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al{sub 2}O{sub 3}/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al{sub 2}O{sub 3}/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al{sub 2}O{sub 3}/ZnO coatings is higher thanof undoped Al{sub 2}O{sub 3}/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na{sub 2}WO{sub 4}·2H{sub 2}O. Tungsten in Al{sub 2}O{sub 3}/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the

  14. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  15. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  16. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  17. Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region

    Science.gov (United States)

    Winkowski, P.; Marszałek, Konstanty W.

    2013-07-01

    Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.

  18. Pengaruh NiCrAlY, Ni/Cr2O3/CrxCy Sebagai Variasi Bond Coat Dengan Penambahan Lapisan Al2O3 dan YSZ Pada Inconel 625 Terhadap Struktur Mikro Lapisan Menggunakan Metode Flame Spraying

    Directory of Open Access Journals (Sweden)

    Aprian Immanuel

    2017-01-01

    Full Text Available Thermal Barrier Coating (TBC berfungsi untuk mengurangi temperatur substrat serta meningkatkan daya tahannya terhadap korosi dan oksidasi. Pada penelitian ini, digunakan flame spraying dari variasi bond coat (Ni-Cr-Al-Y, (Ni/CrO3/CrXCY dan tanpa bond coat serta melapisi kembali lapisan bond coat dengan Al2O3 dan ZrO2 – 8%Y2O3 sebagai Thermal Barrier Coating untuk diteliti pengaruhnya terhadap struktur mikro lapisan yang terbentuk. Hasil flame spray diamati dengan SEM pada variasi bond coat NiCrAlY ditemukan beberapa serbuk dari material top coat dengan beberapa kondisi yaitu meleleh (melted, meleleh sebagian (semi melted, dan tidak meleleh (unmelted. Ditemukan poros yang merata hampir di seluruh permukaan sampel dan munculnya pengintian retak. Perbedaan sebelum dan sesudah perlakuan ada pada persebaran setiap unsur di setiap spesimen, dan lapisan oksida yang terbentuk pada seluruh variasi bond coat

  19. Effect of AlP coating on electrochemical properties of LiMn{sub 2}O{sub 4} cathode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaoyu; Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn; Yin, Longwei

    2016-02-15

    Highlights: • Modified LiMn{sub 2}O{sub 4} surface with AlP successfully. • AlP coating surface modification enhances the cycling stability of LiMn{sub 2}O{sub 4} at both room temperature and 60 °C. • AlP coating surface modification improves the rate capability of LiMn{sub 2}O{sub 4}. - Abstract: AlP-modified LiMn{sub 2}O{sub 4} has been synthesized via a simple chemical deposition method followed by high-temperature heating. The X-ray diffraction patterns, SEM images and Energy Dispersive Spectrometer show the successful surface coating of LiMn{sub 2}O{sub 4} by F-43 m crystal form AlP. AlP-modified LiMn{sub 2}O{sub 4} has a high discharge capacity of 125.7 mAh g{sup −1} with retention of 87% at a current density of 1C between 3.3 V and 4.3 V after 100 cycles at 60 °C, while bare LiMn{sub 2}O{sub 4} has more than 28% capacity loss. At 10 rates, the coated sample delivers capacity of 100 mAh g{sup −1}, which is much higher than bare LiMn{sub 2}O{sub 4}. Based on the EIS (electrochemical impedance spectroscopy) result, AlP coating can effectively inhibit the increase of the charge transfer resistance during charging and discharging cycles.

  20. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al - Mg Dissimilar Metal Welding

    OpenAIRE

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip

    2017-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations that predicted silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases (-Al3Mg2 and -Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially pr...

  1. Surface Microstructure of Nanoaluminized CoCrAlY Coating Irradiated by HCPEB

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2016-01-01

    Full Text Available A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3 phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.

  2. (SiC/AlN)2 multilayer film as an effective protective coating for sintered NdFeB by magnetron sputtering

    Science.gov (United States)

    You, Yu; Li, Heqin; Huang, Yiqin; Tang, Qiong; Zhang, Jing; Xu, Jun

    2017-08-01

    SiC/AlN and (SiC/AlN)2 multilayer films with a well-arranged bilayer structure and a four-layer structure are prepared respectively on NdFeB substrates by a magnetron sputtering method. Crystal phase and microstructures of the SiC/AlN and (SiC/AlN)2 films are investigated using x-ray diffraction (XRD), field-emission scanning electron microscope (FESEM) and atomic force microscope (AFM). It is observed that the surface of the (SiC/AlN)2 four-layer film is much denser and smoother than that of the SiC/AlN bilayer film. Corrosion behaviors of the NdFeB substrates coated with SiC/AlN and (SiC/AlN)2 films as well as the bare NdFeB substrate are evaluated by potentiodynamic polarization curve tests. It is revealed that the lateral growth structures developed in interfaces are favorable for an enhanced corrosion resistance. Corrosion current densities of the (SiC/AlN)2 coated NdFeB measured in acid, alkali and salt solutions are 2.796  ×  10-9, 3.65  ×  10-6, and 2.912  ×  10-6 A cm-2, respectively, which are much lower than those of the bare NdFeB and the SiC/AlN coated NdFeB.

  3. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  4. X-ray diffraction characterization of electrodeposited Ni–Al composite coatings prepared at different current densities

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Wu, Xueyan

    2014-01-01

    Highlights: • Different X-ray diffraction techniques were applied to characterize the Ni–Al composite coatings. • Al 2 O 3 formed on the coating surface after potentiostatic polarization experiments. • The relationship between corrosion and the Al content and the texture were also investigated. - Abstract: Ni–Al composite coatings were prepared at different applied current densities (1–8 A/dm 2 ) from a conventional Watt bath. The influences of current densities on the texture, grain size, microstrain, residual stress of the Ni–Al composite coating were investigated with X-ray diffraction method, which includes texture coefficients (TC) and pole figures, Voigt method, classical sin 2 ψ X-ray diffraction method and the Multi-reflection grazing incidence geometry (referred to as MGIXD) method. The morphology, composition, anti-corrosion properties and friction coefficients at 200 °C of the coating were also studied. The results showed that the texture of coating deposited at higher current densities evolved from the (2 0 0) preferred orientation with fiber texture to random orientation with reducing current density. Al particle content increased with reducing current density, grain size decreased with the reducing current density, while the microstrain and the tensile residual stresses increased. The MGIXD result showed stress gradient on the near-surface of the coating. Potentiodynamic polarization results demonstrated that the Ni–Al coating deposited at 2 A/dm 2 exhibited the best anti-corrosion which was contributed by the formation of Al 2 O 3 on the surface. The minimum friction coefficient of 0.57 was also observed for coating deposited at 4 A/dm 2

  5. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  6. Multilayer CVD Diamond Coatings in the Machining of an Al6061-15 Vol % Al2O3 Composite

    Directory of Open Access Journals (Sweden)

    Mohammadmehdi Shabani

    2017-10-01

    Full Text Available Ceramic cutting inserts coated with ten-fold alternating micro- and nanocrystalline diamond (MCD/NCD layers grown by hot filament chemical vapor deposition (CVD were tested in the machining of an Al based metallic matrix composite (MMC containing 15 vol % Al2O3 particles. Inserts with total coating thicknesses of approximately 12 µm and 24 µm were produced and used in turning: cutting speed (v of 250 to 1000 m·min−1; depth of cut (DOC from 0.5 to 3 mm and feed (f between 0.1 and 0.4 mm·rev−1. The main cutting force increases linearly with DOC (ca. 294 N per mm and with feed (ca. 640 N per mm·rev−1. The thicker coatings work within the following limits: DOC up to 1.5 mm and maximum speeds of 750 m·min−1 for feeds up to 0.4 mm·rev−1. Flank wear is predominant but crater wear is also observed due to the negative tool normal rake. Layer-by-layer wear of the tool rake, and not total delamination from the substrate, evidenced one of the advantages of using a multilayer design. The MCD/NCD multilayer diamond coated indexable inserts have longer tool life than most CVD diamond systems and behave as well as most polycrystalline diamond (PCD tools.

  7. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  8. AlOx Coating of Ultrastable Zeolite Y: A Possible Method for Vanadium Passivation of FCC Catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Catana, Gabriela; Grünert, W.; Voort, P. van der; Vansant, E.F.; Schoonheydt, R.A.

    2000-01-01

    AlOx coating is proposed as a possible method for vanadium passivation of the ultrastable zeolite Y (USY). Two coating methods are discussed: (i) the deposition of the [Al13O4(OH)24(H2O)12]7+ ([Al13]) complex from aqueous solutions and (ii) the anchoring of alumoxane by in situ triisobutylaluminum

  9. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  10. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  11. Characterising μ-AlTiN coating and assessing its performance during Ti-6Al-4V milling

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Moreno Téllez

    2013-05-01

    Full Text Available This study investigated the mechanical properties and performance of μ-AlTiN coating deposited by PVD cathodic arc technique for a specific Al0, 67Ti0, 33N composition deposited on a WC-Co and AISI D2 steel substrate. The structure of the coating was analysed using SEM, EDAX, XRD, AFM and TEM. Nano indentation measurements were used for analysing mechanical properties; the coating’s performance was evaluated during the milling of a titanium alloy (Ti6Al4V. The TiN film was initially deposited to improve adhesion between coating and substrate, where columnar grains ranging in size from 200 to 500 nm were observed having NaCl-type struc-ture. μ-AlTiN grain growth was also columnar but had ~50 nm grain size. The μ-AlTiN coated tool life was compared to an uncoated tool to determine the coating’s influence during Ti6Al4V milling. The μ-AlTiN coating improved tool life by 100% compared to that of an uncoated tool due to aluminium oxide and TiC formation on the surface and a decrease in friction coefficient between the chip and the tool.

  12. Elevated Temperature Corrosion Studies of AlCrN and TiAlN Coatings by PAPVD on T91 Boiler Steel

    Science.gov (United States)

    Goyal, Lucky; Chawla, Vikas; Hundal, Jasbir Singh

    2017-11-01

    The present investigation discusses the hot corrosion behavior of AlCrN and TiAlN nano-coatings on T91 boiler steel by PAPVD process subjected to molten salt of Na2SO4-60%V2O5 at 900 °C for 50 cycles. Surface and cross-sectional studies were performed by AFM, SEM/EDS and XRD techniques to understand the corrosion kinetics and mechanism. T91 bare boiler steel as well as TiAlN-coated specimen has shown higher internal oxidation as well as weight gain. The better corrosion resistance of AlCrN-coated specimen has been observed by virtue of higher availability of Cr and Al in the oxide scale as well as adherent and dense coating. The betterment of AlCrN coating can be attributed to low internal oxidation as well as movement of Cr and Al toward oxide scale to form protective corrosion barriers.

  13. Tuning roughness and gloss of powder coating paint by encapsulating the coating particles with thin Al

    NARCIS (Netherlands)

    Valdesueiro, David; Hettinga, Hans; Drijfhout, Jan Pieter; Lips, Priscilla; Meesters, G.M.H.; Kreutzer, M.T.; van Ommen, J.R.

    2017-01-01

    In this work, we report a method to change the surface finish of a standard polyester-based powder coating paint, from gloss to matt, by depositing ultrathin films of Al2O3 on the powder coating particles. The coating experiments were performed in a fluidized bed reactor at

  14. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); ICMMO/LEMHE, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  15. Biocorrosion studies of TiO{sub 2} nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong, E-mail: Anhong.Zhou@usu.ed [Utah State University, Biological Engineering Program (United States)

    2010-06-15

    The corrosion behaviors of the TiO{sub 2} nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO{sub 2} nanoparticles (50-100 nm). It was found that the TiO{sub 2} nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  16. MCrAlY bond coat with enhanced yttrium

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  17. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  18. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2

    International Nuclear Information System (INIS)

    Xiang, Zhan-Feng; Liu, Xiu-Bo; Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua

    2014-01-01

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF 2 were “in situ” synthesized in the coating. • The coating with the addition of CaF 2 possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF 2 coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF 2 coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF 2 particles. The wear rates of γ-NiCrAlTi/TiC/CaF 2 coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF 2 coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF 2 coating exhibited excellent friction-reducing and anti-wear properties at high temperature

  19. Enhancing photocatalytic CO{sub 2} reduction by coating an ultrathin Al{sub 2}O{sub 3} layer on oxygen deficient TiO{sub 2} nanorods through atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huilei; Chen, Jiatang; Rao, Guiying; Deng, Wei; Li, Ying, E-mail: yingli@tamu.edu

    2017-05-15

    Highlights: • Oxygen deficient TiO{sub 2} anatase nanorods are coated with an ultrathin Al{sub 2}O{sub 3} layer by ALD. • Exposed {100} facets and oxygen vacancies promote CO{sub 2} photoreduction to CO and CH{sub 4}. • Al{sub 2}O{sub 3} overlayer passivates surface states and mitigates surface charge recombination. • Two cycles of ALD coating lead to maximum photocatalytic CO{sub 2} reduction. • More than five cycles of ALD coating prohibits electron transfer to the surface. - Abstract: In this work, anatase nanorods (ANR) of TiO{sub 2} with active facet {100} as the major facet were successfully synthesized, and reducing the ANR by NaBH{sub 4} led to the formation of gray colored oxygen deficient TiO{sub 2-x} (ReANR). On the surface of ReANR, a thin layer of Al{sub 2}O{sub 3} was deposited using atomic layer deposition (ALD), and the thickness of Al{sub 2}O{sub 3} varied by the number of ALD cycles (1, 2, 5, 10, 50, 100, or 200). The growth rate of Al{sub 2}O{sub 3} was determined to be 0.25 Å per cycle based on high-resolution TEM analysis, and the XRD result showed the amorphous structure of Al{sub 2}O{sub 3}. All the synthesized photocatalysts (ANR, ReANR, and Al{sub 2}O{sub 3} coated ReANR) were tested for CO{sub 2} photocatalytic reduction in the presence of water vapor, with CO detected as the major reduction product and CH{sub 4} as the minor product. Compared with ANR, ReANR had more than 50% higher CO production and more than ten times higher CH{sub 4} production due to the oxygen vacancies that possibly enhanced CO{sub 2} adsorption and activation. By applying less than 5 cycles of ALD, the Al{sub 2}O{sub 3} coated ReANR had enhanced overall production of CO and CH{sub 4} than uncoated ReANR, with 2 cycles being the optimum, about 40% higher overall production than ReANR. Whereas, both CO and CH{sub 4} production decreased with increasing number of ALD cycles when more than 5 cycles were applied. Photoluminescence (PL) analysis showed an

  20. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  1. Fabrication and Characteristics of Sintered Cutting Stainless Steel Fiber Felt with Internal Channels and an Al2O3 Coating

    Directory of Open Access Journals (Sweden)

    Shufeng Huang

    2018-03-01

    Full Text Available A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3. The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.

  2. Effects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors

    Directory of Open Access Journals (Sweden)

    Lin Shu

    2016-09-01

    Full Text Available High temperature characteristics of langasite surface acoustic wave (SAW devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K2 of the SAW devices increases with increasing AlN film thickness. The K2 of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K2 of the SAW devices.

  3. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  4. Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Yao Zhongping; Liu Yunfu; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2011-01-01

    Research highlights: → Al 2 TiO 5 in the coating on Ti alloy by PEO treatment changes with the increase of the cathode pulse, regardless of the amount and the grain size. → The cathode pulse brings about the decrease of γ-Al 2 O 3 and the increase of rutile TiO 2 in the coating. → The appropriate cathode pulse during PEO process is beneficial to reduce residual discharging channels and improve the density of the coating. - Abstract: The aim of this work is to investigate the effects of cathode pulse under high working frequency on structure and composition of ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The coating was mainly composed of a large amount of Al 2 TiO 5 . As the cathode pulse was increased, the amount and grain size of Al 2 TiO 5 were first increased, and then decreased. γ-Al 2 O 3 in the coating was gradually decreased to nothing with the increase in the cathode pulse whereas rutile TiO 2 began to form in the coating. As opposed to the single-polar anode pulse mode, the cathode pulse reduced the thickness of the coatings. However, as the cathode pulse intensity continued to increase, the coating then became thicker regardless of cathode current density or pulse width. In addition, the residual discharging channels were reduced and the density of the coating was increased with the appropriate increase of the cathode pulse.

  5. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding

    International Nuclear Information System (INIS)

    Guo Baogang; Zhou Jiansong; Zhang Shitang; Zhou Huidi; Pu Yuping; Chen Jianmin

    2007-01-01

    Ti-Al coatings with ∼14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2θ values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of α-Ti and α 2 -Ti 3 Al phases, while those with 25.2 and 29.7 at.% Al were composed of α 2 -Ti 3 Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was ≤18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content ≥25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load

  6. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2007-10-15

    Ti-Al coatings with {approx}14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2{theta} values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of {alpha}-Ti and {alpha}{sub 2}-Ti{sub 3}Al phases, while those with 25.2 and 29.7 at.% Al were composed of {alpha}{sub 2}-Ti{sub 3}Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was {<=}18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content {>=}25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.

  7. The Effect of Dispersion Phases of SiC and Al2O3 on the Properties of Galvanic Nickel Coatings

    Directory of Open Access Journals (Sweden)

    Kozik A.

    2016-03-01

    Full Text Available In this study, Ni, Ni-SiC and Ni-Al2O3 coatings were electroplated on the 2xxx series aluminium alloy. The following parameters of the electroplating process were applied: current density - 4A/dm2, time - 60 minutes, and temperature - 60°C. Hard particles of submicrometric size were used. The results of the research showing the effect of the addition of hard particles (introduced into the nickel bath as a dispersed phase on the properties of coatings, including the effect of the type (SiC or Al2O3 and content (0, 25, 50 g / l of these particles, were discussed. Based on extensive investigations, it was found that the type of ceramic particles significantly affects the structure of produced coatings. The dispersed particles incorporated into the nickel coatings improve their abrasion resistance. Improving of the corrosion properties were observed only in the case of coatings containing silicon carbide particles.

  8. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-01-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  9. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  10. Structure and properties of combined coatings on C (graphite)/Al/Al2O3 base after Ti ion implantation with subsequent electron beam irradiation

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Pogrebnjak, N.A.; Gritsenko, B.P.; Kylyshkanov, M.K.; Ruzimov, Sh.M.

    2004-01-01

    Full text: The presented report deals with new results on deposition of combined coatings using Al metallization (by a plasma jet) and micro-arc (discharge) Al oxidation. After this, the coating was implanted by Ti ions with 5·10 I7 cm -2 dose (60 and 90 kV and about 200 μs duration). One series of samples with such coatings was irradiated using the accelerator Y-112 by an electron beam in melting regime (two regimes). Analysis of the structure and element composition was performed using SIMS, RBS, SEM with micro-analysis (WDS), XRD as well as measurements of microhardness, wear and adhesion. It had been demonstrated that the coating was able to sustain very high temperatures and oxidation medium. However, after electron beam irradiation temperature resistance decreased because the oxide coating was melted almost to the graphite surface. The work was funded by the Project of NANU 'Nanosystems, nanomaterials and nanotechnology'

  11. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating

    DEFF Research Database (Denmark)

    Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    properties and wear resistance of composite coatings were studied. The shear punch testing method was employed to evaluate the room temperature mechanical properties. It was shown that increasing the pulse frequency and decreasing the pulse duty cycle improved the mechanical properties of monolithic coatings......A sulfate-based electrolyte was used for synthesis of multilayer (ML) and monolithic Ni-Fe-Al2O3 coatings. The ML electrodeposits were achieved by consecutive alteration of duty cycle of pulsed current between two values of 20% and 90%. The influences of the ML microstructure on mechanical....... The electrodeposited ML coatings exhibited a pronounced improvement in microhardness, shear strength and wear resistance in comparison to the monolithic coatings. Pin-on-disk sliding wear tests revealed that the main mechanisms of wear are plastic deformation, fatigue crack of deformed layers and delamination....

  12. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    Directory of Open Access Journals (Sweden)

    José Vitor Candido Souza

    2011-12-01

    Full Text Available Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m½ and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.

  13. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  14. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    International Nuclear Information System (INIS)

    Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G.; Yan, P.X.

    2009-01-01

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N 2 and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N 2 /Ar flux ratio. The coatings deposited with N 2 /Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N 2 /Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N 2 /Ar ratios increase. XPS spectrum indicates that the oxides (TiO 2 and Al 2 O 3 ), oxynitride (TiN x O y ) and nitrides (TiN and AlN x ) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling

  15. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  16. Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection

    Science.gov (United States)

    Bläckberg, L.; Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Sjöstrand, H.; Klintenberg, M.

    2013-06-01

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al2O3 using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al2O3 coatings are believed to be a viable solution to the memory effect problem in question.

  17. Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection

    International Nuclear Information System (INIS)

    Bläckberg, L.; Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Sjöstrand, H.; Klintenberg, M.

    2013-01-01

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al 2 O 3 using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al 2 O 3 coatings are believed to be a viable solution to the memory effect problem in question

  18. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  19. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  20. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    Science.gov (United States)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  1. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    Science.gov (United States)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  2. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  3. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  4. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.T. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, J. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); National Key Laboratory of Surface Engineering, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Yan, P.X. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute Chemical and Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: pxyan@lzu.edu.cn

    2009-03-20

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N{sub 2} and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N{sub 2}/Ar flux ratio. The coatings deposited with N{sub 2}/Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N{sub 2}/Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N{sub 2}/Ar ratios increase. XPS spectrum indicates that the oxides (TiO{sub 2} and Al{sub 2}O{sub 3}), oxynitride (TiN{sub x}O{sub y}) and nitrides (TiN and AlN{sub x}) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling.

  5. Morphological and chemical evaluation of bone with apatite-coated Al2O3 implants as scaffolds for bone repair

    Directory of Open Access Journals (Sweden)

    A. L. M. Maia F.

    2013-12-01

    Full Text Available The clinical challenge in the reconstruction of bone defects has stimulated several studies in search of alternatives to repair these defects. The ceramics are considered as synthetic scaffolds and are used in dentistry and orthopedics. This study aimed to evaluate by micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS, the influence of uncoated and apatite-coated Al2O3 implants on bone regeneration. Twelve samples of Al2O3 implants were prepared and half of this samples (n = 6 were apatite-coated by the modified biomimetic method and then the ceramic material were implanted in the tibia of rabbits. Three experimental groups were tested: Group C - control, surgery procedure without ceramic implant, Group Ce - uncoated Al2O3 implants (n = 6 and Group CeHA - apatite-coated Al2O3 implants (n = 6. The deposition of bone tissue was determined by measuring the weight content of Ca and P through surface mapping of bone-implant interface by µ-EDXRF and through point analysis by EDS. It was observed after thirty days of treatment a greater deposition of Ca and P in the group treated with CeHA (p <0.001 compared to group C. The results suggest that ceramic coated with hydroxyapatite (CeHA can be an auxiliary to bone deposition in tibia defect model in rabbits.

  6. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  7. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    Science.gov (United States)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  8. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  9. Corrosion Behavior of Detonation Gun Sprayed Fe-Al Type Intermetallic Coating

    Science.gov (United States)

    Senderowski, Cezary; Chodala, Michal; Bojar, Zbigniew

    2015-01-01

    The detonation gun sprayed Fe-Al type coatings as an alternative for austenitic valve steel, were investigated using two different methods of testing corrosion resistance. High temperature, 10-hour isothermal oxidation experiments at 550, 750, 950 and 1100 °C show differences in the oxidation behavior of Fe-Al type coatings under air atmosphere. The oxide layer ensures satisfying oxidation resistance, even at 950 and 1100 °C. Hematite, α-Al2O3 and metastable alumina phases were noticed on the coatings top surface, which preserves its initial thickness providing protection to the underlying substrate. In general, only negligible changes of the phase composition of the coatings were noticed with simultaneous strengthening controlled in the micro-hardness measurements, even after 10-hours of heating at 1100 °C. On the other hand, the electrochemical corrosion tests, which were carried out in 200 ppm Cl− (NaCl) and pH ~4 (H2SO4) solution to simulate the acid-rain environment, reveal higher values of the breakdown potential for D-gun sprayed Fe-Al type coatings than the ones for the bulk Fe-Al type alloy and Cr21Mn9Ni4 austenitic valve steel. This enables these materials to be used in structural and multifunctional applications in aggressive environments, including acidic ones. PMID:28787991

  10. Interdiffusion behavior of Al-rich oxidation resistant coatings on ferritic-martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Velraj, S.; Zhang, Y.; Hawkins, E.W. [Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505-0001 (United States); Pint, B.A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6156 (United States)

    2012-10-15

    Interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic-martensitic alloys was investigated in the temperature range of 650-700 C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H{sub 2}O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. The model was also applied to predict coating lifetime at 650-700 C based on a minimum Al content (C{sub b}) required at the coating surface to re-form protective oxide scale. In addition to a C{sub b} value established from the failure of a thin CVD coating at 700 C, values reported for slurry aluminide coatings were also included in lifetime predictions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Microstructure and thermal stability of Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coatings

    Science.gov (United States)

    Meng, Jian-ping; Guo, Rui-rui; Li, Hu; Zhao, Lu-ming; Liu, Xiao-peng; Li, Zhou

    2018-05-01

    Solar selective absorbing coatings play a valuable role in photo-thermal conversion for high efficiency concentrating solar power systems (CSP). In this paper, a novel Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coating was successfully deposited by ion beam assisted deposition. The optical properties, microstructure and element distribution in depth were investigated by spectroscopic ellipsometry, UV-vis-NIR spectrophotometer, transmission electron microscope (TEM) and Auger electron spectroscopy (AES), respectively. A high absorptance of 0.953 and a low thermal emittance of 0.079 at 400 °C are obtained by the integral computation according to the whole reflectance from 300 nm to 28,800 nm. After annealing treatment at 400 °C (in vacuum) for 192 h, the deposited coating exhibits the high thermal stability. Whereas, the photothermal conversion efficiency decreases from 12.10 to 6.86 due to the emittance increase after annealing at 600 °C for 192 h. Meanwhile, the nitrogen atom in the Zr0.3Al0.7N sub-layer diffuses toward the adjacent sub-layer due to the spinodal decomposition of metastable c-ZrAlN and the phase transition from c-AlN to h-AlN, which leads to the composition of the Zr0.3Al0.7N sub-layer deviates the initial design. This phenomenon has a guide effect for the thermal-stability improvement of cermet coatings. Additionally, a serious diffusion between copper and silicon substrate also contributes to the emittance increase.

