WorldWideScience

Sample records for akt phosphorylation sites

  1. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    Science.gov (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  2. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik;

    2013-01-01

    was positively associated with pAkt-T308 (P=0.01) and Akt2 activity (P=0.04), but not pAkt-S473 or IRS-1-PI3K activity. Furthermore, pAkt-T308 and Akt2 activity were negatively associated with NH(2)-terminal GS phosphorylation (P=0.001 for both), which in turn was negatively associated with insulin-stimulated GS...

  3. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2015-08-01

    Full Text Available The mechanistic target of rapamycin complex 2 (mTORC2 regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  4. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

    Science.gov (United States)

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E

    2015-08-11

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  5. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    Science.gov (United States)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  6. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction.

    Science.gov (United States)

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki

    2015-11-01

    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  7. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation

    OpenAIRE

    Guang Yang; Danielle S. Murashige; Sean J. Humphrey; David E. James

    2015-01-01

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN...

  8. Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action

    OpenAIRE

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-01-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser116. In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser116 PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser116. In addition, a mutant of PED/PEA-15 featuring the substitution of Ser116→Gly (PEDS116→G) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also i...

  9. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  10. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1.

    Directory of Open Access Journals (Sweden)

    Xuming Jia

    Full Text Available Methylglyoxal (MG is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5-20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity.

  11. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available O-linked N-acetylglucosamine glycosylations (O-GlcNAc and O-linked phosphorylations (O-phosphate, as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling.

  12. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation

    Science.gov (United States)

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms. PMID:28152035

  13. Apocynum Tablet Protects against Cardiac Hypertrophy via Inhibiting AKT and ERK1/2 Phosphorylation after Pressure Overload.

    Science.gov (United States)

    Qi, Jianyong; Liu, Qin; Gong, Kaizheng; Yu, Juan; Wang, Lei; Guo, Liheng; Zhou, Miao; Wu, Jiashin; Zhang, Minzhou

    2014-01-01

    Background. Cardiac hypertrophy occurs in many cardiovascular diseases. Apocynum tablet (AT), a traditional Chinese medicine, has been widely used in China to treat patients with hypertension. However, the underlying molecular mechanisms of AT on the hypertension-induced cardiac hypertrophy remain elusive. The current study evaluated the effect and mechanisms of AT on cardiac hypertrophy. Methods. We created a mouse model of cardiac hypertrophy by inducing pressure overload with surgery of transverse aortic constriction (TAC) and then explored the effect of AT on the development of cardiac hypertrophy using 46 mice in 4 study groups (combinations of AT and TAC). In addition, we evaluated the signaling pathway of phosphorylation of ERK1/2, AKT, and protein expression of GATA4 in the cardioprotective effects of AT using Western blot. Results. AT inhibited the phosphorylation of Thr202/Tyr204 sites of ERK1/2, Ser473 site of AKT, and protein expression of GATA4 and significantly inhibited cardiac hypertrophy and cardiac fibrosis at 2 weeks after TAC surgery (P < 0.05). Conclusions. We experimentally demonstrated that AT inhibits cardiac hypertrophy via suppressing phosphorylation of ERK1/2 and AKT.

  14. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior.

    Science.gov (United States)

    Choi, Jeong Il; Svensson, Camilla I; Koehrn, Fred J; Bhuskute, Aditi; Sorkin, Linda S

    2010-05-01

    In the present study, intraplantar carrageenan induced increased mechanical allodynia, phosphorylation of PKB/Akt and GluR1 ser 845 (PKA site) as well as GluR1, but not GluR2 movement into neuronal membranes. This change in membrane GluR1/GluR2 ratio is indicative of Ca(2+) permeable AMPA receptor insertion. Pain behavior was reduced and biochemical changes blocked by spinal pretreatment, but not post-treatment, with a tumor necrosis factor (TNF) antagonist, Etanercept (100microg). Pain behavior was also reduced by spinal inhibition of phosphatidylinositol 3-kinase (PI-3K) (wortmannin; 1 and 5microg) and LY294002; 50 and 100microg) and Akt (Akt inhibitor IV; 3microg). Phosphorylated Akt was found exclusively in neurons in grey matter and in oligodendrocytes in white matter. Interestingly, this increase was seen first in superficial dorsal horn and alpha-motor neurons (peak 45min) and later (peak 2h post-injection) in deep dorsal horn neurons. Akt and GluR1 phosphorylation, AMPA receptor trafficking and mechanical allodynia were all TNF dependent. Whether phosphorylation of Akt and of GluR1 are in series or in parallel or upstream of pain behavior remains to be determined. Certainly, TNF-mediated GluR1 trafficking appears to play a major role in inflammatory pain and TNF-mediated effects such as these could represent a path by which glia contribute to neuronal sensitization (spinal LTP) and pathological pain.

  15. Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Grénman, Reidar [Departments of Otorhinolaryngology-Head-and-Neck-Surgery and Medical Biochemistry, Turku University Hospital and University of Turku, Turku (Finland); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Bussink, Johan, E-mail: j.bussink@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands)

    2013-10-01

    Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was found between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.

  16. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Institute of Scientific and Technical Information of China (English)

    Shi-Cai Fan; Xue-Gong Zhang

    2005-01-01

    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  17. AKT inhibitor suppresses hyperthermia-induced Ndrg2 phosphorylation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yurong; Guo, Yan; Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Zhang, Jian; Li, Xia; Shen, Lan; Ru, Yi [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xi' an (China); Xue, Yan [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Zheng, Jin [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Liu, Xinping; Zhang, Jing; Yao, Libo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xi' an (China)

    2013-04-05

    Hyperthermia is one of the most effective adjuvant treatments for various cancers with few side effects. However, the underlying molecular mechanisms still are not known. N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, has been shown to be involved in diverse cellular stresses including hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to progression of gastric cancer. In the current study, our data showed that the apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P < 0.05). Nevertheless, there was no obvious change in the expression level of total Ndrg2 during this process. Further investigation demonstrated that the relative phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold (hyperthermia group vs control group) at 3 h in MKN28 cells, respectively (P < 0.05). We also found that heat treatment significantly increased AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P < 0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be induced by hyperthermia in an AKT-dependent manner in gastric cancer cells. Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric cancer cells susceptible to apoptosis induced by hyperthermia.

  18. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Wang, Huibo; Davis, Ben C. [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Liang, Jiyong [Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 (United States); Cui, Rutao [Department of Dermatology, Boston University School of Medicine, Boston, MA 02118 (United States); Chen, Sai-Juan, E-mail: sjchen@stn.sh.cn [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Xu, Zhi-Xiang, E-mail: zhi-xiang.xu@ccc.uab.edu [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States)

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  19. Phosphorylation sites within Ebola virus nucleoprotein

    Institute of Scientific and Technical Information of China (English)

    Sora; Yasri; Viroj; Wiwanitkit

    2015-01-01

    To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  20. Constitutively nuclear FOXO3a localization predicts poor survival and promotes Akt phosphorylation in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: The PI3K-Akt signal pathway plays a key role in tumorigenesis and the development of drug-resistance. Cytotoxic chemotherapy resistance is linked to limited therapeutic options and poor prognosis. METHODOLOGY/PRINCIPAL FINDINGS: Examination of FOXO3a and phosphorylated-Akt (P-Akt expression in breast cancer tissue microarrays showed nuclear FOXO3a was associated with lymph node positivity (p = 0.052, poor prognosis (p = 0.014, and P-Akt expression in invasive ductal carcinoma. Using tamoxifen and doxorubicin-sensitive and -resistant breast cancer cell lines as models, we found that doxorubicin- but not tamoxifen-resistance is associated with nuclear accumulation of FOXO3a, consistent with the finding that sustained nuclear FOXO3a is associated with poor prognosis. We also established that doxorubicin treatment induces proliferation arrest and FOXO3a nuclear relocation in sensitive breast cancer cells. Induction of FOXO3a activity in doxorubicin-sensitive MCF-7 cells was sufficient to promote Akt phosphorylation and arrest cell proliferation. Conversely, knockdown of endogenous FOXO3a expression reduced PI3K/Akt activity. Using MDA-MB-231 cells, in which FOXO3a activity can be induced by 4-hydroxytamoxifen, we showed that FOXO3a induction up-regulates PI3K-Akt activity and enhanced doxorubicin resistance. However FOXO3a induction has little effect on cell proliferation, indicating that FOXO3a or its downstream activity is deregulated in the cytotoxic drug resistant breast cancer cells. Thus, our results suggest that sustained FOXO3a activation can enhance hyperactivation of the PI3K/Akt pathway. CONCLUSIONS/SIGNIFICANCE: Together these data suggest that lymph node metastasis and poor survival in invasive ductal breast carcinoma are linked to an uncoupling of the Akt-FOXO3a signaling axis. In these breast cancers activated Akt fails to inactivate and re-localize FOXO3a to the cytoplasm, and nuclear-targeted FOXO3a does not induce cell

  1. Pistacia chinensis Methanolic Extract Attenuated MAPK and Akt Phosphorylations in ADP Stimulated Rat Platelets In Vitro

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2012-01-01

    (2.5–20 μg/mL inhibited ADP-induced platelet aggregation. While PCME diminished [Ca2+]i, ATP, and TXA2 release in ADP-activated platelets, it enhanced cAMP production in resting platelets. Likewise, PCME inhibited fibrinogen binding to αIIbβ3 and downregulated JNK, ERK, and Akt phosphorylations. Thus, PCME contains potential antiplatelet compounds that could be deployed for their therapeutic values in cardiovascular pathology.

  2. Right-To-Left Ventricular Differences in the Expression of Mitochondrial Hexokinase and Phosphorylation of Akt

    Directory of Open Access Journals (Sweden)

    Petra Waskova-Arnostova

    2013-01-01

    Full Text Available Background/Aims: Hexokinase (HK is a key glycolytic enzyme which promotes the maintenance of glucose homeostasis in cardiomyocytes. HK1 isoform is predominantly bound to the outer mitochondrial membrane and highly supports oxidative phosphorylation by increasing the availability of ADP for complex V of the respiratory chain. HK2 isoform is under physiological conditions predominantly localized in the cytosol and upon stimulation of PI3K/ Akt pathway associates with mitochondria and thus can prevent apoptosis. The purpose of this study was to investigate expression and subcellular localization of both HK isoforms in left (LV and right (RV heart ventricles of adult male Wistar rats. Methods: Real-Time RT-PCR, Western blotting, and quantitative immunofluorescence microscopy were used. Results: Our results showed a significantly higher expression of both HK1 and HK2 at mRNA and protein levels in the RV compared to the LV. These findings were corroborated by immunofluorescence staining which revealed substantially higher fluorescence signals of both HKs in the RV than in the LV. The ratios of phospho-Ser473-Akt/non-phospho-Akt and phospho-Thr308-Akt/non-phospho-Akt were also markedly higher in the RV than in the LV. Conclusion: These results suggest that the RV has a higher activity of aerobic glycolytic metabolism and may be able to respond faster and more powerfully to stressful stimuli than the LV.

  3. Phosphorylation sites within Ebola virus nucleoprotein

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-07-01

    Full Text Available To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  4. Effects of Zinc on Glucose Consumption and AKT/GSK3β Phosphorylation in L6 Myotubes

    Institute of Scientific and Technical Information of China (English)

    Hui-zi LU; Yun-tang WU; Zhong SUN; Yong-zhe LIU; Yong-ming WANG; Qian SANG; Xin-yan LIU

    2014-01-01

    ObjectiveTo investigate the effects of zinc on glucose consumption in normal and insulin-resistant L6 myotubes and elucidate its association with AKT/GSK3β phosphorylation, two key components in the insulin-signaling pathway.Methods The insulin-resistant cell model was prepared by treating L6 myotubes with 0.4mmol/L palmitic acid for 24h and then exposed to different concentrations of zinc (0, 10, 20, 50, 100μmol/L) in the presence or absence of insulin (100 nmol/L) for 3h. Glucose consumption was determined by glucose oxidase method. AKT /GSK3β phosphorylation was detected by Western blotting method.ResultsIn normal L6 myotubes, zinc (10-50μmol/L) alone could significantly increase glucose consumption. In the presence or absence of insulin, zinc significantly enhanced AKT/GSK3β phosphorylation. In insulin-resistant L6 myotubes, zinc (10-50μmol/L) could increase glucose consumption and GSK3β phosphorylation, which was accompanied by enhanced AKT phosphorylation in the presence of insulin.ConclusionCollectively, these results showed that zinc at the concentrations of 10-50μmol/L could increase glucose consumption in L6 myotubes. The mechanism was related to the activation of the insulin signaling pathway by zinc through AKT/GSK3β phosphorylation.

  5. Nitration of JAK-2 at the 1007Y-1008Y activation epitope impedes phosphorylation at this site: defining a GH, AKT/protein kinase B and nitric oxide synthase axis

    Science.gov (United States)

    Generalized liver protein tyrosine nitration (3’-nitrotyrosine, 3’-NT) increases in vivo after GH injection with immunohistocellular patterns strikingly similar to those we observed for a specific nitration of JAK2 at its 1007Y-1008Y regulatory phosphorylation epitope following proinflammatory chall...

  6. RASSF4 promotes EV71 replication to accelerate the inhibition of the phosphorylation of AKT.

    Science.gov (United States)

    Zhang, Fengfeng; Liu, Yongjuan; Chen, Xiong; Dong, Lanlan; Zhou, Bingfei; Cheng, Qingqing; Han, Song; Liu, Zhongchun; Peng, Biwen; He, Xiaohua; Liu, Wanhong

    2015-03-20

    Enterovirus 71 (EV71) is a neurotropic virus that causes hand, foot and mouth disease (HFMD), occasionally leading to death. As a member of the RAS association domain family (RASSFs), RASSF4 plays important roles in cell death, tumor development and signal transduction. However, little is known about the relationship between RASSF4 and EV71. Our study reveals for the first time that RASSF4 promotes EV71 replication and then accelerates AKT phosphorylation inhibition in EV71-infected 293T cells, suggesting that RASSF4 may be a potential new target for designing therapeutic measures to prevent and control EV71 infection.

  7. Phospho-Akt immunoreactivity in prostate cancer: relationship to disease severity and outcome, Ki67 and phosphorylated EGFR expression.

    Directory of Open Access Journals (Sweden)

    Peter Hammarsten

    Full Text Available BACKGROUND: In the present study, we have investigated the prognostic usefulness of phosphorylated Akt immunoreactivity (pAkt-IR in prostate cancer using a well-characterised tissue microarray from men who had undergone transurethral resection due to lower urinary tract symptoms. METHODOLOGY/PRINCIPAL FINDINGS: pAkt-IR in prostate epithelial and tumour cells was assessed using a monoclonal anti-pAkt (Ser(473 antibody. Immunoreactive intensity was determined for 282 (tumour and 240 (non-malignant tissue cases. Tumour pAkt-IR scores correlated with Gleason score, tumour Ki67-IR (a marker of cell proliferation and tumour phosphorylated epidermal growth factor receptor (pEGFR-IR. For cases followed with expectancy, a high tumour pAkt-IR was associated with a poor disease-specific survival, and the prognostic information provided by this biomarker was additive to that provided by either (but not both tumour pEFGR-IR or Ki67-IR. Upon division of the cases with respect to their Gleason scores, the prognostic value of pAkt-IR was seen for patients with Gleason score 8-10, but not for patients with Gleason score 6-7. CONCLUSIONS/SIGNIFICANCE: Tumour pAkt-IR is associated with both disease severity and disease-specific survival. However, its clinical use as a biomarker is limited, since it does not provide prognostic information in patients with Gleason scores 6-7.

  8. Impairments in site-specific AS160 phosphorylation and effects of exercise training

    DEFF Research Database (Denmark)

    Consitt, Leslie A; Van Meter, Jessica; Newton, Christopher A

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training...... in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666 and phospho-Akt substrate (PAS), but not Ser-318 or Ser-751. Twelve weeks of either endurance- or strength-oriented exercise training increased whole...... population and that exercise training is an effective intervention for treating these impairments....

  9. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type

    Science.gov (United States)

    ZHANG, YUNCHENG; ZHENG, YUANWEN; FAHEEM, ALI; SUN, TIANTONG; LI, CHUNYOU; LI, ZHE; ZHAO, DIANTANG; WU, CHAO; LIU, JUN

    2016-01-01

    Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type. PMID:26998062

  10. KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stina M. Singel

    2014-03-01

    Full Text Available Despite evidence that kinesin family member 14 (KIF14 can serve as a prognostic biomarker in various solid tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14 expression increases docetaxel chemosensitivity in estrogen receptor–negative/progesterone receptor–negative/human epidermal growth factor receptor 2-negative, “triple-negative” breast cancers (TNBC. To investigate the oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14 knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is feasible and effective for TNBC.

  11. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease.

    Science.gov (United States)

    Chu, J; Lauretti, E; Praticò, D

    2017-01-31

    The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.Molecular Psychiatry advance online publication, 31 January 2017; doi:10.1038/mp.2016.214.

  12. Lectin from Agaricus Bisporus Suppresses Akt Phosphorylation and Arrests Cell Cycle Progression in Primary Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Y. H. Cheung

    2011-05-01

    Full Text Available Anomalous retinal pigment epithelial (RPE cells have been implicated in the development of retinal diseases. Lectin from the edible mushroom Agaricus bisporus (ABL was found to inhibit growth of RPE cells. To elucidate the mechanism through which ABL inhibits RPE cell proliferation, we investigated the changes in cell proliferation-related signaling pathways and cell cycle distribution patterns. Primary human RPE cells were grown with or without the lectin (ABL supplement (20ug or 90ug/ml for three days. Phosphorylation statuses of Akt, Jnk and p38 as well as p53 expression level were investigated by Western blotting. Cellular distributions in various cell cycle phases were investigated using flow cytometry. After ABL treatment (90ug/ml, Akt was found to be hypo-phosphorylated while the expression levels of p53, phosphorylated-Jnk and phosphorylated-p38 were not altered. The amount of cells present at S phase was reduced. Our results showed that ABL hypo-phosphorylated Akt and this observation is in line with the finding that ABL could attenuate cell proliferation. As the level of p53 was not significantly altered by ABL, this suggested that the mechanism in which ABL arrested cell proliferation was independent of Akt-mediated MDM2 activation but was possibly mediated by altering G1 to S phase transition.

  13. Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes.

    Science.gov (United States)

    Ibuki, Yuko; Toyooka, Tatsushi; Zhao, Xiaoxu; Yoshida, Ikuma

    2014-06-01

    Post-translational modifications in histones have been associated with cancer. Although cigarette sidestream smoke (CSS) as well as mainstream smoke are carcinogens, the relationship between carcinogenicity and histone modifications has not yet been clarified. Here, we demonstrated that CSS induced phosphorylation of histones, involving a carcinogenic process. Treatment with CSS markedly induced the phosphorylation of histone H3 at serine 10 and 28 residues (H3S10 and H3S28), which was independent from the cell cycle, in the human pulmonary epithelial cell model, A549 and normal human lung fibroblasts, MRC-5 and WI-38. Using specific inhibitors and small interfering RNA, the phosphorylation of H3S10 was found to be mediated by c-jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. These pathways were different from that of the CSS-induced phosphorylation of histone H2AX (γ-H2AX) mediated by Ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR) protein kinases. A chromatin immunoprecipitation assay revealed that the phosphorylation of H3S10 was increased in the promoter sites of the proto-oncogenes, c-fos and c-jun, which indicated that CSS plays a role in tumor promotion. Because the phosphorylation of H3S10 was decreased in the aldehyde-removed CSS and was significantly induced by treatment with formaldehyde, aldehydes are suspected to partially contribute to this phosphorylation. These findings suggested that any chemicals in CSS, including aldehydes, phosphorylate H3S10 via JNK and PI3K/Akt pathways, which is different from the DNA damage response, resulting in tumor promotion.

  14. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  15. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  16. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  17. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  18. Losartan affects glomerular AKT and mTOR phosphorylation in an experimental model of type 1 diabetic nephropathy.

    Science.gov (United States)

    Mavroeidi, Vasiliki; Petrakis, Ioannis; Stylianou, Kostas; Katsarou, Theodora; Giannakakis, Konstantinos; Perakis, Kostas; Vardaki, Eleftheria; Stratigis, Spyridon; Ganotakis, Emmanuel; Papavasiliou, Stathis; Daphnis, Eugenios

    2013-06-01

    The AKT-mTOR pathway is activated in diabetic nephropathy. Renin-angiotensin system modulators exert beneficial effects on the diabetic kidney. We explored the action of losartan on AKT-mTOR phosphorylation in glomeruli and podocytes. Diabetes mellitus was induced to Sprague-Dawley rats by streptozotocin. Five months later, the rats were commenced on losartan and euthanized 2 months later. Kidneys were processed for immunofluorescence studies. Glomeruli were isolated for Western blot analysis. Diabetes increased activated forms of AKT and mTOR both in glomeruli and podocytes. In diabetic rats, losartan decreased phosphorylated/activated forms of AKT (Thr308) and mTOR (Ser2448) in glomeruli but decreased only activated mTOR in podocytes. However, in both glomeruli and podocytes of healthy animals, an inverse pattern was evident. In conclusion, a new body of evidence indicates the differential activation of AKT-mTOR in glomeruli and podocytes of healthy and diabetic animals in response to losartan.

  19. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    Science.gov (United States)

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  20. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  1. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    Science.gov (United States)

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  2. Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt.