  12. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  13. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  14. Failure characteristics and mechanisms of EB-PVD TBCs with Pt-modified NiAl bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Le; Mukherjee, Sriparna; Huang, Ke; Park, Young Whan; Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu

    2015-06-18

    Microstructural evolution and failure characteristics/mechanisms were investigated for thermal barrier coatings that consist of electron beam physical vapor deposited ZrO{sub 2}−8 wt% Y{sub 2}O{sub 3} (YSZ) topcoat, Pt-modified nickel aluminide, (Ni,Pt)Al bond coat, and CMSX-4 superalloy substrate with furnace cycling at 1100 °C with 1-h dwell. Photo stimulated luminescence spectroscopy, scanning electron microscopy equipped with X-ray energy dispersive spectroscopy and transmission electron microscopy were employed to examine the residual stress of the thermally grown oxide (TGO) and microstructural changes. For comparison, (Ni,Pt)Al bond coat on CMSX-4 without the YSZ topcoat was also characterized. The TGO grew faster for the YSZ-coated (Ni,Pt)Al bond coat than the (Ni,Pt)Al coating without the YSZ topcoat. Correspondingly, the β-to-γ′/martensite formation in the (Ni,Pt)Al bond coat occurred faster on the YSZ-coated (Ni,Pt)Al bond coat. However the rumpling occurred much faster and with larger amplitude on the (Ni,Pt)Al coating without the YSZ topcoat. Still, the rumpling at the TGO/bond coat interface caused crack initiation as early as 10 thermal cycles, decohesion at the YSZ/TGO interface, and eventual spallation failure primarily through the TGO/bond coat interface. The magnitude of compressive residual stress in the TGO showed an initial increase up to 3−4 GPa followed by a gradual decrease. The rate of stress relaxation was much quicker for the TGO scale without the YSZ topcoat with distinctive relief corresponding to the cracking at the top of geometrical ridges associated with the (Ni,Pt)Al bond coat. The maximum elastic energy for the TGO scale was estimated at 90 J/m{sup 2} at 50% of its lifetime (N{sub f}=545 cycles). The YSZ presence/adhesion to the TGO scale is emphasized to minimize the undulation of the TGO/bond coat interface, i.e., decohesion at the YSZ/TGO scale accelerates the rumpling and crack-coalescence at the TGO/bond coat

  15. Investigation of microstructural and physical characteristics of nano composite tin oxide-doped Al3+ in Zn2+ based composite coating by DAECD technique

    Science.gov (United States)

    Anawe, P. A. L.; Fayomi, O. S. I.; Popoola, A. P. I.

    In other to overcome the devastating deterioration of mild steel in service, Zn-based embedded Al/SnO2 composite coatings have been considered as reinforcing alternative replacements to the more traditional deposition for improved surface properties by using Dual Anode Electrolytic Co-deposition (DAECD) technique from chloride bath. The structural characterization of the starting materials and deposited coating are evaluated using scanning electron microscopy (SEM), equipped with energy dispersive X-ray spectroscopy (EDX) elemental analysis and atomic force microscope (AFM). The hardness behaviour, wear and intermetallic distribution was examined by diamond based microhardness tester, CETR reciprocating sliding test rig and X-ray diffractometer (XRD) respectively. The corrosion properties of the developed coating were examined in 3.5% NaCl. The microstructure of the deposited sample obtained at 7% SnO2, revealed fine-grains deposit of the Al/SnO2 on the mild steel surface. The results showed that the Al/SnO2 strengthening alloy plays a significant role in impelling the wear and corrosion behaviour of Zn-Al/SnO2 coatings in an aggressive saline environment. Interestingly Zn-30Al-7Sn-chloride showed the highest wear and improved corrosion resistance due to Al/SnO2 oxide passive film that forms during anodic polarization. This work established that co-deposition of mild steel with Al/SnO2 is auspicious in increasing the anti-wear and corrosion progression.

  16. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings

    International Nuclear Information System (INIS)

    Pang Xiaolu; Yang Huisheng; Gao Kewei; Wang Yanbin; Volinsky, Alex A.

    2011-01-01

    Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50-80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.

  17. The corrosion and mechanical behaviour of Al, FeCrAlY, and CoCrAlY coatings in aggressive environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Geerdink, Bert; Fransen, T.; Gellings, P.J.

    1991-01-01

    The mechanical and chemical behaviours of aluminide coatings applied by pack cementation, FeCrAlY coatings applied by plasma spraying and CoCrAlY coatings applied by electrodeposition were studied. The coatings were pretreated for 0.5 h in argon at 1373 K to improve the adhesion and structural

  18. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  19. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the

  20. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  1. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    AL-Bukhaiti, M.A., E-mail: m.albukhaiti@gmail.com [Mechanical Engineering Department, Faculty of Engineering, Sana’a University, Sana’a 12544 (Yemen); Al-hatab, K.A. [Mechanical Engineering Department, Faculty of Engineering, Sana’a University, Sana’a 12544 (Yemen); Tillmann, W.; Hoffmann, F.; Sprute, T. [Institute of Materials Engineering, Technische Universitat Dortmund, Leonhard-Euler-Str.2, 44227 Dortmund (Germany)

    2014-11-01

    Highlights: • New Ti/TiAlN/TiAlCN multilayer coating was developed. • It showed low wear rates (10{sup −16} m{sup 3}/N m), low friction coefficients (μ ∼ 0.25), and good hardness (17–20 GPa). • Friction coefficients and wear rates decrease and increase, respectively, with the increase in normal load and sliding velocity. • The coating/Al{sub 2}O{sub 3} pair showed superior wear resistance and low friction coefficient in comparison to coating/100Cr6 pair. - Abstract: A new [Ti/TiAlN/TiAlCN]{sub 5} multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al{sub 2}O{sub 3} balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10{sup −15} m{sup 3}/N m, low friction coefficients against 100Cr6 and Al{sub 2}O{sub 3} balls in the range of 0.25–0.37, and good hardness in the range of 17–20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al{sub 2}O{sub 3} and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al{sub 2}O{sub 3} pair, while

  2. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  3. Investigation on effect of iron and corundum content on corrosion resistance of the NiFe-Al2O3 coatings

    International Nuclear Information System (INIS)

    Starosta, R.; Zielinski, A.

    1999-01-01

    The alloy NiFe and composite NiFe-Al 2 O 3 coatings, obtained by electrodeposition on the base of cast iron, were investigated. The iron content in alloy coatings was dependent on iron content in galvanic bath, and was estimated by means of X-ray microanalysis at 18.5 wt. pct. and 41.2 wt. pct. No existence of ordered Ni 3 Fe phase was found by diffraction technique. Both potentiodynamic and impedance measurements disclosed that a presence of Al 2 O 3 or increasing iron content in the layer caused the decrease in corrosion resistance. (author)

  4. Influence of N2/Ar Flow Ratio on Microstructure and Properties of the AlCrSiN Coatings Deposited by High-Power Impulse Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Bai-Song Li

    2017-12-01

    Full Text Available The cutting properties of tools can be greatly improved by AlCrSiN coatings. The AlCrSiN coatings with nitrogen content in the range of 28.2–56.3 at.% were prepared by varying the N2/Ar flow ratio from 1/4 to 1/1. The influence of N2/Ar flow ratio on composition, microstructure, and mechanical properties, as well as the tribological properties, of the coatings was investigated. With increasing N content, the coating microstructure gradually evolved from single fcc-(Cr,AlN (200 phase to the mixture of fcc-(Cr,AlN and hcp-(Cr,AlN phase, which corresponds to an increased crystallinity within the coatings. The coating presents the highest hardness and best wear resistance for an N2/Ar flow ratio of 1/1, but the film adhesive strength and inner stress decreased obviously with increasing N2/Ar flow ratio, which was attributed to the rapid reduction of particle kinetic energy induced by the obstruction of neutral nitride particles between target and substrates. The highest H3/E*2 value exhibited the lowest wear rate, at 0.81 × 10−14 m3/(N·m, indicating that it had the best resistance to plastic deformation. The main wear mechanisms of the as-deposited coatings were abrasive wear and adhesive wear. The increasing crystallinity of the interior coatings resulted in higher hardness and better tribological behavior with an increase in N2/Ar flow ratio.

  5. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    Science.gov (United States)

    Seteni, Bonani; Rapulenyane, Nomasonto; Ngila, Jane Catherine; Mpelane, Siyasanga; Luo, Hongze

    2017-06-01

    Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 and Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The scanning electron microscopy shows the agglomeration of the materials and their nanoparticle size ∼100 nm. The transmission electron microscopy confirms that LiFePO4 forms a rough mat-like surface and Al2O3 remain as islandic particles on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 material. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with LiFePO4 and Li1.2Mn0.54Ni0.13Co0.13O2 coated with Al2O3 exhibits improved electrochemical performance. The initial discharge capacity is enhanced to 267 mAhg-1 after the LiFePO4 coating and 285 mAhg-1 after the Al2O3 coating compared to the as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 material that has an initial discharge capacity of 243 mAhg-1. Galvanostatic charge-discharge tests at C/10 display longer activation of Li2MnO3 phase and higher capacity retention of 88% after 20 cycles for Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3 of 80% after 20 cycles and LMNC of 80% after 20 cycles. Meanwhile Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 also shows higher rate capability compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3.

  6. High temperature properties of the Cr-Nb-Al-N coatings with increasing Al contents

    OpenAIRE

    Li, W. Z.; Polcar, T.; Evaristo, M.; Cavaleiro, A.

    2013-01-01

    Cr-Nb-Al-N coatings with Al content from 0 to 12 at.% were deposited by d.c. reactive magnetron sputtering. The coatings were annealed in protective atmosphere at 800 and 900 °C for 1 h and exposed to air at 800, 900 and 1200 °C for different times. The chemical composition, structure, microstructure, hardness and adhesive/cohesive strength of the coatings, in as-deposited and annealed conditions, were investigated and the oxidation resistance was evaluated. As expected, the Al content increa...

  7. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-01-01

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl 2 O 4 , α-Al 2 O 3 , and γ-Al 2 O 3. By controlling the working parameters, the distribution of the CoAl 2 O 4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  8. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  9. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

    Science.gov (United States)

    Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh

    2017-02-01

    Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

  10. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  11. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  12. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  13. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    Science.gov (United States)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  14. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  15. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alat, Ece, E-mail: exa179@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, Arthur T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Comstock, Robert J.; Partezana, Jonna M. [Westinghouse Electric Co., Beulah Rd, Pittsburgh, PA 1332 (United States); Wolfe, Douglas E. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Applied Research Laboratory, The Pennsylvania State University, 119 Materials Research Building, University Park, PA 16802 (United States)

    2016-09-15

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO{sup ®} coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti{sub 1-x}Al{sub x}N (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm{sup 2} weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO{sup ®} which showed a weight gain of 40.2 mg/dm{sup 2}. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance. - Highlights: • The first study on multilayer TiAlN and TiN ceramic coatings on ZIRLO{sup ®} coupons. • Corrosion tests were performed at 360°C and 18.7 MPa for up to 90 days. • Coatings adhered well to the substrate, and showed no spallation/delamination. • Weight gains were six times lower than those of uncoated ZIRLO{sup ®} samples. • Longer and higher temperature corrosion tests will be discussed in a further paper.

  16. New facilities for Al+MgF2 coating for 2-m class mirrors for UV

    Science.gov (United States)

    Zhupanov, Valery; Vlasenko, Oleg; Sachkov, Mikhail; Fedoseev, Viktor

    2014-07-01

    above 120 nm [19] with reflectivity more than 90% at wavelength longer than 200 nm, but the spectral range from 700 to 900 nm, where it's lowest value of reflectivity is 86% at 850 nm. That makes aluminum one of the best coating materials in the creating a mirror for operations in vacuum ultraviolet. However, the aluminum membrane is prone to oxidization, so applying the protecting coating is essential. Magnesium fluoride is one of the few materials transparent in the UV range [20]. In this contribution, capacities of new facilities in LUCH company that are created for World Space Observatory - Ultraviolet (WSO-UV) project are described in Section 2, the process of applying Al + MgF2 coating workout is presented in Section 3, results of applying Al+MgF2 coating for WSO-UV primary mirror are presented in Section 4 and a brief summary are provided in the concluding Section 5.

  17. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  18. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  19. Structure of MeCrAlY + AlSi coatings deposited by Arc-PVD method on CMSX4 single crystal alloy

    International Nuclear Information System (INIS)

    Swadzba, L.; Hetmanczyk, M.; Mendala, B.; Saunders, S.R.J.

    2002-01-01

    Investigations of depositing high temperature resistant coatings on the Ni base superalloys by Arc-PVD method using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C in vacuum, NiAl diffusion coating containing 21% at. Al and 50 μm thick were obtained. In the next stage coatings with more complex chemical composition - MeCrAlY were formed. The MeCrAlY coatings were made from two targets. Good correlation between the chemical composition of the targets and a uniform distribution of elements in the coatings was shown. Then the surface was also covered with aluminium by the Arc-PVD method . In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation of NiAl intermetallics of high Co, Cr, Y content was initiated. The final heat treatment of coatings was conducted in vacuum at 1323 K. Strong segregation of yttrium into the oxide scale in the specimens heated in the air was shown. It was possible to form NiAl and intermetallics phase coatings modified by Co, Cr and Y by the Arc-PVD method. The coatings were formed on a single crystal CMSX-4. The structure, morphology and phase composition of coatings was carried out. (author)

  20. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    International Nuclear Information System (INIS)

    Song, Jian; Liu, Yuhong; Liao, Zhenhua; Wang, Song; Tyagi, Rajnesh; Liu, Weiqiang

    2016-01-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO 2 composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO 2 composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO 2 coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO 2 nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive wear were the dominant wear

  1. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  2. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  3. Microstructure and wear behavior of {gamma}/Al{sub 4}C{sub 3}/TiC/CaF{sub 2} composite coating on {gamma}-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)], E-mail: liubobo0828@yahoo.com.cn; Shi Shihong [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China); Guo Jian [School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan West Road, Zhengzhou 450007 (China); Fu Geyan; Wang Mingdi [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)

    2009-03-15

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF{sub 2} in the preparation of precursor NiCr-Cr{sub 3}C{sub 2}-CaF{sub 2} mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al{sub 4}C{sub 3} carbides reinforcement as well as fine isolated spherical CaF{sub 2} solid lubrication particles uniformly dispersed in the NiCrAlTi ({gamma}) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF{sub 2} and the increasing of it's wettability with the NiCrAlTi ({gamma}) matrix during the laser cladding process.

  4. High-temperature resistant MeCrAlY+Al coatings obtained by ARC-PVD method on Ni Base superalloys

    International Nuclear Information System (INIS)

    Swadzba, L.; Maciejny, A.; Mendala, B.; Supernak, W.

    1999-01-01

    Investigations of obtaining high temperature coatings on the Ni base superalloys by the ARC-PVD method, using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C NiAl high temperature diffusion coating containing 21% at. Al and 50 μm thick was obtained. In the next stage coatings with more complex chemical composition NiCoCrAlY were formed. The two targets were applied for formation of complex NiCoCrAlY coatings. The good consistence between the chemical composition of the targets and the coatings and an uniform distribution of elements in the coatings were shown. Then the surface was covered with aluminium also by the ARC-PVD method. In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation NiAl intermetallics of high Co, Cr, Y content was initiated by the changes in process parameters. The final heat treatment of coatings was conducted in the air and vacuum at 1050 o C. The strong segregation of yttrium in to the oxide scale in the specimens heated in the air was shown. It was possible to obtain NiAl intermetallic phase coatings modified by Co, Cr and Y by the ARC-PVD method. An example of the application of this method for the aircraft engine turbine blades was presented. Method of ARC-PVD gives the possibility chemical composition and high resistance to oxidizing and hot corrosion. (author)

  5. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  6. Study on microstructure of Al coating on beryllium substrates

    International Nuclear Information System (INIS)

    Li Ruiwen; Xian Xiaobin; Zou Juesheng; Zhang Pengcheng

    2002-01-01

    Magnetron sputtering ion plating and plasma spraying have been used to make aluminium coating on beryllium substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Auger electron energy spectrum (AES) and X-ray stress analysis were used to study microstructure and interface and residual stress and diffusion content of Al coating. The results show that width of diffusion zone made by magnetron sputtering ion plating is about 1 μm, coating is composed of columnar grains and internal stress of Al coating is about zero. Coating deposited by plasma spraying is not homogeneous and there are microcracks at interface

  7. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    Science.gov (United States)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  8. Microstructure development and properties of the AlCuFe quasicrystalline coating on near-{alpha} titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, T., E-mail: tmoskale@agh.edu.pl [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, PL-30-059 Krakow, Al. A. Mickiewicza 30 (Poland); Kot, M. [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, PL-30-059 Krakow, Al. A. Mickiewicza 30 (Poland); Wendler, B. [Faculty of Mechanical Engineering, Technical University of Lodz, PL-90 924 Lodz, ul. Stefanowskiego 1 (Poland)

    2011-11-01

    A protective quasicrystalline AlFeCu coating was deposited on TIMETAL 834 substrate by nonreactive magnetron sputtering in order to improve resistance of the alloy to oxidation. Microstructure characterisation of the substrate and the coating was performed by analytical scanning- and transmission electron microscopy as well as X-ray diffractometry. Depending on annealing temperature and time, the deposited coating (2.7 {mu}m thick) has a different microstructure. The coating in Specimen 1 (annealed 600 deg. C/4 h in vacuum) consisted of two zones: outer, composed of Al{sub 5}Fe{sub 2} and Al{sub 2}Cu{sub 3} phases and inner, in which only quasicrystalline {psi} phase was present. The coating in Specimen 2 (annealed 600 deg. C/4 h + 700 deg. C/2 h in vacuum) was fully quasicrystalline and consisted of icosahedral {psi} phase. Both coatings exhibit higher microhardness than the substrate material. It was established that the applied surface treatment essentially improves oxidation resistance of the alloy tested at 750 deg. C during 250 h in static air. Sample weight gain was 60% lower than in the case of uncoated sample. Oxide scale spallation occurred for uncoated alloy while the coated one did not show any spallation. It was found that the very brittle scale formed during oxidation on the uncoated alloy was consisting of TiO{sub 2}, while that on the coated one consisted mainly of {alpha}-Al{sub 2}O{sub 3}.

  9. Characterization and properties Ti-Al-Si-N nanocomposite coatings prepared by middle frequency magnetron sputtering

    Science.gov (United States)

    Zou, C. W.; Zhang, J.; Xie, W.; Shao, L. X.; Guo, L. P.; Fu, D. J.

    2011-10-01

    TiN-containing amorphous Ti-Al-Si-N (nc-TiN/a-Si 3N 4 or a-AlN) nanocomposite coatings were deposited by using a modified closed field twin unbalanced magnetron sputtering system which is arc assisted and consists of two circles of targets, at a substrate temperature of 300 °C. XRD, XPS and High-resolution TEM experiments showed that the coatings contain TiN nanocrystals embedded in the amorphous Si 3N 4 or AlN matrix. The coatings exhibit good mechanical properties that are greatly influenced by the Si contents. The hardness of the Ti-Al-Si-N coatings deposited at Si targets currents of 5, 8, 10, and 12 A were 45, 47, 54 and 46 GPa, respectively. The high hardness of the deposited Ti-Al-Si-N coatings may be own to the plastic distortion and dislocation blocking by the nanocrystalline structure. On the other hand, the friction coefficient decreases monotonously with increasing Si contents. This result would be caused by tribo-chemical reactions, which often take place in many ceramics, e.g. Si 3N 4 reacts with H 2O to produce SiO 2 or Si(OH) 2 tribolay-layer.

  10. Effect of a ZrO{sub 2} coating deposited by the sol–gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chęcmanowski, Jacek Grzegorz, E-mail: jacek.checmanowski@pwr.wroc.pl [Wrocław University of Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Szczygieł, Bogdan, E-mail: bogdan.szczygiel@pwr.wroc.pl [Wrocław University of Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland)

    2013-05-15

    One-, three- and five-layer protective ZrO{sub 2} coatings were deposited on a FeCrAl alloy base by the sol–gel method. A zirconium(IV) isopropoxide isopropanol complex was used as the zirconium precursor. It has been shown that zirconium in the amount of 0.3–0.5 wt.% improves the resistance of FeCrAl alloy in high-temperature oxidation conditions (in air at T = 1060 °C for t = 2400 h). Even a very low Zr content affects the morphology, porosity and composition of the forming scale (SEM, EDS). An analysis of the chemical composition of the material after oxidation indicated to-core Zr diffusion. The presence of zirconium prevents catastrophic corrosion of the FeCrAl alloy during oxidation. In the case of the alloy without the reactive element (Zr) this type of corrosion occurred after about 1800 h. The oxidation of the FeCrAl alloy covered with ZrO{sub 2} coatings proceeds in three stages. In the first stage, lasting about 50 h, the mass of the sample grows rapidly, then for 700 h the mass changes minimally and in the third stage the oxidation proceeds according to a parabolic dependence. The presence of Zr on the surface of the FeCrAl alloy significantly contributes to the protective effect of the coatings. - Highlights: ► Multilayer ZrO{sub 2} coatings were deposited on FeCrAl alloy by sol–gel method. ► Study of alloy composition indicates to-core Zr diffusion in high temperature. ► Even very low content affects morphology and porosity of forming scale. ► Zirconium improves the resistance of FeCrAl alloy in high temperature conditions. ► Presence of ZrO{sub 2} prevents catastrophic corrosion of FeCrAl alloy during oxidation.

  11. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  12. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  13. X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma

    International Nuclear Information System (INIS)

    Zhitomirsky, V.N.; Kim, S.K.; Burstein, L.; Boxman, R.L.

    2010-01-01

    Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O 2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO 2 and Al 2 O 3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar + ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15 o , 45 o and 75 o relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO 2 samples, producing ZrO and free Zr along with ZrO 2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al 2 O 3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.

  14. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  15. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  16. Memory effect, resolution, and efficiency measurements of an Al{sub 2}O{sub 3} coated plastic scintillator used for radioxenon detection

    Energy Technology Data Exchange (ETDEWEB)

    Bläckberg, L., E-mail: lisa.blackberg@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A. [Division of Defence and Security Systems, Swedish Defence Research Agency (FOI), SE-17290 Stockholm (Sweden); Sjöstrand, H.; Klintenberg, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2013-06-21

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al{sub 2}O{sub 3} using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al{sub 2}O{sub 3} coatings are believed to be a viable solution to the memory effect problem in question.

  17. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates

    Directory of Open Access Journals (Sweden)

    Tao Li

    2015-05-01

    Full Text Available The electrical performance of MoS2 can be engineered by introducing high-κ dielectrics, while the interactions between high-κ dielectrics and MoS2 need to be studied. In this study, multilayer MoS2 field-effect transistors (FETs with a back-gated configuration were fabricated on high-κ Al2O3 coated Si substrates. Compared with MoS2 FETs on SiO2, the field-effect mobility (μFE and subthreshold swing (SS were remarkably improved in MoS2/Al2O3/Si. The improved μFE was thought to result from the dielectric screening effect from high-κ Al2O3. When a HfO2 passivation layer was introduced on the top of MoS2/Al2O3/Si, the field-effect mobility was further enhanced, which was thought to be concerned with the decreased contact resistance between the metal and MoS2. Meanwhile, the interface trap density increased from 2.4×1012 eV−1cm−2 to 6.3×1012 eV−1cm−2. The increase of the off-state current and the negative shift of the threshold voltage may be related to the increase of interface traps.

  18. Wearproof composition coatings on the basis of SiC-AL2O3 for restoration and reiforcement of the components of aircraft ground support equipment

    Directory of Open Access Journals (Sweden)

    О. П. Уманський

    2013-07-01

    Full Text Available On the ground of research of a contact interaction of the melts of the system Ni–Al with the ceramics of SiC–Al2O3 content, the possibility of wearproof coating deposition of the system SiC–Al2O3–Ni–Al by gas-flame techniques has been proved. Technological features of their acquisition also have been studied. The structure of coatings from composition material that contains the SiC–Al2O3 wearproof component and Ni–Al metallic binder, deposited by the method of high velocity air fuel deposition (HVAF on medium-carbon steel steels has been researched. Tribotechnical descriptions of the deposited coatings under the conditions of friction without lubricating materials in the air environment in wide range of speed-load modes of the “pin–on–disk” layout have been studied. The features and regularities of their wear mechanisms retaining the constant speed and constant load have been determined

  19. Microstructure, mechanical and tribological properties of CrSiC coatings sliding against SiC and Al{sub 2}O{sub 3} balls in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiwei [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Wang, Qianzhi [Department of Mechanical Engineering, Keio University, Yokohama 2238522 (Japan); Zhou, Zhifeng [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Yan, Jiwang [Department of Mechanical Engineering, Keio University, Yokohama 2238522 (Japan); Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-04-15

    Graphical abstract: CrSiC coatings were speculated to be X-ray amorphous (A). Although the hardness of coatings fluctuated slightly (13.2–13.8 GPa), the CrSiC coatings showed poor wear resistance due to the decline of the crack resistance and toughness. Moreover, the friction coefficient (0.24–0.31) and the wear rate (2.97–7.66 × 10{sup −6} mm{sup 3}/Nm) of CrSiC/SiC trobopairs were lower than those of CrSiC/Al{sub 2}O{sub 3} tribopairs (B and C). - Highlights: • CrSiC coatings with Si content of 2.0–7.4 at.% were deposited via adjusting the TMS flow. • The amorphous structure in the CrSiC coatings was presented. • No obvious fluctuations of hardness (about 13 GPa) were observed with TMS flow. • CrSiC/SiC tribopairs showed better tribological performance than CrSiC/Al{sub 2}O{sub 3} tribopairs. - Abstract: CrSiC coatings with different silicon contents were prepared using unbalanced magnetron sputtering via adjusting trimethylsilane (Si(CH{sub 3}){sub 3}H) flows. Their phase structure, bonding structure, microstructure and hardness were characterized by X-ray diffraction (XRD), X-ray photoelectrons spectroscopy (XPS), a field emission scanning electron microscope (FESEM) and nano-indenter, respectively. The tribological properties of CrSiC coatings sliding against SiC and Al{sub 2}O{sub 3} balls were investigated in water. The results showed that the CrSiC coatings were speculated to be X-ray amorphous. Although the hardness of coatings fluctuated slightly (13.2–13.8 GPa), the coatings showed poor wear resistance due to the decline of the crack resistance and toughness. Moreover, the friction coefficient (0.24–0.31) and the wear rate (2.97–7.66 × 10{sup −6} mm{sup 3}/Nm) of CrSiC/SiC trobopairs were lower than those of CrSiC/Al{sub 2}O{sub 3} tribopairs.

  20. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Z. M., E-mail: azmr@utem.edu.my; Kwan, W. L., E-mail: kwailoon86@gmail.com; Juoi, J. M., E-mail: jariah@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-07-19

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R{sub N}), and substrate temperature (T{sub S}). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R{sub N}. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB{sub 2} phase within the coatings. The T{sub S}, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  1. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    International Nuclear Information System (INIS)

    Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.