    Science.gov (United States)

    Han, Chang Yeob; Koo, Ja Hyun; Kim, Sung Hoon; Gardenghi, Sara; Rivella, Stefano; Strnad, Pavel; Hwang, Se Jin; Kim, Sang Geon

    2016-12-22

    Hepatic stellate cell (HSC) activation on liver injury facilitates fibrosis. Hepatokines affecting HSCs are largely unknown. Here we show that hepcidin inhibits HSC activation and ameliorates liver fibrosis. We observe that hepcidin levels are inversely correlated with exacerbation of fibrosis in patients, and also confirm the relationship in animal models. Adenoviral delivery of hepcidin to mice attenuates liver fibrosis induced by CCl4 treatment or bile duct ligation. In cell-based assays, either hepcidin from hepatocytes or exogenous hepcidin suppresses HSC activation by inhibiting TGFβ1-mediated Smad3 phosphorylation via Akt. In activated HSCs, ferroportin is upregulated, which can be prevented by hepcidin treatment. Similarly, ferroportin knockdown in HSCs prohibits TGFβ1-inducible Smad3 phosphorylation and increases Akt phosphorylation, whereas ferroportin over-expression has the opposite effect. HSC-specific ferroportin deletion also ameliorates liver fibrosis. In summary, hepcidin suppresses liver fibrosis by impeding TGFβ1-induced Smad3 phosphorylation in HSCs, which depends on Akt activated by a deficiency of ferroportin.

  3. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Sook; Lee, Eun Hye [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Kooyeon [Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr [Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Seo, Su Ryeon, E-mail: suryeonseo@kangwon.ac.kr [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  4. Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma.

    Science.gov (United States)

    Akizuki, Risa; Shimobaba, Shun; Matsunaga, Toshiyuki; Endo, Satoshi; Ikari, Akira

    2017-02-01

    Abnormal expression of claudin (CLDN) subtypes has been reported in various solid cancers. However, it is unknown which subtype plays a key role in the regulation of proliferation in cancer cells. The expression of CLDN3-5, 7, and 18 in human lung squamous carcinoma tissues was lower than that in normal tissue. Here, we examined which combination of exogenous CLDNs expression inhibits proliferation and the molecular mechanism using human lung squamous RERF-LC-AI cells. Real-time polymerase chain reaction and western blotting showed that CLDN3-5, 7, and 18 are little expressed in RERF-LC-AI cells. In the exogenously transfected cells, CLDN5, 7, and 18 were distributed in the cell-cell contact areas concomitant with ZO-1, a tight junctional scaffolding protein, whereas CLDN3 and 4 were not. Cell proliferation was individually and additively suppressed by CLDN5, 7, and 18. The expression of these CLDNs showed no cytotoxicity compared with mock cells. CLDN5, 7, and 18 increased p21 and decreased cyclin D1, resulting in the suppression of cell cycle G1-S transition. The expression of these CLDNs inhibited phosphorylation of Akt without affecting phosphorylated ERK1/2. Furthermore, these CLDNs inhibited the nuclear localization of Akt and its association with 3-phosphoinositide-dependent protein kinase-1 (PDK1). The suppression of G1-S transition caused by CLDN5, 7, and 18 was rescued by the expression of constitutively active-Akt. We suggest that the reduction of CLDN5, 7, and 18 expression loses the suppressive ability of interaction between PDK1 and Akt and causes sustained phosphorylation of Akt, resulting in the disordered proliferation in lung squamous carcinoma cells.

  5. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Goodman Julie E

    2010-11-01

    Full Text Available Abstract Background Inducible cyclooxgenase-2 (COX-2 is commonly overexpressed in breast tumors and is a target for cancer therapy. Here, we studied the association of COX-2 with breast cancer survival and how this association is influenced by tumor estrogen and HER2 receptor status and Akt pathway activation. Methods Tumor COX-2, HER2 and estrogen receptor α (ER expression and phosphorylation of Akt, BAD, and caspase-9 were analyzed immunohistochemically in 248 cases of breast cancer. Spearman's correlation and multivariable logistic regression analyses were used to examine the relationship between COX-2 and tumor characteristics. Kaplan-Meier survival and multivariable Cox proportional hazards regression analyses were used to examine the relationship between COX-2 and disease-specific survival. Results COX-2 was significantly associated with breast cancer outcome in ER-negative [Hazard ratio (HR = 2.72; 95% confidence interval (CI, 1.36-5.41; comparing high versus low COX-2] and HER2 overexpressing breast cancer (HR = 2.84; 95% CI, 1.07-7.52. However, the hazard of poor survival associated with increased COX-2 was highest among patients who were both ER-negative and HER2-positive (HR = 5.95; 95% CI, 1.01-34.9. Notably, COX-2 expression in the ER-negative and HER2-positive tumors correlated significantly with increased phosphorylation of Akt and of the two Akt targets, BAD at Ser136 and caspase-9 at Ser196. Conclusions Up-regulation of COX-2 in ER-negative and HER2-positive breast tumors is associated with Akt pathway activation and is a marker of poor outcome. The findings suggest that COX-2-specific inhibitors and inhibitors of the Akt pathway may act synergistically as anticancer drugs in the ER-negative and HER2-positive breast cancer subtype.

  6. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta;

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosp...

  7. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2.

    Science.gov (United States)

    Zeng, Ping; Liu, Bin; Wang, Qun; Fan, Qin; Diao, Jian-Xin; Tang, Jing; Fu, Xiu-Qiong; Sun, Xue-Gang

    2015-01-01

    Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE (-/-) mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL-) loaded murine peritoneal macrophages (MPMs). Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2). PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  8. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    2015-01-01

    Full Text Available Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE-/- mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL- loaded murine peritoneal macrophages (MPMs. Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2. PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  9. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Su-Lin Lee

    Full Text Available Although the rictor-mTOR complex (mTORC2 has been shown to act as phosphoinositide-dependent kinase (PDK2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial

  10. Activated α2-macroglobulin binding to cell surface GRP78 induces T-loop phosphorylation of Akt1 by PDK1 in association with Raptor.

    Directory of Open Access Journals (Sweden)

    Uma Kant Misra

    Full Text Available PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M* PDK1 phosphorylates Akt in the T-loop at Thr(308 by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308 in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308, which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308 by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein.

  11. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Directory of Open Access Journals (Sweden)

    Hong Wa Yung

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  12. Determining in vivo phosphorylation sites using mass spectrometry.

    Science.gov (United States)

    Breitkopf, Susanne B; Asara, John M

    2012-04-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems, since it controls cell growth, proliferation, survival, and other processes. High-resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity, and throughput. The protocols described here focus on two common strategies: (1) identifying phosphorylation sites from individual proteins and small protein complexes, and (2) identifying global phosphorylation sites from whole-cell and tissue extracts. For the first, endogenous or epitope-tagged proteins are typically immunopurified from cell lysates, purified via gel electrophoresis or precipitation, and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO(2)) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time consuming and involve digesting the whole-cell lysate, followed by peptide fractionation by strong cation-exchange chromatography, phosphopeptide enrichment by IMAC or TiO(2), and LC-MS/MS. Alternatively, the protein lysate can be fractionated by SDS-PAGE, followed by digestion, phosphopeptide enrichment, and LC-MS/MS. One can also immunoprecipitate only phosphotyrosine peptides using a pTyr antibody followed by LC-MS/MS.

  13. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation.

    Science.gov (United States)

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-08-16

    Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM-DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  14. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  15. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Taylor, Eric B.; Witczak, Carol A.

    2010-01-01

    TBC1D4 (also known as AS160) regulates GLUT4 translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of Serine (S)/Threonine (T) residues by upstream kinases resulting in inactivation of Rab-GAP activity leading to GLUT4 mobilization....... The majority of known phosphorylation sites on TBC1D4 lie within the Akt consensus motif and are phosphorylated by insulin stimulation. However, the 5 AMP activated protein kinase (AMPK) and other kinases may also phosphorylate TBC1D4, and therefore we hypothesized the presence of additional phosphorylation...... sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxmide riboside (AICAR) and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted...

  16. Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D

    Directory of Open Access Journals (Sweden)

    Razmara Masoud

    2013-01-01

    Full Text Available Abstract Mammalian target of rapamycin (mTOR can be found in two multi-protein complexes, i.e. mTORC1 (containing Raptor and mTORC2 (containing Rictor. Here, we investigated the mechanisms by which mTORC1 and mTORC2 are activated and their downstream targets in response to platelet-derived growth factor (PDGF-BB treatment. Inhibition of phosphatidylinositol 3-kinase (PI3K inhibited PDGF-BB activation of both mTORC1 and mTORC2. We found that in Rictor-null mouse embryonic fibroblasts, or after prolonged rapamycin treatment of NIH3T3 cells, PDGF-BB was not able to promote phosphorylation of Ser473 in the serine/threonine kinase Akt, whereas Thr308 phosphorylation was less affected, suggesting that Ser473 in Akt is phosphorylated in an mTORC2-dependent manner. This reduction in Akt phosphorylation did not influence the phosphorylation of the S6 protein, a well established protein downstream of mTORC1. Consistently, triciribine, an inhibitor of the Akt pathway, suppressed PDGF-BB-induced Akt phosphorylation without having any effect on S6 phosphorylation. Thus, mTORC2 does not appear to be upstream of mTORC1. We could also demonstrate that in Rictor-null cells the phosphorylation of phospholipase Cγ1 (PLCγ1 and protein kinase C (PKC was impaired, and the PKCα protein levels strongly reduced. Furthermore, interfering with the PLCγ/Ca2+/PKC pathway inhibited PDGF-BB-induced Akt phosphorylation. In addition, PDGF-BB-induced activation of mTORC1, as measured by phosphorylation of the downstream S6 protein, was dependent on phospholipase D (PLD. It has been shown that Erk1/2 MAP-kinase directly phosphorylates and activates mTORC1; in partial agreement with this finding, we found that a Mek1/2 inhibitor delayed S6 phosphorylation in response to PDGF-BB, but it did not block it. Thus, whereas both mTORC1 and mTORC2 are activated in a PI3K-dependent manner, different additional signaling pathways are needed. mTORC1 is activated in a PLD-dependent manner

  17. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    Directory of Open Access Journals (Sweden)

    Avigail Dreazen Wittenberg

    Full Text Available Constitutive expression of active Akt (Akttg drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6, an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-. rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.

  18. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    Science.gov (United States)

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.

  19. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor.

  20. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Houbao [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Xu, Wangyang [Department of Clinical Laboratories, Ninth People’s Hospital, SJTUSM, Shanghai 200011 (China); Zhang, Hongxin [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Liu, Jianbing [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Xu, Haimin [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Lu, Shunyuan; Dang, Suying [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Kuang, Ying [Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Jin, Xiaolong [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Wang, Zhugang, E-mail: zhugangw@shsmu.edu.cn [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China)

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  1. The collective nuclear migration of p53 and phosphorylated S473 of Akt during ellipticine-mediated apoptosis in human lung epithelial cancer cells.

    Science.gov (United States)

    Wang, Jing-Ping; Yu, Ya-Chu; Chen, Shih-Ping; Liang, Huan-Chang; Lin, Chia-Wei; Fang, Kang

    2015-09-01

    Topoisomerase II inhibitor ellipticine effectively suppressed the growth of human non-small-cell-lung-cancer (NSCLC) epithelial cells. Previously, we reported the drug activity was consummated through parallel nucleus migration of p53 and Akt in A549 cells. While inducing cell death, the drug activity was proved related to autophagy through phosphorylated Akt at S473. In addition, ellipticine induced cytotoxicity in p53-null H1299 cells with stable expression of ectopic p53. In this work, we further demonstrated that dominant-negative Akt (S473A) or p53 shRNA inhibited ellipticine-mediated translocalization of p53 and Akt and attenuated apoptotic cell death in A549 cells. The presence of p53 predates ellipticine-mediated apoptotic cell death, assists in nucleus translocation of phosphorylated Akt and activation of autophagy pathway. Growth inhibition through collaborating p53 and phosphorylated Akt(473) in lung epithelial cancer cells provided a new perspective of the topoisomerase inhibitor as an effective cancer therapy agent.

  2. Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Dolga, Amalia M.; Ostroveanu, Anghelus; Luiten, Paul G. M.; Schmidt, Martina; Eisel, Ulrich L. M.

    2008-01-01

    In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigat

  3. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  4. Thrombin Receptor-Activating Protein (TRAP-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1 from Platelets in DM Patients

    Directory of Open Access Journals (Sweden)

    Haruhiko Tokuda

    2016-05-01

    Full Text Available It is generally known that heat shock protein 27 (HSP27 is phosphorylated through p38 mitogen-activated protein (MAP kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP on the release of HSP27 in platelets in type 2 diabetes mellitus (DM patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78 were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC of small aggregates (9–25 µm induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm, large aggregates (50–70 µm and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  5. Expression of human apolipoprotein E4 reduces insulin-receptor substrate 1 expression and Akt phosphorylation in the ageing liver

    Directory of Open Access Journals (Sweden)

    Qi-Rui Ong

    2014-01-01

    Full Text Available The diabetic drug rosiglitazone was reported to improve glucose tolerance in insulin-resistant ApoE3 but not ApoE4 knock-in mice. We therefore examined whether apolipoprotein E (ApoE has genotype-specific effects on liver insulin function. At 12 weeks, no difference in liver insulin signaling was detected between fasting ApoE3 and ApoE4 mice. At 72 weeks however, ApoE4 mice had lower IRS-1 and PI3K expression, and reduced Akt phosphorylation. This decline was associated with lower insulin and higher glucose in ApoE4 mouse liver. Liver cholesterol was not affected. These results show that ApoE4 expression reduces liver insulin signaling and insulin levels, leading to higher glucose content.

  6. Vitamin B₂ Sensitizes Cancer Cells to Vitamin-C-Induced Cell Death via Modulation of Akt and Bad Phosphorylation.

    Science.gov (United States)

    Chen, Ni; Yin, Shutao; Song, Xinhua; Fan, Lihong; Hu, Hongbo

    2015-08-01

    Vitamin C is an essential dietary nutrient that has a variety of biological functions. Recent studies have provided promising evidence for its additional health benefits, including anticancer activity. Vitamin B2, another essential dietary nutrient, often coexists with vitamin C in some fruits, vegetables, or dietary supplements. The objective of the present study is to determine whether the combination of vitamin C and B2 can achieve a synergistic anticancer activity. MDA-MB-231, MCF-7, and A549 cells were employed to evaluate the combinatory effects of vitamin C and B2. We found that the combination of vitamin C and B2 resulted in a synergistic cell death induction in all cell lines tested. Further mechanistic investigations revealed that vitamin B2 sensitized cancer cells to vitamin C through inhibition of Akt and Bad phosphorylation. Our findings identified vitamin B2 as a promising sensitizer for improving the efficacy of vitamin-C-based cancer chemoprevention and chemotherapy.

  7. Lack of SIRPα phosphorylation and concomitantly reduced SHP-2-PI3K-Akt2 signaling decrease osteoblast differentiation.

    Science.gov (United States)

    Holm, Cecilia Koskinen; Engman, Sara; Sulniute, Rima; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2016-09-09

    Normal differentiation of bone forming osteoblasts is a prerequisite for maintenance of skeletal health and is dependent on intricate cellular signaling pathways, including the essential transcription factor Runx2. The cell surface glycoprotein CD47 and its receptor signal regulatory protein alpha (SIRPα) have both been suggested to regulate bone cell differentiation. Here we investigated osteoblastic differentiation of bone marrow stromal cells from SIRPα mutant mice lacking the cytoplasmic signaling domain of SIRPα. An impaired osteoblastogenesis in SIRPα-mutant cell cultures was demonstrated by lower alkaline phosphatase activity and less mineral formation compared to wild-type cultures. This reduced osteoblastic differentiation potential in SIRPα-mutant stromal cells was associated with a significantly reduced expression of Runx2, osterix, osteocalcin, and alkaline phosphatase mRNA, as well as a reduced phosphorylation of SHP-2 and Akt2, as compared with that in wild-type stromal cells. Addition of a PI3K-inhibitor to wild-type stromal cells could mimic the impaired osteoblastogenesis seen in SIRPα-mutant cells. In conclusion, our data suggest that SIRPα signaling through SHP-2-PI3K-Akt2 strongly influences osteoblast differentiation from bone marrow stromal cells.

  8. Sialidase NEU3 dynamically associates to different membrane domains specifically modifying their ganglioside pattern and triggering Akt phosphorylation.

    Directory of Open Access Journals (Sweden)

    Dario Bonardi

    Full Text Available Lipid rafts are known to regulate several membrane functions such as signaling, trafficking and cellular adhesion. The local enrichment in sphingolipids and cholesterol together with the low protein content allows their separation by density gradient flotation after extraction with non-ionic detergent at low temperature. These structures are also referred to as detergent resistant membranes (DRM. Among sphingolipids, gangliosides play important roles in different biological events, including signal transduction and tumorigenesis. Sialidase NEU3 shows high enzymatic specificity toward gangliosides. Moreover, the enzyme is present both at the cell surface and in endosomal structures and cofractionates with caveolin. Although changes in the expression level of NEU3 have been correlated to different tumors, little is known about the precise distribution of the protein and its ability in modifying the ganglioside composition of DRM and non-DRM, thus regulating intracellular events. By means of inducible expression cell system we found that i newly synthesized NEU3 is initially associated to non-DRM; ii at steady state the protein is equally distributed between the two membrane subcompartments, i.e., DRM and non-DRM; iii NEU3 is degraded via the proteasomal pathway; iv the enzyme specifically modifies the ganglioside composition of the membrane areas where it resides; and v NEU3 triggers phosphorylation of Akt, even in absence of exogenously administered EGF. Taken together our data demonstrate that NEU3 regulates the DRM ganglioside content and it can be considered as a modulator of Akt phosphorylation, further supporting the role of this enzyme in cancer and tumorigenesis.

  9. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Peter P. Ruvolo

    2015-12-01

    Conclusions: These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients.

  10. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    Science.gov (United States)

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  11. Bioinformatics Study of Cancer-Related Mutations within p53 Phosphorylation Site Motifs

    Directory of Open Access Journals (Sweden)

    Xiaona Ji

    2014-07-01

    Full Text Available p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  12. Mucin 3 is involved in intestinal epithelial cell apoptosis via N-(3-oxododecanoyl)-L-homoserine lactone-induced suppression of Akt phosphorylation.

    Science.gov (United States)

    Taguchi, Ryoko; Tanaka, Shinya; Joe, Ga-Hyun; Maseda, Hideaki; Nomura, Nobuhiko; Ohnishi, Junji; Ishizuka, Satoshi; Shimizu, Hidehisa; Miyazaki, Hitoshi

    2014-07-15

    N-acyl-homoserine lactones (AHL) are quorum-sensing molecules in bacteria that play important roles in regulating virulence gene expression in pathogens such as Pseudomonas aeruginosa. The present study compared responses between undifferentiated and differentiated Caco-2 cells to N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). A low concentration of 3-oxo-C12-HSL (30 μM) is sufficient to reduce viability accompanied by apoptosis via the suppression of phosphorylation by Akt in undifferentiated Caco-2 cells. The suppression of Akt phosphorylation appears specific in 3-oxo-C12-HSL, because other AHLs did not influence the phosphorylation status of Akt. The reduced viability induced by 3-oxo-C12-HSL was partially recovered by constitutively active Akt overexpression in undifferentiated Caco-2 cells. Since mucin is considered a vital component of the gut barrier, we investigated whether mucin protects cellular functions induced by 3-oxo-C12-HSL in undifferentiated Caco-2 cells. The results showed that mucin protected undifferentiated Caco-2 cells from apoptosis induced by 3-oxo-C12-HSL. 3-Oxo-C12-HSL did not induce cell death in differentiated Caco-2 cells that expressed higher levels of mucin 3 (MUC3) than undifferentiated Caco-2 cells. In addition, 3-oxo-C12-HSL promoted cell death in undifferentiated Caco-2 cells transfected with MUC3 siRNA and reduced MUC3 expression in undifferentiated Caco-2 cells. Therefore, MUC3 might be responsible for the survival of undifferentiated intestinal epithelial cells in the presence of 3-oxo-C12-HSL through regulating Akt phosphorylation. In conclusion, 3-oxo-C12-HSL might influence the survival of undifferentiated intestinal epithelial cells as well as interactions between these cells and pathogens.

  13. Functional Analysis of PKC Phosphorylation Sites on Myelin Protein Zero

    Institute of Scientific and Technical Information of China (English)

    GangXu; MichaelShy; JohnKamhoz; JanneBalsamo

    2003-01-01

    Objective To analyze the function of Protein kinase C(PKC) phosphorylation sites on mylelin protein zero (P0) at adhesion and myelination.Methods Mutations of p0 cyto-plasmic domain motif (RSTK) and adjacent sequence which are targeted by PKC were studied.Results The point mutations in this region or an adjacent serine residue could abolish P0 adhe-sion function. PKCα,along with the PKC binding protein RACK1,were associated with wild type P0.Inhibition of PKC activity abolished the P0 mediated adhesion.Point mutation in the RSTKtarget site that abolished adhesion did not alter the association of PKC with P0,but deletion of a 14 amino acid region,which included the PSTK motif,could abolish the association.Conclusion PKC mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is neces-sary for P0 mediated adhesion.The alteration of this phoporylation can cause demyelinating neu-ropathy in human.

  14. Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Højlund, Kurt; Glintborg, Dorte; Andersen, Nicoline Resen

    2008-01-01

    OBJECTIVE: Insulin resistance in skeletal muscle is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). However, the molecular mechanisms underlying skeletal muscle insulin resistance and the insulin-sensitizing effect of thiazolidinediones in PCOS in vivo...... in muscle of PCOS patients. Akt phosphorylation at Ser473 and Thr308 correlated positively with R(d) and NOGD in the insulin-stimulated state. Serum free testosterone was inversely related to insulin-stimulated R(d) and NOGD in PCOS. Importantly, the pioglitazone-mediated improvement in insulin....... CONCLUSIONS: Impaired insulin signaling through Akt and AS160 in part explains insulin resistance at the molecular level in skeletal muscle in PCOS, and the ability of pioglitazone to enhance insulin sensitivity involves improved signaling through Akt and AS160. Moreover, our data provide correlative evidence...

  15. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression.

    Science.gov (United States)

    Bromati, Carla R; Lellis-Santos, Camilo; Yamanaka, Tatiana S; Nogueira, Tatiane C A; Leonelli, Mauro; Caperuto, Luciana C; Gorjão, Renata; Leite, Adriana R; Anhê, Gabriel F; Bordin, Silvana

    2011-01-01

    Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.

  16. Pinpointing Phosphorylation Sites: Quantitative Filtering and a Novel Site-specific x-Ion Fragment

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Hekmat, Omid; Francavilla, Chiara;

    2011-01-01

    assignments in large-scale phosphoproteomics data sets. To improve methods for site localization, we made use of a synthetic phosphopeptide library and SILAC-labeled peptides from whole cell lysates and analyzed these with high-resolution tandem mass spectrometry on an LTQ Orbitrap Velos. We validated gas...... contain a phosphorylated residue and which ones do not. We also evaluated higher-energy collisional dissociation (HCD) and found this to be an accurate method for correct phosphorylation site localization with no gas-phase rearrangements observed above noise level. Analyzing a large set of HCD spectra...

  17. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    need for an accurate database dedicated to phosphorylation to provide easily retrievable information on phosphoproteins. Description: Phospho. ELM http://phospho.elm.eu.org is a new resource containing experimentally verified phosphorylation sites manually curated from the literature and is developed...... to be phosphorylated by cellular kinases. Additional annotation includes literature references, subcellular compartment, tissue distribution, and information about the signaling pathways involved as well as links to the molecular interaction database MINT. Phospho. ELM version 2.0 contains 1703 phosphorylation site...

  18. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  19. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Murai Atsuko

    2012-07-01

    Full Text Available Abstract Background Canine hemangiosarcoma (HSA is a malignant tumor with poor long-term prognosis due to development of metastasis despite aggressive treatment. The phosphatidyl-inositol-3 kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is involved in its endothelial pathologies; however, it remains unknown how this pathway plays a role in canine HSA. Here, we characterized new canine HSA cell lines derived from nude mice-xenografted canine HSAs and investigated the deregulation of the signaling pathways in these cell lines. Results Seven canine HSA cell lines were established from 3 xenograft canine HSAs and showed characteristics of endothelial cells (ECs, that is, uptake of acetylated low-density lipoprotein and expression of canine-specific CD31 mRNA. They showed varied morphologies and mRNA expression levels for VEGF-A, bFGF, HGF, IGF-I, EGF, PDGF-B, and their receptors. Cell proliferation was stimulated by these growth factors and fetal bovine serum (FBS in 1 cell line and by FBS alone in 3 cell lines. However, cell proliferation was not stimulated by growth factors and FBS in the remaining 3 cell lines. Phosphorylated p44/42 Erk1/2 was increased by FBS stimulation in 4 cell lines. In contrast, phosphorylation of Akt at Ser473, mTOR complex 1 (mTORC1 at Ser2448, and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1 at Ser65 was high in serum-starved condition and not altered by FBS stimulation in 6 cell lines, despite increased phosphorylation of these residues in normal canine ECs. This suggested that the mTORC2/Akt/4E-BP1 pathway was constitutively activated in these 6 canine HSA cell lines. After cell inoculation into nude mice, canine HSA tumors were formed from 4 cell lines and showed Akt and 4E-BP1 phosphorylation identical to the parental cell lines. Conclusions Our findings suggest that the present cell lines may be useful tools for investigating the role of the mTORC2/Akt/4E-BP1 pathway in

  20. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    Dynamin I (dynI) is phosphorylated in synaptosomes at Ser(774) and Ser(778) by cyclin-dependent kinase 5 to regulate recruitment of syndapin I for synaptic vesicle endocytosis, and in PC12 cells on Ser(857). Hierarchical phosphorylation of Ser(774) precedes phosphorylation of Ser(778). In contrast...

  1. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    OpenAIRE

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. ...

  2. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins....

  3. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.;

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  4. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Xiao-hui CHEN; Bin WANG; Feng LIU; Xia CHI; Mei-ling TONG; Yu-hui NI; Rong-hua CHEN; Xi-rong GUO

    2009-01-01

    Aim: NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese patients. The purpose of this study was to investigate the effects of NYGGF4 on basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes and to understand the underlying mechanisms. Methods: 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1Myc/His B) or an NYGGF4 expression vector were differentiated into mature adipocytes. Glucose uptake was determined by measuring 2-deoxy-D-[3H]glucose uptake into the adipocytes. Immunoblotting was performed to detect the translocation of insulin-sensitive glu-cose transporter 4 (GLUT4). Immunoblotting also was used to measure the phosphorylation and total protein contents of insulin signaling proteins such as the insulin receptor (IR), insulin receptor substrate (IRS)-I, Akt, ERK1/2, p38, and JNK. Results: NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phos-phorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, and JNK. Conclusion: NYGGF4 regulates the functions of IRS-1 and Akt, decreases GLUT4 translocation and reduces glucose uptake in response to insulin. These observations highlight the potential role of NYGGF4 in glucose homeostasis and possibly in the pathogenesis of obesity.

  5. Akt Phosphorylation and PI (3, 4, 5) P3 Binding Coordinately Inhibit the Tumor Suppressive Activity of Merlin

    Science.gov (United States)

    2010-02-01

    Johnson KC, Eckman MS, & Jacks T (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J...J. L., Johnson, K. C., Eckman , M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin

  6. Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jun-Xiu Liu

    2014-05-01

    Full Text Available Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  7. Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of akt and eNOS in vivo and in vitro.

    Science.gov (United States)

    Liu, Jun-Xiu; Luo, Min-Qi; Xia, Meng; Wu, Qi; Long, Si-Mei; Hu, Yaohua; Gao, Guang-Chun; Yao, Xiao-Li; He, Mian; Su, Huanxing; Luo, Xiong-Ming; Yao, Shu-Zhong

    2014-05-12

    Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  8. PCNA-interacting peptides reduce Akt phosphorylation and TLR-mediated cytokine secretion suggesting a role of PCNA in cellular signaling.

    Science.gov (United States)

    Olaisen, Camilla; Müller, Rebekka; Nedal, Aina; Otterlei, Marit

    2015-07-01

    Proliferating cell nuclear antigen (PCNA), commonly known as a nuclear protein essential for regulation of DNA replication, DNA repair, and epigenetics, has recently been associated with multiple cytosolic functions. Many proteins containing one of the two known PCNA-interacting motifs, the AlkB homologue 2 PCNA interacting motif (APIM) and the PCNA-interacting peptide (PIP)-box, are considered to be mainly cytosolic. APIM is found in more than 20 kinases and/or associated proteins including several direct or indirect members of the mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways. Mass spectrometry analysis of PCNA-pull downs verified that many cytosolic proteins involved in the MAPK and PI3K/Akt pathways are in complex with PCNA. Furthermore, treatment of cells with a PCNA-interacting APIM-containing peptide (APIM-peptide) reduced Akt phosphorylation in human peripheral blood monocytes and a human keratinocyte cell line (HaCaT). Additionally, the APIM-peptide strongly reduced the cytokine secretion from monocytes stimulated with toll like receptor (TLR) ligands and potentiated the effects of MAPK and PI3K/Akt inhibitors. Interestingly, the protein level of the APIM-containing PKR/RIG-1 activator protein (PACT) was initially strongly reduced in HaCaT cells stimulated with APIM-peptide in combination with the TLR ligand polyinosinic-polycytidylic acid (polyIC). Our results suggest that PCNA has a platform role in cytosol affecting cellular signaling.

  9. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    Science.gov (United States)

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  10. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  11. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.

    Science.gov (United States)

    Miller, Chad J; Turk, Benjamin E

    2016-01-01

    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  12. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Hui-Young [Department of Internal Medicine, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Hong, Suntaek [Laboratory of Cancer Cell Biology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840 (Korea, Republic of); Kim, Seong-Jin [CHA Cancer Institute, CHA University of Medicine and Science, Seoul 135-081 (Korea, Republic of); Kim, Byung-Chul, E-mail: bckim@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effects of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing

  13. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cancer HT-29 cells at concentrations at which each agent alone was ineffective. The suppression of cell viability was due to the induction of a caspase-dependent apoptosis. Moreover, the combination effectively inhibited phosphorylation of Akt followed by dephosphorylation of caspase-9 or down-regulation of XIAP and survivin, which contribute to the induction of apoptosis. In addition, the co-treatment also enhanced the induction of autophagy mediated by the dephosphorylation of mTOR, one of the downstream targets of Akt, whereas the maturation of autophagosomes was inhibited. These results give rise to the possibility that co-treatment with I3C and genistein induces apoptosis through the simultaneous inhibition of Akt activity and progression of the autophagic process. This possibility was examined using inhibitors of Akt combined with inhibitors of autophagy. The combination effectively induced apoptosis, whereas the Akt inhibitor alone did not. Conclusion Although in vivo study is further required to evaluate physiological efficacies and toxicity of the combination treatment, our findings might provide a new insight into the development of novel combination therapies/chemoprevention against malignant tumors using dietary phytochemicals.

  14. Haloperidol disrupts Akt signalling to reveal a phosphorylation-dependent regulation of pro-apoptotic Bcl-XS function.

    Science.gov (United States)

    Wei, Zelan; Qi, Ji; Dai, Yunxiu; Bowen, Wayne D; Mousseau, Darrell D

    2009-01-01

    The antipsychotic drug haloperidol is still used to treat psychosis and "agitation", often with devastating consequences, particularly in geriatric and pre-demented patients. Cytotoxicity induced by haloperidol has been associated with induction of Bcl-XS, a pro-apoptotic member of the Bcl-2 family, as well as with modulation of the Akt pro-survival pathway. Using preneuronal PC12 and primary neuronal cultures, we show that haloperidol inactivates Akt. This induces the dephosphorylation of serine residues in Bcl-XS and promotes its association with the mitochondrial voltage-dependent anion channel (VDAC), as well as with cytochrome c- and caspase-3-dependent events. These events are sensitive to expression of constitutively active Akt. Mutation of Serine106 (Ser106), which is flanked by a putative Akt motif, hinders the association of the Bcl-XS protein with Akt, but promotes its association with VDAC. The dephosphorylation mimic, Bcl-XS(Ser106Ala), induces caspase-dependent PC12 and neuronal cell apoptosis. In contrast, Bcl-XS(Ser106Ala) induces a significant loss of VDAC expression, and cytochrome c- and caspase-independent toxicity in the non-neuronal HEK293A cells. We link haloperidol and Akt to Bcl-XS-sensitive toxicity via cell line-dependent mitochondrial events centering on VDAC. This clearly mitigates the chronic use of haloperidol in neuropsychiatric populations, but supports its use as a potential acute therapeutic in cancer, where apoptosis is desirable.

  15. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

    DEFF Research Database (Denmark)

    Højlund, K; Yi, Z; Lefort, N;

    2009-01-01

    AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site......-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS: Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type...... 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic...

  16. Prediction of PK-specific phosphorylation site based on information entropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phosphorylation is a crucial way to control the activity of proteins in many eukaryotic organisms in vivo. Experimental methods to determine phosphorylation sites in substrates are usually restricted by the in vitro condition of enzymes and very intensive in time and labor. Although some in silico methods and web servers have been introduced for automatic detection of phosphorylation sites, sophisticated methods are still in urgent demand to further improve prediction performances. Protein primary se-quences can help predict phosphorylation sites catalyzed by different protein kinase and most com-putational approaches use a short local peptide to make prediction. However, the useful information may be lost if only the conservative residues that are not close to the phosphorylation site are consid-ered in prediction, which would hamper the prediction results. A novel prediction method named IEPP (Information-Entropy based Phosphorylation Prediction) is presented in this paper for automatic de-tection of potential phosphorylation sites. In prediction, the sites around the phosphorylation sites are selected or excluded by their entropy values. The algorithm was compared with other methods such as GSP and PPSP on the ABL, MAPK and PKA PK families. The superior prediction accuracies were ob-tained in various measurements such as sensitivity (Sn) and specificity (Sp). Furthermore, compared with some online prediction web servers on the new discovered phosphorylation sites, IEPP also yielded the best performance. IEPP is another useful computational resource for identification of PK-specific phosphorylation sites and it also has the advantages of simpleness, efficiency and con-venience.

  17. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1.

    Science.gov (United States)

    Sarg, Bettina; Helliger, Wilfried; Talasz, Heribert; Förg, Barbara; Lindner, Herbert H

    2006-03-10

    H1 histones, isolated from logarithmically growing and mitotically enriched human lymphoblastic T-cells (CCRF-CEM), were fractionated by reversed phase and hydrophilic interaction liquid chromatography, subjected to enzymatic digestion, and analyzed by amino acid sequencing and mass spectrometry. During interphase the four H1 subtypes present in these cells differ in their maximum phosphorylation levels: histone H1.5 is tri-, H1.4 di-, and H1.3 and H1.2, only monophosphorylated. The phosphorylation is site-specific and occurs exclusively on serine residues of SP(K/A)K motifs. The phosphorylation sites of histone H1.5 from mitotically enriched cells were also examined. In contrast to the situation in interphase, at mitosis there were additional phosphorylations, exclusively at threonine residues. Whereas the tetraphosphorylated H1.5 arises from the triphosphosphorylated form by phosphorylation of one of two TPKK motifs in the C-terminal domain, namely Thr137 and Thr154, the pentaphosphorylated H1.5 was the result of phosphorylation of one of the tetraphosphorylated forms at a novel nonconsensus motif at Thr10 in the N-terminal tail. Despite the fact that histone H1.5 has five (S/T)P(K/A)K motifs, all of these motifs were never found to be phosphorylated simultaneously. Our data suggest that phosphorylation of human H1 variants occurs nonrandomly during both interphase and mitosis and that distinct serine- or threonine-specific kinases are involved in different cell cycle phases. The order of increased phosphorylation and the position of modification might be necessary for regulated chromatin decondensation, thus facilitating processes of replication and transcription as well as of mitotic chromosome condensation.

  18. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte;

    2008-01-01

    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  19. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  20. mTORC2-PKBα/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 Stability by chemokine CCL3 in psoriasis.

    Science.gov (United States)

    Chen, Ling; Wu, Jinjin; Pier, Eric; Zhao, Yun; Shen, Zhu

    2013-02-01

    The connection between infections and acute guttate psoriasis (AGP) outbreaks/chronic plaque psoriasis (CPP) exacerbation has been known for years. Impaired function of FOXP3+Tregs in psoriasis has been identified. However, the mechanisms behind these two observations have not been fully interpreted. In the present study, we provide evidence to support chemokine CCL3 as one of the vital links between infections and FOXP3 stability in the psoriatic microenvironment. We found that serum CCL3, strongly induced by microorganism infections including streptococcus, was closely correlated with FOXP3 levels in CD4+CD25+T cells of patients with psoriasis. CCL3 manipulated FOXP3 stability in a concentration-dependent bidirectional manner. High-concentration CCL3 decreased FOXP3 stability by promoting FOXP3's degradation through K48-linkage ubiquitination. This degradation was mainly dependent on upregulation of Serine 473 phosphorylation of the PKBα/Akt1 isoform, and almost independent of mTORC1 (mammalian target of rapamycin complex 1) activity. On the other hand, low-concentration CCL3 could enhance FOXP3 stability by the maintenance of the PKC pathway and the restriction of the PKB/Akt pathway. We further demonstrated that enhancing FOXP3 stability by low-concentration CCL3 attributed, at least partly, to the prevention of cytoplasmic Sin1, a vital component of mTORC2, nuclear translocation. Our results suggest vital roles for CCL3-mTORC2-isoform PKB/Akt1 S473 phosphorylation axis in FOXP3+Tregs and the development of psoriasis.

  1. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria-specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  2. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  3. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen;

    2009-01-01

    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites...... - is integrated into the PHOSIDA database (www.phosida.com)....

  4. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.;

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  5. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;

    1997-01-01

    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites ...

  6. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine.

    Science.gov (United States)

    Zhang, Feng-Ying; Hu, Yi; Que, Zhong-You; Wang, Ping; Liu, Yun-Hui; Wang, Zhen-Hua; Xue, Yi-Xue

    2015-10-09

    Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1).

  7. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine

    Directory of Open Access Journals (Sweden)

    Feng-Ying Zhang

    2015-10-01

    Full Text Available Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 and the expression of phosphorylated β-catenin (p-β-catenin and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1.

  8. Cytokine profile, proliferation and phosphorylation of ERK1/2 and Akt in circulating mononuclear cells from individuals during the chronic intestinal phase of Schistosomiasis mansoni infection

    Directory of Open Access Journals (Sweden)

    Oliveira-Prado Roberta

    2012-12-01

    Full Text Available Abstract Background The immune response to Schistosoma mansoni is characterized by a granulomatous reaction around the parasite eggs that are trapped in the host liver, and this reaction modulates the immune response during the chronic phase of the disease. The typical peripheral blood mononuclear cell (PBMC response of patients during the chronic intestinal phase of infection is characterized by a decreased response to an S. mansoni soluble egg antigen. To obtain a greater understanding of Schistosoma infections, this study investigated the effects of the soluble egg antigen (SEA and soluble adult worm antigen (SWAP of S. mansoni on cellular proliferation, cytokine production, and ERK1/2 and Akt phosphorylation in PBMCs from infected (XTO and egg-negative (NI individuals living in the same endemic area. Methods The activation status was evaluated by cell immunophenotypic staining (cytometry. The cell proliferation assay was by CFSE method. Cytokine detection assay (Th1 and Th2 was by Cytometric Bead and Array phosphorylation status was by ELISA. Results The XTO, NI and BD (blood donor individuals from an area not endemic for schistosomiasis were compared. The CD4+ T lymphocyte proliferation rate was lower in the XTO group, but not the NI group, after SEA stimulation compared to the BD group. The CD8+ T cell proliferation rate was lower in the XTO group in the unstimulated cultures and after both SEA and SWAP stimulation compared to the BD group. Cytokine analysis after either SEA or SWAP stimulation showed a balanced cytokine pattern in the XTO and NI groups. ERK1/2 and Akt phosphorylation were only marginally detected in all groups; however, a decrease in ERK 1/2 phosphorylation was observed in the SWAP-stimulated XTO group compared to both the NI and BD groups. Conclusions The data indicate that SEA-stimulated CD4+ T cells from infected patients have a lower proliferation rate than the same cells from the NI group. Furthermore, we observed

  9. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    Science.gov (United States)

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.

  10. IN VITRO ANALYSIS OF τ PHOSPHORYLATION SITES AND ITS BIOLOGICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective.To explore the association between the abnormal phosphorylation sites found in Alzheimer disease (AD) τ and the inhibition of its biological activity. Methods.Ultracentrifugation,chromatography,manual Edman degradation and autosequence techniques were used to prepare and phosphorylate human recombinant τ ,isolate and purify 32P τ peptides and determine phosphorylation sites. Results.Phosphorylation of τ by casein kinase 1 (CK 1),cyclic AMP dependent protein kinase (PKA) and glycogen synthetase kinase 3 (GSK 3) separately inhibited its biological activity and the inhibition of this activity by GSK 3 was significantly increased if τ was prephosphorylated by CK 1 or PKA.The most potent inhibition was seen by a combined phosphorylation of τ with PKA and GSK 3.The treatment of τ by PKA and GSK 3 combination induced phosphorylation of τ at Ser 195,Ser 198,Ser 199,Ser 202,Thr 205,Thr 231,Ser 235,Ser 262,Ser 356,Ser 404,whereas Thr 181,Ser 184,Ser 262,Ser 356 and Ser 400 were phosphorylated by GSK 3 alone under the same condition. Conclusion.Phosphorylation of τ by PKA plus GSK 3 at Thr 205 might play a key role in τ pathology in AD.

  11. Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2013-01-01

    Full Text Available A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6 to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release. Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK, and different mitogen-activated protein kinases (MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2 as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.

  12. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  13. Distinct and site-specific phosphorylation of the retinoblastoma protein at serine 612 in differentiated cells.

    Directory of Open Access Journals (Sweden)

    Takayuki Hattori

    Full Text Available The retinoblastoma susceptibility protein (pRB is a phosphoprotein that regulates cell cycle progression at the G1/S transition. In quiescent and early G1 cells, pRB predominantly exists in the active hypophosphorylated form. The cyclin/cyclin-dependent protein kinase complexes phosphorylate pRB at the late G1 phase to inactivate pRB. This event leads to the dissociation and activation of E2F family transcriptional factors. At least 12 serine/threonine residues in pRB are phosphorylated in vivo. Although there have been many reports describing bulk phosphorylation of pRB, detail research describing the function of each phosphorylation site remains unknown. Besides its G1/S inhibitory function, pRB is involved in differentiation, prevention of cell death and control of tissue fate. To uncover the function of phosphorylation of pRB in various cellular conditions, we have been investigating phosphorylation of each serine/threonine residue in pRB with site-specific phospho-serine/threonine antibodies. Here we demonstrate that pRB is specifically phosphorylated at Ser612 in differentiated cells in a known kinase-independent manner. We also found that pRB phosphorylated at Ser612 still associates with E2F-1 and tightly binds to nuclear structures including chromatin. Moreover, expression of the Ser612Ala mutant pRB failed to induce differentiation. The findings suggest that phosphorylation of Ser612 provides a distinct function that differs from the function of phosphorylation of other serine/threonine residues in pRB.