    2016-01-01

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R_N), and substrate temperature (T_S). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R_N. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB_2 phase within the coatings. The T_S, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  2. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  3. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  4. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  5. The behavior of ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings deposited on aluminum alloys at high temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Pintilei, G.L., E-mail: laura_rares082008@yahoo.com [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Crismaru, V.I. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Abrudeanu, M. [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Munteanu, C. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Baciu, E.R. [University of Medicine and Pharmacy “Gr.T.Popa”, Department Implantology, Removable Restorations, Technology, Str. Universitatii nr. 16, 700115 Iasi (Romania); Istrate, B.; Basescu, N. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania)

    2015-10-15

    Highlights: • In both the ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO{sub 2}/20%Y{sub 2}O{sub 3} suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al{sub 2}O{sub 3} coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  6. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S.

    2009-01-01

    In this paper, four kinds of hard coatings, TiN, CrN, TiAlN and CrAlN (with Al/Ti or Al/Cr atomic ratio around 1:1), were deposited on stainless steel substrates by a lateral rotating cathode arc technique. The as-deposited coatings were annealed in ambient atmosphere at different temperatures (500-1000 o C) for 1 h. The evolution of chemical composition, microstructure, and microhardness of these coatings after annealing at different temperatures was systematically analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and nanoindentation experiments. The oxidation behaviour and its influence on overall hardness of these four coatings were compared. It was found that the ternary TiAlN and CrAlN coatings have better oxidation resistance than their binary counterparts, TiN and CrN coatings. The Cr-based coatings (CrN and CrAlN) exhibited evidently better oxidation resistance than the Ti-based coatings (TiN and TiAlN). TiN coating started to oxidize at 500 o C. After annealing at 700 o C no N could be detected by EDX, indicating that the coating was almost fully oxidized. After annealed at 800 o C, the coating completely delaminated from the substrate. TiAlN started to oxidize at 600 o C. It was nearly fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 1000 o C. Both CrN and CrAlN started to oxidize at 700 o C. CrN was almost fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 900 o C. The oxidation rate of the CrAlN coating is quite slow. After annealing at 1000 o C, only about 19 at.% oxygen was detected and the coating showed no delamination. The Ti-based (TiN and TiAlN) coatings were not able to retain their hardness at higher temperatures (≥ 700 o C). On the other hand, the hardness of CrAlN was stable at a high level between 33 and 35 GPa up to an annealing temperature of 800 o C and still kept at a comparative high value of

  7. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  8. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    International Nuclear Information System (INIS)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V.

    2015-01-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe 2 and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al 2 O 3 and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al 2 O 3 counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H 2 SO 4 solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on counterpart material. This was attributed

  9. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2015-02-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe{sub 2} and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al{sub 2}O{sub 3} and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al{sub 2}O{sub 3} counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H{sub 2}SO{sub 4} solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on

  10. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    Science.gov (United States)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  11. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel

    Science.gov (United States)

    Wada, Tadahiro; Hanyu, Hiroyuki

    2017-11-01

    Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.

  12. Lifetime modelling for MCrAlY coatings in industrial gas turbine blades

    Directory of Open Access Journals (Sweden)

    Krukovsky Pavel

    2004-01-01

    Full Text Available A novel theoretical and experimental approach for lifetime modelling of MCrAlY coatings for stationary gas turbines has been undertaken using the Inverse Problem Solution (IPS technique. With this technique feasible experimental data acquired after a defined experimental time t e are used as input values for the model parameters estimation. In the first stage of the approach a model, based on the oxidation and diffusion processes (Fick's first and second law was assumed, which considers the Al concentration profile across the coating. The measured average Al concentration profiles in the two-phase g+b and g - regions of coating as well as base metal were used as input values for the model parameters estimation and calculational prediction of the long term diffusion and oxidation behavior of the coating was performed. The time, when the b-NiAl phase is completely consumed was assumed as the coating lifetime end. Exposure experiments were carried out with a NiCoCrAlY coating (200 micron thickness with 8% Al in air at 900 °C and 950 °C, currently up to 10000 h. The oxide scale is growing continuously and no other oxides were observed. The average and b-NiAl phase concentration profiles of Al across the coating thickness were determined by electron microprobe and image analysis systems in the initial state after 700 and 10000 h of oxidation. The concentration profile measured after 700 h was used as input values for the model parameters estimation in order to calculate the Al and b-NiAl phase concentration profiles after 10000 h. The computational forecast for 10000 h at 950 °C and 900 °C are in good agreement with the measured data. The approach was applied for NiCoCrAlY (200 micron thickness coating lifetime modelling at 950 °C and 900 °C as well as for different coating thicknesses at 950 °C.

  13. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    Science.gov (United States)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  14. Wear studies on ZrO{sub 2}-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Yuhong, E-mail: liuyuhong@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua; Wang, Song [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Tyagi, Rajnesh [Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005 (India); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2016-12-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO{sub 2} composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO{sub 2} composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO{sub 2} coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO{sub 2} nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive

  15. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  16. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  17. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  18. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings; Comportamiento a la corrosion electroquimica de aleaciones MgAl con recubrimientos de materiales compuestos Al/SiCp mediante proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-07-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  19. Effect of Al added to a NiCrMo alloy on the development of the oxide layer of intermetallic coatings

    International Nuclear Information System (INIS)

    D'Oliveira, A.S.C.M.; Cangue, F.J.R.

    2010-01-01

    Components performance in different environment is strongly dependent on oxides that develop on their surfaces. This study analyzed the oxide layer that develops on coatings processed with mixtures of an atomized Hastelloy C alloy with Al powders. Powder mixtures containing 10, 20 and 30wt%Al were deposited on AISI 1020 and AISI304 steel plates. Coatings were subsequently exposed to 850 deg C for two hours in a low PO 2 environment. X-ray diffraction was used to identify the phases that developed in the coating during processing and Raman analysis and Scanning Electron Microscopy were used to characterize the oxide layers. The results showed that coatings processed with the richer Al mixtures, 30wt%Al, which developed NiAl aluminides, reduced the development of α alumina when processing was done on AISI 304. Coatings processed on AISI 1020 with the three powder mixtures tested developed the different allotropic forms of alumina, as predicted for the tested temperature. (author)

  20. Microstructures and Photovoltaic Properties of Zn(AlO/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-03-01

    Full Text Available Copper oxide (Cu2O-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO and Cu2O were used as n- and p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill factor increased by aluminum (Al doping in the ZnO layer, which resulted in the increase of the conversion efficiency. The efficiency was improved further by growing ZnO and Cu2O layers with larger crystallite sizes, and by optimizing the Al-doping by spin coating.

  1. Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr

    International Nuclear Information System (INIS)

    Sánchez-López, J.C.; Contreras, A.; Domínguez-Meister, S.; García-Luis, A.; Brizuela, M.

    2014-01-01

    The tribological properties of CrAlN, CrAlYN and CrAlZrN coatings deposited by direct current reactive magnetron sputtering are studied by means of pin-on-disc experiments at room temperature, 300, 500 and 650 °C using alumina balls as counterparts. The influence of the metallic composition (Al, Y and Zr) on the friction, wear properties and oxidation resistance is studied by means of scanning electron microscopy, energy dispersive X-ray analysis and Raman analysis of the contact region after the friction tests. The results obtained allow us to classify the tribological behaviour of the CrAl(Y,Zr)N coatings into three groups according to the nature of the dopant and aluminium content. The sliding wear mechanism is characterized by the formation of an overcoat rich in chromium and aluminium oxides whose particular composition is determined by the initial chemical characteristics of the coating and the testing temperature. The fraction of Cr 2 O 3 becomes more significant as the Al content decreases and the temperature increases. The addition of Y, and particularly Zr, favours the preferential formation of Cr 2 O 3 versus CrO 2 leading to a reduction of friction and wear of the counterpart. Conversely, the tribological behaviour of pure CrAlN coatings is characterized by higher friction but lower film wear rates as a result of higher hardness and major presence of aluminium oxides on the coating surface. - Highlights: • Comparative tribological study at high temperature of CrAlN, CrAlYN and CrAlZrN films • Fraction of Cr 2 O 3 raises as the Al content decreases and the temperature increases. • Zr doping favours lower and steady friction coefficient due to higher Cr 2 O 3 formation. • Sliding wear mechanism becomes predominantly abrasive as the Al content increases. • Excellent tribological performance of CrAlN doped with low Y contents (≈ 2 at.%)

  2. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    Science.gov (United States)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  3. Role of Y in the oxidation resistance of CrAlYN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Meister, S.; El Mrabet, S. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco 28049 (Spain); Mariscal, A.; Jiménez de Haro, M.C.; Justo, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Brizuela, M. [TECNALIA, Mikeletegui Pasealekua, 2, Donostia-San Sebastián 20009 (Spain); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Sánchez-López, J.C., E-mail: jcslopez@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain)

    2015-10-30

    Highlights: • The oxidation behavior of CrAlYN films (Al < 10 at.%) depends on the Al/Y distribution. • ∼4 at.% Y enhances the oxidation resistance up to 1000 °C of CrAlYN-coated M2 steels. • Controlled inward oxygen diffusion affects positively the film oxidation resistance. • Mixed Al–Y oxides appear to block the diffusion of elements from the substrate. • Yttrium modifies the passivation layer composition by increasing the Al/Cr ratio. - Abstract: CrAlYN coatings with different aluminum (4–12 at.%) and yttrium (2–5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N{sub 2} mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr{sub 2}N, and a more effective Fe and C blocking.

  4. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  5. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    Science.gov (United States)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  6. CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Bagcivan, N.; Bobzin, K.; Ludwig, A.; Grochla, D.; Brugnara, R.H.

    2014-01-01

    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual

  7. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    Science.gov (United States)

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  8. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Huang, Jiamu, E-mail: huangjiamu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Claypool, James B.; Castano, Carlos E. [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O’Keefe, Matthew J., E-mail: mjokeefe@mst.edu [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-11-15

    Highlights: • Crystalline CeO{sub 2} coatings are deposited on Al 2024-T3 alloys by magnetron sputtering. • The crystal size and internal stress both increased with the thickness of CeO{sub 2} coating. • The ∼210 nm thick coating has the highest adhesion strength to the Al alloy substrate. • The ∼900 nm thick coating increased the corrosion resistance two orders of magnitude. • CeO{sub 2} coatings provide good cathodic inhibition for Al alloys by acting as physical barriers. - Abstract: Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO{sub 2} target. The crystallite size of CeO{sub 2} coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO{sub 2} coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO{sub 2} coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  9. Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering

    International Nuclear Information System (INIS)

    William Grips, V.K.; Barshilia, Harish C.; Selvi, V. Ezhil; Kalavati; Rajam, K.S.

    2006-01-01

    The corrosion behaviors of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrate using a multi-target reactive direct current magnetron sputtering process, were studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used for improved adhesion of the coatings. The potentiodynamic polarization measurements showed that for all the coatings the corrosion potential shifted to higher values as compared to the uncoated substrate. Similarly, the corrosion current density decreased for coated samples, indicating better corrosion resistance of the coated samples. The multilayer coatings of TiAlN/CrN exhibited superior corrosion behavior as compared to the single layer coatings. The Nyquist and the Bode plots obtained from the EIS measurements were fitted by appropriate equivalent circuits to calculate the pore resistance, the charge transfer resistance and the capacitance. These studies revealed that the pore resistance was lowest for TiN coatings, which increased for TiAlN coatings. TiAlN/CrN multilayer coatings exhibited highest pore resistance. No significant change in the capacitive behavior of the coatings was observed, suggesting minimal morphological changes as a result of immersion in the electrolyte. This could be attributed to shorter immersion durations. These studies were confirmed by examining the corroded samples under scanning electron microscope. Preliminary experiments conducted with additional interlayer of electroless nickel (5.0 μm thick) have shown significant improvement in the corrosion resistance of the coatings

  10. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    International Nuclear Information System (INIS)

    Bobzin, K; Bagcivan, N; Theiß, S; Brugnara, R; Bibinov, N; Awakowicz, P

    2017-01-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N 2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature ( T g ) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating. (paper)

  11. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    Science.gov (United States)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  12. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  13. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al 2 O 3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  14. PTA hardfacing of Nb/Al coatings Revestimentos Nb/Al depositados por PTA

    Directory of Open Access Journals (Sweden)

    Karin Graf

    2012-06-01

    Full Text Available Hardfacing is widely applied to components yet the majority of the welding techniques available restrain the variety of hard alloys that can be deposited. Plasma Transferred Arc hardfacing offsets this drawback by using powdered feedstock offering the ability to tailor the chemical composition of the coating and as a consequence its properties. The high strength and chemical inertia of aluminide alloys makes them very suitable to protect components. However, the strong interaction with the substrate during hardfacing requires analysis of each alloy system to optimize its properties and weldability. This work analyzed coatings processed with a cast and ground Nb40wt%Al alloy and the effect of Fe and C on the coatings features. It confirmed that sound Nb aluminide coatings can be processed by plasma Transferred arc hardfacing and will have a strong interaction with the substrate, which determines the final microstructure and properties of coatings. Final remarks point out that during Nb-Al coating tailoring the interaction with the substrate has to be considered at the early stages of design process.Revestimentos soldados são amplamente usados para proteger componentes mecânicos entretanto a maioria das técnicas de soldagem disponíveis restringe a variedade de ligas de alta resistência que podem ser depositadas. O processo de plasma por arco transferido permite ultrapassar esta limitação ao utilizar material de adição na forma de pó, oferecendo a possibilidade de se customizar a composição dos revestimentos e em consequências as suas propriedades. A elevada resistência mecânica e inercia química das ligas de aluminetos tornam estas ligas atrativas para a proteção de componentes diversos. Entretanto a grande interação com o substrato que ocorre quando do processamento exige que para a otimização das propriedades e soldabilidade seja realizada uma a análise de cada sistema liga e substrato. Neste trabalho foram processados e

  15. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  16. Mechanical Properties And Microstructure Of AlN/SiCN Nanocomposite Coatings Prepared By R.F.-Reactive Sputtering Method

    Directory of Open Access Journals (Sweden)

    Nakafushi Y.

    2015-06-01

    Full Text Available FIn this work, AlN/SiCN composite coatings were deposited by r.f.-reactive sputtering method using a facing target-type sputtering (FTS apparatus with composite targets consisting of Al plate and SiC chips in a gaseous mixture of Ar and N2, and investigated their mechanical properties and microstructure. The indentation hardness (HIT of AlN/SiCN coatings prepared from composite targets consisting of 8 ~32 chips of SiC and Al plate showed the maximum value of about 29~32 GPa at a proper nitrogen gas flow rate. X-ray diffraction (XRD patterns for the AlN/SiCN composite coatings indicated the presence of the only peeks of hexagonal (B4 structured AlN phase. AlN coatings clarified the columnar structure of the cross sectional view TEM observation. On the other hand, microstructure of AlN/SiCN composite coatings changed from columnar to equiaxed structure with increasing SiCN content. HR-TEM observation clarified that the composite coatings consisted of very fine equiaxial grains of B4 structured AlN phase and amorphous phase.

  17. On the growth of conversion chromate coatings on 2024-Al alloy

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Akhtar, A.S.; Susac, D.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2007-01-01

    The initial growth of chromate conversion coatings on aluminium 2024-T3 alloy has been investigated by scanning Auger microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The coating initiation is shown to be influenced by the alloy microstructure. In agreement with previously proposed growth models, Cr(VI) to Cr(III) reduction begins on the Al-Cu-Fe-Mn intermetallic second-phase particles, which act as cathodic sites, and then over the entire Al matrix surface. The less noble Al-Cu-Mg second-phase particles demonstrate dual behaviour during the initial stage of coating; some dealloy, with formation of a Cu-rich sponge-like structure, while others show no evidence for etching during the first few seconds and coating deposits on them similar to the situation for the Al-Cu-Fe-Mn particles. XPS measurements show more Cr(III) at the very initial stage of nucleation and growth, whereas the amount of Cr(VI) in the coating increases with the length of the chromating treatment. This is discussed in relation to Raman spectroscopy measurements made in a separate study

  18. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  19. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  20. Microstructural Analysis of TiAl x N y O z Coatings Fabricated by DC Reactive Sputtering

    Science.gov (United States)

    García-González, L.; Hernández-Torres, J.; Flores-Ramírez, N.; Martínez-Castillo, J.; García-Ramírez, P. J.; Muñoz-Saldaña, J.; Espinoza-Beltrán, F. J.

    2009-02-01

    TiAl x N y O z coatings were prepared by DC reactive sputtering on AISI D2 tool steel substrates, using a target of Ti-Al-O fabricated from a mixture of powders of Ti (22.60 wt.%), Al (24.77 wt.%), and O (52.63 wt.%). The coatings were deposited on substrates at room temperature in a reactive atmosphere of nitrogen and argon under a pressure of 8.5 × 10-3 mbar. X-ray diffraction, electron dispersive spectroscopy, Raman scattering, and nanoindentation techniques were employed to investigate the coatings. The results show that the increment in the nitrogen flow affects the structure and the mechanical properties of the coatings. The sample with the lowest nitrogen flow presented the highest hardness (10.5 GPa) and the Young’s modulus (179.5 GPa). The hardness of the coatings TiAl x N y O z as a function of crystalline grain size shows a behavior consistent with the Hall-Petch relation.

  1. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  2. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  3. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang, E-mail: lppmchenqiang@hotmail.com

    2016-12-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm{sup 3}/m{sup 2} day for Al-coated original PE to 138 cm{sup 3}/m{sup 2} day for Al-coated allyamine (C{sub 3}H{sub 7}N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  4. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    International Nuclear Information System (INIS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-01-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm 3 /m 2 day for Al-coated original PE to 138 cm 3 /m 2 day for Al-coated allyamine (C 3 H 7 N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  5. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  6. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries.

    Science.gov (United States)

    Zhou, Pengfei; Zhang, Zhen; Meng, Huanju; Lu, Yanying; Cao, Jun; Cheng, Fangyi; Tao, Zhanliang; Chen, Jun

    2016-11-24

    We reported a one-step dry coating of amorphous SiO 2 on spherical Ni-rich layered LiNi 0.915 Co 0.075 Al 0.01 O 2 (NCA) cathode materials. Combined characterization of XRD, EDS mapping, and TEM indicates that a SiO 2 layer with an average thickness of ∼50 nm was uniformly coated on the surface of NCA microspheres, without inducing any change of the phase structure and morphology. Electrochemical tests show that the 0.2 wt% SiO 2 -coated NCA material exhibits enhanced cyclability and rate properties, combining with better thermal stability compared with those of pristine NCA. For example, 0.2 wt% SiO 2 -coated NCA delivers a high specific capacity of 181.3 mA h g -1 with a capacity retention of 90.7% after 50 cycles at 1 C rate and 25 °C. Moreover, the capacity retention of this composite at 60 °C is 12.5% higher than that of pristine NCA at 1 C rate after 50 cycles. The effects of SiO 2 coating on the electrochemical performance of NCA are investigated by EIS, CV, and DSC tests, the improved performance is attributed to the surface coating layer of amorphous SiO 2 , which effectively suppresses side reactions between NCA and electrolytes, decreases the SEI layer resistance, and retards the growth of charge-transfer resistance, thus enhancing structural and cycling stability of NCA.

  7. The Effect of Dispersion Phases of SiC and Al2O3 on the Properties of Galvanic Nickel Coatings

    OpenAIRE

    Kozik A.; Nowak M.; Gawlik M.; Bigaj M.; Karaś M.

    2016-01-01

    In this study, Ni, Ni-SiC and Ni-Al2O3 coatings were electroplated on the 2xxx series aluminium alloy. The following parameters of the electroplating process were applied: current density - 4A/dm2, time - 60 minutes, and temperature - 60°C. Hard particles of submicrometric size were used. The results of the research showing the effect of the addition of hard particles (introduced into the nickel bath as a dispersed phase) on the properties of coatings, including the effect of the type (SiC or...

  8. Corrosion behaviour and galvanic coupling with steel of Al-based coating alternatives to electroplated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fasuba, O.A.; Yerokhin, A., E-mail: A.Yerokhin@sheffield.ac.uk; Matthews, A.; Leyland, A.

    2013-08-15

    The galvanic corrosion behaviour of bare steel coupled to steel with an Al–Zn flake inorganic spin coating, an Al-based slurry sprayed coating, an arc sprayed Al coating and electroplated cadmium has been investigated. The sacrificial and galvanic behaviour of the coatings was studied in 3.5 wt. % NaCl solution using open-circuit potential, potentiodynamic polarisation and electrochemical noise measurements. The coatings were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Experimental results showed that the Al-based slurry sprayed coating exhibited an open-circuit potential closer to the steel substrate than other coatings, as well as a low corrosion current density and a more positive corrosion potential. In terms of the galvanic suitability of the investigated coatings for the steel substrate, both the Al–Zn flake inorganic spin coating and the Al-based slurry sprayed coating show low galvanic current, in comparison with the arc sprayed Al coating and electroplated cadmium. This behaviour confirms their superior cathodic protection capability and galvanic compatibility over other coatings tested. Electrochemical noise measurements provide accurate information on the coatings' galvanic behaviour, which can be complimented by the data obtained from superposition of potentiodynamic corrosion scans of the coating and bare steel, provided that the corrosion potential difference between the two materials does not exceed 300 mV. - Highlights: • Al-based slurry coating has best galvanic compatibility with steel. • Mg, Cr, P in Al-based slurry coating reinforce its corrosion resistance. • Ennoblement of Al–Zn flake coating compromises its cathodic protection. • Poor corrosion behaviour of arc sprayed Al coating caused by rough morphology. • Electrochemical noise provides adequate estimates of galvanic behaviour.

  9. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels

    International Nuclear Information System (INIS)

    Chen, Wanglin; Zheng, Jie; Lin, Yue; Kwon, Sikchol; Zhang, Shihong

    2015-01-01

    Highlights: • The duplex coatings were produced by combination of nitrocarburizing and multi-arc ion plating. • The γ′-phase plays the nucleation sites for the coating nitrides. • The compound layers (CL) considerably enhance mechanical and tribological properties of the duplex PVD coatings. • The main wear mechanisms of the PVD coatings with and without CL are oxidation wear, the combination of spalling, chipping and oxidation wear, respectively. - Abstract: The AlCrN and AlCrTiSiN coatings were produced on the surface of plasma nitrocarburized T10 steels by multi-arc ion plating. The comparison of the microstructures and mechanical properties of the duplex coatings were investigated by means of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope, in association with mechanical property measurement. The results show that the AlCrN coatings with columnar grown are mainly composed of nanocrytalline fcc-(Cr,Al)N phases with {111} preferred orientation, whereas the superlattice and nanocomposite AlCrTiSiN coatings with planar growth mainly consist of nanocrystalline fcc-(Cr,Al)N phases with {100} perfected orientation, hcp-AlN and Si 3 N 4 amorphous phases. The AlCrTiSiN duplex coating with the compound layer reveals higher hardness, adhesion strength, load capacity and lower friction coefficient when compared with the other duplex coatings, which is due to its superlattice and nanocomposite structure. Additionally, these improved properties are related to the appearance of the γ′-phase which plays the nucleation sites for the coating nitrides and provides a strong supporting effect for the AlCrN and AlCrTiSiN coatings. The main wear mechanism of the duplex coatings without compound layer is spalling and chipping wear as well as tribooxidation wear, whereas the main wear mechanism of the duplex coatings with compound layer is tribooxidation wear

  10. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  11. The influence of AlCrN coating on the high-temperature corrosion resistance of Ti-46Al-7Nb alloy in an atmosphere containing 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Malecka, Joanna [Opole Univ. of Technology (Poland). Faculty of Mechanical Engineering

    2013-09-15

    The results of investigation of the isothermal oxidation wear mechanism of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic alloy with AlCrN coating are presented. Tests in 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2} atmosphere were performed at a temperature of 700 C. The structure of the specimen and chemical composition of the oxidation products were analysed using scanning electron microscopy and energy dispersive X-ray analysis. In addition, mass changes were investigated.

  12. Some observations on the high temperature oxidation behaviour of plasma sprayed Ni3Al coatings

    International Nuclear Information System (INIS)

    Singh, H.; Prakash, S.; Puri, D.

    2007-01-01

    High temperature oxidation resistance of the superalloys can be greatly enhanced by plasma sprayed coatings and this is a growing industry of considerable economic importance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni 3 Al powder was prepared by mechanical mixing of pure nickel and aluminium powders in a ball mill. Subsequently Ni 3 Al powder was deposited on three Ni-base superalloys: Superni 600, Superni 601 and Superni 718 and, one Fe-base superalloy, Superfer 800H by shrouded plasma spray process. Oxidation studies were conducted on the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. All the coated superalloys nearly followed parabolic rate law of oxidation. X-ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxidation products. The Ni 3 Al coating was found to be successful in maintaining its adherence to the superalloy substrates in all the cases. The oxide scales formed on the oxidised coated superalloys were found to be intact and spallation-free. XRD analysis revealed the presence of phases like NiO, Al 2 O 3 and NiAl 2 O 4 in the oxide scales, which are reported as protective oxides against high temperature oxidation. The XRD results were further supported by SEM/EDAX and EPMA

  13. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition

    International Nuclear Information System (INIS)

    Mahesh, R.A.; Jayaganthan, R.; Prakash, S.