  14. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis.

    Science.gov (United States)

    Blackburn, Kevin; Goshe, Michael B

    2009-03-01

    Despite its importance, the 'ultimate' method to identify and quantify site-specific protein phosphorylation using mass spectrometry (MS) has yet to be established. This is as much a function of the dynamic range of instrumentation as it is the complexities surrounding the isolation and behavior of phosphopeptides. Phosphorylation site analysis using MS can be quite challenging when analyzing just one protein and quickly becomes a daunting task when attempting to perform proteome-wide measurements. Data-dependent tandem MS-based methods which are useful for the discovery and characterization of novel phosphorylation sites often lack the dynamic range and quantitative aspect required for studying the temporal phases of phosphorylation. While targeted methods such as multiple reaction monitoring do provide a highly specific and quantitative methodology for studying phosphorylation changes over time, they are not suited for initial discovery of previously unreported sites of phosphorylation. Data-independent acquisition represents a relatively new approach for simultaneous qualitative and quantitative sample analysis which holds promise for filling this technological gap.

  15. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    /dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...... the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which...

  16. A general strategy for studying multi-site protein phosphorylation using label-free selected reaction monitoring mass spectrometry1

    OpenAIRE

    2011-01-01

    The majority of eukaryotic proteins are phosphorylated in vivo and phosphorylation may be the most common regulatory post-translational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the hi...

  17. In Vivo Phosphorylation Site Mapping and Functional Characterization of Arabidopsis Phototropin 1

    Institute of Scientific and Technical Information of China (English)

    Stuart Sullivan; Catriona E. Thomson; Douglas J.Lamont; Matthew A. Jones; John M.Christie

    2008-01-01

    Phototropins (phot1 and phot2) are blue-light receptor kinases controlling a range of responses that optimize the photosynthetic efficiency of plants. Light sensing is mediated by two flavin-binding motifs, known as LOV1 and LOV2,located within the N-terminal region of the protein. Photoexcitation via LOV2 leads to activation of the C-terminal kinase domain and consequently receptor autophosphorylation. However, knowledge of the in-vivo phosphorylation sites for Arabidopsis phototropins is lacking and has impeded progress in elucidating the functional significance of receptor phosphorylation. We have purified phot1 from Arabidopsis and identified the in-vivo sites of receptor phosphorylation by liquid chromatography tandem mass spectrometry. Arabidopsis-derived phot1 binds flavin mononucleotide as chromophore and is phosphorylated at four major sites located upstream of LOV2 (Ser58, Ser85, Ser350, and Ser410), three of which are induced by blue light. Nevertheless, structure-function analysis indicates that the biological activity of phot1 can be attributed to a modular unit comprising the LOV2-kinase region of the protein. Thus, peptide regions upstream of LOV2, including the sites of receptor phosphorylation identified here, do not appear to be important for receptor signaling. By contrast, these regions may be necessary for maximizing stomatal performance and possibly light-induced relocalization of phot1.

  18. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.

    Science.gov (United States)

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J

    2014-02-01

    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

  19. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions

    Science.gov (United States)

    Veredas, Francisco J.; Cantón, Francisco R.; Aledo, J. Carlos

    2017-01-01

    Protein phosphorylation is one of the most prevalent and well-understood protein modifications. Oxidation of protein-bound methionine, which has been traditionally perceived as an inevitable damage derived from oxidative stress, is now emerging as another modification capable of regulating protein activity during stress conditions. However, the mechanism coupling oxidative signals to changes in protein function remains unknown. An appealing hypothesis is that methionine oxidation might serve as a rheostat to control phosphorylation. To investigate this potential crosstalk between phosphorylation and methionine oxidation, we have addressed the co-occurrence of these two types of modifications within the human proteome. Here, we show that nearly all (98%) proteins containing oxidized methionine were also phosphoproteins. Furthermore, phosphorylation sites were much closer to oxidized methionines when compared to non-oxidized methionines. This proximity between modification sites cannot be accounted for by their co-localization within unstructured clusters because it was faithfully reproduced in a smaller sample of structured proteins. We also provide evidence that the oxidation of methionine located within phosphorylation motifs is a highly selective process among stress-related proteins, which supports the hypothesis of crosstalk between methionine oxidation and phosphorylation as part of the cellular defence against oxidative stress. PMID:28079140

  20. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  1. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation.

    Science.gov (United States)

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K; Kotowski, Sarah J; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan

    2013-03-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.

  2. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  3. Sites of regulated phosphorylation that control K-Cl cotransporter activity.

    Science.gov (United States)

    Rinehart, Jesse; Maksimova, Yelena D; Tanis, Jessica E; Stone, Kathryn L; Hodson, Caleb A; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M; Forbush, Biff; Joiner, Clinton H; Gulcicek, Erol E; Gallagher, Patrick G; Lifton, Richard P

    2009-08-07

    Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.

  4. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N;

    2004-01-01

    Functional genomic technologies are generating vast amounts of data describing the presence of transcripts or proteins in plant cells. Together with classical genetics, these approaches broaden our understanding of the gene products required for specific responses. Looking to the future, the focus...... of research must shift to the dynamic aspects of biology: molecular mechanisms of function and regulation. Phosphorylation is a key regulatory factor in all aspects of plant biology; but it is difficult, if not impossible, for most researchers to identify in vivo phosphorylation sites within their proteins...... will be a valuable resource for many fields of plant biology and overcome a major impediment to the elucidation of signal transduction pathways. We present an analysis of the characteristics of phosphorylation sites, their conservation among orthologs and paralogs, and the existence of putative motifs surrounding...

  5. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  6. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    Science.gov (United States)

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development. PMID:27656263

  7. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B

    2012-01-01

    DAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1...

  8. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  9. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  10. PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae

    Directory of Open Access Journals (Sweden)

    Palmeri Antonio

    2011-12-01

    Full Text Available Abstract Background Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment. Results Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs. We further demonstrate that this improvement in performance extends to the related trypanosomatids Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from L. infantum, T. brucei and T. cruzi. Conclusions Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely

  11. Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation.

    Science.gov (United States)

    Waseem, Talat; Duxbury, Mark; Ashley, Stanley W; Robinson, Malcolm K

    2014-02-01

    Little is known about ghrelin's effects on intestinal epithelial cells even though it is known to be a mitogen for a variety of other cell types. Because ghrelin is released in close proximity to the proliferative compartment of the intestinal tract, we hypothesized that ghrelin may have potent pro-proliferative effect on intestinal epithelial cells as well. To test this hypothesis, we characterized the effects of ghrelin on FHs74Int and Caco-2 intestinal epithelial cell lines in vitro. We found that ghrelin has potent dose dependent proliferative effects in both cell lines through a yet to be characterized G protein coupled growth hormone secretagogue receptor (GHS-R) subtype. Consistent with above findings, cell cycle flowcytometric analyses demonstrated that ghrelin shifts cells from the G1 to S phase and thereby promotes cell cycle progression. Further characterization of subcellular events, suggested that ghrelin mediates its pro-proliferative effect through Adenylate cyclase (AC)-independent epidermal growth factor receptor (EGFR) trans-activation and PI3K-Akt phosphorylation. Both these pathways converge to stimulate MAPK, ERK 1/2 downstream. The role of ghrelin in states where intestinal mucosal injury and rapid mucosal repair occur warrants further investigation.

  12. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes.

    Science.gov (United States)

    Kalous, Jaroslav; Kubelka, Michal; Solc, Petr; Susor, Andrej; Motlík, Jan

    2009-10-01

    The aim of this study was to investigate the involvement of the serine/threonine protein kinase AKT (also called protein kinase B) in the control of meiosis of porcine denuded oocytes (DOs) matured in vitro. Western blot analysis revealed that the two principal AKT phosphorylation sites, Ser473 and Thr308, are phosphorylated at different stages of meiosis. In freshly isolated germinal vesicle (GV)-stage DOs, Ser473 was already phosphorylated. After the onset of oocyte maturation, the intensity of the Ser473 phosphorylation increased, however, which declined sharply when DOs underwent GV breakdown (GVBD) and remained at low levels in metaphase I- and II-stage (MI- and MII-stage). In contrast, phosphorylation of Thr308 was increased by the time of GVBD and reached maximum at MI-stage. A peak of AKT activity was noticed around GVBD and activity of AKT declined at MI-stage. To assess the role of AKT during meiosis, porcine DOs were cultured in 50 microM SH-6, a specific inhibitor of AKT. In SH-6-treated DOs, GVBD was not inhibited; on the contrary, a significant acceleration of meiosis resumption was observed. The dynamics of the Ser473 phosphorylation was not affected; however, phosphorylation of Thr308 was reduced, AKT activity was diminished at the time of GVBD, and meiotic progression was arrested in early MI-stage. Moreover, the activity of the cyclin-dependent kinase 1 (CDK1) and MAP kinase declined when SH-6-treated DOs underwent GVBD, indicating that AKT activity is involved in the regulation of CDK1 and MAP kinase. These results suggest that activity of AKT is not essential for induction of GVBD in porcine oocytes but plays a substantial role during progression of meiosis to MI/MII-stage.

  13. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues

    DEFF Research Database (Denmark)

    Lundby, Alicia; Secher, Anna; Lage, Kasper

    2012-01-01

    of individual organs. For skeletal muscle, we find that phosphotyrosines are over-represented, which is mainly due to proteins involved in glycogenolysis and muscle contraction, a finding we validate in human skeletal muscle biopsies. Tyrosine phosphorylation is involved in both skeletal and cardiac muscle...... across 14 rat organs and tissues. We provide the data set as an easily accessible resource via a web-based database, the CPR PTM Resource. A major fraction of the presented phosphorylation sites are tissue-specific and modulate protein interaction networks that are essential for the function...

  14. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2004-01-01

    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...... and by contractions via PKC and ERK. 5' AMP-activated protein kinase (AMPK) is an intracellular fuel gauge which regulates metabolism. In this study we incubated rat soleus muscle to investigate if AMPK influences HSL during 5min of repeated tetanic contractions. An eightfold increase in AMPK activity was accompanied...... by a 2.5-fold increase in phosphorylation of the AMPK-site Ser(565) in HSL (pHSL activation while HSL-Ser(565) phosphorylation was not reduced. The study indicates that during contractions AMPK phosphorylates HSL in Ser(565...

  15. The protein kinase C phosphorylation site on GAP-43 differentially regulates information storage.

    Science.gov (United States)

    Holahan, Matthew; Routtenberg, Aryeh

    2008-01-01

    Protein kinase C (PKC) is known to regulate phosphorylation of substrates such as MARCKS, GAP-43, and the NMDA receptor, all of which have been linked to synaptic plasticity underlying information storage processes. Here we report on three transgenic mice isoforms differentiated both by mutation of the PKC site on GAP-43 as well as by their performance in three learning situations: (1) a radial arm maze task, which evaluates spatial memory and its retention, (2) fear conditioning which assesses contextual memory, and (3) the water maze which also evaluates spatial memory and its retention. The present results show, for the first time to our knowledge, that the phosphorylation state of a single site on an identified brain growth- and plasticity-associated protein differentially regulates performance of three different memory-associated tasks.

  16. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...... translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood....

  17. Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation

    Science.gov (United States)

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K.; Kotowski, Sarah J.; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor’s carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs. PMID:23239825

  18. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  19. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics.

    Science.gov (United States)

    Barton, Byron; Ayer, Gretchen; Maughan, David W; Vigoreaux, Jim O

    2007-01-01

    Flightin is a myosin rod binding protein that in Drosophila melanogaster is expressed exclusively in the asynchronous indirect flight muscles (IFM). Hyperphosphorylation of flightin coincides with the completion of myofibril assembly and precedes the emergence of flight competency in young adults. To investigate the role of flightin phosphorylation in vivo we generated three flightin null (fln(0)) Drosophila strains that express a mutant flightin transgene with two (Thr158, Ser 162), three (Ser139, Ser141, Ser145) or all five potential phosphorylation sites mutated to alanines. These amino acid substitutions result in lower than normal levels of flightin accumulation and transgenic strains that are unable to beat their wings. On two dimensional gels of IFM proteins, the transgenic strain with five mutant sites (fln(5STA)) is devoid of all phosphovariants, the transgenic strain with two mutant sites (fln(2TSA)) expresses only the two least acidic of the nine phosphovariants, and the transgenic strain with three mutant sites (fln(3SA)) expresses all nine phosphovariants, as the wild-type strain. These results suggest that phosphorylation of Thr158 and/or Ser162 is necessary for subsequent phosphorylation of other sites. All three transgenic strains show normal, albeit long, IFM sarcomeres in newly eclosed adults. In contrast, sarcomeres in fully mature fln(5STA) and fln(2TSA) adults show extensive breakdown while those in fln(3SA) are not as disordered. The fiber hypercontraction phenotype that characterizes fln(0) is fully evident in fln(5STA) and fln(2TSA) but partially rescued in fln(3SA). Mechanics on skinned fibers from newly eclosed flies show alterations in viscous modulus for fln(5STA) and fln(2TSA) that result in a significant reduction in oscillatory power output. Expression of fln(5STA) and fln(2TSA), but not fln(3SA), in a wild-type (fln(+)/fln(+)) background resulted in a dominant negative effect manifested as flight impairments and hypercontracted IFM

  20. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Larsen, Martin Røssel; Mohammed, Shabaz

    2006-01-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumi...

  1. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Manuel Bauer

    2015-12-01

    Full Text Available The data described here provide a systematic performance evaluation of popular data-dependent (DDA and independent (DIA mass spectrometric (MS workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3 of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014 [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000964.

  2. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  3. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    Science.gov (United States)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  4. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  5. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine b-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  6. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    车发云; 邵晓霞; 夏其昌

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine β-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  7. Newly identified phosphorylation site in the vesicular stomatitis virus P protein is required for viral RNA synthesis.

    Science.gov (United States)

    Mondal, Arindam; Victor, Ken G; Pudupakam, R S; Lyons, Charles E; Wertz, Gail W

    2014-02-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.

  8. 骨骼肌收缩模式对p38/Akt磷酸化水平的影响%The influence of contraction modes on the phosphorylation of p38/Akt

    Institute of Scientific and Technical Information of China (English)

    李辉; 焦博; 余志斌; 陈自谦

    2011-01-01

    Objective: Muscle contraction may prompt glucose uptake through non-insulin-dependent ways, and it may be due to the enhanced activation of key proteins known to regulate glucose metabolism, like p38 and Akt. Our experiment focused on the impact of different contraction modes on the phosphorylation of the molecules, thus to explore effective ways to lower blood glucose. Methods: Isolated muscle strips perfusion technique and Western blot analysis were employed to investigate the influence of different modes of contraction on the activation of the molecules. Results: Muscle contraction led to an increase in p38 phosphorylation, with the greatest effect observed after 5 minutes of 10% DC(duty cycle) contraction and 5 minutes of 1 % DC contraction. However, phosphorylation of Akt were not altered by the two contraction modes. Conclusion: The level of phosphorylation of p38 was higher at the optimal contraction modes, but these modes could not increase the level of phosphorlation of Akt.%目的:骨骼肌收缩可能通过非胰岛素依赖的途径促进葡萄糖摄取,而p38与Akt可能是其中起重要作用的分子.本文研究骨骼肌不同收缩模式对上述信号分子磷酸化的影响,从而探讨有效降低血糖的运动方式.方法:采用离体比目鱼肌肌条灌流技术及Western blot检测方法,研究不同模式的收缩对骨骼肌p38、Akt磷酸化水平的影响.结果:5 min 10%DC(duty cycle负荷率)和5min 1% DC的收缩模式可分别使p38的磷酸化较对照组增加30%和34%,是激活p38的适宜刺激.但对Akt的磷酸化水平没有影响.结论:低强度有氧运动可以更好地激活p38,但不能有效激活Akt.

  9. The hinge region of chicken annexin I contains no site for tyrosine phosphorylation.

    Science.gov (United States)

    Sidis, Y; Horseman, N D

    1993-08-30

    Annexin I (AnxI) is a calcium-dependent membrane binding protein which has been implicated in various physiological activities. The region of the chicken anxI cDNA encoding the first 130 amino terminal residues was cloned by reverse transcription PCR in order to determine the relationship of its variable amino-terminal regulatory region with other known annexins. This nucleotide sequence shows 86% identity with pigeon AnxI isoforms, and 57% with its human homolog. The protein encoded by the chicken anxI cDNA lacks the canonical epidermal growth factor receptor/kinase phosphorylation site, which is present in AnxI of other species. In contrast, the putative protein kinase C phosphorylation site of the amino-terminus is present in the chicken AnxI. Whereas the pigeon genome contains two anxI genes, genomic Southern analysis shows that in the chicken AnxI is encoded by only a single gene. These data suggest that AnxI has undergone significant sequence variation in the avians, and clarifies the relationships of the avian anxI genes with their ancestral homologs.

  10. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicola Horstmann

    2014-05-01

    Full Text Available Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR protein from the major human pathogen group A Streptococcus (GAS influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53 in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65 as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk. Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A or had functional constitutive phosphorylation at T65 (CovR-T65E had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data

  11. Identification of Ca2+/calmodulin-dependent phosphorylation sites of endocytic scaffold ITSN1 by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2015-10-01

    Full Text Available ITSN1 is a scaffold protein involved in endocytosis, signal transduction and cytoskeleton regulation. It has been previously shown that ITSN1 undergoes Ca2+/calmodulin-dependent phosphorylation in vitro. Aim. We intend to identify these phosphorylation sites. Methods. In vitro kinase reaction; liquid chromatography-tandem mass spectrometry (LC/MS/MS. Results. We identified five sites of Ca2+/calmodulin-dependent phosphorylation in the recombinant fragments of ITSN1. Conclusions. We have shown that the ITSN1 coiled-coil region (CCR and the interdomain linkers between EH2 and CCR, SH3A and SH3B, SH3B and SH3C domains were phosphorylated in a Ca2+/calmodulin-dependent manner in vitro.

  12. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Teramura, Takeshi, E-mail: teramura@med.kindai.ac.jp [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Takehara, Toshiyuki; Onodera, Yuta [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Nakagawa, Koichi; Hamanishi, Chiaki [Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan); Fukuda, Kanji [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  13. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    Energy Technology Data Exchange (ETDEWEB)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  14. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites.

    Directory of Open Access Journals (Sweden)

    Danielle Frost

    Full Text Available Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD. Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope, and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1 potently reduce the expression of all three phosphorylated forms of tau protein, and (2 inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

  15. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    Science.gov (United States)

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism.

  16. Identification and characterization of columbid annexin Icp37. Insights into the evolution of annexin I phosphorylation sites.

    Science.gov (United States)

    Haigler, H T; Mangili, J A; Gao, Y; Jones, J; Horseman, N D

    1992-09-25

    Annexin I (AnxI) contains phosphorylation sites in its "hinge region" that have been implicated in the regulation of cell growth and/or differentiation. A pigeon (Columba livia) isoform of this protein, annexin Icp35 (cp35), has a very similar amino acid sequence overall but an unrelated sequence that lacks phosphorylation sites in the hinge region. We now report the identification and characterization of annexin Icp37 (cp37) from pigeon. Genomic cloning and Southern blot analysis demonstrated that cp37 and cp35 were encoded by separated genes. Prolactin induced the expression of cp35 mRNA but not cp37. The amino acid sequence of cp37 was deduced from a cDNA clone and found to share 93 and 75% sequence identity with cp35 and human AnxI, respectively. The amino acid sequence of cp37 bore similarities to both AnxI and cp35 in the critical hinge region. Like AnxI, cp37 contained consensus phosphorylation sites in its amino acid sequence and was phosphorylated on tyrosine by the EGF receptor/kinase and on serine by protein kinase C in vitro. Despite the functional similarities between cp37 and AnxI, the nucleotide sequence that encoded the hinge region of cp37 was very similar to the analogous region of cp35, but different from that of AnxI. We propose that certain features shared by cp37 and AnxI are the products of convergent evolution. The fact that evolution independently selected for two annexin I-like genes (cp37 and anxI) encoding analogous phosphorylation sites is strong evidence that phosphorylation is important for the regulation of the biological activity of these proteins.

  17. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck;

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mecha...

  18. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  19. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  20. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with Akt kinase.

    Directory of Open Access Journals (Sweden)

    Rahul Das

    Full Text Available Drosophila Tribbles (Trbl is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO. Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation.

  1. PhosphoBase, a database of phosphorylation sites: release 2.0

    DEFF Research Database (Denmark)

    Kreegipuu, A.; Blom, Nikolaj; Brunak, Søren

    1999-01-01

    PhosphoBase contains information about phosphorylated residues in proteins and data about peptide phosphorylation by a variety of protein kinases. The data are collected from literature and compiled into a common format. The current release of PhosphoBase (October 1998, version 2.0) comprises 414...

  2. ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2007-06-01

    Full Text Available Abstract Background In the last decade, techniques were established for the large scale genome-wide analysis of proteins, RNA, and metabolites, and database solutions have been developed to manage the generated data sets. The Golm Metabolome Database for metabolite data (GMD represents one such effort to make these data broadly available and to interconnect the different molecular levels of a biological system 1. As data interpretation in the light of already existing data becomes increasingly important, these initiatives are an essential part of current and future systems biology. Results A mass spectral library consisting of experimentally derived tryptic peptide product ion spectra was generated based on liquid chromatography coupled to ion trap mass spectrometry (LC-IT-MS. Protein samples derived from Arabidopsis thaliana, Chlamydomonas reinhardii, Medicago truncatula, and Sinorhizobium meliloti were analysed. With currently 4,557 manually validated spectra associated with 4,226 unique peptides from 1,367 proteins, the database serves as a continuously growing reference data set and can be used for protein identification and quantification in uncharacterized biological samples. For peptide identification, several algorithms were implemented based on a recently published study for peptide mass fingerprinting 2 and tested for false positive and negative rates. An algorithm which considers intensity distribution for match correlation scores was found to yield best results. For proof of concept, an LC-IT-MS analysis of a tryptic leaf protein digest was converted to mzData format and searched against the mass spectral library. The utility of the mass spectral library was also tested for the identification of phosphorylated tryptic peptides. We included in vivo phosphorylation sites of Arabidopsis thaliana proteins and the identification performance was found to be improved compared to genome-based search algorithms. Protein identification by Pro

  3. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  4. Reduction of Ambiguity in Phosphorylation-site Localization in Large-scale Phosphopeptide Profiling by Data Filter using Unique Mass Class Information

    Energy Technology Data Exchange (ETDEWEB)

    Madar, Inamul Hasan; Back, Seunghoon; Mun, Donggi; Kim, Hokeun; Lee, Sangwon [Korea Univ., Seoul (Korea, Republic of); Jung, Jae Hun; Kim, Kwang Pyo [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-03-15

    The rapid development of shotgun proteomics is paving the way for extensive proteome profiling, while providing extensive information on various post translational modifications (PTMs) that occur to a proteome of interest. For example, the current phosphoproteomic methods can yield more than 10,000 phosphopeptides identified from a proteome sample. Despite these developments, it remains a challenging issue to pinpoint the true phosphorylation sites, especially when multiple sites are possible for phosphorylation in the peptides. We developed the Phospho-UMC filter, which is a simple method of localizing the site of phosphorylation using unique mass classes (UMCs) information to differentiate phosphopeptides with different phosphorylation sites and increase the confidence in phosphorylation site localization. The method was applied to large scale phosphopeptide profiling data and was demonstrated to be effective in the reducing ambiguity associated with the tandem mass spectrometric data analysis of phosphopeptides.

  5. Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization.

    Science.gov (United States)

    Xie, Xitao; Langlais, Paul; Zhang, Xiaodong; Heckmann, Bradlee L; Saarinen, Alicia M; Mandarino, Lawrence J; Liu, Jun

    2014-06-15

    Adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triacylglycerol (TG) hydrolysis, has long been known to be a phosphoprotein. However, the potential phosphorylation events that are involved in the regulation of ATGL function remain incompletely defined. Here, using a combinatorial proteomics approach, we obtained evidence that at least eight different sites of ATGL can be phosphorylated in adipocytes. Among them, Thr³⁷² resides within the hydrophobic region known to mediate lipid droplet (LD) targeting. Although it had no impact on the TG hydrolase activity, substitution of phosphorylation-mimic Asp for Thr³⁷² eliminated LD localization and LD-degrading capacity of ATGL expressed in HeLa cells. In contrast, mutation of Thr³⁷² to Ala gave a protein that bound LDs and functioned the same as the wild-type protein. In nonstimulated adipocytes, the Asp mutation led to decreased LD association and basal lipolytic activity of ATGL, whereas the Ala mutation produced opposite effects. Moreover, the LD translocation of ATGL upon β-adrenergic stimulation was also compromised by the Asp mutation. In accord with these findings, the Ala mutation promoted and the Asp mutation attenuated the capacity of ATGL to mediate lipolysis in adipocytes under both basal and stimulated conditions. Collectively, these studies identified Thr³⁷² as a novel phosphorylation site that may play a critical role in determining subcellular distribution as well as lipolytic action of ATGL.

  6. Putative Phosphorylation Sites On WCA Domain of HA2 Is Essential For Helicoverpa armigera Single Nucleopolyhedrovirus Replication

    Institute of Scientific and Technical Information of China (English)

    Yi-pin Lv; Qian Wang; Chun-chen Wu; Rong Juan Pei; Yuan Zhou; Yun Wang; Xin-wen Chen

    2011-01-01

    Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality.The Helicoverpa armigera single nucleopolyhedrovirus (HearNPv) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain,in which phosphorylation status are supposed to be critical in respect to actin polymerization.In the present study,two putative phosphorylation sites (232Thr and 250Ser) and a highly conserved Serine (245Ser) on the WCA domain of HA2 were mutated,and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome.Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at 245Ser can produce infectious virions,both 232Tbr and 250Ser mutations were lethal to the virus.However,actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus,which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway.

  7. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Directory of Open Access Journals (Sweden)

    Jun-Yu Wang

    2015-01-01

    Full Text Available Background: The phosphorylation of p70S6 kinase (p70S6K represents an important target for sensitive detection on pharmacodynamic effects of sirolimus, but the methods of assessing p70S6K phosphorylation are still unclear. The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target of rapamycin (mTOR pathway in peripheral blood mononuclear cells (PBMCs of liver transplant patients through different methods. Methods: Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study. Patients were divided into three groups, patient treated with sirolimus (n = 22, patient treated with tacrolimus (n = 30, patient treated with cyclosporine (n = 23. The p70S6K phosphorylation of PBMCs in patients and healthy control (HC, n = 12 were analyzed by phospho-flow cytometry and Western blotting. A correlation analysis of data from phospho-flow cytometry and Western blotting was performed. Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured. Results: Intra-assay variability of p70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%. The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7 was significantly lower than in HC (50.1 ± 11.3, P < 0.001, tacrolimus (37.7 ± 15.7, P < 0.001 or cyclosporine treated patients (41.7 ± 11.7, P < 0.001. The p70S6K phosphorylation in HC (50.1 ± 11.3 was significantly higher than in tacrolimus (37.7 ± 15.7, P < 0.01 or cyclosporine-treated patients (41.7 ± 11.7, P < 0.01. There was correlation between data from phospho-flow cytometry and data from Western blotting (r = 0.88, P < 0.001. Conclusions: The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Western blotting. Assessment of p70S6K phosphorylation may play an adjunct role to

  8. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Institute of Scientific and Technical Information of China (English)

    Jun-Yu Wang; Hua Fan

    2015-01-01

    Background:The phosphorylation ofp70S6 kinase (p70S6K) represents an important target for sensitive detection on pharmacodynamic effects of sirolimus,but the methods of assessing p70S6K phosphorylation are still unclear.The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target ofrapamycin (mTOR) pathway in peripheral blood mononuclear cells (PBMCs) of liver transplant patients through different methods.Methods:Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study.Patients were divided into three groups,patient treated with sirolimus (n =22),patient treated with tacrolimus (n =30),patient treated with cyclosporine (n =23).The p70S6K phosphorylation of PBMCs in patients and healthy control (HC,n =12) were analyzed by phospho-flow cytometry and Western blotting.A correlation analysis of data from phospho-flow cytometry and Western blotting was performed.Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured.Results:Intra-assay variability ofp70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%.The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7) was significantly lower than in HC (50.1 ± 11.3,P < 0.001),tacrolimus (37.7 ± 15.7,P < 0.001) or cyclosporine treated patients (41.7 ± 11.7,P < 0.001).The p70S6K phosphorylation in HC (50.1± 11.3) was significantly higher than in tacrolimus (37.7 ± 15.7,P < 0.01) or cyclosporine-treated patients (41.7 ± 11.7,P < 0.01).There was correlation between data from phospho-flow cytometry and data from Westem blotting (r =0.88,P < 0.001).Conclusions:The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Westem blotting.Assessment of p70S6K phosphorylation may play an adjunct role to on pharmacodynamically

  9. pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model

    Directory of Open Access Journals (Sweden)

    Schneider Georg

    2007-01-01

    Full Text Available Abstract Background Protein kinase A (cAMP-dependent kinase, PKA is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal. Results Approximately 20 sequence positions flanking the phosphorylated residue on both sides have been found to be restricted in their sequence variability (region -18...+23 with the site at position 0. The conserved physical pattern can be rationalized in terms of a qualitative binding model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This sequence stretch is embedded in an intrinsically disordered region composed preferentially of hydrophilic residues with flexible backbone and small side chain. This knowledge has been incorporated into a simplified analytical model of productive binding of substrate proteins with PKA. Conclusion The scoring function of the pkaPS predictor can confidently discriminate PKA phosphorylation sites from serines/threonines with non-permissive sequence environments (sensitivity of ~96% at a specificity of ~94%. The tool "pkaPS" has been applied on the whole human proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6. Availability The supplementary data as well as the prediction tool as WWW server are available at http://mendel.imp.univie.ac.at/sat/pkaPS. Reviewers Erik van Nimwegen (Biozentrum, University of Basel, Switzerland, Sandor Pongor (International

  10. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells.

    Science.gov (United States)

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming

    2012-01-01

    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  11. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B.

    Science.gov (United States)

    Tafani, Marco; Schito, Luana; Pellegrini, Laura; Villanova, Lidia; Marfe, Gabriella; Anwar, Tahira; Rosa, Roberta; Indelicato, Manuela; Fini, Massimo; Pucci, Bruna; Russo, Matteo A

    2011-08-01

    The role of hypoxia in regulating tumor progression is still controversial. Here, we demonstrate that, similarly to what previously observed by us in human prostate and breast tumor samples, hypoxia increases expression of the receptor for advanced glycation end products (RAGE) and the purinergic receptor P2X7 (P2X7R). The role of hypoxia was shown by the fact that hypoxia-inducible factor (HIF)-1α silencing downregulated RAGE and P2X7R protein levels as well as nuclear factor-kappaB (NF-κB) expression. In contrast, NF-κB silencing reduced P2X7R expression without affecting RAGE protein levels or nuclear accumulation of HIF-1α. Treatment of hypoxic tumor cells with HMGB1 and BzATP ligands, respectively, of RAGE and P2X7R, activated a signaling pathway that, through Akt and Erk phosphorylation, determines nuclear accumulation of NF-κB and increases cell invasion. Inhibition of Akt by SH5 and Erk by INH1 prevented both nuclear translocation of NF-κB and cell invasion. Moreover, silencing RAGE and P2X7R abolished nuclear accumulation of NF-κB as well as cell invasion without affecting HIF-1α stabilization. Once in the nucleus, NF-κB would contribute to cell survival and invasion under hypoxia, by maintaining RAGE and P2X7R expression levels and matrix metalloproteinases 2 and 9 synthesis. These results show that, hypoxia can upregulate expression levels of membrane receptors that, by binding extracellular molecules eventually released by necrotic cells, contribute to the increased invasiveness of transformed tumor cells. Moreover, these observations strengthen our working hypothesis that upregulation of damage-associated molecular patterns receptors by HIF-1α represents the crucial event bridging hypoxia and inflammation in obtaining the malignant phenotype.

  12. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    Science.gov (United States)

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  13. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  14. Epidermal Growth Factor Stimulates Extracellular-Signal Regulated Kinase Phosphorylation of a Novel Site on Cytoplasmic Dynein Intermediate Chain 2

    Directory of Open Access Journals (Sweden)

    Andrew D. Catling

    2013-02-01

    Full Text Available Extracellular-signal regulated kinase (ERK signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2 as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.

  15. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice.

    Science.gov (United States)

    Watanabe, Shigeru; Yamamori, Saori; Otsuka, Shintaro; Saito, Masanori; Suzuki, Eiji; Kataoka, Masakazu; Miyaoka, Hitoshi; Takahashi, Masami

    2015-09-01

    Snap25(S187A/S187A) mouse is a knock-in mouse with a single amino acid substitution at a protein kinase C-dependent phosphorylation site of the synaptosomal-associated protein of 25 kDa (SNAP-25), which is a target-soluble NSF attachment protein receptor (t-SNARE) protein essential for neurotransmitter release. Snap25(S187A/S187A) mice exhibit several distinct phenotypes, including reductions in dopamine and serotonin release in the brain, anxiety-like behavior, and cognitive dysfunctions. Homozygous mice show spontaneous epileptic convulsions, and about 15% of the mice die around three weeks after birth. The remaining mice survive for almost two years and exhibit spontaneous recurrent seizures throughout their lifetime. Here, we conducted long-term continuous video electroencephalogram recording of the mice and analyzed the process of epileptogenesis and epileptic maturation in detail. Spikes and slow-wave discharges (SWDs) were observed in the cerebral cortex and thalamus before epileptic convulsions began. SWDs showed several properties similar to those observed in absence seizures including (1) lack of in the hippocampus, (2) movement arrest during SWDs, and (3) inhibition by ethosuximide. Multiple generalized seizures occurred in all homozygous mice around three weeks after birth. However, seizure generation stopped within several days, and a seizure-free latent period began. Following a spike-free quiet period, the number of spikes increased gradually, and epileptic seizures reappeared. Subsequently, spontaneous seizures occurred cyclically throughout the life of the mice, and several progressive changes in seizure frequency, seizure duration, seizure cycle interval, seizure waveform, and the number and waveform of epileptic discharges during slow-wave sleep occurred with different time courses over 10 weeks. Anxiety-related behaviors appeared suddenly within three days after epileptic seizures began and were delayed markedly by oral administration of

  16. LRRK2 Kinase Activity and Biology are Not Uniformly Predicted by its Autophosphorylation and Cellular Phosphorylation Site Status

    Directory of Open Access Journals (Sweden)

    April eReynolds

    2014-06-01

    Full Text Available Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2 gene are the most common genetic predisposition to develop Parkinson’s disease (PD LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.

  17. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    Science.gov (United States)

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  18. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils;

    2000-01-01

    that the SH2 domains of SHP-2 bind directly to tyrosyl phosphorylated GHR from GH-treated cells. Tyrosine-to-phenylalanine mutation of tyrosine 595 of rat GHR greatly diminishes association of the SH2 domains of SHP-2 with GHR, and tyrosine-to-phenylalanine mutation of tyrosine 487 partially reduces...... phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively...

  19. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Science.gov (United States)

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  20. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  1. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    Science.gov (United States)

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.

  2. Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation

    OpenAIRE

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K.; Kotowski, Sarah J.; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C.; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan

    2013-01-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor’s carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability...

  3. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P lipid infusion. Despite the development of insulin resistance, there was no difference in the phosphorylation state of multiple insulin-signaling intermediates or muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  4. Novel binding partners and differentially regulated phosphorylation sites clarify Eps8 as a multi-functional adaptor.

    Directory of Open Access Journals (Sweden)

    Debbie L Cunningham

    Full Text Available Eps8 is involved in both cell signalling and receptor trafficking. It is a known phosphorylation substrate for two proteins involved in the fibroblast growth factor receptor (FGFR signalling pathway: the receptor itself and Src. Here we report a differential proteomic analysis of Eps8 aimed to identify specific FGFR and Src family kinase dependent phosphosites and co-associated phosphodependent binding partners. This study reveals a total of 22 Eps8 pTyr and pSer/Thr phosphorylation sites, including those that are dependent on Src family and FGFR kinase activity. Peptide affinity purification of proteins that bind to a selection of the pTyr phosphosites has identified a range of novel Eps8 binding partners including members of the intracellular vesicle trafficking machinery (clathrin and AP-2, proteins which have been shown to regulate activated receptor trafficking (NBR1 and Vav2, and proteins involved in receptor signalling (IRS4 and Shp2. Collectively this study significantly extends the understanding of Eps8 post-translational modification by regulated phosphorylation, identifies novel Eps8 binding partners implicated in receptor trafficking and signalling, and confirms the functions of Eps8 at the nexus of receptor signalling and vesicular trafficking.

  5. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Isocitrate deyhdrogenase (IDH is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P(+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG and the NAD(PH/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+ dependent and its apparent Km for NAD(+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial

  6. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.

    Science.gov (United States)

    Wang, Peng; Song, Ping; Jin, Mingming; Zhu, Guoping

    2013-01-01

    Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r) of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+) was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+) dependent and its apparent Km for NAD(+) was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial NADP

  7. Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase.

    Science.gov (United States)

    Han, Fei; Bossuyt, Julie; Martin, Jody L; Despa, Sanda; Bers, Donald M

    2010-12-01

    Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na(+)-K(+)-ATPase (NKA), mainly by reducing its affinity for internal Na(+). The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α(1) and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na(+) concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na(+) and had no significant effect on the maximum pump rate (V(max)). PKA activation with forskolin (20 μM) restored NKA Na(+) affinity in cells expressing WT but not AA PLM and did not affect V(max) in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na(+) affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

  8. The in vivo phosphorylation sites in multiple isoforms of amphiphysin I from rat brain nerve terminals

    DEFF Research Database (Denmark)

    Craft, George E; Graham, Mark E; Bache, Nicolai;

    2008-01-01

    -proline-directed kinases, Ser-626, -250, -252, and -539, contained low amounts of 32P and were not depolarization-responsive. At least one alternatively spliced amphI isoform was identified in synaptosomes as being constitutively phosphorylated because it did not incorporate 32P during the 1-h labeling period. Multiple......, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non...

  9. Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation.

    Science.gov (United States)

    Du, J; Tao, Z H; Li, J; Liu, Y K; Gan, L

    2015-10-05

    We constructed hepatocellular carcinoma (HCC) cells that stably express stathmin with a Ser25 phosphorylation site mutation (stathmin S25A). We used the polymerase chain reaction for site-directed mutagenesis, constructed a stathmin S25A plasmid, and verified the results by restriction enzyme cleavage and sequencing technology. Using the liposome transfection method, stathmin wild-type and S25A HCCLM6 cells were established, which were identified by western blotting. The sequencing report of the stathmin S25A plasmid showed that stathmin serine at position 25 had mutated into alanine. Stable cells transfected with stathmin wild-type and S25A plasmids were constructed. Using western blotting, we confirmed that the expression level of stathmin pS25 in the stathmin S25A cells was reduced than that in the stathmin wild-type and HCCLM6 control cells (P stathmin S25A HCCLM6 cells, which offer an experimental model for further investigation of the molecular mechanism of stathmin phosphorylation in hepatocarcinogenesis.

  10. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing...... the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation...... for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its...

  11. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets.

    Science.gov (United States)

    Badolia, Rachit; Manne, Bhanu Kanth; Dangelmaier, Carol; Chernoff, Jonathan; Kunapuli, Satya P

    2015-01-01

    Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5'-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism.

  12. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Directory of Open Access Journals (Sweden)

    Daniele Repetto

    Full Text Available Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation. p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk, previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  13. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Science.gov (United States)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta; Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  14. The M3 Phosphorylation Site Is Required for Trafficking and Biological Roles of PIN-FORMED1, 2, and 7 in Arabidopsis

    Science.gov (United States)

    Ki, Daeeun; Sasayama, Daisuke; Cho, Hyung-Taeg

    2016-01-01

    Asymmetrically localized PIN-FORMED (PIN) auxin efflux carriers play key roles in regulating directional intercellular auxin movement, generating local auxin gradients, and diverse auxin-mediated growth and development. The polar localization of PINs is controlled by phosphorylation in the central hydrophilic loop (HL) of PINs. Although the M3 phosphorylation site, including phosphorylatable 5 Ser/Thr residues, is conserved among long HL-PINs, its native role has only been characterized in PIN3. In this study, we examined the role of M3 phosphorylation site of PIN1, PIN2, and PIN7 in intracellular trafficking, phosphorylation, and biological functions of those PINs in their native expressing tissues. Phosphorylation-defective mutations of the phosphorylatable residues in the M3 site of PIN1-HL led to alteration in subcellular polarity of PIN1 and caused defects in PIN1-mediated biological functions such as cotyledon development, phyllotaxy of vegetative leaves, and development of reproductive organs. The M3 mutations of PIN7 interfered with its polar recycling in the root columella cell in response to gravity stimulus and partially disrupted root gravitropism. On the other hand, the M3 site of PIN2 was shown to be necessary for its targeting to the plasma membrane. In vitro phosphorylation assay showed that the M3 phosphorylation residues of PIN1 are the partial targets by PINOID kinase. Our data suggest that the M3 phosphorylation site is functionally conserved among long HL-PINs by playing roles for their subcellular trafficking and auxin-mediated developmental processes.

  15. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine;

    2003-01-01

    of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these...

  16. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  17. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.;

    2012-01-01

    Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all-atom Molec...... the effects of S936 phosphorylation. The results establish a structural association of S936 with the C-terminus of NKA and indicate that phosphorylation of S936 can modulate pumping activity by changing the accessibility to the ion-binding site....

  18. Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1.

    Directory of Open Access Journals (Sweden)

    Carla Manuela Abreu

    2013-04-01

    Full Text Available The mediators of the DNA damage response (DDR are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR-specific protein kinases.