    2008-01-01

    Ni-5Al coating was obtained on three superalloy substrates viz. Superni 76, Superni 750 and Superfer 800 using high velocity oxy-fuel (HVOF) spray process. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 deg. C for 100 cycles. The weight change was measured at the end of each cycle and observed that the weight gain was high in Superni 750 alloy when compared to Superni 76 and Superfer 800. A nearly parabolic oxidation behavior was observed for Ni-5Al coated Superni 750 and Superfer 800 alloys but a Ni-5Al coated Superni 76 substrate showed a slight deviation. The scale was analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and electron probe microanalysis (EPMA). The coating increased the oxidation resistance for all the alloy substrates at 900 deg. C. Among the three-coated superalloys, Superfer 800 substrate has shown the best resistance to oxidation. The protective nature of the Ni-5Al coated superalloys was due to the formation of protective oxide scales such as NiO, Al 2 O 3 and Cr 2 O 3

  14. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  15. Solvothermal coating LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 microspheres with nanoscale Li_2TiO_3 shell for long lifespan Li-ion battery cathode materials

    International Nuclear Information System (INIS)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun

    2016-01-01

    LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) microspheres covered by a nanoscale Li_2TiO_3-based shell were synthesized by a facile strategy based on a solvothermal pre-coating treatment combined with a post-sintering lithiation process. The morphology, structure and composition of the Li_2TiO_3-coated NCA samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning scanning electron microscope (SEM) with an energy-dispersive X-ray spectroscope (EDS), and transmission electron microscopy (TEM). Owing to the complete, uniform and nanoscale Li_2TiO_3 coating shell, the resultant surface-modified NCA microspheres used as Li-ion battery cathode materials manifest remarkably enhanced cycling performances, attaining 94% and 84% capacity retention after 200 and 400 cycles at 0.5 C, respectively, which is much better than the pristine NCA counterpart (60% retention, 200 cycles). More impressively, the surface-modified NCA also shows an intriguing storage stability. After being stored at 30 °C for 50 days, the coated NCA-based cells are subjected to be cycled both at room and elevated temperatures, in which the aged cells can still remain 84% capacity retention after 200 cycles at 25 °C and 77% capacity retention after 200 cycles at 55 °C, respectively. All these results demonstrate that the Li_2TiO_3-coated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 microsphere is a promising cathode material for Li-ion batteries with long lifespan. - Graphical abstract: Nanoscale Li_2TiO_3-based shell encapsulated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) microspheres are fabricated through a solvothermal pre-coating treatment combined with post-lithiation process. The surface-coated NCA as cathode materials shows a remarkably enhanced cycling performance and storage stability for long lifespan Li-ion batteries. - Highlights: • Li_2TiO_3 is used as coating materials for layer structured LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 cathode. • Solvothermal coating

  16. Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); College of Engineering, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128 (China); Li, Y.G.; Wu, B. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-12-31

    TiAlSiN nanocomposite coatings were deposited in a closed field unbalanced magnetron sputtering system by reactive sputtering from Ti{sub 0.475}Al{sub 0.475}Si{sub 0.05} targets using modulated pulsed power magnetron sputtering (MPPMS) under a floating substrate bias. The ratio of the nitrogen flow rate to the total gas flow rate (f{sub N{sub 2}}) was varied from 0 to 40%. The application of MPPMS as sputtering sources was aimed at generating a high ionization degree of the sputtered material and a high plasma density by using a pulsed high power approach. When f{sub N{sub 2}} = 0%, an amorphous-like structure Ti{sub 0.479}Al{sub 0.454}Si{sub 0.066} coating was deposited with a hardness of 10 GPa. When nitrogen was added, an optimized nanocomposite structure of nc-TiAlN/a-Si{sub 3}N{sub 4} formed in the TiAlSiN coating deposited at f{sub N{sub 2}} = 10%, in which 5–10 nm TiAlN nanocrystallites were embedded in a 2–3 nm thick amorphous Si{sub 3}N{sub 4} matrix. As the f{sub N{sub 2}} was increased up to 40%, the elementary composition of the coatings remained almost the same, but the grain size of nanocrystallites approached to 10–20 nm and the AlN phase gradually precipitated. A maximum hardness (H) of 33.2 GPa, a hardness to the elastic modulus (E) ratio of 0.081 and an H{sup 3}/E*{sup 2} ratio of 0.19 GPa were found in the coating deposited at f{sub N{sub 2}} = 10%. The friction coefficient of the TiAlSiN coatings was around 0.8–0.9 as sliding against a Si{sub 3}N{sub 4} counterpart under a normal load of 0.5 N. A wear rate of 2.0 × 10{sup −5} mm{sup 3} N{sup −1} m{sup −1} was measured in the TiAlSiN coatings deposited at f{sub N{sub 2}} = 20–40%. As only a low residual stress is found in the TiAlSiN coatings, we consider the complete phase separation is responsible for the enhanced mechanical and tribological properties of the nc-TiAlN/a-Si{sub 3}N{sub 4} nanocomposite coatings. - Highlights: • TiAlSiN nanocomposite coatings were prepared by

  17. Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages

    Directory of Open Access Journals (Sweden)

    Jean Ming-Der

    2016-01-01

    Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.

  18. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    Science.gov (United States)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  19. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO{sub 2}/TiO{sub 2} coatings on Ti6Al4V implants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoyun; He, Xiaojing; Gao, Yuee; Zhang, Xiangyu; Yao, Xiaohong, E-mail: xhyao@tyut.edu.cn; Tang, Bin

    2017-06-01

    Zn-doped ZrO{sub 2}/TiO{sub 2} porous coatings (Zn-ZrO{sub 2}/TiO{sub 2}) were prepared on the surface of titanium alloy (Ti6Al4V) by a hybrid approach of magnetron sputtering and micro-arc oxidation (MAO). The microstructures, phase constituents and elemental states of the coating were investigated by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the Zn-ZrO{sub 2}/TiO{sub 2} coatings are porous and its thickness is approximately 13 μm. The major phases in the oxidation coating are tetragonal ZrO{sub 2} (t-ZrO{sub 2}), cubic ZrO{sub 2} (c-ZrO{sub 2}) and rutile TiO{sub 2}. XPS result reveals that Zn exists as ZnO in the Zn-ZrO{sub 2}/TiO{sub 2} coatings. The biological experiments indicate that Zn-ZrO{sub 2}/TiO{sub 2} coatings exhibit not only excellent antibacterial property against Gram-positive Staphylococcus aureus (S. aureus), but also favorable cytocompatibility. In addition, the corrosion resistance of the coating is also appreciably improved in the simulated body fluids (SBF), which can ensure better biocompatibility in body fluids. - Highlights: • The porous Zn-ZrO{sub 2}/TiO{sub 2} coatings were successfully prepared by a novel duplex-treatment technique. • Zn-ZrO{sub 2}/TiO{sub 2} coatings possess superior corrosion resistance and excellent antibacterial ability against S. aureus. • Zn-ZrO{sub 2}/TiO{sub 2} coatings can enhance in vitro angiogenesis activity of osteoblastic cells.

  20. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    Science.gov (United States)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  1. The effects of Al{sub 2}O{sub 3}-TiO{sub 2} coating in a diesel engine on performance and emission of corn oil methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey; Ozturk, Ugur [Department of Automotive, Technical Education Faculty, Firat University, Elazig 23119 (Turkey)

    2010-10-15

    Today, as a result of increase in oil prices, limited fossil fuel resources, environmental consideration and global warming, the methyl ester fuels have been focused on alternative fuels. Methyl ester fuels can be used more efficiently in low heat rejection engines (LHR), in which the temperature of combustion chamber is increased by creating a thermal barrier. In this study, the piston, cylinder head, exhaust and inlet valves of a diesel engine were coated with the ceramic material Al{sub 2}O{sub 3}-TiO{sub 2} by the plasma spray method. Thus, a thermal barrier was provided for the parts of the combustion chamber with these coatings. The effects of corn oil methyl ester that produced by the transesterification method, and No. D2 fuels' performance and exhaust emissions' rate were studied by using equal in every respect coated and uncoated engines. Tests were performed on the uncoated engine, and then repeated on the coated engine and the results were compared. A decrease in engine power and specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NOx), were observed for all test fuels used in the coated engine compared with that of the uncoated engine. (author)

  2. Ti-Al-Si-C-N hard coatings synthesized by hybrid arc enhanced magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Guizhi; Liu, Sitao; Ma, Shengli; Xu, Kewei; Vincent, Ji; Chu, Paul K.

    2010-01-01

    Ti-Al-Si-C-N coatings are deposited by hybrid arc-enhanced magnetic sputtering and characterized by various micro- and macro-tools. X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy reveal that the coatings are nanocomposites consisting of nanocrystallites and amorphous phases. They are generally in the form of nc-(Ti,Al)(C,N)/a-Si_3N_4/a-C depending on the composition of the coatings. With increasing Al concentrations, the X-ray diffraction peaks shift to a lower angle indicating compressive stress in the coatings. The measured hardness also diminishes implying reduced contributions from the self-organized stable nanostructure. The dry friction coefficients of the Ti-Al-Si-C-N coatings are found to be about 0.3 which is lower than that of conventional Ti-Si-N coatings. These coatings can find potential applications requiring high temperature with heavy contact loading. (author)

  3. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Directory of Open Access Journals (Sweden)

    Vishu Goel

    2016-05-01

    Full Text Available Grain oriented electrical steels (GOES are coated with aluminium orthophosphate on top of a forsterite (Mg2SiO4 layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES. The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa of the coating.

  4. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy [Wolfson Centre for Magnetics, Cardiff University, Cardiff- CF243AA (United Kingdom); Robinson, Fiona [Cogent power Ltd., Newport-NP190RB (United Kingdom); Bohm, Siva [Dept. of metallurgical engineering & materials science, IIT Bombay, Mumbai-400076 (India)

    2016-05-15

    Grain oriented electrical steels (GOES) are coated with aluminium orthophosphate on top of a forsterite (Mg{sub 2}SiO{sub 4}) layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN) was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES). The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa) of the coating.

  5. Hot corrosion performance of LVOF sprayed Al2O3–40% TiO2 ...

    Indian Academy of Sciences (India)

    ficients of thermal expansions of the two. ... size 40 mesh just prior to deposition of the coating. Al2O3–. 40% TiO2 ... the laboratory Kanthal wire tube furnace, which was cali- ... formation of TiO2, Al2O3 and Al2Ti7O15 phases in the coat- ing.

  6. Microstructure and Oxidation Behavior of CrAl Laser-Coated Zircaloy-4 Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Min Kim

    2017-02-01

    Full Text Available Laser coating of a CrAl layer on Zircaloy-4 alloy was carried out for the surface protection of the Zr substrate at high temperatures, and its microstructural and thermal stability were investigated. Significant mixing of CrAl coating metal with the Zr substrate occurred during the laser surface treatment, and a rapidly solidified microstructure was obtained. A considerable degree of diffusion of solute atoms and some intermetallic compounds were observed to occur when the coated specimen was heated at a high temperature. Oxidation appears to proceed more preferentially at Zr-rich region than Cr-rich region, and the incorporation of Zr into the CrAl coating layer deteriorates the oxidation resistance because of the formation of thermally unstable Zr oxides.

  7. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides; Síntesis de un revestimiento nanocompuesto basado en TiO2 / ZnAl hidróxidos dobles en capas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-07-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [Spanish] El objetivo de esta investigación fue la preparación de recubrimientos de nanocompuestos basados en Zn-Al hidróxidos dobles en capas (Zn-Al LDH) y TiO2. El material de LDH Zn-Al, que actuaba como catalizador del componente activo TiO2 (en el contenido de 3 y 10 en peso.%), se sintetizó por un método de co-precipitación con baja sobresaturación. La interacción entre el Zn-Al LDH y el componente activo TiO2 se llevó a cabo mediante el uso de la evaporación al vacío antes de la activación mecánica y sólo por activación mecánica. La suspensión final basada en Zn-Al LDH y 10wt. % TiO2, impregnada solamente por la activación mecánica, mostró las características óptimas desde el aspecto de la distribución de tamaño de partícula y análisis de XRD. Estas propiedades tenían un efecto positivo sobre las propiedades funcionales de los revestimientos (actividad fotocatalítica y eficiencia de auto-limpieza) después del procedimiento de aclarado de agua.

  8. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  9. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  10. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  11. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    International Nuclear Information System (INIS)

    Romero, J.; Gomez, M.A.; Esteve, J.; Montala, F.; Carreras, L.; Grifol, M.; Lousa, A.

    2006-01-01

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased

  12. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    International Nuclear Information System (INIS)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-01-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  13. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali, E-mail: yaliliu@hnu.edu.cn

    2017-02-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  14. Characterization of plasma sprayed NiCrAlY-Yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Bhave, V.S.; Rakhasia, R.H.; Tripathy, P.K.; Hubli, R.C.; Sengupta, P.; Bhanumurthy; Satpute, R.U.; Sreekumar, K.P.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.

    2004-01-01

    Plasma sprayed coatings of yttria stabilized zirconia are used in many advanced technologies for thermal and chemical barrier applications. Development and characterization of NiCrAlY-yttria stabilized zirconia duplex coatings on Inconel substrates is reported in this paper. Plasma spraying was carried out using the 40 kW atmospheric plasma spray facility at the Laser and Plasma Technology Division, BARC. A bond coat of NiCrAlY was deposited on Inconel substrates and yttria stabilized zirconia (YSZ) was deposited over the bond coat. The coatings have been characterized by x-ray diffraction and EPMA. It is observed that the coating characteristics are affected by the input power to the torch. (author)

  15. Defining and comparing vibration attributes of AlSi10 foam and CFRP coated AlSi10 foam materials

    Science.gov (United States)

    Çolak, O.; Yünlü, L.

    2017-06-01

    Now, Aluminum materials have begun being manufactured as porous structures and being used with additive composite materials through emerging manufacturing technologies. These materials those porous structures have also begun being used in many areas such as automotive and aerospace due to light-weighted structures. In addition to examining mechanical behavior of porous metallic structures, examining vibration behavior is important for defining characteristic specifications. In this study, vibration attributes belong to %80 porous AlSi10 foam and CFRP coated %80 porous AlSi10 foam are determined with modal analysis. Modal parameters such as natural frequencies and damping coefficient from frequency response functions at the end of hammer impact tests. It is found that natural frequency of CFRP coated AlSi10 foam’s is 1,14 times bigger than AlSi10 foam and damping coefficient of CFRP coated AlSi10 foam is 5 times bigger than AlSi10 foam’s with tests. Dynamic response of materials in various conditions is simulated by evaluating modal parameters with FEM. According to results of the study, CFRP coating on AlSi10 foam effect vibration damping and resonance avoidance ability positively.

  16. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  17. High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Chu [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shen, Y.G. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong (Hong Kong)

    2004-01-25

    High solar performance W-AlN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric function and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80C have been achieved for deposited W-AlN cermet solar coatings.

  18. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    International Nuclear Information System (INIS)

    Yu Donghai; Wang Chengyong; Cheng Xiaoling; Zhang Fenglin

    2009-01-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  19. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Donghai [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang Chengyong, E-mail: cywang@gdut.edu.c [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng Xiaoling; Zhang Fenglin [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-07-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  20. Influence of ZrB2 addition on microstructural development and microhardness of Ti-SiC clad coatings on Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Farotade, GA

    2017-08-01

    Full Text Available The microstructural features and microhardness of ZrB(sub2) reinforced Ti-SiC coatings on Ti-6Al-4V substrate were studied.The deposition of these coatings was achieved via laser cladding technique. A 4.0 KW fiber delivered Nd: YAG laser was used...

  1. High-temperature oxidation of CrN/AlN multilayer coatings

    International Nuclear Information System (INIS)

    Bardi, U.; Chenakin, S.P.; Ghezzi, F.; Giolli, C.; Goruppa, A.; Lavacchi, A.; Miorin, E.; Pagura, C.; Tolstogouzov, A.

    2005-01-01

    Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 deg. C for 2 h and at 1100 deg. C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 deg. C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified

  2. High Temperature Sliding Wear of NiAl-based Coatings Reinforced by Borides

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI

    2016-05-01

    Full Text Available The development of composite materials (CM in the systems “metal-refractory compound” is one of the up-to-date trends in design of novel materials aimed at operating under the conditions of significant loads at high temperature. To design such material, NiAl, which is widely used for deposition of protective coatings on parts of gas-turbine engines, was selected for a matrix. To strengthen a NiAl under the conditions of intense wear and a broad temperature range (up to 1000 °C, it is reasonable to add refractory inclusions. Introduction of refractory borides into matrix leads to a marked increase in metal wear resistance. In order to research the behavior of the designed composites at high temperatures and to study the influence of oxides on the friction processes, the authors carried out high temperature oxidation of CM of the above systems at 1000 °С for 90 min. It was determined that all of the composites were oxidized selectively and that the thickness of oxide layers formed on the boride inclusions is 3 – 7 times that on the oxides formed on the NiAl matrix. The mechanism of wear of gas-thermal coatings of the NiAl – МеB2 systems was studied for conditions of high temperature tribotests using the «pin-on-disc» technique. The obtained results indicate that introduction of TiB2, CrB2 and ZrB2 leads to their more intense oxidation during high temperature tribotests as compared to the matrix. The oxides formed on refractory borides act as solid lubricants, which promote a decrease in wear of the contact friction pairs. For more detailed investigation of the effect of tribo-oxidation products on the friction processes, tribotests were conducted for prior oxidized (at 900 °С coatings NiAl – 15 wt.% CrB2 (TiB2, ZrB2.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8093

  3. Influence of Power Pulse Parameters on the Microstructure and Properties of the AlCrN Coatings by a Modulated Pulsed Power Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2017-11-01

    Full Text Available In this study, AlCrN coatings were deposited using modulated pulsed power magnetron sputtering (MPPMS with different power pulse parameters by varying modulated pulsed power (MPP charge voltages (350 to 550 V. The influence of power pulse parameters on the microstructure, mechanical properties and thermal stability of the coatings was investigated. The results indicated that all the AlCrN coatings exhibited a dense columnar microstructure. Higher charge voltage could facilitate a denser coating microstructure. As the charge voltage increased up to 450 V or higher, the microvoids along the column boundaries disappeared and the coatings became fully dense. The main phase in the AlCrN coatings was the c-(Al, CrN solid solution phase with NaCl-type phase structure. A diffraction peak of the h-AlN phase was detected at a 2θ of around 33°, when the charge voltage was higher than 500 V. The hardness of the AlCrN coatings varied as a function of charge voltage. The maximum value of the hardness (30.8 GPa was obtained at 450 V. All the coatings showed good thermal stability and maintained their structure and mechanical properties unchanged up to 800 °C during vacuum annealing. However, further increasing the annealing temperature to 1000 °C resulted in apparent change in the microstructure and decrease in the hardness. The charge voltages also showed a significant influence on the high-temperature tribological behavior of the coatings. The coating deposited at the charge voltage of 550 V exhibited excellent tribological properties with a low friction coefficient.

  4. Development of Zn-Al-Cu coatings by hot dip coated technology: preparation and characterization

    International Nuclear Information System (INIS)

    Cervantes, J.; Barba, A.; Hernandez, M. A.; Salas, J.; Espinoza, J. L.; Denova, C.; Torres-Villasenor, G.; Conde, A.; Covelo, A.; Valdez, R.

    2013-01-01

    In the present study, research concerning Zn-Al-Cu coatings on low carbon steels has been conducted in order to characterize different properties obtained by a hot-dip coated process. The results include preparation procedure as well as the processing parameters of the coatings. The obtained coatings were subjected to a cold rolling process followed by an anneal heat treatment at different temperatures and under different time conditions. The structural characteristics of coatings have been investigated by optical and electron microscopy. The mechanical properties were obtained by using micro-hardness testing, deep drawing and wear tests whereas chemical analyses were carried out using the SEM/EDAX microprobe. The corrosion properties were achieved by using a salt spray fog chamber and potentiodynamic tests in a saline solution. The coatings are resistant to corrosion and wear in the presence of sodium chloride, therefore, the coatings could be an attractive alternative for application in coastal areas, and adequate wear adhesive resistance. (Author)

  5. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  6. Structural and mechanical characterization of Al/Al{sub 2}O{sub 3} nanotube thin film on TiV alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf, M. [Center of Advanced Manufacturing and Material Processing, Department of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Zalnezhad, E., E-mail: erfan@um.edu.my [Center of Advanced Manufacturing and Material Processing, Department of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R., E-mail: bushroa@um.edu.my [Center of Advanced Manufacturing and Material Processing, Department of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A.R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-12-01

    Graphical abstract: - Highlights: • To construct Al{sub 2}O{sub 3} nanotube on Ti–6Al–4V. • To investigate adhesion strength of coating to the substrate. • To evaluate the effect of plasma annealing on adhesion strength of coating. • To characterize the Al{sub 2}O{sub 3} nanotube coating on substrate by FESEM. - Abstract: In this study, the fabrication and characterization of Al/Al{sub 2}O{sub 3} nanotubular arrays on Ti–6Al–4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al{sub 2}O{sub 3} nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40–60 nm was formed after the anodisation for 10–45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al{sub 2}O{sub 3

  7. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  8. Optimizing analysis of W-AlN cermet solar absorbing coatings

    International Nuclear Information System (INIS)

    Zhang Qichu

    2001-01-01

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al 2 O 3 ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350 0 C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al 2 O 3 anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal infrared reflector

  9. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qichu [School of Physics, University of Sydney, NSW (Australia)

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup 0}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  10. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [University of Sydney, NSW (Australia). School of Physics

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup o}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350{sup o}C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  11. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.

    Science.gov (United States)

    Minnikanti, Saugandhika; Diao, Guoqing; Pancrazio, Joseph J; Xie, Xianzong; Rieth, Loren; Solzbacher, Florian; Peixoto, Nathalia

    2014-02-01

    The lifetime and stability of insulation are critical features for the reliable operation of an implantable neural interface device. A critical factor for an implanted insulation's performance is its barrier properties that limit access of biological fluids to the underlying device or metal electrode. Parylene C is a material that has been used in FDA-approved implantable devices. Considered a biocompatible polymer with barrier properties, it has been used as a substrate, insulation or an encapsulation for neural implant technology. Recently, it has been suggested that a bilayer coating of Parylene C on top of atomic-layer-deposited Al2O3 would provide enhanced barrier properties. Here we report a comprehensive study to examine the mean time to failure of Parylene C and Al2O3-Parylene C coated devices using accelerated lifetime testing. Samples were tested at 60°C for up to 3 months while performing electrochemical measurements to characterize the integrity of the insulation. The mean time to failure for Al2O3-Parylene C was 4.6 times longer than Parylene C coated samples. In addition, based on modeling of the data using electrical circuit equivalents, we show here that there are two main modes of failure. Our results suggest that failure of the insulating layer is due to pore formation or blistering as well as thinning of the coating over time. The enhanced barrier properties of the bilayer Al2O3-Parylene C over Parylene C makes it a promising candidate as an encapsulating neural interface. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Barrier properties of plastic films coated with an Al{sub 2}O{sub 3} layer by roll-to-toll atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: Terhi.Hirvikorpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Laine, Risto, E-mail: Risto.Laine@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vähä-Nissi, Mika, E-mail: Mika.Vaha-Nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kilpi, Väinö, E-mail: Vaino.Kilpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Salo, Erkki, E-mail: Erkki.Salo@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Li, Wei-Min, E-mail: Wei-Min.Li@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Lindfors, Sven, E-mail: Sven.Lindfors@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vartiainen, Jari, E-mail: Jari.Vartiainen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kenttä, Eija, E-mail: Eija.Kentta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Nikkola, Juha, E-mail: Juha.Nikkola@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Harlin, Ali, E-mail: Ali.Harlin@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kostamo, Juhana, E-mail: Juhana.Kostamo@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland)

    2014-01-01

    Thin (30–40 nm) and highly uniform Al{sub 2}O{sub 3} coatings have been deposited at relatively low temperature of 100 °C onto various polymeric materials employing the atomic layer deposition (ALD) technique, both batch and roll-to-roll (R2R) mode. The applications for ALD have long been limited those feasible for batch processing. The work demonstrates that R2R ALD can deposit thin films with properties that are comparable to the film properties fabricated by in batch. This accelerates considerably the commercialization of many products, such as flexible, printed electronics, organic light-emitting diode lighting, third generation thin film photovoltaic devices, high energy density thin film batteries, smart textiles, organic sensors, organic/recyclable packaging materials, and flexible displays, to name a few. - Highlights: • Thin and uniform Al{sub 2}O{sub 3} coatings have been deposited onto polymers materials. • Batch and roll-to-roll (R2R) atomic layer deposition (ALD) have been employed. • Deposition with either process improved the barrier properties. • Sensitivity of coated films to defects affects barrier obtained with R2R ALD.

  13. Interaction of Al2O3xSiO2 alloyed uranium oxide with pyrocarbon coating of fuel particles under irradiation

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Khromov, Yu.F.; Svistunov, D.E.; Chujko, E.E.

    1989-01-01

    Method of comparative data analysis for P O2 and P CO was used to consider interaction in fuel particle between pyrocarbon coating and fuel sample, alloyed with alumosilicate addition. Equations of interaction reactions for the case of hermetic and depressurized fuel particle are presented. Calculations of required xAl 2 O 3 XySiO 2 content, depending on oxide fuel burnup, were conducted. It was suggested to use silicon carbide for limitation of the upper level of CO pressure in fuel particle. Estimation of thermal stability of alumosilicates under conditions of uranium oxide burnup equals 1100 and 1500 deg C for Al/Si ratio in addition 1/1 and 4/1 respectively

  14. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    Science.gov (United States)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  15. Wear evaluation of WC inserts coated with TiN/TiAlN multinanolayers

    OpenAIRE

    Moreno, L. H.; Ciacedo, J. C.; Martinez, F.; Bejarano, G.; Battaille, T. S.; Prieto, P.

    2010-01-01

    TiN/TiAlN multilayers were deposited by radio frequency, r.f., reactive magnetron sputtering by using titanium and aluminum targets with 10 cm diameter and 99.99% purity in an argon/nitrogen atmosphere, applying a substrate temperature of 300 ºC. WC inserts were used as substrates to improve the mechanical and tribological properties of TiN/TiAlN multilayered coatings compared to other types of coatings like TiAlN monolayers and to manage greater efficiency of these coatings in different indu...

  16. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  17. Amorphous Al–Mn coating on NdFeB magnets: Electrodeposition from AlCl3–EMIC–MnCl2 ionic liquid and its corrosion behavior

    International Nuclear Information System (INIS)

    Chen Jing; Xu Bajin; Ling Guoping

    2012-01-01

    Amorphous Al–Mn coating was electrodeposited on NdFeB magnets from AlCl 3 –EMIC–MnCl 2 ionic liquid with the pretreatment of anodic electrolytic etching in AlCl 3 –EMIC ionic liquid at room temperature. The microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The corrosion resistance of the coatings was tested by means of potentiodynamic polarization and immersion test in 3.5 wt. % NaCl solution. The results show that anodic electrolytic etching in AlCl 3 –EMIC ionic liquid is a satisfactory pretreatment to remove the surface oxide film and favor the adhesion of the Al–Mn alloy coating to the NdFeB substrate. The amorphous Al–Mn alloy coating provides sacrificial anodic protection for NdFeB. It exhibited good corrosion resistance and significantly reduced the corrosion current density of NdFeB by three orders of magnitude at potentiodynamic polarization. - Highlights: ► Amorphous Al–Mn alloy coating was electrodeposited on NdFeB magnet from ionic liquid. ► To remove the surface oxides of NdFeB, anodic etching pretreatment is used. ► The deposited Al–Mn alloy coating shows high adhesion to the NdFeB substrate. ► Corrosion tests show that amorphous Al–Mn alloy coating is anodic coating for NdFeB magnet.

  18. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding

    International Nuclear Information System (INIS)

    Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. da

    2009-01-01

    In the present work single and multiple layer NiCrAlY coatings were produced by laser cladding on (100) single-crystalline substrates of SRR99 Ni-based superalloy. Detailed structural characterisation and texture analysis by optical microscopy, scanning electron microscopy, X-ray diffraction and Rutherford backscattering showed that the NiCrAlY coatings consisted essentially of γ phase with yttrium oxide (Y 2 O 3 ) and a small proportion of yttrium-aluminum garnet (Al 5 Y 3 O 12 ) precipitated in the interdendritic regions. The coatings presented a columnar dendritic structure grown by epitaxial solidification on the substrate and inherited the single-crystalline nature and the orientation of the substrate. The coating material also showed a mosaicity and a defect density similar to those of the substrate. It can be expected that the protective effect of these coatings against oxidation is greatly enhanced compared with polycrystalline coatings because high diffusivity paths, such as grain boundaries, are eliminated in single-crystalline coatings, thus reducing mass transport through the coating.

  19. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  20. Role of Y in the oxidation resistance of CrAlYN coatings

    Science.gov (United States)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  1. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  2. Corrosion Analysis of TiCN Coated Al-7075 Alloy for Marine Applications: A Case Study

    Science.gov (United States)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2018-05-01

    Corrosion is one of the most important marine difficulties that cause long term problems, occurring in ships and submarines surrounded by a corrosive environment when coupled with chemical, temperature and stress related conditions. Corrosion of marine parts could lead to severe disasters. Coatings and heat treatment in a very effective way could be used to protect the aluminium parts against corrosion. The present case study focuses on the corrosion and microstructural properties of TiCN coatings fabricated on Al-7075 aluminium alloy substrate by using Physical Vapour Deposition technique. Corrosion properties of specimen's heat treated at 500 °C at durations of 1, 4, 8 and 12 h were tested through salt spray test. According to D-1193, ASTM standard, corrosion resistance of coated and heat treated Al-7075 samples were investigated in solution kept at 95 °F with a pH of 6.5-7.2, with 5 sections of NaCl to 95 sections of type IV water. The specimen's heat treated for 1 h showed positive corrosion resistance, while the specimens treated for longer durations had the opposite effect. The microstructures of the salt spray tested coatings were investigated by scanning electron microscope. X-ray diffraction tests were conducted on specimens to determine the atomic and molecular structure of the surface crystals and the unit cell dimensions. The corrosion mechanisms of the coated specimens under the heat treated conditions have been explored.

  3. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    Recent findings of largest known pre-salt petroleum reservoir in Brazil have created an intense demand for new materials capable of withstanding direct contact with the crude petroleum as it is a highly corrosive and chemically reactive fluid. Petroleum drilling equipment, storage tanks and transportation systems suffer from constant physical stress caused by chemical attack of crude petroleum on its structure. Ceramics are materials with high chemical stability in hostile environment and therefore can be used as an inert coating material to resolve such problems. To date, ceramics based on alumina are most widely used in practice where there is demand for high mechanical strength and high fracture toughness. However intrinsic fragility of ceramics is still a fatal factor for their use in mechanical structures. To improve these characteristics, usually ceramics are reinforced with one or more ceramic additives. Mechanical properties of alumina based ceramics improve considerably with the addition of TiO{sub 2}, TiN, ZrO{sub 2} etc. ceramic additives. Nucleation and propagation of cracks is a major problem for ceramic coating applications. Initial studies show that addition of small percentages of rare earth oxides can increase the toughness of the alumina based ceramics. In the present work, we have produced rare-earth oxide (CeO{sub 2}) reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics in proportions of 5-20 wt% TiO{sub 2} and 2%wt% CeO{sub 2} through thermomechanical processing and sintering techniques and studied there microstructural characteristics and mechanical properties. To evaluate the potential of these ceramics as inert coatings for crude petroleum extraction, storage and transportation systems, we have studied the physic-chemical and mechanical stability of these ceramics in crude petroleum environment. Our studies presented satisfactory results in terms of physic-chemical and mechanical stability of these materials for the use of 2wt% of CeO{sub 2

  4. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  5. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  6. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    International Nuclear Information System (INIS)

    Raj, V.; Mohan Raj, R.

    2016-01-01

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  7. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Raj, V., E-mail: alaguraj2@rediffmail.com; Mohan Raj, R., E-mail: chem_mohan@rediffmail.com

    2016-12-15

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  8. Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples.

    Science.gov (United States)

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Zhu, Fang; Xu, Weiqin; Su, Chengyong; Ouyang, Gangfeng

    2017-09-01

    The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH 2 )-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH 2 -MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025-0.83 ng L -1 for synthetic musks (SMs) and 0.051-0.97 ng L -1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH 2 -MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH 2 -MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane-divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH 2 -MIL-53(Al) primarily through π-π interactions, electron donor-electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME-gas chromatography-mass spectrometry methods based on NH 2 -MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3-115% for SMs and 77.4-117% for OCPs. These results indicate that the NH 2 -MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.

  9. Laser coating of hafnium on Ti6Al4 for biomedical applications

    CSIR Research Space (South Africa)

    Phume, L

    2012-12-01

    Full Text Available Al4V FOR BIOMEDICAL APPLICATIONS Lerato Phume 1, 2, S.L. Pityana 1, 2, C. Meacock 1, A.P.I Popoola 2 1. National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, South Africa 2. Department of Chemical... and Metallurgical Engineering, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001, South Africa (b) (c) (e) To investigate laser surface coating of Ti6Al4V with preplaced Hafnium powder, to determine the influence of the energy density...

  10. Chemical and Morphological Characterization of Magnetron Sputtered at Different Bias Voltages Cr-Al-C Coatings

    Directory of Open Access Journals (Sweden)

    Aleksei Obrosov

    2017-02-01

    Full Text Available MAX phases (M = transition metal, A = A-group element, and X = C/N are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltage on the chemical bonding structure, surface morphology, and mechanical properties of the film is still not well understood. In the current study, Cr-Al-C films were deposited on silicon wafers (100 and Inconel 718 super alloy by dc magnetron sputtering with different substrate bias voltages and investigated using Scanning Electron Microscopy (SEM, X-ray Photoelectron Spectroscopy (XPS, X-ray Diffraction (XRD, Atomic Force Microscopy (AFM, and nanoindentation. Transmission Electron Microscopy (TEM was used to analyze the correlation between the growth of the films and the coating microstructure. The XPS results confirm the presence of Cr2AlC MAX phase due to a negative shift of 0.6–0.9 eV of the Al2p to pure aluminum carbide peak. The XRD results reveal the presence of Cr2AlC MAX Phase and carbide phases, as well as intermetallic AlCr2. The film thickness decreases from 8.95 to 6.98 µm with increasing bias voltage. The coatings deposited at 90 V exhibit the lowest roughness (33 nm and granular size (76 nm combined with the highest hardness (15.9 GPa. The ratio of Al carbide to carbide-like carbon state changes from 0.12 to 0.22 and correlates with the mechanical properties of the coatings. TEM confirms the columnar structure, with a nanocrystalline substructure, of the films.

  11. COMPARISON OF THE THERMAL SHOCK RESlST ANCE IN Alı03-SG AND Zr02-l2°/oSi+AI COATING SYSTEMS

    Directory of Open Access Journals (Sweden)

    AHMET ÖZEL

    1998-12-01

    Full Text Available In this investigation� thennal and structure fınite eleınent analysis has been employed to aııalyse tlıe level of the thennal stresses developed in A1203-SG and Zr02- 12%Si+ Al coatings subjected to them1al loading. Systeıns \\Vith 0.4nıın coating thickness and 4nıın substrate ınaterial thickness were nıodelled. Alumina -Ductile Ca st Iran coatings \\Vith Ni Al, Ni Cr AIY, NiCoCrAIY inte rlayer \\vere also modelled. Noıninal and shear stresses at the cıitical interface regions ( filnı /inter laycr/substrate \\vere obtained and compared. The results showed that the Al203-SG coatings has higher tlıennal shock resistance than Zr02- 12o/oSi+Al coating systeıns. Furthern1ore� tlıe inte rlayer thickness and ınate rial coınbinations have a significant influence on the level of the devcloped tl1ennal stresses. It is also concluded that the finite eleınent technique can be used to optiınise the design and the processing of ceranı ic . coatıngs.

  12. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    Science.gov (United States)

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  13. Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending

    Czech Academy of Sciences Publication Activity Database

    Kiilakoski, J.; Mušálek, Radek; Lukáč, František; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Roč. 38, č. 4 (2018), s. 1908-1918 ISSN 0955-2219 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal spray * Al2O3-ZrO2 * Toughening * Fracture * Mechanical testing Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 3.411, year: 2016 https://www.sciencedirect.com/science/article/pii/S0955221917308051

  14. Zn/55Al coating microstructure and corrosion mechanism

    International Nuclear Information System (INIS)

    Moreira, A. Ramus; Panossian, Z.; Camargo, P.L.; Moreira, M. Ferreira; Silva, I.C. da; Ribeiro de Carvalho, J.E.

    2006-01-01

    In the present work Zn/55Al coatings from different suppliers were studied. The results revealed the presence of at least two different phases in the interdendritic and in the dendritic areas that compose the coating. Analyses done in the cross section of test panels exposed for five years in six different atmospheres showed that the corrosion process begins in the aluminium-rich phase present in the interdendritic area

  15. Analysis of Al2O3—parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays

    Science.gov (United States)

    Caldwell, Ryan; Mandal, Himadri; Sharma, Rohit; Solzbacher, Florian; Tathireddy, Prashant; Rieth, Loren

    2017-08-01

    Objective. Performance of many dielectric coatings for neural electrodes degrades over time, contributing to loss of neural signals and evoked percepts. Studies using planar test substrates have found that a novel bilayer coating of atomic-layer deposited (ALD) Al2O3 and parylene C is a promising candidate for neural electrode applications, exhibiting superior stability to parylene C alone. However, initial results from bilayer encapsulation testing on non-planar devices have been less positive. Our aim was to evaluate ALD Al2O3-parylene C coatings using novel test paradigms, to rigorously evaluate dielectric coatings for neural electrode applications by incorporating neural electrode topography into test structure design. Approach. Five test devices incorporated three distinct topographical features common to neural electrodes, derived from the utah electrode array (UEA). Devices with bilayer (52 nm Al2O3  +  6 µm parylene C) were evaluated against parylene C controls (N  ⩾  6 per device type). Devices were aged in phosphate buffered saline at 67 °C for up to 311 d, and monitored through: (1) leakage current to evaluate encapsulation lifetimes (>1 nA during 5VDC bias indicated failure), and (2) wideband (1-105 Hz) impedance. Main results. Mean-times-to-failure (MTTFs) ranged from 12 to 506 d for bilayer-coated devices, versus 10 to  >2310 d for controls. Statistical testing (log-rank test, α  =  0.05) of failure rates gave mixed results but favored the control condition. After failure, impedance loss for bilayer devices continued for months and manifested across the entire spectrum, whereas the effect was self-limiting after several days, and restricted to frequencies  physiological fluids may improve performance. Testing frameworks which take neural electrode complexities into account will be well suited to reliably evaluate such encapsulation schemes.

  16. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  17. Mechanical properties and oxidation behaviour of (Al,Cr)N and (Al,Cr,Si)N coatings for cutting tools deposited by HPPMS

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Bagcivan, N.; Immich, P. [Surface Engineering Institute, RWTH Aachen University, Augustinerbach 4-22, D-52056 Aachen (Germany); Bolz, S. [Surface Engineering Institute, RWTH Aachen University, Augustinerbach 4-22, D-52056 Aachen (Germany)], E-mail: info1@iot.rwth-aachen.de; Cremer, R.; Leyendecker, T. [CemeCon AG, Wuerselen (Germany)

    2008-12-01

    Hard coatings with high hardness, high oxidation resistance and thermal stability are used for economical machining. In this regard nanostructured (Cr,Al)N and nc-(Cr,Al)N/a-Si{sub 3}N{sub 4} films were sputtered on tungsten carbide tools and WC/Co samples by using the HPPMS (High Power Pulse Magnetron Sputtering) technology. The relationship between coating composition, microstructure and mechanical properties was investigated by using X-ray diffraction, Scanning Electron Microscopy (SEM), and Nanoindentation. The maximum hardness value was about 40 GPa. For the coatings the Al-content was varied from 10-90 at.% while the silicon content was about 5 at.% for the (Cr,Al,Si)N. As this study focuses on oxidation behaviour of the deposited coatings, annealing tests were carried out in air at 1000 deg. C . HPPMS is a promising technology to ensure a uniform coating distribution, especially for complex shaped substrates like cutting tools or moulds. SEM pictures of the cross section have been taken around the cutting edge to determine the deposition rate and the film growth. The coatings morphology has been compared to m. f. (middle frequency)- and d. c. (direct current)-sputtered nanocomposite (Cr,Al,Si)N films indicating enhanced properties due to the application of the HPPMS-technology with regard to denser structure, higher hardness, favourable surface topography and better thickness uniformity.

  18. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  19. Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2018-02-01

    Full Text Available A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR. The surface and cross-section morphologies, chemical compositions, and phases of as-obtained Al coating before and after LR were analyzed using a scanning electronic microscope (SEM, energy dispersive spectrometer (EDS, and X-ray diffractometer (XRD, respectively, and their hardness was measured using a micro-hardness tester. The friction-wear behaviors of Al coating before and after LR in 3.5% NaCl solution were conducted to simulate the sand and gravel scouring on its surface in seawater, the effects of wear loads and speeds on the tribological properties of Al coating were analyzed, and the wear mechanisms under different wear loads and speeds were also discussed. The results show that the Al coating after LR is primarily composed of an Al phase and its hardness is 104.66 HV, increasing 54.70 HV than the cold sprayed Al coating. The average coefficient of friction (COF of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 0.285, 0.239, and 0.435, respectively, while that after LR is 0.243, 0.227, and 0.327, respectively, decreased by 14.73%, 5.02% and 24.83% compared to the cold sprayed Al coating. The wear rate of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 1.60 × 10−4, 2.36 × 10−4, and 2.40 × 10−4 mm3/m·N, respectively, while that after LR is 1.59 × 10−4, 1.70 × 10−4, and 1.94 × 10–4 mm3/m·N, respectively, decreased by 1%, 32%, and 23%, respectively, indicating that LR has high anti-friction performance. Under the wear load action of 1.0 N, the average COF of laser remelted Al coating at the wear speeds of 300, 400 and 500 times/min is 0.294, 0.279, and 0.239, respectively, and the corresponding wear rate is 1.06 × 10−4, 1.24 × 10−4, and 1.70 × 10−4 mm3/m·N, respectively. The wear mechanism of cold sprayed Al coating is primarily corrosion wear at the loads of 0.5 and 1.0 N, and

  20. The Influence of Cobalt and Rhenium on the Behaviour of MCrAlY Coatings

    OpenAIRE

    Täck, Ulrike

    2009-01-01

    Superalloys are widely applied as materials for components in the hot section of gas turbines. As superalloys have a limited oxidation life, the application of a coating is vital. The most commonly applied coatings in stationary gas turbines are MCrAlY coatings. Since the turbine components are exposed to high cyclic thermal stresses, MCrAlY coatings must also show a high thermal fatigue resistance. In this thesis, the effect of Cobalt and Rhenium on microstructure, oxidation and thermal fati...

  1. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  2. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    Science.gov (United States)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  3. Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates

    International Nuclear Information System (INIS)

    Wüstefeld, Christina; Rafaja, David; Motylenko, Mykhaylo; Ullrich, Christiane; Drehmann, Rico; Grund, Thomas; Lampke, Thomas; Wielage, Bernhard

    2017-01-01

    Cold gas sprayed Al coatings deposited onto wurtzitic AlN substrates show excellent adhesion. As a possible adhesion mechanism, the local heteroepitaxy between Al and AlN was considered and verified experimentally in Al coatings, which were deposited using magnetron sputtering or cold gas spraying on single-crystalline and polycrystalline AlN substrates. Analysis of the local orientation relationships at the Al/AlN interfaces revealed that preferentially such lattice planes of Al align parallel with the upright lattice planes of AlN, which possess similar interplanar distances. The matching lattice planes in the Al coatings grew as continuations of the lattice planes in the AlN substrates. In all samples under study, the parallel alignment of the lattice planes {220}_A_l and {110}_A_l_N was found. Additional orientation relationships between Al and AlN arose if parallel lattice planes with similar interplanar spacing could be found in both counterparts via rotation of the lattice planes {220}_A_l around their normal direction. Still, the oriented growth of Al on AlN is only possible if Al atoms in the deposited coatings are mobile enough to rearrange along the AlN surface. Whereas the mobility of Al atoms in a magnetron sputtering process is expected to be sufficiently high, the intrinsic mobility of Al atoms in the cold gas sprayed particles is anticipated to be low. However, the auxiliary microstructure analyses have shown that local recrystallization and partial melting are two phenomena, which can facilitate the rearrangement of Al atoms within the cold gas sprayed coating.

  4. The influence of nickel coating on the interface of pressureless infiltrated with vibration Al-SiC composites

    Science.gov (United States)

    Elahinejad, Setare; Sharifi, Hassan; Tayebi, Morteza; Rajaee, Ali

    2017-11-01

    The aim of this study was to investigate the effect of nickel coatings on infiltration and interface of SiC reinforced Al-Mg composite. To this end, the pressureless infiltration procedure with vibration applied to produce composites with uncoated and nickel coated reinforcements at two temperatures of 650 °C and 850 °C. The microstructure of the infiltrated cross section was investigated by optical microscopy, scanning electron microscopy, linear and point analyses. Results indicated that coated ceramic preforms improved infiltration and strong interfaces in both temperatures were achieved. Also uncoated preform infiltrated at a temperature of 650 °C, was not proved to be appropriate and it did not form any interface. In this condition a small gap was found between aluminum matrix and ceramic reinforcement, and no bonding was established between the reinforcement and matrix, however the composite prepared in 850 °C had an acceptable interface and the presence of MgAl2O4 at the interface caused improvement in interface bonding. In addition, in the composite sample with coated reinforcement, the existence of Ni as coating prevented the SiC dissolution in the alloy and there was no sign of carbide formation at the interface. At the interface of produced composite, Al3Ni and Al3Ni2 compounds were formed in the matrix around the reinforcement.

  5. Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments

    International Nuclear Information System (INIS)

    Nikravesh, B.; Ramezanzadeh, B.; Sarabi, A.A.; Kasiriha, S.M.

    2011-01-01

    Research highlights: → The corrosion resistance of the coating was improved using MIO and Al pigments. → The greatest coating corrosion resistance was observed at MIO/Al ratio of 10/90. → The cathodic disbonded area of the coating was decreased using MIO and Al particles. → The lowest disbonded area was observed at MIO/Al ratio of 10/90. → Al particles had high capability of reacting with the OH - ions. - Abstract: The corrosion resistance of an epoxy coating reinforced with different ratios of MIO/Al pigments was studied. The coatings properties were investigated by an electrochemical impedance spectroscopy (EIS), salt spray test, cathodic disbonding and a scanning electron microscope (SEM). The corrosion resistance of the epoxy coating was improved using MIO (micaceous iron oxide) and Al pigments. The corrosion resistance of the purely Al pigmented coating was considerably greater than the purely MIO pigmented coating. The cathodic disbonded area of coating was decreased using MIO and Al pigments. The decrease in disbonded area was more pronounced in the presence of Al particles.

  6. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses

    International Nuclear Information System (INIS)

    Lin Jianliang; Moore, John J.; Mishra, Brajendra; Pinkas, Malki; Zhang Xuhai; Sproul, William D.

    2009-01-01

    CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 x 10 -7 mm 3 N -1 m -1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.

  7. Improving the osteointegration of Ti6Al4V by zeolite MFI coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Jiao, Yilai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016 (China); Li, Xiaokang [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Guo, Zheng, E-mail: guozheng@fmmu.edu.cn [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-01

    Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M−Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M−Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M−Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis. - Highlights: • Osteointegration is a crucial factor for orthopedic implants. • We coated MFI zeolite on Ti6Al4V substrates and investigated the effects in vitro and in vivo. • The MFI coating displayed good biocompatibility and promoted osteogenic differentiation in vitro. • The MFI coating promoted osteointegration and osteogenesis peri-implant in vivo.

  8. Effect of Al added to a NiCrMo alloy on the development of the oxide layer of intermetallic coatings; Efeito do teor de Al adicionado a liga NiCrMo no desenvolvimento dos filmes de oxidos em revestimentos intermetalicos

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, A.S.C.M.; Cangue, F.J.R. [Universidade Federal do Parana (DEM/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica; Clark, E.; Levi, C. [University of California, Santa Barbara, CA (United States)

    2010-07-01

    Components performance in different environment is strongly dependent on oxides that develop on their surfaces. This study analyzed the oxide layer that develops on coatings processed with mixtures of an atomized Hastelloy C alloy with Al powders. Powder mixtures containing 10, 20 and 30wt%Al were deposited on AISI 1020 and AISI304 steel plates. Coatings were subsequently exposed to 850 deg C for two hours in a low PO{sub 2} environment. X-ray diffraction was used to identify the phases that developed in the coating during processing and Raman analysis and Scanning Electron Microscopy were used to characterize the oxide layers. The results showed that coatings processed with the richer Al mixtures, 30wt%Al, which developed NiAl aluminides, reduced the development of {alpha} alumina when processing was done on AISI 304. Coatings processed on AISI 1020 with the three powder mixtures tested developed the different allotropic forms of alumina, as predicted for the tested temperature. (author)

  9. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  10. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    OpenAIRE

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the ph...

  11. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  12. Atomic layer-deposited Al.sub.2./sub.O.sub.3./sub. coatings on NiTi alloy

    Czech Academy of Sciences Publication Activity Database

    Kei, C.C.; Yu, Y.S.; Racek, Jan; Vokoun, David; Šittner, Petr

    2014-01-01

    Roč. 23, č. 7 (2014), s. 2641-2649 ISSN 1059-9495. [International Conference on Shape Memory and Superelastic Technologies (SMST 2013). Praha, 21.05.2013-24.05.2013] R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk(CZ) 7E11058 EU Projects: European Commission(XE) 262806 - SmartNets Institutional support: RVO:68378271 Keywords : ALD * Al 2 O 3 coating * corrosion * NiTi Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.998, year: 2014

  13. Experimental evidence of structural transition at the crystal-amorphous interphase boundary between Al and Al2O3

    International Nuclear Information System (INIS)

    Yang, Z.Q.; He, L.L.; Zhao, S.J.; Ye, H.Q.

    2002-01-01

    High-resolution transmission electron microscopy observations on the structure of the interphase boundary between crystalline Al and amorphous Al 2 O 3 coating reveal that an interfacial melting transition of Al occurs at 833 K, which is distinctly lower than the bulk melting point of Al. The crystalline lattice planes of Al near the interface bend or small segments of crystalline Al deviated from the matrix Al grains are formed. Stand-off dislocations formed at the interphase boundary are also observed. The amorphous Al 2 O 3 coating plays an important role in retaining the evidence for structural transition at high temperature to room temperature, which makes it possible to make experimental observations. (author)

  14. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Weisenburger, Alfons; Jianu, Adrian; Mueller, Georg [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Modified FeCrAl coatings show oxide scale formation when exposed to liquid lead. Black-Right-Pointing-Pointer Formation of thin Al-rich oxide scales is promoted by the presence of Y. Black-Right-Pointing-Pointer FeCrAlY with at least 8 wt.% Al forms thin Al-rich oxide scales. Black-Right-Pointing-Pointer For low Al content, thick multilayer Fe-based oxide scales are found. - Abstract: Modified FeCrAl coatings were studied with respect to their capability to form a thin protective oxide scale in liquid lead environment. They were manufactured by low pressure plasma spraying and GESA surface melting, thereby tuning the Al content. The specimens were exposed for 900 h to liquid lead containing 10{sup -6} and 10{sup -8} wt.% oxygen, respectively, at various temperatures from 400 to 550 Degree-Sign C. Threshold values for an Al content that guarantees the formation of thin protective Al-rich oxide scales are determined, dependent on the respective chromium content, on the presence of yttrium in the modified coating, and on the exposure conditions.

  15. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Energy Technology Data Exchange (ETDEWEB)

    Garratt, E; Wickey, K J; Nandasiri, M I; Moore, A; AlFaify, S; Gao, X [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Smith, R J; Buchanan, T L; Priyantha, W; Kopczyk, M; Gannon, P E [Montana State University, Bozeman, MT, 59717 (United States); Kayani, A, E-mail: asghar.kayani@wmich.ed

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 {sup o}C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  16. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Cheng, Yuxian; Yang, Lanlan; Bao, Zebin; Liu, Li; Zhu, Shenglong; Wang, Fuhui

    2017-01-01

    Highlights: •Hot corrosion of three metallic coatings was investigated. •NiCrAlY coating loses protectiveness against hot corrosion due to scale spallation. •The two nanocrystalline coatings perform better than NiCrAlY in hot corrosion. •Ta oxidation leads to scale pitting and corrosion of the nanocrystalline coating. •Y addition in the nanocrystalline coating reduces such harmful effect of Ta. -- Abstract: Hot corrosion in sulfate salt at 850 °C of three metallic coatings is investigated comparatively. The NiCrAlY coating loses its protectiveness after 200 h corrosion. Its oxide scale spalls off partly and becomes porous as a consequence of basic fluxing. The nanocrystalline coating (SN) performs better than the NiCrAlY one, but its scale is porous as well. Oxidation and/or sulfidation of Ta account for the formation of pores. The yttrium modified nanocrystalline coating (SNY) provides the highest corrosion resistance. Yttrium completely inhibits oxidation and sulfidation of Ta. Its scale is intact and adherent, and exclusively composted of alumina.

  17. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  18. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  19. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  20. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    Science.gov (United States)

    Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218

  1. Development and characterization of AlCrN coated Si3N4 ceramic cutting tool

    International Nuclear Information System (INIS)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B.; Silva, O.M.M.; Sa, F.C.L.

    2010-01-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si 3 N 4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m 1/2 and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  2. Solvothermal coating LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} microspheres with nanoscale Li{sub 2}TiO{sub 3} shell for long lifespan Li-ion battery cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Naiteng; Wu, Hao; Liu, Heng; Zhang, Yun, E-mail: y_zhang@scu.edu.cn

    2016-04-25

    LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (NCA) microspheres covered by a nanoscale Li{sub 2}TiO{sub 3}-based shell were synthesized by a facile strategy based on a solvothermal pre-coating treatment combined with a post-sintering lithiation process. The morphology, structure and composition of the Li{sub 2}TiO{sub 3}-coated NCA samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning scanning electron microscope (SEM) with an energy-dispersive X-ray spectroscope (EDS), and transmission electron microscopy (TEM). Owing to the complete, uniform and nanoscale Li{sub 2}TiO{sub 3} coating shell, the resultant surface-modified NCA microspheres used as Li-ion battery cathode materials manifest remarkably enhanced cycling performances, attaining 94% and 84% capacity retention after 200 and 400 cycles at 0.5 C, respectively, which is much better than the pristine NCA counterpart (60% retention, 200 cycles). More impressively, the surface-modified NCA also shows an intriguing storage stability. After being stored at 30 °C for 50 days, the coated NCA-based cells are subjected to be cycled both at room and elevated temperatures, in which the aged cells can still remain 84% capacity retention after 200 cycles at 25 °C and 77% capacity retention after 200 cycles at 55 °C, respectively. All these results demonstrate that the Li{sub 2}TiO{sub 3}-coated LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} microsphere is a promising cathode material for Li-ion batteries with long lifespan. - Graphical abstract: Nanoscale Li{sub 2}TiO{sub 3}-based shell encapsulated LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (NCA) microspheres are fabricated through a solvothermal pre-coating treatment combined with post-lithiation process. The surface-coated NCA as cathode materials shows a remarkably enhanced cycling performance and storage stability for long lifespan Li-ion batteries. - Highlights: • Li{sub 2}TiO{sub 3} is used as coating

  3. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  4. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  5. Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study

    Science.gov (United States)

    Castañeda, S. I.; Pérez, F. J.