  19. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Kemp Bruce E

    2008-05-01

    Full Text Available Abstract Background We have previously described an approach to predicting the substrate specificity of serine-threonine protein kinases. The method, named Predikin, identifies key conserved substrate-determining residues in the kinase catalytic domain that contact the substrate in the region of the phosphorylation site and so determine the sequence surrounding the phosphorylation site. Predikin was implemented originally as a web application written in Javascript. Results Here, we describe a new version of Predikin, completely revised and rewritten as a modular framework that provides multiple enhancements compared with the original. Predikin now consists of two components: (i PredikinDB, a database of phosphorylation sites that links substrates to kinase sequences and (ii a Perl module, which provides methods to classify protein kinases, reliably identify substrate-determining residues, generate scoring matrices and score putative phosphorylation sites in query sequences. The performance of Predikin as measured using receiver operator characteristic (ROC graph analysis equals or surpasses that of existing comparable methods. The Predikin website has been redesigned to incorporate the new features. Conclusion New features in Predikin include the use of SQL queries to PredikinDB to generate predictions, scoring of predictions, more reliable identification of substrate-determining residues and putative phosphorylation sites, extended options to handle protein kinase and substrate data and an improved web interface. The new features significantly enhance the ability of Predikin to analyse protein kinases and their substrates. Predikin is available at http://predikin.biosci.uq.edu.au.

  20. The plastid casein kinase 2 phosphorylates Rubisco activase at the Thr-78 site but is not essential for regulation of Rubisco activation state

    Directory of Open Access Journals (Sweden)

    Sang Yeol eKim

    2016-03-01

    Full Text Available Rubisco activase (RCA is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730. The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity, which is known to involve a redox-sensitive disulfide bond located in the carboxy-terminal extension of the RCAα subunit. Additionally, phosphorylation of RCA threonine-78 (Thr-78 has been reported to occur in the dark suggesting that phosphorylation may also be associated with dark-inactivation of RCA and deactivation of Rubisco. In the present study, we developed site-specific antibodies to monitor phosphorylation of RCA at the Thr-78 site and used non-reducing SDS-PAGE to monitor the redox status of the RCAα subunit. By immunoblotting, phosphorylation of both RCA isoforms occurred at low light and in the dark and feeding peroxide or DTT to leaf segments indicated that redox status of the chloroplast stroma was a critical factor controlling RCA phosphorylation. Use of a knockout mutant identified the plastid-targeted casein kinase 2 (cpCK2α as the major protein kinase involved in RCA phosphorylation. Studies with recombinant cpCK2α and synthetic peptide substrates identified acidic residues at the -1, +2 and +3 positions surrounding Thr-78 as strong positive recognition elements. The cpck2 knockout mutant had strongly reduced phosphorylation at the Thr-78 site but was similar to wild type plants in terms of induction kinetics of photosynthesis following transfer from darkness or low light to high light, suggesting that if phosphorylation of RCA Thr-78 plays a direct role it would be redundant to redox regulation for control of Rubisco activation state under normal conditions.

  1. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    Science.gov (United States)

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  2. Multiple repeats of Helicobacter pylori CagA EPIYA-C phosphorylation sites predict risk of gastric ulcer in Iran.

    Science.gov (United States)

    Honarmand-Jahromy, Sahar; Siavoshi, Farideh; Malekzadeh, Reza; Sattari, Taher Nejad; Latifi-Navid, Saeid

    2015-12-01

    Biological activity of Helicobacter pylori oncoprotein CagA is determined by a diversity in the tyrosine phosphorylation motif sites. In the present study, the diversity and the type of the H. pylori CagA EPIYA motifs and their association with gastric ulcer (GU) and duodenal ulcer (DU) in Iranian dyspeptic patients were assessed. PCR amplification, sequencing, and bioinformatic analysis were performed to determine the pattern of CagA EPIYA motifs. Of 168 H. pylori cagA(+) strains, the frequency of ABC was 93.50%, ABCCC 5.40%, ABC + ABCCC 0.6% and ABCC 0.6%. There was no EPIYA-D segment. The ABCCC pattern of EPIYA motif was more frequent in the H. pylori isolates from GU (8/50, 16%) than in those from chronic gastritis (CG) (0/81, 0%) (P = 0). In contrast, The ABC pattern of EPIYA motif was less frequent in the H. pylori isolates from GU (41/50, 82%) than in those from CG (80/81, 98.80%) (Age-sex-adjusted odds ratio (OR) = 0.020, 95% CI = 0.002-0.259; P = 0.003). The distribution of the ABC motif was almost the same in H. pylori isolates from CG (98.80%) and DU diseases (97.30%). There was no significant association between the number of CagA EPIYA-C segment and DU (P > 0.05). We have proposed that CagA from Iranian H. pylori strains were Western type and all strains had active phosphorylation sites. The three EPIYA-C motifs of CagA were more frequently observed in the H. pylori strains from GU; thus it might be an important biomarker for predicting the GU risk in Iran.

  3. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  4. Shutoff and agonist-triggered internalization of protease-activated receptor 1 can be separated by mutation of putative phosphorylation sites in the cytoplasmic tail.

    Science.gov (United States)

    Hammes, S R; Shapiro, M J; Coughlin, S R

    1999-07-20

    The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist

  5. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  6. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayek, Rekha; Mori, Tetsuya; Xu, Yao; Pattanayek, Sabuj; Johnson, Carl H.; Egli, Martin; (Vanderbilt)

    2010-09-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.

  7. Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis.

    Science.gov (United States)

    Inoue, Hiroki; Hiradate, Yuuki; Shirakata, Yoshiki; Kanai, Kenta; Kosaka, Keita; Gotoh, Aina; Fukuda, Yasuhiro; Nakai, Yutaka; Uchida, Takafumi; Sato, Eimei; Tanemura, Kentaro

    2014-05-29

    Tau is one of the microtubule-associated proteins and a major component of paired helical filaments, a hallmark of Alzheimer's disease. Its expression has also been indicated in the testis. However, its function and modification in the testis have not been established. Here, we analyzed the dynamics of phosphorylation patterns during spermatogenesis. The expression of Tau protein and its phosphorylation were shown in the mouse testis. Immunohistochemistry revealed that the phosphorylation was strongly detected during meiosis. Correspondingly, the expression of acetylated tubulin was inversely weakened during meiosis. These results suggest that phosphorylation of Tau protein contributes to spermatogenesis, especially in meiosis.

  8. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  9. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G;

    1993-01-01

    kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...... which may play a role in the transport function of MPR 300 and/or interaction with other proteins....

  10. Akt is negatively regulated by the MULAN E3 ligase

    Institute of Scientific and Technical Information of China (English)

    Seunghee Bae; Jongdoo Kim; Hong-Duck Um; In-Chul Park; Su-Jae Lee; Seon Young Nam; Young-Woo Jin; Jae Ho Lee; Sungkwan An; Sun-Yong Kim; Jin Hyuk Jung; Yeongmin Yoon; Hwa Jun Cha; Hyunjin Lee; Karam Kim; Jongran Kim; In-Sook An

    2012-01-01

    The serine/threonine kinase Akt functions in multiple cellular processes,including cell survival and tumor development.Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation.In this study,we identified a negative regulator of Akt,MULAN,which possesses both a RING finger domain and E3 ubiquitin ligase activity.Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo.Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN.The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability.These data provide insight into the Akt ubiquitination signaling network.

  11. Cell confluence induces switching from proliferation to migratory signaling by site-selective phosphorylation of PDGF receptors on lipid raft platforms.

    Science.gov (United States)

    Szöőr, Árpád; Ujlaky-Nagy, László; Tóth, Gábor; Szöllősi, János; Vereb, György

    2016-02-01

    Platelet derived growth factor receptors (PDGFR) play an important role in tumor pathogenesis and are frequently overexpressed in glioblastoma. Earlier we have shown that only confluent glioblastoma cell cultures exhibit a biphasic calcium transient upon PDGF stimulation. Here, we examined how the change in cell density leads to differential cellular responses to the same PDGF stimulus. PDGF beta receptors and their specific phosphotyrosine residues were fluorescently co-labeled on A172 and T98G glioblastoma cells. The distribution in cell membrane microdomains (lipid rafts) and the phosphorylation state of PDGFR was measured by confocal microscopy and quantitated by digital image processing. Corresponding bulk data were obtained by Western blotting. Activation of relevant downstream signaling pathways was assessed by immunofluorescence in confocal microscopy and by Western blot analysis. Functional outcomes were confirmed with bulk and single cell proliferation assays and motility measurements. In non-confluent (sparse) cultures PDGF-BB stimulation significantly increased phosphorylation of Tyr716 specific for the Ras/MAPK pathway and Tyr751 specific for the phosphoinositide 3-kinase/Akt pathway. As cell monolayers reached confluence, Tyr771 and Tyr1021 were the prominently phosphorylated residues. Tyr771 serves as adaptor for Ras-GAP, which inactivates the MAPK pathway, and Tyr1021 feeds into the phospholipase C-gamma/PKC pathway. Coherent with this, MAPK phosphorylation, Ki-67 positivity and proliferation dominated in dispersed cells, and could be abolished with inhibitors of the MAPK pathway. At the same time, RhoA activation, redistribution of cortactin to leading edges, and increased motility were the prominent output features in confluent cultures. Importantly, the stimulus-evoked confluence-specific changes in the phosphorylation of tyrosine residues occurred mainly in GM1-rich lipid microdomains (rafts). These observations suggest that the same stimulus is

  12. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability.

    Directory of Open Access Journals (Sweden)

    Jia-Shiuan Tsai

    Full Text Available Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins.

  13. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  14. Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Directory of Open Access Journals (Sweden)

    Tripty A. Hirani

    2011-01-01

    Full Text Available We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana α2β2-heterotetrameric pyruvate dehydrogenase (E1 plus A. thaliana E1-kinase (AtPDK. Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutation of Asp295 to Ala, Asn, or Leu greatly reduced phosphorylation of Ser292, while mutation of Gly297 had relatively little effect. Quantitative two-hybrid analysis was used to show that mutation of Asp295 did not substantially affect binding of AtPDK to E1α. When using pyruvate as a variable substrate, the Asp295 mutant proteins had modest changes in kcat, Km, and kcat/Km values. Therefore, we propose that Asp295 plays an important role in stabilizing the active-site loop structure, facilitating transfer of the γ-phosphate from ATP to the Ser residue at regulatory site one of E1α.

  15. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase.

    Science.gov (United States)

    Copps, Kyle D; Hançer, Nancy J; Qiu, Wei; White, Morris F

    2016-04-15

    Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through "feedback" phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity.

  16. Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

    Science.gov (United States)

    Fu, Tao; Su, Qing; Xi, Ping; Han, Song; Li, Junfa

    2015-03-01

    Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

  17. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  18. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation

    DEFF Research Database (Denmark)

    Frogne, Thomas; Sylvestersen, Kathrine Beck; Kubicek, Stefan

    2012-01-01

    Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin...... alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis...

  19. Ser-634 and Ser-636 of Kaposi’s sarcoma-associated herpesvirus RTA are involved in transactivation and are potential CDK9 phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Wan-Hua eTsai

    2012-02-01

    Full Text Available The replication and transcription activator (RTA of Kaposi’s sarcoma-associated herpesvirus (KSHV, K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity-purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530 and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ~30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ~30% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full

  20. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    Science.gov (United States)

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  1. Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N-terminally cleaved tau containing four microtubule-binding repeats.

    Science.gov (United States)

    Wray, Selina; Saxton, Malcolm; Anderton, Brian H; Hanger, Diane P

    2008-06-01

    Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.

  2. Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Tadayuki Ogawa

    2015-09-01

    Full Text Available Neurons exhibit dynamic structural changes in response to extracellular stimuli. Microtubules (MTs provide rapid and dramatic cytoskeletal changes within the structural framework. However, the molecular mechanisms and signaling networks underlying MT dynamics remain unknown. Here, we have applied a comprehensive and quantitative phospho-analysis of the MT destabilizer KIF2A to elucidate the regulatory mechanisms of MT dynamics within neurons in response to extracellular signals. Interestingly, we identified two different sets of KIF2A phosphorylation profiles that accelerate (A-type and brake (B-type the MT depolymerization activity of KIF2A. Brain-derived neurotrophic factor (BDNF stimulates PAK1 and CDK5 kinases, which decrease the MT depolymerizing activity of KIF2A through B-type phosphorylation, resulting in enhanced outgrowth of neural processes. In contrast, lysophosphatidic acid (LPA induces ROCK2 kinase, which suppresses neurite outgrowth from round cells via A-type phosphorylation. We propose that these two mutually exclusive forms of KIF2A phosphorylation differentially regulate neuronal morphogenesis during development.

  3. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S;

    2002-01-01

    Signal transduction pathways involve cascades of events, such as formation of second messengers and protein complexes that alter the activities of proteins. This can ultimately lead to changes in gene expression in response to the stimuli. Reversible phosphorylation of proteins is an important me...

  4. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel.

    NARCIS (Netherlands)

    Balkom, B.W.M. van; Savelkoul, P.J.M.; Markovich, D.; Hofman, E.; Nielsen, S.; Sluijs, P. van der; Deen, P.M.T.

    2002-01-01

    In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To

  5. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming.

    Science.gov (United States)

    Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia; Tang, Hsin-Yao; Seo, Jae Ho; Kossenkov, Andrew V; Ottobrini, Luisa; Martelli, Cristina; Lucignani, Giovanni; Bertolini, Irene; Locatelli, Marco; Bryant, Kelly G; Ghosh, Jagadish C; Lisanti, Sofia; Ku, Bonsu; Bosari, Silvano; Languino, Lucia R; Speicher, David W; Altieri, Dario C

    2016-08-08

    Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.

  6. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.

    Science.gov (United States)

    Abbott, Geoffrey W; Butler, Margaret H; Goldstein, Steve A N

    2006-02-01

    MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK(a) approximately 7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.

  7. Essential role of AKT in tumor cells addicted to FGFR.

    Science.gov (United States)

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors.

  8. The Mechanism of Phosphoryl Transfer Reaction and the Role of Active Site Residues on the Basis of Ribokinase-Like Kinases

    Directory of Open Access Journals (Sweden)

    Edyta Dyguda

    2004-04-01

    Full Text Available The role of ribokinase-like carbohydrate kinases consists in ATP dependent phosphorylation of small molecules containing hydroxymethyl group. Although they differ substantially in structural terms and exhibit a broad substrate specificity, some family-wide conserved features can be distinguished suggesting the common mode of action. 4-methyl-5-β-hydroxyethylthiazole kinase (Thz kinase was chosen as a representative model and the mechanism proposed in X-ray crystal structure paper provided the basis for calculations. In particular, the possible role of several active site residues (Arg121 and Cys198 among others and of the two magnesium ions was examined. Static and dynamic catalytic fields for the reaction were generated revealing the most favourable environment for the preferential transition state stabilization. An attempt to model the phosphoryl transfer reaction as well as to investigate the influence of the cysteine residue on the reaction course at the semiempirical PM3 level of theory was undertaken.

  9. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  10. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna Isinger; Jönsson, Mats;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...

  11. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Science.gov (United States)

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  12. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Directory of Open Access Journals (Sweden)

    Shirley Luckhart

    2013-02-01

    Full Text Available The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d, energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial

  13. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Andrea Venerando

    Full Text Available By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C. Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein.

  14. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem......-CSF-induced phosphorylation of Ser345, while p38 MAPK inhibitor abrogated TNF-alpha-induced phosphorylation of Ser345. Transfection of HL-60 cells with a mutated p47phox (S345A) inhibited GM-CSF- and TNF-alpha-induced priming of ROS production. This event was also inhibited in neutrophils by a cell-permeable peptide...... mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM...

  15. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Thomas Frogne

    Full Text Available Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development.

  16. Insulin Resistance after a 72 hour Fast is Associated with Impaired AS160 Phosphorylation and Accumulation of Lipid and Glycogen in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Vendelbo, Mikkel Holm; Clasen, Berthil F F; Treebak, Jonas T;

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal...... of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS...

  17. Translocation of human ribosomal protein S3 to sites of DNA damage is dependant on ERK-mediated phosphorylation following genotoxic stress.

    Science.gov (United States)

    Yadavilli, Sridevi; Hegde, Vijay; Deutsch, Walter A

    2007-10-01

    Besides its role in translation and ribosome maturation, human ribosomal protein S3 (hS3) is implicated in DNA damage recognition as reflected by its affinity for abasic sites and 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA in vitro. Here, we demonstrate that hS3 is capable of carrying out both roles by its ex vivo translocation from the cytoplasm to the nucleus as a consequence of genotoxic stress. The translocation of hS3 is dependent on ERK1/2-mediated phosphorylation of a threonine residue (T42) of hS3. Two different ectopically expressed site-directed mutants of T42 failed to respond to conditions of genotoxic stress, thus providing a link between DNA damage and ERK1/2 dependent phosphorylation of hS3. Lastly, hS3 was traced in exposed cells to its co-localization with 8-oxoG foci, raising the possibility that hS3 is a member of a cellular DNA damage response pathway that results in its interaction with sites of DNA damage.

  18. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    Science.gov (United States)

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  19. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling

    DEFF Research Database (Denmark)

    Ditlevsen, D.K.; Owczarek, S.; Berezin, V.

    2008-01-01

    demonstrated previously to be involved in NCAM signalling. For comparison, we also evaluated the role of upstream signalling cascades on fibroblast growth factor 2 (FGF2)-mediated phosphorylation of ERK, Akt, and CREB and found that FGF2 required the activity of both FGFR and Src-family kinases...... for phosphorylation of ERK, Akt, and CREB. MEK was required for phosphorylation of ERK and CREB, but not Akt, whereas G(0)/G(i)-proteins were necessary for phosphorylation of Akt and CREB, and cGMP was necessary for Akt phosphorylation. We thus demonstrate that even though NCAM and FGF2 have many signalling features...... in common, and even though both are known to activate FGFR, there are a number of differences in the intracellular signalling network activated by the NCAM ligand C3d and the FGFR ligand FGF2....

  20. Leptin signaling plays a critical role in the geniposide-induced decrease of tau phosphorylation.

    Science.gov (United States)

    Liu, Jianhui; Liu, Zixuan; Zhang, Yonglan; Yin, Fei

    2015-12-01

    We have previously demonstrated that geniposide attenuates the production of Aβ1-42 both in vitro and in vivo via enhancing leptin receptor signaling. But the role played by geniposide in the phosphorylation of tau and its underlying molecular mechanisms remain unclear. In this study, we investigated the effect of geniposide on the phosphorylation of tau and the role of leptin signaling in this process. Our data suggested that, accompanied by the up-regulation of leptin receptor expression, geniposide significantly decreased the phosphorylation of tau in rat primary cultured cortical neurons and in APP/PS1 transgenic mice, and this geniposide-induced decrease of tau phosphorylation could be prevented by leptin antagonist (LA). Furthermore, LA also prevented the phosphorylation of Akt at Ser-473 site and GSK-3β at Ser-9 site induced by geniposide. All these results indicate that geniposide may regulate tau phosphorylation through leptin signaling, and geniposide may be a promising therapeutic compound for the treatment of Alzheimer's disease in the future.

  1. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  2. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit.

    Science.gov (United States)

    Cantrell, A R; Smith, R D; Goldin, A L; Scheuer, T; Catterall, W A

    1997-10-01

    Phosphorylation of brain Na+ channel alpha subunits by cAMP-dependent protein kinase (PKA) decreases peak Na+ current in cultured brain neurons and in mammalian cells and Xenopus oocytes expressing cloned brain Na+ channels. We have studied PKA regulation of Na+ channel function by activation of D1-like dopamine receptors in acutely isolated hippocampal neurons using whole-cell voltage-clamp recording techniques. The D1 agonist SKF 81297 reversibly reduced peak Na+ current in a concentration-dependent manner. No changes in the voltage dependence or kinetics of activation or inactivation were observed. This effect was mediated by PKA, as it was mimicked by application of the PKA activator Sp-5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-monophosphorothioate(cBIMPS) and was inhibited by the specific PKA inhibitor peptide PKAI5-24. cBIMPS had similar effects on type IIA brain Na+ channel alpha subunits expressed in tsA-201 cells, but no effect was observed on a mutant Na+ channel alpha subunit in which serine residues in five PKA phosphorylation sites in the intracellular loop connecting domains I and II (LI-II) had been replaced by alanine. A single mutation, S573A, similarly eliminated cBIMPS modulation. Thus, activation of D1-like dopamine receptors results in PKA-dependent phosphorylation of specific sites in LI-II of the Na+ channel alpha subunit, causing a reduction in Na+ current. Such modulation is expected to exert a profound influence on overall neuronal excitability. Dopaminergic input to the hippocampus from the mesocorticolimbic system may exert this influence in vivo.

  3. Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites.

    Science.gov (United States)

    Martin, D W; Sachs, J R

    1999-06-01

    The phosphorylation capacity of Na+,K+-ATPase preparations in common use is much less than expected on the basis of the molecular weight of the enzyme deduced from cDNA sequences. This has led to the popularity of half-of-the-sites or flip-flop models for the enzyme reaction mechanism. We have prepared Na+,K+-ATPase from nasal salt glands of salt-adapted ducks which has a phosphorylation capacity and specific activity near the theoretical maxima. Preparations with specific activities of >60 micromol (mg of protein)-1 min-1 at 37 degrees C had phosphorylation capacities of >60 nmol/mg of protein, and the rate of turnover of the enzyme was 9690 min-1, within the range reported for the enzyme from other sources. The fraction of the maximal specific activity of the enzyme compared well with the fraction of the protein on SDS-PAGE which was alpha and beta chains, especially at the highest specific activity which indicates that all of the alphabeta protomers are active. The gels of the most reactive preparations contained only alpha and beta chains, but less active preparations contained a number of extraneous proteins. The major contaminant was actin. The preparation did not contain any protein which migrated in the molecular weight range of the gamma subunit. The subunit composition of the enzyme was alpha1 and beta1 only. This is the first report of a pure, homogeneous, fully active preparation of the protein. Reaction models which incorporate a half-of-the-sites or flip-flop mechanism do not apply to this enzyme.

  4. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett's oesophagus and contributes to increased proliferation and inhibition of apoptosis: a histopathological and functional study

    Directory of Open Access Journals (Sweden)

    El-Amin Khalid

    2007-06-01

    Full Text Available Abstract Background The incidence of oesophageal adenocarcinoma is increasing rapidly in the developed world. The serine-threonine protein kinase and proto-oncogene Akt has been reported to regulate proliferation and apoptosis in several tissues but there are no data on the involvement of Akt in oesophageal carcinogenesis. Therefore we have examined the activation of Akt in Barrett's oesophagus and oesophageal adenocarcinoma and the functional effects of Akt activation in vitro. Methods Expression of total and active (phosphorylated Akt were determined in endoscopic biopsies and surgical resection specimens using immunohistochemistry. The functional effects of Akt were examined using Barrett's adenocarcinoma cells in culture. Results In normal squamous oesophagus, erosive oesophagitis and non-dysplastic Barrett's oesophagus, phospho-Akt was limited to the basal 1/3 of the mucosa. Image analysis confirmed that Akt activation was significantly increased in non-dysplastic Barrett's oesophagus compared to squamous epithelium and further significantly increased in high-grade dysplasia and adenocarcinoma. In all cases of high grade dysplasia and adenocarcinoma Akt was activated in the luminal 1/3 of the epithelium. Transient acid exposure and the obesity hormone leptin activated Akt, stimulated proliferation and inhibited apoptosis: the combination of acid and leptin was synergistic. Inhibition of Akt phosphorylation with LY294002 increased apoptosis and blocked the effects of acid and leptin both alone and in combination. Activation of Akt was associated with downstream phosphorylation and deactivation of the pro-apoptotic protein Bad and phosphorylation of the Forkhead family transcription factor FOXO1. Conclusion Akt is abnormally activated in Barrett's oesophagus, high grade dysplasia and adenocarcinoma. Akt activation promotes proliferation and inhibits apoptosis in Barrett's adenocarcinoma cells and both transient acid exposure and leptin

  5. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    Science.gov (United States)

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  6. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    Science.gov (United States)

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  7. Essential Roles of mTOR/Akt Pathway in Aurora-A Cell Transformation

    Directory of Open Access Journals (Sweden)

    Makoto Taga, Eiji Hirooka, Toru Ouchi

    2009-01-01

    Full Text Available We have recently demonstrated that Aurora-A kinase is a potential oncogene to develop mammary gland tumors in mice, when expressed under MMTV promoter. These tumors contain phosphorylated forms of Akt and mTOR, suggesting that Akt-mTOR pathway is involved in transformed phenotype induced by Aurora-A. In the present studies, we discovered that stable cell lines expressing Aurora-A contain phosphorylation of Akt Ser473 after prolonged passages of cell culture, not in cells of the early period of cell culture. Levels of PTEN tumor suppressor are significantly reduced in these late passage cells at least in part due to increased poly ubiquitination of the protein. Akt-activated Aurora-A cells formed larger colonies in soft agar and are resistant to UV-induced apoptosis. Aurora-A inhibitor, VX-680, can cause cell death of Aurora-A cells in which Akt is not activated. siRNA-mediated depletion of mTOR in those cells resulted in decreased phosphorylation of Akt Ser473, suggesting that TORC2 complex phosphorylates Akt in Aurora-A cells. Treatment of late-passage Aurora-A cells with mTOR inhibitor reduced colony formation in soft agar. These results strongly suggest that commitment of cell transformation by Aurora-A is determined by at least co-activation of Akt/mTOR pathway.

  8. PI3K / Akt signaling regulates epithelialmesenchymal transition of peritoneal mesothelial cells in peritoneal dialysis

    Institute of Scientific and Technical Information of China (English)

    彭翔

    2014-01-01

    Objective To investigate the role of PI3K/Akt signaling in the regulation of epithelial-mesenchymal transition(EMT)of peritoneal mesothelial cells(PMCs)in peritoneal dialysis in vitro and in vivo.Methods The level of phosphorylated serine/threonine kinase Akt and the expression of EMT associated gene and protein,including ZO-1,Vimentin and FN,were measured in mice EMT model.In vitro study,phosphorylation level and

  9. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    Science.gov (United States)

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases.

  10. Identification of the amino acids 300-600 of IRS-2 as 14-3-3 binding region with the importance of IGF-1/insulin-regulated phosphorylation of Ser-573.

    Directory of Open Access Journals (Sweden)

    Sabine S Neukamm

    Full Text Available Phosphorylation of insulin receptor substrate (IRS-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.

  11. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta, E-mail: etta@bgu.ac.il

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  12. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers...... in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK was regulating phosphorylation...... of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between...

  13. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads

    2002-01-01

    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  14. PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Yang Ni

    Full Text Available We examined whether protein kinase D1 (PKD1 mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 142-70, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr(308 and Ser(473 in response to the mitogenic GPCR agonist angiotensin II (ANG II. Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142-70 [corrected]. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142-70 enhances accumulation of phosphatidylinositol (3,4,5-trisphosphate (PIP3 in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP in single IEC-18 cells. Exposure to kb NB 142-70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser(473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.

  15. A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts.

    Science.gov (United States)

    Ingre, Caroline; Landers, John E; Rizik, Naji; Volk, Alexander E; Akimoto, Chizuru; Birve, Anna; Hübers, Annemarie; Keagle, Pamela J; Piotrowska, Katarzyna; Press, Rayomand; Andersen, Peter Munch; Ludolph, Albert C; Weishaupt, Jochen H

    2013-06-01

    Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the "classic" ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.

  16. Activation of Akt by the bacterial inositol phosphatase, SopB, is wortmannin insensitive.

    Directory of Open Access Journals (Sweden)

    Kendal G Cooper

    Full Text Available Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K. Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4 P(2 rather than phosphoinositide (3,4,5 P(3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.

  17. Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex.

    Science.gov (United States)

    Figueroa, Claudia; Tarras, Samantha; Taylor, Jennifer; Vojtek, Anne B

    2003-11-28

    We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway.

  18. Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2

    Science.gov (United States)

    Cenni, Vittoria; Bavelloni, Alberto; Beretti, Francesca; Tagliavini, Francesca; Manzoli, Lucia; Lattanzi, Giovanna; Maraldi, Nadir M.; Cocco, Lucio; Marmiroli, Sandra

    2011-01-01

    Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C2C12 murine muscle cells exploiting protein characterization databases in combination with an anti–phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H2O2 triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C2C12 myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions. PMID:21737686

  19. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    Science.gov (United States)

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-01

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  20. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  1. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    Science.gov (United States)

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  2. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    Science.gov (United States)

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-06-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  3. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  4. Effects of osteopontin gene on prolireation and invasion and Akt phosphorylation of human corectal cancer cell%骨桥蛋白基因对大肠癌细胞增殖、侵袭及Akt磷酸化的影响

    Institute of Scientific and Technical Information of China (English)

    毛镇伟; 朱灵; 范钰

    2012-01-01

    Objective To study the effects of osteopontin (OPN) gene on invasion and it's mechanism of human colon cancer cell. Methods After human colon cancer Colo 205 cell were transfected by OPN small interfering RNA (siRNA), the expression of OPN mRNA and protein were exmined by real-time PCR and western blot respectively, and anchorage-independent growth was exmined by clon formation in soft agar, and invasion ability was determined by boyden chamber model, and Akt phosphorylation was evaluated by Western blot assay. Results The level of mRNA and level of OPN of group transfectd with siRNA decreased mard in a time- dependent and dose-dependent manner. Compared with control group, both colony formation in soft agar and cells traversed membrane reduced significantly in a dose-dependent manner. The results from western blot showed that there were significant phenomenon of inhibition, which was in a dose- dependent manner. Conclusion Knock-downing OPN with siRNA can inhibit and invasion ability of colon cancer through induing Akt phosphorylation.%目的 探讨骨桥蛋白(osteopontin,OPN)基因对大肠癌细胞侵袭的影响及机制.方法 以人大肠癌Colo 205细胞为模型,应用OPN基因小干扰RNA(small interfering RNA,siRNA)转染处理后,采用荧光实时定量PCR检测OPN基因 mRNA水平,采用软琼脂集落培养试验检测癌细胞的锚着不依赖性增殖能力,采用Boyden小室模型方法检测癌细胞侵袭能力,采用蛋白质印迹检测癌细胞Akt磷酸化水平.结果 OPN转染组癌细胞OPN mRNA和蛋白水平明显被抑制,且与时间和浓度相关.与空白对照组比较,OPN转染组细胞所形成的软琼脂集落数和穿膜细胞数明显减少,且呈浓度依赖性.蛋白质印迹检测发现,OPN转染组细胞Akt磷酸化水平明显下调.结论 OPN基因转染可明显下调大肠癌细胞的增殖和恶性侵袭能力,下调Akt磷酸化水平,是OPN基因转染下调癌细胞的增殖和恶性侵袭能力重要机制之一.

  5. Modulation of androgen receptor and Akt phosphorylation in prostate cancer C4-2 cells with mTORC1 and mTORC2%mTORC1和mTORC2调控前列腺癌雄激素受体和Akt磷酸化

    Institute of Scientific and Technical Information of China (English)

    陈先国; 庄乾元; 梁朝朝; 杜立环; 叶章群

    2011-01-01

    Objective To investigate the role of mTORC1 and mTORC2 in prostate cancer C4-2 cells. Methods The growth inhibition and apoptosis rate were examined by methyl thiazol tetrazolium ( MTT) assay and flow cytometry ( FCM) after knockouting raptor and rictor in prostate cancer C4-2 cells.The expression of androgen receptor ( AR) and Akt phosphorylation after transfection of siRNA raptor and rictor was detected by Western blotting. Results The growth inhibition of C4-2 cells had no significant change after transfecting siRNA raptor [(25. 37 ± 2. 63) % vs (27.49 ± 2. 96) % , P > 0.05] , and the apoptosis rate was markedly increased [(11. 76 ± 1. 45) % vs (38. 23 ± 3. 71) % ,P <0. 01]. The inhibition of mTORC2 (rictor) markedly decreased the growth of C4-2 cells [(25.37 ±2.63)% vs (62.86 ±5.61)% ,P<0.01] , and the apoptosis rate had no significant change [(11.76 ±1.45)% vs (14.25±1.68)%,P>0.05]. The expression of AR [(0.21 ±0.04)% vs (0. 73 ±0. 12)% ,P<0. 01] and Akt phosphorylation [(0. 23 ± 0. 06 ) % vs ( 0. 68 ± 0. 11 ) % , P < 0. 01] were significantly increased after knocking down mTORC1 (raptor) in C4-2 cells, andt the inhibition of mTORC2 (rictor) markedly decreased the expression of AR [( 0. 21 ± 0. 04 ) % vs ( 0. 07 ± 0. 02 ) % , P < 0. 01] and Akt phosphorylation [(0. 23 ± 0. 06) % vs ( 0. 06 ± 0. 03) % , P < 0. 01]. Conclusion mTORC2 not only is required for the survival of prostate cancer, but also a promising therapic target.%目的 观察mTORC1和mTORC2在前列腺癌C4-2细胞中的作用.方法 噻唑蓝(MTY)比色法检测转染siRNA raptor和siRNA rictor后C4-2细胞增殖改变;流式细胞术(FCM)检测敲除mTORC1(raptor)和mTORC2(rictor)后C4-2细胞凋亡;Western blot检测siRNA raptor和siRNArictor后C4-2细胞雄激素受体(AR)和Akt磷酸化表达.结果 MTT显示敲除raptor生长抑制率无显著变化[(25.37±2.63)%比(27.49±2.96)%,P>0.05],而敲除rictor组[(25.37±2.63)%比(62.86±5.61)%,P<0.01]显著

  6. Protein S blocks the extrinsic apoptotic cascade in tissue plasminogen activator/N-methyl D-aspartate-treated neurons via Tyro3-Akt-FKHRL1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Freeman Robert S

    2011-02-01

    Full Text Available Abstract Background Thrombolytic therapy with tissue plasminogen activator (tPA benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult. Results We show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM, we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates

  7. Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development.

    Science.gov (United States)

    Lee, Seongsoo; Lee, Kyu-Sun; Huh, Sungun; Liu, Song; Lee, Do-Yeon; Hong, Seung Hyun; Yu, Kweon; Lu, Bingwei

    2016-04-18

    Mitochondria play central roles in buffering intracellular Ca²⁺ transients. While basal mitochondrial Ca²⁺ (Ca²⁺ mito) is needed to maintain organellar physiology, Ca²⁺ mito overload can lead to cell death. How Ca²⁺ mito homeostasis is regulated is not well understood. Here we show that Miro, a known component of the mitochondrial transport machinery, regulates Drosophila neural stem cell (NSC) development through Ca²⁺ mito homeostasis control, independent of its role in mitochondrial transport. Miro interacts with Ca²⁺ transporters at the ER-mitochondria contact site (ERMCS). Its inactivation causes Ca²⁺ mito depletion and metabolic impairment, whereas its overexpression results in Ca²⁺ mito overload, mitochondrial morphology change, and apoptotic response. Both conditions impaired NSC lineage progression. Ca²⁺ mito homeostasis is influenced by Polo-mediated phosphorylation of a conserved residue in Miro, which positively regulates Miro localization to, and the integrity of, ERMCS. Our results elucidate a regulatory mechanism underlying Ca²⁺ mito homeostasis and how its dysregulation may affect NSC metabolism/development and contribute to disease.

  8. Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells.

    Science.gov (United States)

    Estrada, Aydee C; Syrovets, Tatiana; Pitterle, Kai; Lunov, Oleg; Büchele, Berthold; Schimana-Pfeifer, Judith; Schmidt, Thomas; Morad, Samy A F; Simmet, Thomas

    2010-03-01

    Activation of the serine/threonine kinase Akt is associated with aggressive clinical behavior of prostate cancer. We found that the human prostate cancer cell lines LNCaP and PC-3 express predominantly Akt1 and Akt2. Selective down-regulation of Akt1, but not Akt2, by short-hairpin RNA reduced the viability of prostate cancer cells. In addition, structurally different Akt inhibitors were cytotoxic for the prostate cancer cells, confirming that the Akt pathway is indispensable for their viability. We have purified the tetracyclic triterpenoids 3-oxo-tirucallic acid, 3-alpha-acetoxy-tirucallic acid, and 3-beta-acetoxy-tirucallic acid from the oleogum resin of Boswellia carterii to chemical homogeneity. The acetoxy-derivatives in particular potently inhibited the activities of human recombinant Akt1 and Akt2 and of constitutively active Akt immunoprecipitated from PC-3 cells, whereas inhibitor of nuclear factor-kappaB kinases remained unaffected. Docking data indicated that these tetracyclic triterpenoids form hydrogen bonds within the phosphatidylinositol binding pocket of the Akt pleckstrin homology domain. Accordingly, 3-beta-acetoxy-tirucallic acid did not inhibit the activity of Akt1 lacking the pleckstrin homology domain. In the prostate cancer cell lines investigated, these compounds inhibited the phosphorylation of cellular Akt and the Akt signaling pathways, including glycogen synthase kinase-3beta and BAD phosphorylation, nuclear accumulation of p65, the androgen receptor, beta-catenin, and c-Myc. These events culminated in the induction of apoptosis in prostate cancer, but not in nontumorigenic cells. The tirucallic acid derivatives inhibited proliferation and induced apoptosis in tumors xenografted onto chick chorioallantoic membranes and decreased the growth of pre-established prostate tumors in nude mice without overt systemic toxicity. Thus, tirucallic acid derivatives represent a new class of Akt inhibitors with antitumor properties.

  9. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    Science.gov (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  10. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    Science.gov (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  11. Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis.

    Science.gov (United States)

    Nagano, Koki; Takeuchi, Hiroshi; Gao, Jing; Mori, Yoshihide; Otani, Takahito; Wang, DaGuang; Hirata, Masato

    2015-05-01

    Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.

  12. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    Science.gov (United States)

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  13. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells.

    Science.gov (United States)

    Park, Byoungduck; Je, Young-Tae; Chun, Kwang-Hoon

    2015-11-01

    Akt, or protein kinase B, is a key serine-threonine kinase, which exerts anti-apoptotic effects and promotes cell proliferation in response to various stimuli. Recently, however, it was demonstrated that Akt exhibits a proapoptotic role in certain contexts. During etoposide‑induced apoptosis of HeLa cells, Akt enhances the interaction of second mitochondria‑derived activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO) and X‑linked inhibitor of apoptosis protein by phosphorylating Smac at serine 67, and thus promotes apoptosis. However, the detailed mechanisms underlying Akt regulation in etoposide‑mediated apoptosis remain to be determined. The present study investigated whether etoposide triggers the translocation of Akt into the mitochondria. It was found that Akt activity was increased and sustained during apoptosis triggered by etoposide in HeLa cells. During apoptosis, Akt was translocated from the cytoplasm into the mitochondria in a phosphoinositide 3‑kinase-dependent manner at the early and late stages of apoptosis. Concomitantly, the depletion of Akt in the nuclear fraction was observed after etoposide treatment from analysis of confocal microscopy. The results suggest that etoposide‑stimulated Akt is translocated into the mitochondria, thereby possibly enhancing its interaction with Smac and promoting apoptosis in HeLa cells. These results indicate that Akt may be a promising candidate for a pro-apoptotic approach in cancer treatment.

  14. Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro

    DEFF Research Database (Denmark)

    Peeper, D S; Keblusek, P; Helin, K;

    1995-01-01

    of the retinoblastoma gene (pRB). We find that E2F-1 proteins are heterogeneously phosphorylated in insect cells, as a result of which they migrate as a doublet on SDS-polyacrylamide gels. This electrophoretic shift is shown to be dependent upon specific phosphorylation of E2F-1 on serine-375 (S375), near the p...... affinity of pRB in vitro. These results suggest a novel way of regulating E2F-1 activity, namely by cell-cycle-dependent phosphorylation of this transcription factor....

  15. Akt mediates an angiogenic switch in transformed keratinocytes.

    Science.gov (United States)

    Segrelles, Carmen; Ruiz, Sergio; Santos, Mirentxu; Martínez-Palacio, Jesús; Lara, M Fernanda; Paramio, Jesús M

    2004-07-01

    Akt signaling is involved in tumorigenesis via a number of different mechanisms that result in increased proliferation and decreased apoptosis. Previous data have demonstrated that Akt-mediated signaling is functionally involved in keratinocyte transformation. This work investigates the involvement of angiogenesis as a mediator of tumorigenesis in Akt-transformed keratinocytes. Tumors produced by subcutaneous injection of the latter showed increased angiogenic profiles associated with increased vascular endothelial growth factor (VEGF) protein levels. However, in contrast to v-ras(Ha)-transformed keratinocytes, VEGF mRNA levels were not increased. The induction of VEGF protein by Akt is associated with increased phosphorylation and thus activation of p70S6K and eIF4E-binding protein 1, leading to increased VEGF translation. In addition, we observed increased metaloproteinases 2 and 9 expression, but not thrombospondin 1, in tumors derived from Akt-transformed keratinocytes. Collectively, these results demonstrate that Akt is an important mediator of angiogenesis in malignant keratinocytes through a post-transcriptional mechanism.

  16. Protein phosphorylation and photorespiration.

    Science.gov (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  17. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  18. HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1.

    Directory of Open Access Journals (Sweden)

    Ting C Zhao

    Full Text Available We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3⁻/⁻, Akt-1⁻/⁻ mice received intraperitoneal injections of trichostatin A (0.1 mg/kg, a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection.

  19. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  20. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Macaulay, Nanna; Knepper, Mark A;

    2009-01-01

    in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S...... demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating...

  1. Association of MTOR and AKT Gene Polymorphisms with Susceptibility and Survival of Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Ying Piao

    Full Text Available The phosphoinositide 3-kinase (PI3K/protein kinase B (PKB, AKT/mammalian target of rapamycin (mTOR signaling pathway plays a critical role in angiogenesis and cell growth, proliferation, metabolism, migration, differentiation, and apoptosis. Genetic diversity in key factors of this pathway may influence protein function and signal transduction, contributing to disease initiation and progression. Studies suggest that MTOR rs1064261 and AKT rs1130233 polymorphisms are associated with risk and/or prognosis of multiple cancer types. However, this relationship with gastric cancer (GC remains unclear. The aim of this study was to investigate the role of MTOR and AKT polymorphisms in the risk and prognosis of GC.The Sequenom MassARRAY platform was used to genotype 1842 individuals for MTOR rs1064261 T→C and AKT rs1130233 G→A polymorphisms. ELISA was used to detect Helicobacter pylori antibodies in serum. Immunohistochemical analysis was used to detect total and phosphorylated MTOR and AKT proteins.The MTOR rs1064261 (TC+CC genotype and the AKT rs1130233 (GA+AA genotype were associated with increased risk of GC in men (P = 0.049, P = 0.030. In H. pylori-negative individuals, the AKT rs1130233 GA and (GA+AA genotypes were related to increased risk of atrophic gastritis (AG; P = 0.012, P = 0.024. Notably, the AKT rs1130233 (GA+AA genotype demonstrated significant interactions with H. pylori in disease progression from healthy controls (CON to AG (P = 0.013 and from AG to GC (P = 0.049. Additionally, for individuals with the AKT rs1130233 variant, those in the H. pylori-positive group had higher levels of phosphorylated AKT (p-AKT expression. The AKT rs1130233 genotype was found to be associated with clinicopathological parameters including lymph node metastasis and alcohol drinking (P<0.05.MTOR rs1064261and AKT rs1130233 polymorphisms were associated with increased GC risk in males and increased AG risk in H. pylori-negative individuals. A significant

  2. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells.