    2018-02-01

    The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.

  6. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  7. Experimental and computer thermodynamics evaluations of an Al-Si-Coating on a quenchable steel

    International Nuclear Information System (INIS)

    Trindade, Vicente Braz

    2017-01-01

    High-strength steels are commonly used in the automobile industry in order to reduce the weight of the vehicles. However, a technical difficulty appears due to the need of hot stamping of the components, which leads to oxidation. Therefore, the application of a coating on the substrate to avoid high-temperature oxidation is used. In this work, experimental analysis and computer thermodynamic calculation were used to describe the phase transformations within an Al-Si coating on a quenchable high strength steel. The Al-Si coating was deposited by hot dipping and its characterization was done using SEM and XRD techniques. Computer thermodynamics calculations were done using the commercial software FactSage using the Calphad methodology. It demonstrated a good relationship between the experimental results and the computer calculations of phase stabilities for the as-deposited condition and after diffusion experiment at 920 deg C for 7 minutes, which simulates the thermal cycle of hot stamping of the quenchable steel used. (author)

  8. Experimental and computer thermodynamics evaluations of an Al-Si-Coating on a quenchable steel

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Vicente Braz, E-mail: vicentebraz@yahoo.com.b [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Engenharia Metalurgica e de Materiais; Christ, Hans-Juergen, E-mail: christ@ifwt.mb.uni-siegen.de [University of Siegen (Germany)

    2017-01-15

    High-strength steels are commonly used in the automobile industry in order to reduce the weight of the vehicles. However, a technical difficulty appears due to the need of hot stamping of the components, which leads to oxidation. Therefore, the application of a coating on the substrate to avoid high-temperature oxidation is used. In this work, experimental analysis and computer thermodynamic calculation were used to describe the phase transformations within an Al-Si coating on a quenchable high strength steel. The Al-Si coating was deposited by hot dipping and its characterization was done using SEM and XRD techniques. Computer thermodynamics calculations were done using the commercial software FactSage using the Calphad methodology. It demonstrated a good relationship between the experimental results and the computer calculations of phase stabilities for the as-deposited condition and after diffusion experiment at 920 deg C for 7 minutes, which simulates the thermal cycle of hot stamping of the quenchable steel used. (author)

  9. Anodization and Optical Appearance of Sputter Deposited Al-Zr Coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    of the anodized layer. The microstructure of the coating is found to influence the appearance of anodized layer owing to the presence of completely or partially dissolved second phases during anodizing process. Oxidation status of the second phase particles in the coatings affected the light absorption......Anodized Al alloy components are extensively used in various applications like architectural, decorative and automobiles for corrosion protection and/or decorative optical appearance. However, tailoring the anodized layer for specific optical appearance is limited due to variation in composition...... and microstructure of the commercial alloys, and even more difficult with recycled alloys. Sputter coating methods promise to control the chemical composition of the Al alloy surfaces and eventually modify the microstructure of the surfaces with heat treatments thus enabling the freedom on the substrate quality...

  10. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Science.gov (United States)

    El Hadad, Amir A.; Peón, Eduardo; García-Galván, Federico R.; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-01

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties. PMID:28772455

  11. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Amir A. El Hadad

    2017-01-01

    Full Text Available The aim of this work was to prepare hydroxyapatite coatings (HAp by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs. Thermogravimetric/Differential Thermal Analyses (TG/DTA and X-ray Diffraction (XRD have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM. The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF applying Inductively Coupled Plasma (ICP spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS. The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  12. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Min-Suck [Hyundai Hysco Co., Ltd, Ulsan (Korea, Republic of); Kang, Chung-Yun [Pusan National University, Busan (Korea, Republic of)

    2016-01-15

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  13. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    International Nuclear Information System (INIS)

    Kwon, Min-Suck; Kang, Chung-Yun

    2016-01-01

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  14. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte

    Science.gov (United States)

    Ito, Seitaro; Fujiki, Satoshi; Yamada, Takanobu; Aihara, Yuichi; Park, Youngsin; Kim, Tae Young; Baek, Seung-Wook; Lee, Jae-Myung; Doo, Seokgwang; Machida, Nobuya

    2014-02-01

    An all-solid-state lithium-ion battery (ASSB) using non-flammable solid electrolytes is a candidate for a next-generation battery. Although the excellent cycle performance and its high energy density are suggested in the literature, a practical size battery has not been appeared yet. In this paper, we have adopted a sulfide based electrolyte, Li2S-P2S5 (80:20 mol%) to a rocking chair type lithium ion battery. The electrochemical cell consists of a Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 (NCA) cathode, an artificial graphite anode and the sulfide based electrolyte without any organic and inorganic liquids. The cathode charge transfer resistance is significantly reduced by the Li2O-ZrO2 coating. The total cell resistance of the Li2O-ZrO2 (LZO) coated NCA adopted cell is approximately one quarter of non-treated one. A standard type single cell with the nominal capacity of 100 mAh at 25 °C is fabricated by wet printing process, and its capacity retention is approximately 80% at 100 cycles. Also, a 1 Ah class battery was constructed by stacking the single cells, and demonstrated.

  15. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Long [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xin, Li, E-mail: xli@imr.ac.cn [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xinyue; Wang, Xiaolan; Wei, Hua; Zhu, Shenglong; Wang, Fuhui [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-11-15

    Oxidation and interdiffusion behaviors of Ni-based single crystal superalloy DD98M with nominal compositions Ni–5.0Co–6.0Cr–6.3Al–6.0W–2.0Mo–6.0Ta–1.0Ti (in wt.%) and two types of MCrAlY coatings at 1000 °C and 1050 °C were investigated. Complex oxides formed on the surface of DD98M alloy when oxidized at 1000 °C and 1050 °C, which stratified, cracked and spalled. The faceted-like AlN and the particle-like and strip-like TiN formed in the alloy. The application of the NiCrAlY and NiCoCrAlYHfSi coatings greatly improved the oxidation resistance of DD98M alloy. After 500 h oxidation, α-Al{sub 2}O{sub 3} was still the dominate phase in the oxide scales formed on the coated specimens. The adhesion of the oxide scale on the NiCoCrAlYHfSi coating was much better than that on the NiCrAlY coating. Interdiffusion occurred between the coatings and the substrate, which led to the formation of the IDZ and SRZ. The IDZ of the NiCrAlY coated specimen was composed of γ phase and Al- and Ta-rich γ′ phase. The γ′ phase in the IDZ accommodated most of the inward diffusing aluminum, so the SRZ formation was suppressed when oxidized at 1050 °C. However the formation of SRZ with μ-TCP still occurred when oxidized at 1000 °C probably due to the low solubility and slow diffusion rate of the alloying elements at lower temperature. The IDZ of the NiCoCrAlYHfSi coated specimen was a single γ phase. A large amount of μ-TCP precipitated in the SRZ of the NiCoCrAlYHfSi coated specimen when oxidized at 1000 °C and 1050 °C. It can be concluded coating composition has a significant effect on the development of the IDZ and SRZ. Thermal exposure temperature also has influences on the formation of the SRZ. The mechanism of SRZ formation and TCP precipitation are discussed. - Graphical abstract: The TEM micrograph of the IDZ and SRZ of the NiCoCrAlYHfSi-coated specimen oxidized at 1050 °C for 100 h and the respective diffraction patterns of the needle-like and the

  16. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  17. Oxidation behaviors of the TiNi/Ti_2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    International Nuclear Information System (INIS)

    Lv, Y.H.; Li, J.; Tao, Y.F.; Hu, L.F.

    2016-01-01

    The TiNi/Ti_2Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti_2Ni as the matrix and TiC/TiB_2/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB_2 and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm"−"2 h"−"1 in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg"2 cm"−"4 h"−"1 in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm"−"2, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO_2, Al_2O_3, and a small amount of NiO, Cr_2O_3 and SiO_2. Moreover, Ta_2O_5 was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser cladding. • Effect of TaC addition on microstructural evolution of the coatings was

  18. Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS

    Science.gov (United States)

    Han, Yujun; Chen, Hongfei; Gao, Dong; Yang, Guang; Liu, Bin; Chu, Yajie; Fan, Jinkai; Gao, Yanfeng

    2017-12-01

    The chemical composition of NiCoCrAlHfYSi with a suitable particle size, deposited using an activated combustion-high velocity air fuel (AC-HVAF) spray, is a potentially promising process because dense, continuous and pure alumina can be formed on the surface of the MCrAlY metallic coatings after isothermal oxidation exposure. The NiCoCrAlHfYSi (Amdry386) and NiCoCrAlTaY (Amdry997) coatings were produced using AC-HVAF and APS, respectively. Isothermal oxidation was subsequently conducted at 1050 °C in air for 200 h. This paper compares the characteristics of four coated samples, including the surface roughness, elastic modulus, hardness, oxide content, microstructural characteristics and phase evolution of thermally grown oxides (TGO). The growth of both the TGO and alumina scales in the TGO of the HVAF386 coating was relatively rapid. The θ- to α-alumina phase transformation was strongly determined by the Hf and Si dopants in the HVAF386 coating. Finally, the extent of grain refinement and deformation storage energy in the HVAF997 coatings were determined to be significantly crucial for the θ- to α-alumina phase transformation.

  19. Effect of Al-Si Coating on Weld Microstructure and Properties of 22MnB5 Steel Joints for Hot Stamping

    Science.gov (United States)

    Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua

    2018-03-01

    22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.

  20. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  1. Production of AlN films: ion nitriding versus PVD coating

    International Nuclear Information System (INIS)

    Figueroa, U.; Salas, O.; Oseguera, J.

    2004-01-01

    The properties of AlN render this material very attractive for optical, electronic, and tribological applications; thus, a great interest exists for the production of thin AlN films on a variety of substrates. Many methods have been developed for this purpose where two processes stand out: plasma-assisted nitriding (PAN) and PVD coating. In the present paper, we compare the processing advantages and disadvantages of both methods in terms of the characteristics of the layers formed. AlN production by ion nitriding is very sensitive to presputtering cleaning and working pressure. Layers several micrometers thick can be produced in a few hours, which are formed by a fine mixture of Al+AlN. The surface morphology of the layers is rather rough. On the other hand, formation of PVD AlN coatings by DC reactive magnetron sputtering is more readily performed and better controlled than in ion nitriding. PVD results in macroscopically smoother AlN films and with similar thickness than the ion nitrided layers but produced in shorter processing times. The morphology of the PVD AlN layers is columnar with a fairly flat surface. Mechanisms for the formation of both types of AlN layers are proposed. One of the main differences between the two processes that explain the different AlN layer morphologies is the energy of the particles that arrive at the substrate. Considering only the processing advantages and the morphology of the AlN layers formed, PVD performs better than PAN processing

  2. Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings

    Science.gov (United States)

    Feng, Changjie; Hu, Shuilian; Jiang, Yuanfei; Wu, Namei; Li, Mingsheng; Xin, Li; Zhu, Shenglong; Wang, Fuhui

    2014-11-01

    TiAlN/Si3N4-Cu nanocomposite coatings of various Si content (0-5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H3/E2 ratio is proportional to the film resistance to plastic deformation. The H3/E2 ratio of the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si3N4-Cu nanocomposite coating containing 3.39 at.% Si content. In addition, the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content also has good adhesion property and superior wear resistance, and the wear mechanism is mainly adhesion wear.

  3. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  4. Pengaruh komposisi komposit al2o3/ysz dan variasi feed rate terhadap ketahanan termal dan kekuatan lekat pada Ysz-al2o3/ysz double layer tbc

    Directory of Open Access Journals (Sweden)

    Parindra Kusriantoko

    2014-03-01

    Full Text Available TBC (Thermal Barrier Coating dengan YSZ-Al2O3/YSZ top coat (TCdan MCrAlY sebagai bond coat (BC yang selanjutnya disebut sebagai YSZ-Al2O3/YSZ double layer TBC dibuat dengan menggunakan metode flame spray.Hasil pelapisan sebelum dan sesudah diuji termal dikarakterisasi menggunakan SEM, EDX dan XRD.Dari hasil penelitian didapatkan bahwa semakin tinggi powder feed rate akan berpengaruh pada morfologi permukaan lapisan. Feed rate makin rendah menyebabkan struktur yang cenderung kasar dan tidak padat dan cenderung berporos. Lapisan komposit Al2O3/YSZ juga sangat berpengaruh pada pertumbuhan TGO (Thermally Grown Oxide setelah dilakukan uji termal, dimana komposisi paling bagus dengan pertumbuhan TGO paling rendah adalah 15%Al2O3/8YSZ. Hasil pengujian TGA menunjukkan semua sampel mulai teroksidasi pada temperatur 1000-1030oC dan didapatkan sampel paling stabil adalah 15% Al2O3/8YSZ 14 dan 20 gr/min. Dari pengujian XRD sampel yang memiliki fasa yang paling stabil adalah 15%Al2O3/8YSZ dengan fasa t-ZrO2 dan m-ZrO2. Dari pengujian Thermal Torch dan Pull Off komposisi 15%Al2O3/8YSZjuga memiliki ketahanan terhadap pengerusakan yang paling baik dan kelekatan yang baik sebesar 10 MPa.

  5. Effect of different B contents on the mechanical properties and cyclic oxidation behaviour of β-NiAlDy coatings

    International Nuclear Information System (INIS)

    Jia, Fang; Peng, Hui; Zheng, Lei; Guo, Hongbo; Gong, Shengkai; Xu, Huibin

    2015-01-01

    Highlights: • Dy and B co-doping strategy was proposed to modify β-NiAl coatings. • Mechanical properties and cyclic oxidation behaviour of coatings were investigated. • The addition of boron improves the mechanical properties of β-NiAl coatings. • Cyclic oxidation behaviour of coatings is influenced by chemical reactions of boron. - Abstract: NiAlDy coatings doped with 0.05 at.% and 1.00 at.% B were produced by electron beam physical vapour deposition (EB-PVD). The mechanical properties and cyclic oxidation behaviour of the coatings were investigated. Compared to the undoped NiAlDy coating, the B doped coatings exhibited improved ductility, higher micro-hardness and elastic modulus. The NiAlDy alloys revealed similar thermal expansion behaviour in a temperature range of 200–1100 °C. However, the addition of B did not show significant improvement in the cyclic oxidation resistance of NiAlDy coatings, on the contrary, the addition of 1.00 at.% B accelerated the scale growth rate and aggravated the scale rumpling, which led to severe spallation. Related mechanisms were preliminarily discussed

  6. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    Science.gov (United States)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  7. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    Science.gov (United States)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  8. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    Science.gov (United States)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  9. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V

    International Nuclear Information System (INIS)

    Yang Yuling; Serpersu, Kaan; He Wei; Paital, Sameer R.; Dahotre, Narendra B.

    2011-01-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO 2 -HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO 3 , Ca 3 (PO 4 ) 2 , and Ca 2 SiO 4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO 2 -HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO 2 -HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO 2 -HA samples presented a slightly improved cellular interaction due to the addition of SiO 2 . The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO 2 -HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: → Laser cladding of Ti alloys with bioceramics creates new phases. → Laser cladded samples with SiO 2 -doped

  10. Development of AL_2O_3 - ZrO_2 ceramic composite reinforced with rare earth oxides (Y_2O)3) for inert coating of storage and transport systems of crude petroleum

    International Nuclear Information System (INIS)

    Silva, J.C.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.; Albuquerque, L.T.

    2014-01-01

    The advancement of the oil sector has generated the need for the use of materials resistant to aggressive environments to oil. Although ceramics have high melting point and high hardness is, on the other hand, more fragile and less tough, which can cause damage to the metal structure. The Al_2O_3 based ceramics reinforced with rare earth oxide can improve tenaciousness and makes the ceramic material more resistant. This article aims to present the production of composite Al_2O_3 - Y_2O_3 stabilized ZrO_2 by uniaxial pressing, following sintering (1200-1350 deg C). Structural and microstructural characterizations as XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) and mechanical tests as Vickers hardness, % absorption and % linear shrinkage were conducted to evaluate the feasibility of using the composite and ceramic coating for storage and transportation of oil tanks. The results indicate that the proportions of 5%, 10% and 30% ZrO_2 make it suitable as a good composite suitable coating. (author)

  11. Spallation of oxide scales from NiCrAlY overlay coatings

    International Nuclear Information System (INIS)

    Strawbridge, A.; Evans, H.E.; Ponton, C.B.

    1997-01-01

    A common method of protecting superalloys from aggressive environments at high temperatures is by plasma spraying MCrAlY (M = Fe, Ni and/or Co) to form an overlay coating. Oxidation resistance is then conferred through the development of an alumina layer. However, the use of such coatings is limited at temperatures above about 1100 C due to rapid failure of the protective oxide scales. In this study, the oxidation behaviour of air-plasma-sprayed NiCrAlY coatings has been investigated at 1200 C in 1 atm air. A protective alumina layer develops during the early stages, but breakaway oxidation occurs after prolonged exposure. The results suggest that the critical temperature drop to initiate failure is inversely proportional to the scale thickness, and an analytical model is put forward to explain this behaviour. Local surface curvature of the coating can lead to delamination within the oxide during cooling and it is shown that the largest individual pore in a spall region is the critical flaw for oxide fracture. (orig.)

  12. Modification of Ti6Al4V implant surfaces by biocompatible TiO{sub 2}/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Giovanardi, Roberto; Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena (Italy)

    2017-05-01

    Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO{sub 2} matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20 wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E{sub corr}) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). - Highlights: • Bioactive TiO{sub 2}/PCL hybrid coatings on Ti6Al4V were prepared via sol-gel dip coating. • Hybrid coatings are crack-free but when 50 wt% PCL was added, uncoated areas appear. • Coating hardness and elastic modulus decrease as the PCL percentage

  13. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245 (Indonesia); Sugianto,; Maddu, A. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Institute of Culture, IPB Bogor (Indonesia)

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  14. Surface and interface analysis of PVD Al-O-N and {gamma}-Al{sub 2}O{sub 3} diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, R.; Witthaut, M.; Reichert, K.; Neuschuetz, D. [Technische Hochschule Aachen (Germany). Lehrstuhl fuer Metallurgie der Kernbrennstoffe und Theoretische Huettenkunde

    1999-10-01

    The suitability of PVD films of {gamma}-Al{sub 2}O{sub 3} and of ternary Al-O-N as diffusion barriers between a nickel based superalloy CMSX-4 and NiCoCrAlY for a possible application in gas turbines was investigated. Therefore, an Al{sub 2}O{sub 3} film and, alternatively, an Al-O-N film were deposited on CMSX-4 at 100 C substrate temperature by means of reactive magnetron sputtering ion plating (MSIP). After characterization of composition and structure of the films by X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (XRD), a NiCoCrAlY coating was deposited onto the diffusion barriers and, for comparison, directly onto CMSX-4 by MSIP as well. The composites were annealed for 4 h at 1100 C under inert atmosphere. Wavelength dispersive X-ray (WDX) element mappings and line-scans of the cross-sectional cut served to evaluate the suitability of the films as diffusion barriers. After detachment of the coatings from the substrate, the phase stabilities of the two metastable phases {gamma}-Al{sub 2}O{sub 3} and Al-O-N were determined by means of grazing incidence XRD. Without a diffusion barrier, enhanced interdiffusion was observed. Analyses of the composite with the {gamma}-Al{sub 2}O{sub 3} interlayer revealed diffusion of Ti and Ta from the substrate into the NiCoCrAlY coating. No interdiffusion of Ni, Ti, Ta, and Cr could be detected in case of the ternary Al-O-N film. Whereas the ternary Al-O-N film remained in the as-deposited X-ray amorphous structure after annealing, a phase change from the {gamma} to the {alpha} modification could be observed in case of the Al{sub 2}O{sub 3} film, presumably responsible for its lower efficiency as a diffusion barrier. (orig.)

  15. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  16. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    Directory of Open Access Journals (Sweden)

    Reza H Oskouei

    2016-02-01

    Full Text Available In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

  17. Promoting a-Al2O3 layer growth upon high temperature oxidation of NiCoCrAlY alloys

    NARCIS (Netherlands)

    Nijdam, T.J.

    2005-01-01

    The turbine blades in gas turbine engines need to be protected against high temperature oxidation and corrosion with a coating system. This coating system comprises of a Ni-based superalloy substrate, a NiCoCrAlY bond coating (BC) and an insulating ceramic thermal barrier coating (TBC). Good

  18. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Science.gov (United States)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-02-01

    A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  19. Interdiffusion between Ni-based superalloy and MCrAlY coating

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2006-01-01

    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875oC, 925oC or 950oC. Modelled results using the finite difference...

  20. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  1. Influence of yttrium on microstructure and properties of Ni–Al alloy coatings prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Cun-shan Wang

    2014-03-01

    Full Text Available Ni–Al alloy coatings with different Y additions are prepared on 45# medium steel by laser cladding. The influence of Y contents on the microstructure and properties of Ni–Al alloy coatings is investigated using X-ray diffraction, scanning electron microscopy, electron probe microanalyzer, Vickers hardness tester, friction wear testing machine, and thermal analyzer. The results show that the cladding layers are mainly composed of NiAl dendrites, and the dendrites are gradually refined with the increase in Y additions. The purification effect of Y can effectively prevent Al2O3 oxide from forming. However, when the atomic percent of Y addition exceeds 1.5%, the extra Y addition will react with O to form Y2O3 oxide, even to form Al5Y3O12 oxide, depending on the amount of Y added. The Y addition in a range of 1.5–3.5 at.% reduces the hardness and anti-attrition of cladding layer, but improves obviously its wear and oxidation resistances.

  2. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    Science.gov (United States)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated

  3. Enhanced Fluoride Over-Coated Al Mirrors for FUV Astronomy

    Science.gov (United States)

    Quijada, Manuel A.; DelHoyo, Javier; Rice, Steve; Threat, Felix

    2014-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives for dielectric coatings at FUV wavelengths.

  4. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  5. Anti-scratch AlMgB14 Gorilla® Glass coating

    Science.gov (United States)

    Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.

    2017-10-01

    Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.

  6. Erosion-corrosion and surface protection of A356 Al/ZrO2 composites produced by vortex and squeeze casting

    International Nuclear Information System (INIS)

    El-Khair, M.T. Abou; Aal, A. Abdel

    2007-01-01

    Erosive-corrosive wear behavior of Al-Si-Mg (A356 Al) alloy and its composite reinforced by ZrO 2 and produced by vortex and squeeze techniques has been studied in water containing 40% sand slurry. The worn surfaces of investigated alloys have been studied and the mechanism of material removal from the specimen surface was examined to be associated with number of subsequent and repetitive stages. The possibility of Ni coating for Al composites by electrochemical deposition is investigated. The surface layer was characterized by microhardness measurements, optical microscope, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) analysis. The electrochemical results obtained from polarization studies for Ni-coated, A356 Al alloy and composites in 3.5% sodium chloride solution indicated higher protection exhibited by Ni coatings due to the nickel properties. The squeezed cast composite is characterized by high corrosion and wear resistance comparing the composite produced by vortex process. This study revealed that the Ni-coated materials provide higher abrasive resistance and therefore a longer service life compared to A356 Al-ZrO 2

  7. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  8. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  9. Electronically Conductive Sb-doped SnO_2 Nanoparticles Coated LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries

    International Nuclear Information System (INIS)

    He, Xiaoshu; Du, Chunyu; Shen, Bin; Chen, Cheng; Xu, Xing; Wang, Yajing; Zuo, Pengjian; Ma, Yulin; Cheng, Xinqun; Yin, Geping

    2017-01-01

    Highlights: • Conductive Sb-doped SnO_2 (ATO) is coated on LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 material. • The wet chemical process leads to homogeneous ATO coating layer. • The coated sample exhibits excellent rate capability and cyclic stability. • The capacity retention after 200 cycles at 60 °C increases by 20.81%. • The ATO coating restrains the cation disordering and SEI growth during cycling. - Abstract: The LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) cathode material is modified by electronically conductive antimony-doped tin oxide (ATO) nanoparticles via a facile wet chemical process. As observed by scanning and transmission electron microscopy, the ATO nanoparticles are homogeneously coated on the surface of NCA material. Thus-obtained ATO-coated NCA (ATO-NCA) material delivers a high discharge capacity of 145 mAh g"−"1 at the current rate of 5C, which is significantly higher than that of pristine NCA material (135 mAh g"−"1). Moreover, the capacity retention of ATO-NCA material is 91.70% after 200 cycles at the current rate of 1C and 60 °C. In contrast, the pristine NCA only maintains 70.89% of its initial capacity after the same cycles. The substantially improved cyclability and rate capability are mainly attributed to the ATO coating layer, which can not only enhance the electron transport but also effectively restrain the side reactions between the NCA material and the electrolyte. More specifically, X-ray diffraction and photoelectron spectroscopy reveal that the ATO coating layer can restrain the Li"+/Ni"2"+ disordering and the growth of SEI layer of NCA material, which are responsible for the improved cycling stability, especially at elevated temperatures.

  10. Preparation and performance characterization of AlF{sub 3} as interface stabilizer coated Li{sub 1.24}Ni{sub 0.12}Co{sub 0.12}Mn{sub 0.56}O{sub 2} cathode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Lu, Zhongpei; Wu, Manman; Liu, Cong; Ji, Hongmei; Yang, Gang, E-mail: gyang@cslg.edu.cn

    2017-06-01

    Highlights: • AlF{sub 3} coated LNCM synthesized by self-propagating combustion method. • F element of AlF{sub 3} has weak interaction with LNCM to form stable coating layer. • AlF{sub 3} layer promotes the stability and lithium diffusion ability of LNCM. • LNCM@2(*)%AlF{sub 3} operated at 20 mA g{sup −1} delivers 223 mAh g{sup −1} at the 60th cycle. • LNCM@2%AlF{sub 3} operated at 55 °C delivers 219 mAh g{sup −1} at the 50th cycle. - Abstract: Li{sub 1.24}Ni{sub 0.12}Co{sub 0.12}Mn{sub 0.56}O{sub 2} (LNCM) with high specific capacity is a potential cathode for commercial lithium-ion batteries (LIBs). To improve the high-rate capacity and cyclic stability, LNCM sample is successfully coated by minor AlF{sub 3}. The crystal structure and electrochemical properties of the bare and coated samples are investigated by X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM, TEM), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), and charge/discharge measurements. The coating layer AlF{sub 3} efficiently plays a positive role in enhancing rate performance and cyclic stability of LNCM. At 0.5 A g{sup −1}, the specific discharge capacity of LNCM@2%AlF{sub 3} is 149 mAh g{sup −1} much higher than 35 mAh g{sup −1} in bare LNCM. At 20 mA g{sup −1}, the specific discharge capacity of LNCM@2%AlF{sub 3} is 223 mAh g{sup −1} at the 60th cycle in comparison with 203 mAh g{sup −1} in bare LNCM. Moreover, a proper AlF{sub 3} coating layer efficiently ensures the stability of LNCM cathode operated at higher temperature. LNCM@2%AlF{sub 3} operated at 55 °C remains 219 mAh g{sup −1} at the 50th cycle, much higher than bare LNCM only remains 99 mAh g{sup −1} at the 40th cycle.

  11. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    López, M.M. Machado, E-mail: machadolopez23@gmail.com [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico); Fauré, J. [Laboratoire Ingénierie et Sciences des Matériaux (LISM EA 4695) - Université de Reims Champagne-Ardenne, 21 rue Clément Ader, Reims, BP 138 Cedex 02, 51685 France (France); Cabrera, M.I. Espitia [Facultad de ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “D”, C.P. 58000, Morelia, Michoacán, México (Mexico); García, M.E. Contreras, E-mail: eucontre@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico)

    2016-04-15

    Graphical abstract: - Highlights: • Bioglass 45S5 nanostructured films were obtained by colloidal electrophoretic deposition (CEDP) method, proposed in this work, on Ti6Al4 V substrates. • Ti6Al4 V corrosion resistance in Hank's solution was increased with bioglass 45S5 coating. • Crystalline phases of 45S5 bioglass xerogels were obtained and characterized by XRD. • The model of chemical anchoring between Ti6Al4 V and bioglass 45S5 is proposed. - Abstract: In the present work, 45S5 bioglass coatings were deposited on the Ti6Al4 V alloy substrate through the cathodic colloidal electrophoretic deposition process (CEDP) proposed in this work. The coatings were thermally treated at temperatures of 500, 600, 700, and 800 °C for 2 h, and their structure was characterized by FESEM and DRX. Nanostructure and phase evolution of the coatings and xerogels was followed as a function of temperature. The corrosion resistance of the Ti6Al4 V alloy and the 45S5/Ti6Al4 V coating was studied by means of Tafel extrapolation in Hank's solution, at 37 °C, simulating the conditions inside the mouth. The 45S5 bioglass coatings displayed an amorphous nanostructure at lower temperatures, and partial crystallization at higher temperatures. An increase in the corrosion resistance was observed in the 45S5/Ti6l4 V coating treated at 700 °C because it reduced the i{sub corr}, and there was a change in the E{sub corr} towards more noble values. A model of the chemical anchorage of the 45S5 bioglass coating on Ti6Al4 V was proposed.

  12. Aging effect of AlF3 coatings for 193 nm lithography

    Science.gov (United States)

    Zhao, Jia; Wang, Lin; Zhang, Weili; Yi, Kui; Shao, Jianda

    2018-02-01

    As important part of components for 193 nm lithography, AlF3 coatings deposited by resistive heating method acquire advantages like lower optical loss and higher laser damage threshold, but they also possess some disadvantages like worse stability, which is what aging effect focuses on. AlF3 single-layer coatings were deposited; optical property, surface morphology and roughness, and composition were characterized in different periods. Owing to aging effect, refractive index and extinction coefficient increased; larger and larger roughness caused more and more scattering loss, which was in the same order with absorption at 193.4 nm and part of optical loss; from composition analysis, proportional substitution of AlF3 by alumina may account for changes in refractive index as well as absorption.

  13. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  14. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-03-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  15. Hydrothermal-precipitation preparation of CdS@(Er3+:Y3Al5O12/ZrO2) coated composite and sonocatalytic degradation of caffeine.

    Science.gov (United States)

    Huang, Yingying; Wang, Guowei; Zhang, Hongbo; Li, Guanshu; Fang, Dawei; Wang, Jun; Song, Youtao

    2017-07-01

    Here, we reported a novel method to dispose caffeine by means of ultrasound irradiation combinated with CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) coated composite as sonocatalyst. The CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) was synthesized via hydrothermal-precipitation method and then characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and UV-vis diffuse reflectance spectra (DRS). After that, the sonocatalytic degradation of caffeine in aqueous solution was conducted adopting CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) and CdS@ZrO 2 coated composites as sonocatalysts. In addition, some influencing factors such as CdS and ZrO 2 molar proportion, caffeine concentration, ultrasonic irradiation time, sonocatalyst dosage and addition of several inorganic oxidants on sonocatalytic degradation of caffeine were investigated by using UV-vis spectra and gas chromatograph. The experimental results showed that the presence of Er 3+ :Y 3 Al 5 O 12 could effectively improve the sonocatalytic degradation activity of CdS@ZrO 2 . To a certain extent some inorganic oxidants can also enhance sonocatalytic degradation of caffeine in the presence of CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ). The best sonocatalytic degradation ratio (94.00%) of caffeine could be obtained when the conditions of 5.00mg/L caffeine, 1.00g/L prepared CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ), 10.00mmol/LK 2 S 2 O 8 , 180min ultrasonic irradiation (40kHz frequency and 50W output power), 100mL total volume and 25-28°C temperature were adopted. It seems that the method of sonocatalytic degradation caused by CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) displayspotentialadvantages in disposing caffeine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of nano-CeO2 on microstructure properties of TiC/TiN+nTi(CN) reinforced composite coating

    International Nuclear Information System (INIS)

    Jianing, Li; Chuanzhong, Chen; Cuifang, Zhang

    2012-01-01

    TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti-6Al-4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO 2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO 2 , this coating exhibited fine microstructure. In this study, the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coating consisted of Ti 3 Al, TiC, TiN, Ti 2 Al 20 Ce, TiC 0.3 N 0.7 , Ce(CN) 3 and CeO 2 , this phase constituent was beneficial to increase the microhardness and wear resistance of Ti-6Al-6V alloy. (author)

  17. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  18. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  19. Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2017-11-01

    Full Text Available Tribological phenomena and tool wear mechanisms during machining of hard-to-cut TiAl6V4 aerospace alloy have been investigated in detail. Since cutting tool wear is directly affected by tribological phenomena occurring between the surfaces of the workpiece and the cutting tool, the performance of the cutting tool is strongly associated with the conditions of the machining process. The present work shows the effect of different machining conditions on the tribological and wear performance of TiB2-coated cutting tools compared to uncoated carbide tools. FEM modeling of the temperature profile on the friction surface was performed for wet machining conditions under varying cutting parameters. Comprehensive characterization of the TiB2 coated vs. uncoated cutting tool wear performance was made using optical 3D imaging, SEM/EDX and XPS methods respectively. The results obtained were linked to the FEM modeling. The studies carried out show that during machining of the TiAl6V4 alloy, the efficiency of the TiB2 coating application for carbide cutting tools strongly depends on cutting conditions. The TiB2 coating is very efficient under roughing at low speeds (with strong buildup edge formation. In contrast, it shows similar wear performance to the uncoated tool under finishing operations at higher cutting speeds when cratering wear predominates.

  20. Corrosion prevention of the rail by thermal spray coating of Zn-Al alloy; Zn-Al gokin yosha hifuku ni yoru reru no boshoku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, S. [Nippon Steel Corp., Kitakyushu (Japan)] Urashima, C. [Kyushu Techno Research Corp., Fukuoka (Japan); Itai, K. [Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works; Ichiriki, T.; Nishiki, M. [Kyushu Rail way comdany, Fukuoka (Japan)

    1997-03-30

    Replacement of the rail in under-sea tunnel such as the Kammon Tunnel is carried out very five years because of the severe corrosion caused by the humid state due to the leakage of sea water or the mist of sea water swept up by the passing trains. In this study, salt water spraying or sea water spraying test is carried out using Zn-Al alloy with the corrosion resistance and thermal spray efficiency even higher than those of Zn or Al. A rail coated by thermal spray of Zn-15mass%Al alloy has been laid by trial in the practical rail road of Kammon Tunnel for 5 years and 3 months, the deterioration degree of the coating, pitting depth, actual fatigue strength, etc. are evaluated. Further, these factors of a rail re-coated by Zincrich Primer+Tar Epoxy and a bare rail laid at the same time are evaluated for comparison. It is presumed by the results of the examination about the service life of a rail coated by the thermal spray of Zn-Al alloy based on the pitting depth in the rail base that the service life of such coated rail is more than twice as that of the bare rails used currently. 5 refs., 14 figs., 3 tabs.

  1. A contribution to understanding the results of instrumented indentation on thermal spray coatings - Case study on Al2O3 and stainless steel

    Czech Academy of Sciences Publication Activity Database

    Nohava, J.; Mušálek, Radek; Matějíček, Jiří; Vilémová, Monika

    2014-01-01

    Roč. 240, February (2014), s. 243-249 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Instrumented indentation * Al2O3 * Stainless steel * Scale effect Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.998, year: 2014 http://www.sciencedirect.com/science/article/pii/S0257897213011869#

  2. Oxidation behaviors of the TiNi/Ti{sub 2}Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y.H.; Li, J., E-mail: jacob_lijun@sina.com; Tao, Y.F.; Hu, L.F.

    2016-09-15

    The TiNi/Ti{sub 2}Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti{sub 2}Ni as the matrix and TiC/TiB{sub 2}/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB{sub 2} and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm{sup −2} h{sup −1} in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg{sup 2} cm{sup −4} h{sup −1} in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm{sup −2}, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO{sub 2}, Al{sub 2}O{sub 3}, and a small amount of NiO, Cr{sub 2}O{sub 3} and SiO{sub 2}. Moreover, Ta{sub 2}O{sub 5} was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser

  3. Osteoblast interaction with laser cladded HA and SiO{sub 2}-HA coatings on Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yuling [Department of Physics, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Serpersu, Kaan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); He Wei, E-mail: whe5@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Paital, Sameer R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Dahotre, Narendra B. [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207 (United States)

    2011-12-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO{sub 2}-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, and Ca{sub 2}SiO{sub 4} phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO{sub 2}-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO{sub 2}-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO{sub 2}-HA samples presented a slightly improved cellular interaction due to the addition of SiO{sub 2}. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO{sub 2}-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: {yields} Laser cladding of Ti alloys with bioceramics creates new

  4. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  5. Phase transitions in complex oxide systems based on Al2O3 and ZrO2

    International Nuclear Information System (INIS)

    Gorski, L.

    1999-01-01

    Different compositions of materials based on Al 2 O 3 and ZrO 2 and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al 2 O 3 containing aluminium titanate and coatings based on ZrO 2 stabilised by 7-8% of Y 2 O 3 . (author)

  6. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  7. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  8. A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying

    2009-12-31

    An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al

  9. Influence of the nitriding and TiAlN/TiN coating thickness in the mechanical properties of a duplex treated H13 steel

    International Nuclear Information System (INIS)

    Torres, Ricardo D.; Soares, Paulo; Suzuki, Luciane Y.; Lepienski, Carlos M.

    2010-01-01

    AISI H13 die steel substrates were low pressure gas nitrided in three different nitriding cases. In the nitriding case A, the surface hardness was around 12 GPa and the nitriding thickness was around 40 μm. In the nitriding case B, the hardness was the same as in case A, but the nitriding thickness was around 70 μm. Finally, in the nitriding case C, the nitriding thickness was the same as in case B, but hardness profile showed a different behavior. In case C, the surface hardness was the same as case A and B. But the hardness increases as one move away from the surface showing the highest hardness at 15 "m from the sample surface. The XRD results showed that the nitriding cases microstructure is composed mainly by the diffusion layer with small amount of Cr_2N precipitates. These nitrided samples were subsequently coated with TiAlN using cathodic arc evaporation in two thicknesses of 3 and 7 μm. These samples were characterized with respect to phase chemistry, adhesion, hardness, elastic modulus and scratch tests. The phase chemistry determined through XRD revealed that coating was mostly Ti_0_._7Al_0_._3N with some peaks of TiN which comes from the adhesion layer that was deposited prior to the deposition of TiAlN. The instrumented hardness performed in the coated samples showed that the coating system hardness changes with the nitriding cases when the coating thickness is 3 μm. On the other hand, the nitriding characteristics do not influence the coating hardness with thickness of 7 μm. In addition, the 7 μm thick coating is harder than the 3 μm thick coating. In the last part of this work, TiAlN was deposited in the AISI H13 substrate without nitriding; it was found that the hardness in this condition is higher than the nitrided/coated samples. The worn area, probed by the scratch test, was smaller for the TiAlN deposited over AISI H13 without the nitriding layer. (author)

  10. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  11. Controllable synthesis and field emission enhancement of Al{sub 2}O{sub 3} coated In{sub 2}O{sub 3} core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Li Yawei; Yu Ke; Zhu Ziqiang, E-mail: yk5188@263.net [Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2011-03-16

    Four types of indium oxide (In{sub 2}O{sub 3}) nanostructures were synthesized on Au-catalysed silicon substrate via a VLS method. A rod-like In{sub 2}O{sub 3} nanostructure was chosen to fabricate In{sub 2}O{sub 3}-Al{sub 2}O{sub 3} core-shell nanostructures with different shell thicknesses via a two-step method. Core-shell nanostructures with shell thickness of 30 nm are reprocessed by annealing and H{sub 2} plasma treating. Field emission (FE) properties of all the samples were measured and compared. It is found that Al{sub 2}O{sub 3} coatings remarkably decrease the effective work function and improve the FE capabilities of In{sub 2}O{sub 3} nanostructures (turn-on field decreases from 1.34 to 1.26 V {mu}m{sup -1}, threshold field decreases from 3.60 to 2.64 V {mu}m{sup -1}). Annealing and H{sub 2} plasma treating can promote the improvement even further (turn-on field 1.23 V {mu}m{sup -1}, 1.21 V {mu}m{sup -1} and threshold field 2.50 V {mu}m{sup -1}, 2.14 V {mu}m{sup -1}, respectively). The FE enhancement is attributed to the electron accumulation in the insulating Al{sub 2}O{sub 3} nanostructure and the electron redistribution at the heterojunction.

  12. Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr,Al)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bagcivan, N.; Bobzin, K. [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany); Grundmeier, G.; Wiesing, M.; Ozcan, O.; Kunze, C. [University of Paderborn, Technical and Macromolecular Chemistry, Warburger Str. 100, D-33098 Paderborn (Germany); Brugnara, R.H., E-mail: brugnara@iot.rwth-aachen.de [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany)

    2013-12-31

    During the production of plastic products by injection molding processes adhesion and abrasion wear as well as corrosion take place in the molding tools. Concerning this, (Cr,Al)N coatings deposited via physical vapor deposition (PVD) have a good potential to be used as protective coatings on injection tools. For an effective protection of coated tools a uniform layer of coating material is also required. In this regard, the HPPMS (high power pulse magnetron sputtering) technology offers possibilities to improve coating thickness uniformity as well as to adapt the chemical and mechanical properties. The present work deals with the investigation of influence of HPPMS pulse length and the argon/krypton ratio in the deposition process on (Cr,Al)N coating properties. For this reason, (Cr,Al)N coatings were deposited with HPPMS pulse length of 40, 80 and 200 μs at constant Ar/Kr ratio (120/80 sccm). The results were compared with a coating deposited with DC Magnetron Sputtering (DC-MS) with the same Ar/Kr ratio. Afterwards, a (Cr,Al)N coating was deposited with constant pulse length (200 μs) without Kr. The chemical composition, morphology and phase composition of the coatings were analyzed by means of EDS (Energy Dispersive Spectroscopy), SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction), respectively. The composition of the surface near region in the samples was investigated by means of XPS (X-ray Photoelectron Spectroscopy). Mechanical properties were measured by means of nanoindentation. Decreasing of pulse length at constant mean power leads to a considerable increase of cathode current. It could be observed that the deposition rate of the HPPMS process reduces with decreasing pulse length. Nevertheless, short HPPMS pulse lengths and high peak currents lead to an increase of hardness from 25 GPa to 32 GPa while the DC-MS coating displays a hardness of 18 GPa. The use of krypton within the sputter process leads to a marginal increase of the deposition

  13. Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells

    Directory of Open Access Journals (Sweden)

    Axel Deing

    2016-03-01

    Full Text Available Biomaterial surface functionalization remains of great interest in the promotion of cell osteogenic induction. Previous studies highlighted the positive effects of porous Ti-6Al-4V and phospholipid coating on osteoblast differentiation and bone remodeling. Therefore, the first objective of this study was to evaluate the potential synergistic effects of material porosity and phospholipid coating. Primary human osteoblasts and Saos-2 cells were cultured on different Ti-6Al-4V specimens (mirror-like polished or porous specimens and were coated or not with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE for three weeks or five weeks. Selected gene expressions (e.g., classical bone markers: alkaline phosphatase, osteocalcin, osteoprotegerin (OPG, receptor activator of nuclear factor kappa-β ligand (RANKL and runt-related transcription factor 2 were estimated in vitro. Furthermore, the expressions of osteocalcin and osteopontin were examined via fluorescent microscopy at five weeks (immunocytochemistry. Consequently, it was observed that phospholipid coating potentiates preferences for low and high porosities in Saos-2 and primary cells, respectively, at the gene and protein levels. Additionally, RANKL and OPG exhibited different gene expression patterns; primary cells showed dramatically increased RANKL expression, whereas OPG expression was decreased in the presence of POPE. A synergistic effect of increased porosity and phospholipid coating was observed in primary osteoblasts in bone remodeling. This study showed the advantage of primary cells over the standard bone cell model.

  14. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-01-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  15. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  16. Sol-gel/drop-coated micro-thick TiO{sub 2} memristors for γ-ray sensing

    Energy Technology Data Exchange (ETDEWEB)

    Abunahla, Heba [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Jaoude, Maguy Abi, E-mail: maguy.abijaoude@kustar.ac.ae [Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); O' Kelly, Curtis J.; Mohammad, Baker [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2016-12-01

    Sol-gel/drop-coated micro-thick TiO{sub 2} memristors were investigated and developed for low-power radiation sensing. Devices constructed with coated aluminum (Al) electrodes exhibited unipolar I-V characteristics with dynamic turn-on voltage, and progressive R{sub OFF}/R{sub ON} ratio loss under applied bias. Endurance failure of micro-thick Al/Al stacks is ascribed to gradual passivation of Al surface resulting from an electrically-enhanced oxygen-ion diffusion. By exchanging a single Al contact with higher work function copper (Cu) metal, two distinct superimposed TiO{sub 2} phases were formed. The TiO{sub 2} coating on Al surface was carbon-contaminated and amorphous, while that on Cu was found to be additionally doped with Cu{sup (I/II)} ions resulting from the corrosion of the surface of the electrode by the amine-based gelation agent. After initial forming, the hybrid stack could achieve a bipolar memristance, with high R{sub OFF}/R{sub ON} (up to 10{sup 6}), and over 10 switching cycles at low-operating voltages (±1 V). The enhanced memristive switching properties of Al/Cu devices are explained via cooperative valence-change/electrochemical-metallization processes, involving migration of oxygen and copper species. The advanced micro-thick TiO{sub 2} memristors were exposed to Cs-137 γ-rays, providing for the first time initial insights into their radiation detection capabilities. The sensing mechanism through these devices could be actuated by synergistic radiation-induced and field-driven photo-electric effects. - Highlights: • Micro-thick TiO{sub 2} memristors with Al or Cu electrodes are advanced via sol-gel drop-coating. • Memristive switching in Al/TiO{sub 2}/Al structure is not viable due to resistance build-up. • Drop-coated Cu electrode gets corroded by ethanolamine additive, introducing Cu{sup (I/II)} cations into bulk TiO{sub 2}. • Bipolar memristance in Al/TiO{sub 2}/Cu{sup (I/II)} doped-TiO{sub 2}/Cu structure is depicted for the

  17. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A. I.; Wainstein, D. L., E-mail: d-wainstein@sprg.ru [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); Rashkovskiy, A. Yu. [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskiy pr-t, 4, 119049 Moscow (Russian Federation); Gago, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken (Germany); Endrino, J. L. [School of Aerospace, Transport and Manufacturing (SATM), Surface Engineering and Nanotechnology Institute, Cranfield University, College Road, Cranfield, MK43 0AL Bedfordshire (United Kingdom)

    2016-05-30

    TiAlN/Ag multilayer coatings with a different number of bilayers and thicknesses of individual layers were fabricated by DC magnetron co-sputtering. Thermal conductivity was measured in dependence of Ag layer thickness. It was found anomalous low thermal conductivity of silver comparing to TiAlN and Ag bulk standards and TiAlN/TiN multilayers. The physical nature of such thermal barrier properties of the multilayer coatings was explained on the basis of reflection electron energy loss spectroscopy. The analysis shows that nanostructuring of the coating decreases the density of states and velocity of acoustic phonons propagation. At the same time, multiphonon channels of heat propagation degenerate. These results demonstrate that metal-dielectric interfaces in TiAlN/Ag coatings are insurmountable obstacles for acoustic phonons propagation.

  18. The role of AlF{sub 3} coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang-Kook; Lee, Min-Joon [Department of WCU Energy Engineering, Chemical Engineering, Hanyang University, Seoul (Korea, Republic of); Yoon, Chong S. [Department of Materials Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Hassoun, Jusef; Scrosati, Bruno [Department of Chemistry, University of Rome ' ' La Sapienza' ' (Italy); Amine, Khalil [Electrochemical Technology Program, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois (United States)

    2012-03-02

    A Li[Li{sub 0.19}Ni{sub 0.16}Co{sub 0.08}Mn{sub 0.57}]O{sub 2} cathode was coated with AlF{sub 3} on the surface. The AlF{sub 3}-coating enhanced the overall electrochemical characteristics of the electrode while overcoming the typical shortcomings of lithium-enriched cathodes. This improvement was attributed to the transformation of the initial electrode layer to a spinel phase, induced by the Li chemical leaching effect of the AlF{sub 3} coating layer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  20. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszkowicz, Krzysztof, E-mail: krzysztof.lukaszkowicz@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18A, 44-100 Gliwice (Poland); Sondor, Jozef, E-mail: j.sondor@liss.cz [LISS, a.s., Dopravni 2603, 756 61 Roznov p.R. (Czech Republic); Balin, Katarzyna, E-mail: katarzyna.balin@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kubacki, Jerzy, E-mail: jerzy.kubacki@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-09-01

    Highlights: • The chemical composition of the CrAlSiN + DLC coatings was studied. • The coatings have nanostructural character with fine crystallites. • Their average size grain is less than 10 nm. • The coatings demonstrate friction coefficient within the range 0.05–0.07. • The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. - Abstract: Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction 〈3 1 1〉 is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  1. Production and properties of a hypermonotectic AlPb alloy as an antifriction layer. Pt. 2. Tribological porperties and structure characterization; Herstellung und Eigenschaften der hypermonotektischen AlPb-Legierung als Gleitschicht. T. 2. Tribologische Eigenschaften und Gefuegecharakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Mergen, R. [MIBA Gleitlager AG, Laakirchen (Austria); Sahm, P.R. [Technische Hochschule Aachen (Germany). Lehrstuhl fuer das Gesamte Giessereiwesen und Giesserei-Institut

    1996-04-01

    A characterization of the lead distribution and testing of the tribological properties of the AlPb10 coatings fabricated by means of a planar-flow-casting process presented in Part 1 of this article are made. The tribological characterization of the coatings is made by comparison with results of conventional aluminium-tin and aluminium-lead bearing materials. Furthermore, a relation between lead distribution and tribological properties of the AlPb10 coatings is studied. (orig.)

  2. The effect of Si content on the fracture toughness of CrAlN/Si3N4 coatings

    International Nuclear Information System (INIS)

    Liu, S.; Wheeler, J. M.; Davis, C. E.; Clegg, W. J.; Zeng, X. T.

    2016-01-01

    CrAlN/Si 3 N 4 nanocomposite coatings with different Si contents were deposited to understand how Si influences the microstructure and mechanical behaviour of the coatings, in particular, the fracture toughness. The coating composition, chemical bonding, microstructure, and mechanical properties were studied by energy dispersive spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and nanoindentation, respectively. Using a micro double cantilever beam sample, it was found that the fracture toughness of CrAlN/Si 3 N 4 coatings was higher than that of both the CrN and CrAlN coatings and increased with increasing Si content. Cross-sectional transmission electron microscopy suggested that this was caused by the suppression of cracking at columnar boundaries

  3. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Mohamad, Azizan Bin; Suzuki, Ryo [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Okagawa, Keigo [Department of Electrical and Electronics Engineering, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi ohi, Shinagawa-ku, Tokyo 140-0011 (Japan)

    2016-08-15

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in parts of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.

  4. Origin of intragranular crystallographic misorientations in hot-dip Al-Zn-Si coatings

    International Nuclear Information System (INIS)

    Niederberger, Ch.; Michler, J.; Jacot, A.

    2008-01-01

    The origin of intragranular variations of the crystallographic orientation in hot-dip Al-Zn-Si coatings is discussed based on new experimental results and modelling. The solidification microstructure in as-received 55Al-43.4Zn-1.6Si (in wt.%) coatings deposited on steel plates in an industrial production line was analyzed by electron backscattered diffraction, glow-discharge optical emission spectroscopy and atomic force microscopy (AFM). The results were compared with those obtained in coatings re-solidified under different cooling and mechanical loading conditions. Continuous variations of the crystallographic orientation as large as 35 deg. were observed within individual grains of Al-Zn-Si, consistent with previous studies. However, the mechanisms previously proposed for the origin of intragranular crystallographic misorientations had to be revisited. The new experimental data acquired during this study indicate that the solidification shrinkage accumulating in the area of the grain envelope is the driving force for the formation of intragranular misorientations. The solidification shrinkage leads to the development of tensile stresses in the oxide film covering the coating while it solidifies. Estimations based on AFM profiles and phase field simulations of the dendritic structure indicate that the stresses applied on the dendrite network are sufficient to deform plastically the dendrite arms during solidification

  5. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    Science.gov (United States)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  6. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.

    Science.gov (United States)

    Panjwani, Bharat; Sinha, Sujeet K

    2012-11-01

    Tribological properties of perfluoropolyether (PFPE) coated 3-glycidoxypropyltrimethoxy silane (GPTMS) SAMs (self-assembled monolayers) onto Ti6Al4V alloy substrate were studied using ball-on-disk experiments. GPTMS SAMs deposition onto a Ti6Al4V alloy surface was carried out using solution phase method. Ultra-thin layer of PFPE was dip-coated onto SAMs modified specimens. Tribological tests were carried out at 0.2 N normal load and rotational speed of 200 rpm using track radius of 2 mm. Wear track and counterface surface conditions were investigated using optical microscopy. PFPE modified specimens were baked at 150 °C for 1h to investigate the effect of thermal treatment on tribological properties. Surface characterization tests such as contact angle measurement, AFM morphology and X-ray photoelectron spectroscopy were carried out for differently modified specimens. PFPE overcoat meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. PFPE top layer lowered the coefficient of friction and increased wear durability for different specimens (with and without GPTMS intermediate layer). PFPE overcoat onto GPTMS showed significant increase in the wear resistance compared with overcoat onto bare Ti6Al4V specimens. The observed improvement in the tribological properties can be attributed to the change in the interaction of PFPE molecules with the substrate surface due to the GPTMS intermediate layer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    Science.gov (United States)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  8. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-01-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al 2 O 3 -13 wt%TiO 2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  9. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    CSIR Research Space (South Africa)

    Seteni, Bonani

    2017-06-01

    Full Text Available Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4...

  10. Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4

    Science.gov (United States)

    Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li

    2018-01-01

    TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.

  11. Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering

    International Nuclear Information System (INIS)

    Grips, V.K. William; Ezhil Selvi, V.; Barshilia, Harish C.; Rajam, K.S.

    2006-01-01

    The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (R p ) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (R pore ), the charge transfer resistance (R ct ), the coating capacitance (Q coat ) and the double layer capacitance (Q dl ) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher R pore and R ct values as compared to the single layer coatings. Similarly, the Q coat and Q dl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under

  12. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  13. Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings

    Directory of Open Access Journals (Sweden)

    Pimin Zhang

    2018-04-01

    Full Text Available MCrAlX (M: Ni or Co or both, X: minor elements coatings have been used widely to protect hot components in gas turbines against oxidation and heat corrosion at high temperatures. Understanding the influence of the X-elements on oxidation behavior is important in the design of durable MCrAlX coatings. In this study, NiCoCrAlX coatings doped with Y + Ru and Ce, respectively, were deposited on an Inconel-792 substrate using high velocity oxygen fuel (HVOF. The samples were subjected to isothermal oxidation tests in laboratory air at 900, 1000, and 1100 °C and a cyclic oxidation test between 100 and 1100 °C with a 1-h dwell time at 1100 °C. It was observed that the coating with Ce showed a much higher oxidation rate than the coating with Y + Ru under both isothermal and cyclic oxidation tests. In addition, the Y + Ru-doped coating showed significantly lower β phase depletion due to interdiffusion between the coating and the substrate, resulting from the addition of Ru. Simulation results using a moving phase boundary model and an established oxidation-diffusion model showed that Ru stabilized β grains, which reduced β-depletion of the coating due to substrate interdiffusion. This paper, combining experiment and simulation results, presents a comprehensive study of the influence of Ce and Ru on oxidation behavior, including an investigation of the microstructure evolution in the coating surface and the coating-substrate interface influenced by oxidation time.

  14. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  15. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  16. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-01-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  17. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    International Nuclear Information System (INIS)

    Shi Yongjing; Long Siyuan; Yang Shicai; Pan Fusheng

    2008-01-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2 . The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS)

  18. Scratch resistance of SiO{sub 2} and SiO{sub 2} - ZrO{sub 2} sol-gel coatings on glass-ceramic obtained by sintering; Resistencia al desgaste de recubrimientos sol-gel de SiO{sub 2} y SiO{sub 2} - ZrO{sub 2} sobre materiales vitroceramicos obtenidos por sinterizacion

    Energy Technology Data Exchange (ETDEWEB)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-10-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li{sub 2}O-Al{sub 2}O3-SiO{sub 2} (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  19. High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on ?-TiAl

    OpenAIRE

    Walker, J.C.; Ross, I.M.; Reinhard, C.; Rainforth, W.M.; Hovsepian, P.Eh.

    2009-01-01

    This paper details the effect of temperature on the frictional behaviour of highly novel CrAlYN/CrN multilayer coatings, deposited by High Power Impulse Magnetron Sputtering (HIPIMS) on a Titanium Aluminide alloy used as fan blade material in the aerospace and a turbo-charger wheel in the automotive industries. The work was the first to discover the high temperature oxide 'glaze' layer formation which occurred on CrN multilayer-type coatings at higher temperatures and has received significant...

  20. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    Science.gov (United States)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  1. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  2. Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, G. [Thin Film Group, Universidad del Valle in Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo@gmail.com [Thin Film Group, Universidad del Valle in Cali (Colombia); Amaya, C. [Thin Film Group, Universidad del Valle in Cali (Colombia); Laboratory of Hard Coatings, CDT-ASTIN SENA in Cali (Colombia); Yate, L. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Munoz Saldana, J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro (Mexico); Prieto, P. [Thin Film Group, Universidad del Valle in Cali (Colombia); Center of Excellence for Novel Materials - CENM, Calle 13 100-00 320-026, Cali (Colombia)

    2011-02-15

    Enhancement of mechanical and tribological properties on AISI D3 steel surfaces coated with CrN/AlN multilayer systems deposited in various bilayer periods ({Lambda}) via magnetron sputtering has been studied in this work exhaustively. The coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), electron dispersive spectrograph, atomic force microscopy, scanning and transmission electron microscopy, nanoindentation, pin-on-disc and scratch tests. The failure mode mechanisms were observed via optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of CrN/AlN multilayer coatings has a NaCl-type lattice structure and hexagonal structure (wurtzite-type) for CrN and AlN, respectively, i.e., made was non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 28 GPa and 280 GPa, respectively, was observed as the bilayer periods ({Lambda}) in the coatings were decreased. The sample with a bilayer period ({Lambda}) of 60 nm and bilayer number n = 50 showed the lowest friction coefficient ({approx}0.18) and the highest critical load (43 N), corresponding to 2.2 and 1.6 times better than those values for the coating deposited with n = 1, respectively. The best behavior was obtained when the bilayer period ({Lambda}) is 60 nm (n = 50), giving the highest hardness 28 GPa and elastic modulus of 280 GPa, the lowest friction coefficient ({approx}0.18) and the highest critical load of 43 N. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the CrN/AlN multilayer systems with 1 bilayer at 28%, 21%, 40%, and 30%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the Hall-Petch effect and the number of interfaces that act as obstacles for the

  3. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Qiaoqiao Zhuang

    2017-10-01

    Full Text Available The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy and EDS (energy dispersive spectrometer. It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  4. Investigation on the Cathodic Protection Effect of Low Pressure Cold Sprayed AlZn Coating in Seawater via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2017-07-01

    Full Text Available Cold spray can deposit a composite coating simply by spraying mechanically-mixed Al and Zn powders, while no quantitative data has been reported on the anti-corrosion performance of different composite cold-sprayed coatings. In the present work, the finite element method was used to estimate the cathodic protection effect by simulating the potential distribution on a damaged cold-sprayed AlZn coating on Q235 steel. The results indicate that AlZn coating can only provide a limiting cathodic protection for substrate, because it can only polarize a very narrow zone negative to −0.78 V (vs. SCE, saturated calomel electrode. The remaining area of the steel substrate still has a very high residual corrosion rate. Computational methods can be used to predict the corrosion rate of AlZn coating, and the simulation results were validated by the results of a weight loss experiment.

  5. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  6. An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection

    Science.gov (United States)

    Maurya, Rita; Siddiqui, Abdul Rahim; Balani, Kantesh

    2018-06-01

    An environment-friendly phosphate chemical conversion (PCC) coating has been deposited on novel LAT971 (Mg-9 wt%Li-7 wt%Al-1 wt%Sn) and LATZ9531 (Mg-9 wt%Li-5 wt%Al-3 wt%Sn-1 wt%Zn) alloys for improving their corrosion resistance. A dense and homogeneous flower like morphology (∼30 μm thick) was observed on the PCC coated Mg-Li based alloys. The presence of calcium hydrogen phosphate hydrate, tricalcium phosphate and trimagnesium phosphate were confirmed from the X-ray diffraction and X-ray photoelectron spectroscopy analysis. A lower corrosion current density of 6.74 × 10-7 mA/cm2 and 5.39 × 10-7 mA/cm2 was obtained for PCC coated alloys in 3.5% NaCl aqueous solution than that of uncoated LAT971 (0.82 mA/cm2) and LATZ9531 (0.34 mA/cm2) alloys, respectively, which offers corrosion protection efficiency of >99%. Electrochemical impedance spectroscopy (EIS) has revealed that the inner PCC coating (at coating/substrate interface) delay the direct contact between electrolyte and substrate, which offered higher charge transfer resistance (>4 orders of magnitude) than that of uncoated alloys. Thus, the PCC coating provides an effective corrosion protection to the ultra-lightweight LAT971 and LATZ9531 alloys surface and may be helpful in proving good anchoring with the top organic coatings or paints.

  7. Effect of Hexagonal Phase Content on Wear Behaviour of AlTiN Arc PVD Coatings

    Directory of Open Access Journals (Sweden)

    Joern Kohlscheen

    2018-02-01

    Full Text Available In this study, the effect of increasing aluminum content and magnetic steering field strength on the structure and wear behavior of arc PVD AlTiN coatings is discussed. Deposition was done by means of an industrial-scale PVD unit for tool coating. The aluminium content in the AlTi source material was increased from 67 to 73 at.%. We applied two settings of the magnetic field that steers the arc across the cathode surface thereby evaporating the AlTi alloy differently. The resulting coating thickness ranged from 3.5 to about 7 µm. Cemented tungsten carbide was used as substrate material. Coating properties like hardness, adhesion, and crystal phases were analyzed by indentation and X-ray diffraction, respectively. The wear behaviour of the different AlTiN hard coatings were investigated in two ways. In a first idealized test, cyclic impacting was done applying a constant force. The resulting wear pattern was quantified by an Alicona multi-focus microscope. A second wear test was done by metal cutting under realistic conditions. Fly milling of ductile cast iron (EN-GJS-700 was performed with regular interruptions in order to measure the increasing wear mark. As expected, aluminium contents above 67 at.% (in the metal fraction of the coating lead to a decreased wear resistance as the soft hexagonal phase exceeds values of a few vol.%. However, it was found that the formation of the hexagonal phase can be effectively influenced and delayed by increasing the magnetic steering field at the cathode. The wear behavior observed in cyclic impact testing corresponds well to results obtained with the more complex loading situation encountered in milling.

  8. Bioceramic hydroxyapatite coating fabricated on TI-6Al-4V using Nd:YAG Laser

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-11-01

    Full Text Available Driven Innovation, 15th Annual International Conference, Stellenbosch, South Africa, 6-7 November 2014 Bioceramic hydroxyapatite coating fabricated on TI-6Al-4V using Nd:YAG Laser M. Tlotleng1, 4*, E. Akinlabi1, M. Shukla2, 3, S. Pityana4, T...

  9. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  10. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  11. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Deniz, Ömer Faruk; Kutbay, Işıl; Usta, Metin

    2013-01-01

    Highlights: ► Ti6Al4V alloys were coated by PEO in calcium acetate and β-calcium glycerophosphate. ► Hydroxyapatite and calcium apatite based phases were directly formed on Ti6Al4V. ► Hydroxyapatite coatings were characterized systematically for different times. ► After 5 min, hydroxyapatite and calcium based phases begin to form on the coating. ► HAp on the coating is amorphous due to the rapid solidification during PEO. - Abstract: In this study, Ti6Al4V alloy was coated in the solution consisting of calcium acetate (CA) and β-calcium glycerophosphate (β-Ca-GP) by plasma electrolytic oxidation (PEO) to produce hydroxyapatite and calcium apatite-based composite used as of bioactive and biocompatible materials in biomedical applications. The phase structures, surface morphologies, functional groups of molecules, chemical compositions of the surfaces and the binding energies of atoms in the coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Anatase, rutile, calcium oxide, titanium phosphide, whitlockite, tri-calcium phosphate (TCP), perovskite calcium titanate and hydroxyapatite phases on the coating were detected by XRD analysis. The surface of coatings produced by PEO method has a porous structure. The amount of amorphous hydroxyapatite is the highest value for the coating produced at 5 min in XPS and ATR-FTIR results, whereas the amount of crystalline hydroxyapatite has the highest value for coating produced at 120 min in XRD results.

  12. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  13. A new type of Ce-Mo based conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Di; Li Guoqiang; Guo Baolan; Peng Mingxia [Coll. of Materials Science and Engineering, Beijing Univ. of Aeronautics and Astronautics, Beijing, BJ (China)

    2002-07-01

    A new type of process for forming Ce-Mo conversion coatings on Al-alloys has been developed. Conversion coatings about 3.6 {mu}m thickness were obtained by immersing Al-alloys for 20 minutes in boiling film forming solutions containing (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} 2.5 g/l, NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O 2.5 g/l, Na{sub 2}CO{sub 3} 7.5 g/l and Na{sub 2}MoO{sub 4} 5.0 g/l. In the case of LF4 Al-alloy, polarization curves and immersion tests in 5% NaCl indicated that the conversion coatings exhibited more excellent resistance to localized corrosion than the conventional chromate conversion coatings. However, its resistance to localized corrosion was not satisfactory on LC4 Al alloy. Scanning electron microscopy (SEM) and energy dispersion analyzer of X-ray (EDAX) analysis revealed that the conversion coatings having complex surface microstructure on both LC4 and LF6 Al alloys consist mainly of O, Al and other alloying elements in addition to significant Ce and Mo. A mechanism of film formation was proposed to explain the experimental results. (orig.)

  14. X-ray residual stress measurement and its variation during plane bending fatigue and sliding wear processes in TiC, TiN, TiB2 and Al2O3 coated carbon steels

    International Nuclear Information System (INIS)

    Endoh, Takashi; Idemitsu, Kohji; Kawakami, Mamoru

    1993-01-01

    The development of ceramic coating to metals was stimulated by the need for high temperature, wear and corrosion resistant materials. Recently TiC, TiN, TiB 2 and Al 2 O 3 are used as ceramic coating materials. In the present study, the X-ray method was successfully applied to measure the residual stress distribution in their ceramics coated steels. The X-ray elastic constants were determined and compared with the mechanically measured values. And plane bending and sliding wear tests were carried out. The X-ray method was successfully applied to measure the residual stress changes during fatigue and wear processes. The relationship between the change of residual stress and damage accumulation was investigated. (author)

  15. Atomic scale onset of Al adhesion on Mo2BC

    International Nuclear Information System (INIS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-01-01

    We have explored interfacial interactions between a Mo–C terminated Mo 2 BC(040) surface and an Al cluster using ab initio molecular dynamics. The Al cluster is disrupted and wets the Mo 2 BC(040) surface. This can be understood based on the electronic structure. Across the Al–MoC interface C s–Al s hybridized states are formed. These bonds are stronger than the Al–Al intra-cluster bonds. Hence, the onset of Al adhesion is caused by bond formation across the Al–MoC interface. - Highlights: • Interfacial interactions between Mo 2 BC and an Al cluster were explored. • Al forms bonds to C constituting the onset of Al adhesion on Mo 2 BC. • These data are relevant for other carbide coatings

  16. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    Science.gov (United States)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  17. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    Science.gov (United States)

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (PAl-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-01-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO 2 composite is investigated. • The effect of ZrO 2 on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO 2 addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H 2 SO 4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO 2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO 2 particles. The results obtained show that addition of ZrO 2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO 2 addition, combination of high hardness of Ti 2 Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions

  19. Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings

    Science.gov (United States)

    Grishin, A. M.

    2016-04-01

    Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.

  20. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yibin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Ning, E-mail: lininghit@263.net [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang Milin; Huang Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Vanadate film forms on the surface of Mg-Li-Al-Ce alloy. Black-Right-Pointing-Pointer Vanadate coating improves the corrosion resistance. Black-Right-Pointing-Pointer Vanadate coating is composed of Mg(OH){sub 2}, Li{sub 2}O and V{sub 2}O{sub 5}. - Abstract: Mg-14Li-1Al-0.1Ce alloy is immersed in NH{sub 4}VO{sub 3} + K{sub 3}(Fe(CN){sub 6}) solutions with different NH{sub 4}VO{sub 3} and/or K{sub 3}(Fe(CN){sub 6}) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L{sup -1} NH{sub 4}VO{sub 3} + 3.75 g L{sup -1} K{sub 3}(Fe(CN){sub 6}) solution at 80 Degree-Sign C for 10 min. The coating consists of V{sub 2}O{sub 5}, Li{sub 2}O and Mg(OH){sub 2}.

  1. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    Science.gov (United States)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  2. On the influence of Ti-Al intermetallic coating architecture on mechanical properties and wear resistance of end mills

    Science.gov (United States)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.

    2017-07-01

    Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.

  3. Microstructure of Ti6Al4V reinforced by coating W particles through laser metal deposition

    CSIR Research Space (South Africa)

    Ndou, N

    2016-10-01

    Full Text Available properties. Metallurgical and Materials transactions A, 33, 3489- 3498, 2002. [2] E. Atar, E.S. Kayali & H. Cimenoglu, Characteristics and wear performance of borided Ti6Al4V alloy. Surface and Coatings technology, 202, 4583-4590, 2008. [3] C. Lee, A...

  4. Cyclic oxidation behaviour of different treated CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, G. [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 43, 45877 Gelsenkirchen (Germany); Utu, D., E-mail: dutu@eng.upt.ro [University ' Politehnica' Timisoara, Faculty of Mechanical Engineering, Blv. Mihai Viteazu 1, 300222 Timisoara (Romania)

    2012-08-01

    High velocity oxygen fuel (HVOF) spraying method was used in order to obtain very dense and good adhesive CoNiCrAlY-coatings deposited onto nickel-based alloy. The coatings were differently treated (preoxidized, vacuum treated or electron beam irradiated) before their exposure to cyclic oxidation tests in air at 1000 Degree-Sign C for periods up to 5 h. Changes of the coatings morphology and structure were analysed by scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The surface temperature of the samples was measured during cooling, between the oxidation cycles, and finally was associated with the thickness of the grown protective oxide scale on the CoNiCrAlY-surface. The experimental results demonstrated that depending on the thickness respectively on the different structures of the grown oxide scale, the cooling rate of the sample surface will be different as well.

  5. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    International Nuclear Information System (INIS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-01-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ′ grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  6. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing; Chen, Fangping; Jin, Guanping; Feng, Xiaoshuang; Li, Xiaoxuan

    2015-01-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  7. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  8. Synthesis, structure and magnetic properties of DyAl2 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Klaasse, J.C.P.; Buschow, K.H.J.

    2006-01-01

    DyAl 2 nanoparticles have been prepared by means of arc discharge in a mixture of argon and hydrogen gas. The structure of DyAl 2 nanoparticles is studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy shows that the as-prepared DyAl 2 nanoparticles are coated with a layer of Al 2 O 3 phase on the surface, and their sizes vary from 20 nm to about 100 nm. The DyAl 2 nanoparticles exhibit ferromagnetic properties that are different from bulk DyAl 2 compound. The gradual decrease of the magnetization with increasing temperature in a wide temperature range reveals the size distribution of the DyAl 2 nanoparticles. The magnetic-entropy changes are derived from the isothermal magnetization curves measured at different temperatures. The magnetic-entropy change of the DyAl 2 nanoparticles is lower than that of the bulk DyAl 2 material but has a broadened peak

  9. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  10. Carbamazepine degradation using a N-doped TiO_2 coated photocatalytic membrane reactor: Influence of physical parameters

    International Nuclear Information System (INIS)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A.; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-01-01

    Highlights: • UV–vis N-doped TiO_2 was deposited by sol-gel onto Al_2O_3 microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al_2O_3 membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO_2 vs. non-doped TiO_2 membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al_2O_3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO_2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO_2 films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO_2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO_2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  11. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel

    International Nuclear Information System (INIS)

    Volovitch, P.; Vu, T.N.; Allely, C.; Abdel Aal, A.; Ogle, K.

    2011-01-01

    Highlights: → Origins of better corrosion resistance of ZnAlMg coatings than galvanized steel. → Comparative study of corrosion products formed on ZnAlMg, ZnMg and Zn coatings. → Modeling of dissolution and precipitation stages of corrosion. → At early stages Mg stabilizes protective zinc basic salts during dry-wet cycling. → At later stages Al dissolves at high pH forming protective layered double hydroxides. - Abstract: Corrosion products are identified on Zn, ZnMg and ZnAlMg coatings in cyclic corrosion tests with NaCl or Na 2 SO 4 containing atmospheres. For Mg-containing alloys the improved corrosion resistance is achieved by stabilization of protective simonkolleite and zinc hydroxysulfate. At later stages, the formation of layered double hydroxides (LDH) is observed for ZnAlMg. According to thermodynamic modeling, Mg 2+ ions bind the excess of carbonate or sulfate anions preventing the formation of soluble or less-protective products. A preferential dissolution of Zn and Mg at initial stages of corrosion is confirmed by in situ dissolution measurement. The physicochemical properties of different corrosion products are compared.

  12. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James L.

    2018-03-01

    High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen ( 375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).

  13. Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts

    Science.gov (United States)

    Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.

    2018-06-01

    Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.

  14. A study on the growth kinetics of CeO2-modified aluminide coating and its computer fitting

    International Nuclear Information System (INIS)

    Wen Jiuba; Yang Liusong; Zhu Limin; Zhang Jinmin; Li QuanAn

    2009-01-01

    A CeO 2 -modified aluminide coating was obtained by composite electro-deposition Ni and CeO 2 particles on 20 steel with different holding time using pack cementation. The growth kinetics curve was given with computer fitting by measuring the thickness of the layer. Scanning electronic microscopy and X-ray energy dispersive spectrometry were used to analyze the microstructure and components of the layer. The results showed that the content of CeO 2 was up to 5.21 wt.% in the rich area of NiAl coatings, which restrain the interdiffusion between the coating and the base during the oxidation process at high temperature. Meanwhile, the growth curve obtained could offer an important basis to forecasting and controlling the depth of the coating

  15. ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Weimer, Alan

    2012-11-26

    This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3}, and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

  16. Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

    International Nuclear Information System (INIS)

    Shrestha, Shankar Prasad; Ghimire, Rishi; Nakarmi, Jeevan Jyoti; Kim, Young Sung; Shrestha, Sabita; Park, Chong Yun; Boo, Jin Hyo

    2010-01-01

    Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity (ρ), carrier concentration (n), and hall mobility (μ) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity (8.5 x 10 -2 ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility

  17. Performance of iron–chromium–aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Heuser, Brent J., E-mail: bheuser@illinois.edu [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Mandapaka, Kiran K.; Was, Gary S. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI 48109 (United States)

    2016-03-15

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe–Zr is addressed with the FeCrAl-YSZ system. - Graphical abstract: Weight gain normalized to total sample surface area versus time during 700 °C steam exposure for FeCrAl samples with different composition (A) and Fe/Cr/Al:62/4/34 (B). In both cases, the responses of uncoated Zry2 (Zry2-13A and Zry2-19A) are shown for comparison. This uncoated Zry2 response shows the expected pre-transition quasi-cubic kinetic behavior and eventual breakaway (linear) kinetics. Highlights: • FeCrAl coatings deposited on Zy2 have been tested with respect to oxidation in high-temperature steam. • FeCrAl compositions promoting alumina formation inhibited oxidation of Zy2 and delay weight gain. • Autoclave testing to 20 days of coated Zy2 in a simulated BWR environment demonstrates minimal weight gain and no film degradation. • The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  18. Crystallographic study of Si and ZrN coated U–Mo atomised particles and of their interaction with al under thermal annealing

    International Nuclear Information System (INIS)

    Zweifel, T.; Palancher, H.; Leenaers, A.; Bonnin, A.; Honkimaki, V.; Tucoulou, R.; Van Den Berghe, S.; Jungwirth, R.; Charollais, F.; Petry, W.

    2013-01-01

    A new type of high density fuel is needed for the conversion of research and test reactors from high to lower enriched uranium. The most promising one is a dispersion of atomized uranium-molybdenum (U–Mo) particles in an Al matrix. However, during in-pile irradiation the growth of an interaction layer between the U–Mo and the Al matrix strongly limits the fuel’s performance. To improve the in-pile behaviour, the U–Mo particles can be coated with protective layers. The SELENIUM (Surface Engineering of Low ENrIched Uranium–Molybdenum) fuel development project consists of the production, irradiation and post-irradiation examination of 2 flat, full-size dispersion fuel plates containing respectively Si and ZrN coated U–Mo atomized powder dispersed in a pure Al matrix. In this paper X-ray diffraction analyses of the Si and ZrN layers after deposition, fuel plate manufacturing and thermal annealing are reported. It was found for the U–Mo particles coated with ZrN (thickness 1 μm), that the layer is crystalline, and exhibits lower density than the theoretical one. Fuel plate manufacturing does not strongly influence these crystallographic features. For the U–Mo particles coated with Si (thickness 0.6 μm), the measurements of the as received material suggest an amorphous state of the deposited layer. Fuel plate manufacturing strongly modifies its composition: Si reacts with the U–Mo particles and the Al matrix to grow U(Al, Si) 3 and U 3 Si 5 phases. Finally both coatings have shown excellent performances under thermal treatment by limiting drastically the U–Mo/Al interdiffusion

  19. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  20. Macrophages adhesion rate on Ti-6Al-4V substrates: polishing and DLC coating effects

    Directory of Open Access Journals (Sweden)

    Everton Diniz dos Santos

    Full Text Available Abstract Introduction Various works have shown that diamond-like carbon (DLC coatings are able to improve the cells adhesion on prosthesis material and also cause protection against the physical wear. On the other hand there are reports about the effect of substrate polishing, in evidence of that roughness can enhance cell adhesion. In order to compare and quantify the joint effects of both factors, i.e, polishing and DLC coating, a commonly prosthesis material, the Ti-6Al-4V alloy, was used as raw material for substrates in our studies of macrophage cell adhesion rate on rough and polished samples, coated and uncoated with DLC. Methods The films were produced by PECVD technique on Ti-6Al-4V substrates and characterized by optical profilometry, scanning electron microscopy and Raman spectroscopy. The amount of cells was measured by particle analysis in IMAGE J software. Cytotoxicity tests were also carried out to infer the biocompatibility of the samples. Results The results showed that higher the surface roughness of the alloy, higher are the cells fixing on the samples surface, moreover group of samples with DLC favored the cell adhesion more than their respective uncoated groups. The cytotoxity tests confirmed that all samples were biocompatible independently of being polished or coated with DLC. Conclusion From the observed results, it was found that the rougher substrate coated with DLC showed a higher cell adhesion than the polished samples, either coated or uncoated with the film. It is concluded that the roughness of the Ti-6Al-4V alloy and the DLC coating act complementary to enhance cell adhesion.