    Science.gov (United States)

    Cobb, Melanie M; Austin, Daniel C; Sack, Jon T; Trimmer, James S

    2015-12-04

    The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.

  3. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  4. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  5. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  6. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    Science.gov (United States)

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  7. An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Ranzani, Valeria; Tripodi, Farida;

    2011-01-01

    elements in one of the larger families of E2 enzymes: an acidic insertion in β4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular......E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous...... mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature...

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  9. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs.

    Science.gov (United States)

    Shi, Qing; Hoffman, Brett; Liu, Qiang

    2016-03-01

    Hepatitis C virus (HCV) activates PI3K-Akt signaling to enhance entry and replication. Here, we found that this pathway also increased HCV translation. Knocking down the three Akt isoforms significantly decreased, whereas ectopic expression increased HCV translation. HCV translation upregulation by Akt required their kinase activities because Akt kinase-dead mutants downregulated HCV translation; and was dependent on PI3K activity since it was sensitive to PI3K inhibitor wortmannin. The viral 3'UTR was not involved in translation upregulation by Akt. HCV NS5A increased Akt phosphorylation/activity and HCV translation in the absence of the viral 3'UTR. Sterol regulatory element-binding proteins (SREBPs) were the downstream effectors of the PI3K-Akt pathway in regulating HCV translation because Akt1 and Akt2 activated both SREBP-1 and SREBP-2, whereas Akt3 upregulated SREBP-1. Knocking down SREBPs significantly decreased, while ectopic expression of SREBPs increased HCV translation. Taken together, we showed that the PI3K-Akt signaling pathway positively regulates HCV translation through SREBPs.

  10. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Directory of Open Access Journals (Sweden)

    Melissa Dumble

    Full Text Available Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  11. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Science.gov (United States)

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh

    2014-01-01

    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  12. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    Science.gov (United States)

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts.

  13. The autophosphorylation and p34cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G;

    1993-01-01

    Two mutants of human casein kinase-2 beta-subunit with short deletions at either their amino (delta 1-4) or carboxy (delta 209-215) terminal side have been created that have lost the capability to undergo autophosphorylation and p34cdc2 mediated phosphorylation, respectively. Both mutants give rise...

  14. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance

    Directory of Open Access Journals (Sweden)

    Euan A. Stronach

    2011-11-01

    Full Text Available Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinumresistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK, and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Re-sensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage–mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.

  15. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    Science.gov (United States)

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  16. Blocking Epidermal Growth Factor Receptor Signaling in HTR-8/SVneo First Trimester Trophoblast Cells Results in Dephosphorylation of PKBα/AKT and Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    J. Bolnick

    2011-01-01

    Full Text Available We identified a major peptide signaling target of EGF/EGFR pathway and explored the consequences of blocking or activating this pathway in the first trimester extravillous trophoblast cells, HTR-8/SVneo. A global analysis of protein phosphorylation was undertaken using novel technology (Kinexus Kinetworks that utilizes SDS-polyacrylamide minigel electrophoresis and multi-lane immunoblotting to permit specific and semiquantitative detection of multiple phosphoproteins. Forty-seven protein phosphorylation sites were queried, and the results reported based on relative phosphorylation at each site. EGF- and Iressa-(gefitinib, ZD1839, an inhibitor of EGFR treated HTR-8/SVneo cells were subjected to immunoblotting and flow cytometry to confirm the phosphoprotein screen and to assess the effects of EGF versus Iressa on cell cycle and apoptosis. EGFR mediates the phosphorylation of important signaling proteins, including PKBα/AKT. This pathway is likely to be central to EGFR-mediated trophoblast survival. Furthermore, EGF treatment induces proliferation and inhibits apoptosis, while Iressa induces apoptosis.

  17. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A;

    1994-01-01

    -64 are also involved in the process of autophosphorylation, possibly by means of a loop formation. The results obtained with the COOH-terminal-deleted mutants support the view that reconstitution of a functional holoenzyme must occur to allow efficient autophosphorylation. Polylysine prevents...... mutants reconstituting a tetrameric holoenzyme. Only with the three largest COOH-terminal deletion mutants beta delta 150-215, beta delta 171-215, and beta delta 181-215 is no significant alpha-subunit autophosphorylation observed. The phosphorylation of the beta-subunit mutants added in large molar...... excess to CK-2 holoenzyme (either native or recombinant) is also severely impaired by Ala for Glu/Asp substitutions at position 5,6 and in the 55-64 region and by the deletion of the COOH-terminal segments 150-215 and 171-215. Such a phosphorylation is inhibited by polylysine, with the exception...

  18. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    Science.gov (United States)

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  19. Regulation of Serine-Threonine Kinase Akt Activation by NAD+-Dependent Deacetylase SIRT7

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2017-01-01

    Full Text Available The Akt pathway is a central regulator that promotes cell survival in response to extracellular signals. Depletion of SIRT7, an NAD+-dependent deacetylase that is the least-studied sirtuin, is known to significantly increase Akt activity in mice through unknown mechanisms. In this study, we demonstrate that SIRT7 depletion in breast cancer cells results in Akt hyper-phosphorylation and increases cell survival following genotoxic stress. Mechanistically, SIRT7 specifically interacts with and deacetylates FKBP51 at residue lysines 28 and 155 (K28 and K155, resulting in enhanced interactions among FKBP51, Akt, and PHLPP, as well as Akt dephosphorylation. Mutating both lysines to arginines abolishes the effect of SIRT7 on Akt activity through FKBP51 deacetylation. Finally, energy stress strengthens SIRT7-mediated effects on Akt dephosphorylation through FKBP51 and thus sensitizes cancer cells to cytotoxic agents. These results reveal a direct role of SIRT7 in Akt regulation and raise the possibility of using the glucose analog 2-deoxy-D-glucose (2DG as a chemo-sensitizing agent.

  20. The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses.

    Science.gov (United States)

    Feng, Shao-zhen; Cao, Wei-sheng; Liao, Ming

    2011-07-01

    Avian leukosis virus (ALV) is an enveloped and oncogenic retrovirus. Avian leukosis caused by the members of ALV subgroups A, B and J has become one of the major problems challenging the poultry industry in China. However, the cellular factors such as signal transduction pathways involved in ALV infection are not well defined. In this study, our data demonstrated that ALV-J strain NX0101 infection in primary chicken embryo fibroblasts or DF-1 cells was correlated with the activity and phosphorylation of Akt. Akt activation was initiated at a very early stage of infection independently of NX0101 replication. The specific phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin could suppress Akt phosphorylation, indicating that NX0101-induced Akt phosphorylation is PI3K-dependent. ALV-A strain GD08 or ALV-B strain CD08 infection also demonstrated a similar profile of PI3K/Akt activation. Treatment of DF-1 cells with the drug 5-(N, N-hexamethylene) amiloride that inhibits the activity of chicken Na(+)/H(+) exchanger type 1 significantly reduced Akt activation induced by NX0101, but not by GD08 and CD08. Akt activation triggered by GD08 or CD08 was abolished by clathrin-mediated endocytosis inhibitor chlorpromazine. Receptor-mediated endocytosis inhibitor dansylcadaverine had a negligible effect on all ALV-induced Akt phosphorylation. Moreover, viral replication of ALV was suppressed by LY294002 in a dose-dependent manner, which was due to the inhibition of virus infection by LY294002. These data suggest that the activation of the PI3K/Akt signalling pathway by exogenous ALV infection plays an important role in viral entry, yet the precise mechanism remains under further investigation.

  1. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.

  2. Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.

    Science.gov (United States)

    Werden, Steven J; McFadden, Grant

    2010-04-01

    Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.

  3. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available Abnormal hyperphosphorylation of microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD. The aggregation of hyperphosphorylated tau into neurofibrillary tangles is also a hallmark brain lesion of AD. Tau phosphorylation is regulated by tau kinases, tau phosphatases, and O-GlcNAcylation, a posttranslational modification of proteins on the serine or threonine residues with β-N-acetylglucosamine (GlcNAc. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase, the enzyme catalyzing the transfer of GlcNAc to proteins, and N-acetylglucosaminidase (OGA, the enzyme catalyzing the removal of GlcNAc from proteins. Thiamet-G is a recently synthesized potent OGA inhibitor, and initial studies suggest it can influence O-GlcNAc levels in the brain, allowing OGA inhibition to be a potential route to altering disease progression in AD. In this study, we injected thiamet-G into the lateral ventricle of mice to increase O-GlcNAcylation of proteins and investigated the resulting effects on site-specific tau phosphorylation. We found that acute thiamet-G treatment led to a decrease in tau phosphorylation at Thr181, Thr212, Ser214, Ser262/Ser356, Ser404 and Ser409, and an increase in tau phosphorylation at Ser199, Ser202, Ser396 and Ser422 in the mouse brain. Investigation of the major tau kinases showed that acute delivery of a high dose of thiamet-G into the brain also led to a marked activation of glycogen synthase kinase-3β (GSK-3β, possibly as a consequence of down-regulation of its upstream regulating kinase, AKT. However, the elevation of tau phosphorylation at the sites above was not observed and GSK-3β was not activated in cultured adult hippocampal progenitor cells or in PC12 cells after thiamet-G treatment. These results suggest that acute high-dose thiamet-G injection can not only directly antagonize tau phosphorylation, but also stimulate GSK-3β activity, with the downstream consequence

  4. Directional and quantitative phosphorylation networks

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Linding, Rune

    2008-01-01

    as recognition sites, guiding phosphorylation by kinases and subsequent binding of modular domains (e.g. SH2 and BRCT). Characterization of such modification-modulated interactions on a proteome-wide scale requires extensive computational and experimental analysis. Here, we review the latest advances in methods...... for unravelling phosphorylation-mediated cellular interaction networks. In particular, we will discuss how the combination of new quantitative mass-spectrometric technologies and computational algorithms together are enhancing mapping of these largely uncharted dynamic networks. By combining quantitative...

  5. Identification of the phosphorylation site of the histidine kinase of E. coli AtoS-AtoC two-component system

    OpenAIRE

    Filippou, P.S.; Kasemian, L. D.; Panagiotidis, C A; Kyriakidis, D A

    2008-01-01

    Abstract Journal URL: http://www3.interscience.wiley.com/journal/119877016/tocgroup The sensor histidine kinase AtoS together with AtoC/Az constitute a two-component signal transduction system (TCS) in E. coli, involved in the regulation of the atoDAEB operon. Upon activation by acetoacetate, AtoS autophosphorylates and subsequently phosphorylates AtoC which is essential for the transcriptional regulation of the atoDAEB operon, the products of which are involved in the catabolism of sho...

  6. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  7. Nitric oxide promotes survival of cerebellar granule neurons cultured in vitro through the Akt pathway

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Mei Li; Lihua Zhou

    2011-01-01

    In this study, cerebellar granule neurons were used to examine the role of nitric oxide on cell survival. The N-methyl-D-aspartic acid receptor antagonist, MK-801, and the soluble guanylate cyclase antagonist, 1H-[1, 2, 4]oxadiazolo-[4, 3-a] quinoxalin-1-one, decreased cell viability, induced caspase-3, and decreased phosphorylated-Akt levels, suggesting that blockade of nitric oxide production promotes apoptosis of differentiating cerebellar granule neurons. After administration of sodium nitroprusside, an endogenous nitric oxide donor, cell viability recovered,caspase-3 expression was decreased, and phosphorylated-Akt levels increased. This study provides direct evidence that nitric oxide can sustain the survival of developing cerebellar granule neurons in vitro through the nitric oxide-Akt pathway. Moreover, endogenous nitric oxide exerts these effects in a cyclic guanosine monophosphate-dependent manner while exogenous nitric oxide does so in a cyclic guanosine monophosphate-independent manner.

  8. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hong Sam-Pyo

    2009-02-01

    Full Text Available Abstract Background The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC. Akt-induced epithelial-to-mesenchymal transition (EMT involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38. Methods We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis. Results Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling

  9. Epistatic and functional interactions of catechol-o-methyltransferase (COMT and AKT1 on neuregulin1-ErbB signaling in cell models.

    Directory of Open Access Journals (Sweden)

    Yoshitatsu Sei

    Full Text Available BACKGROUND: Neuregulin1 (NRG1-ErbB signaling has been implicated in the pathogenesis of cancer and schizophrenia. We have previously reported that NRG1-stimulated migration of B lymphoblasts is PI3K-AKT1dependent and impaired in patients with schizophrenia and significantly linked to the catechol-o-methyltransferase (COMT Val108/158Met functional polymorphism. METHODOLOGY/PRINCIPAL FINDINGS: We have now examined AKT1 activation in NRG1-stimulated B lymphoblasts and other cell models and explored a functional relationship between COMT and AKT1. NRG1-induced AKT1 phosphorylation was significantly diminished in Val carriers compared to Met carriers in both normal subjects and in patients. Further, there was a significant epistatic interaction between a putatively functional coding SNP in AKT1 (rs1130233 and COMT Val108/158Met genotype on AKT1 phosphorylation. NRG1 induced translocation of AKT1 to the plasma membrane also was impaired in Val carriers, while PIP(3 levels were not decreased. Interestingly, the level of COMT enzyme activity was inversely correlated with the cells' ability to synthesize phosphatidylserine (PS, a factor that attracts the pleckstrin homology domain (PHD of AKT1 to the cell membrane. Transfection of SH-SY5Y cells with a COMT Val construct increased COMT activity and significantly decreased PS levels as well as NRG1-induced AKT1 phosphorylation and migration. Administration of S-adenosylmethionine (SAM rescued all of these deficits. These data suggest that AKT1 function is influenced by COMT enzyme activity through competition with PS synthesis for SAM, which in turn dictates AKT1-dependent cellular responses to NRG1-mediated signaling. CONCLUSION/SIGNIFICANCE: Our findings implicate genetic and functional interactions between COMT and AKT1 and may provide novel insights into pathogenesis of schizophrenia and other ErbB-associated human diseases such as cancer.

  10. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training

    DEFF Research Database (Denmark)

    Vind, B. F.; Pehmøller, Christian; Treebak, Jonas Thue

    2011-01-01

    event linked to glucose transport. In this study, we examined insulin action on site-specific phosphorylation of TBC1D4 and the effect of exercise training on insulin action and signalling to TBC1D4 in skeletal muscle from type 2 diabetic patients. METHODS: During a 3 h euglycaemic-hyperinsulinaemic (80...... mU min(-1) m(-2)) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. RESULTS: Before training, reductions in insulin-stimulated R (d), together with impaired insulin......-activated kinase (AMPK), glycogen synthase, hexokinase II and GLUT4 (20-75%). CONCLUSIONS/INTERPRETATION: Impaired insulin-induced site-specific TBC1D4 phosphorylation may contribute to skeletal muscle insulin resistance in type 2 diabetes. The mechanisms by which exercise-training improves insulin sensitivity...

  11. Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Bei HUANG; Gavin PORTER

    2005-01-01

    Aim: To study the expression of proline-rich Akt-substrate PRAS40 in the cell survival pathway and tumor progression. Methods: The effects of three key kinase inhibitors on PRAS40 activity in the cell survival pathway, serum withdrawal,H2O2 and overexpression of Akt were tested. The expression of PRAS40, Akt, Raf and 14-3-3 in normal cells and cancer cell lines was determined by Western blot.Results: The PI3K inhibitors worthmannin and Ly294002, but not rapamycin, completely inhibited the phosphorylation of Akt and PRAS40. The phosphorylation level of Akt decreased after serum withdrawal and treatment with the MEK inhibitor Uo126, but increased after treatment with H2O2 at low concentration, whereas none of these treatments changed PRAS40 activity. 14-3-3 is a PRAS40 binding protein, and the expression of 14-3-3, like that of PRAS40, was higher in HeLa cells than in HEK293 cells; PRAS40 had a stronger phosphorylation activity in A549 and HeLa cancer cells than in HEK293 normal cells. In the breast cancer model (MCF10A/MCF7) and lung cancer model (BEAS/H1198/H1170) we also found the same result: PRAS40 was constitutively active in H1198/H1170 and MCF7 premalignant and malignant cancer cells, but weakly expressed in MCF10A and BEAS normal cell. We also discussed PRAS40 activity in other NSCLC cell lines.Conclusion: The PI3K-Akt survival pathway is the main pathway that PRAS40 is involved in; PRAS40 is a substrate for Akt, but can also be activated by an Aktindependent mechanisms. PRAS40 activation is an early event during breast and lung carcinogenesis.

  12. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  13. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  14. AKT1 loss correlates with episomal HPV16 in vulval intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Arucha L Ekeowa-Anderson

    Full Text Available Anogenital malignancy has a significant association with high-risk mucosal alpha-human papillomaviruses (alpha-PV, particularly HPV 16 and 18 whereas extragenital SCC has been linked to the presence of cutaneous beta and gamma-HPV types. Vulval skin may be colonised by both mucosal and cutaneous (beta-, mu-, nu- and gamma- PV types, but there are few systematic studies investigating their presence and their relative contributions to vulval malignancy. Dysregulation of AKT, a serine/threonine kinase, plays a significant role in several cancers. Mucosal HPV types can increase AKT phosphorylation and activity whereas cutaneous HPV types down-regulate AKT1 expression, probably to weaken the cornified envelope to promote viral release. We assessed the presence of mucosal and cutaneous HPV in vulval malignancy and its relationship to AKT1 expression in order to establish the corresponding HPV and AKT1 profile of normal vulval skin, vulval intraepithelial neoplasia (VIN and vulval squamous cell carcinoma (vSCC. We show that HPV16 is the principle HPV type present in VIN, there were few detectable beta types present and AKT1 loss was not associated with the presence of these cutaneous HPV. We show that HPV16 early gene expression reduced AKT1 expression in transgenic mouse epidermis. AKT1 loss in our VIN cohort correlated with presence of high copy number, episomal HPV16. Maintained AKT1 expression correlated with low copy number, an increased frequency of integration and increased HPV16E7 expression, a finding we replicated in another untyped cohort of vSCC. Since expression of E7 reflects tumour progression, these findings suggest that AKT1 loss associated with episomal HPV16 may have positive prognostic implications in vulval malignancy.

  15. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;

    2008-01-01

    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  16. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells.

    Science.gov (United States)

    Narayan, Preeti; Holt, Brittany; Tosti, Richard; Kane, Lawrence P

    2006-03-01

    Many details of the generic pathway for induction of NF-kappaB have been delineated, but it is still not clear how multiple, diverse receptor systems are able to converge on this evolutionarily conserved family of transcription factors. Recent studies have shown that the CARMA1, Bcl10, and MALT1 proteins are critical for coupling the common elements of the NF-kappaB pathway to the T-cell receptor (TCR) and CD28. We previously demonstrated a role for the serine/threonine kinase Akt in CD28-mediated NF-kappaB induction. Using a CARMA1-deficient T-cell line, we have now found that the CARMA complex is required for induction of NF-kappaB by Akt, in cooperation with protein kinase C activation. Furthermore, using a novel selective inhibitor of Akt, we confirm that Akt plays a modulatory role in NF-kappaB induction by the TCR and CD28. Finally, we provide evidence for a physical and functional interaction between Akt and CARMA and for Akt-dependent phosphorylation of Bcl10. Therefore, in T cells, Akt impinges upon NF-kappaB signaling through at least two separate mechanisms.

  17. AKT regulates NPM dependent ARF localization and p53mut stability in tumors.

    Science.gov (United States)

    Hamilton, Garth; Abraham, Aswin G; Morton, Jennifer; Sampson, Oliver; Pefani, Dafni E; Khoronenkova, Svetlana; Grawenda, Anna; Papaspyropoulos, Angelos; Jamieson, Nigel; McKay, Colin; Sansom, Owen; Dianov, Grigory L; O'Neill, Eric

    2014-08-15

    Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antagonizes MDM2 association with the inhibitory complex, leading to activation of MDM2 E3-ligase activity and targeting of p53. We find that AKT phosphorylation of NPM-Ser48 prevents oligomerization that results in nucleoplasmic localization of ARF, constitutive MDM2 inhibition and stabilization of p53. We also show that ARF promotes p53 mutant stability in tumors and suppresses p73 mediated p21 expression and senescence. We demonstrate that AKT and PI3K inhibitors may be effective in treatment of therapeutically resistant tumors with elevated AKT and carrying gain of function mutations in p53. Our results show that the clinical candidate AKT inhibitor MK-2206 promotes ARF nucleolar localization, reduced p53(mut) stability and increased sensitivity to ionizing radiation in a xenograft model of pancreatic cancer. Analysis of human tumors indicates that phospho-S48-NPM may be a useful biomarker for monitoring AKT activity and in vivo efficacy of AKT inhibitor treatment. Critically, we propose that combination therapy involving PI3K-AKT inhibitors would benefit from a patient stratification rationale based on ARF and p53(mut) status.

  18. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  19. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity

    Science.gov (United States)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G.; Achilefu, Samuel

    2013-04-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  20. Bimatoprost protects retinal neuronal damage via Akt pathway.

    Science.gov (United States)

    Takano, Norihito; Tsuruma, Kazuhiro; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2013-02-28

    Worldwide, prostaglandin analogs, such as bimatoprost, have become the major therapeutic class for medical treatment of glaucoma because of their efficacy and generally well tolerated systemic safety profile. However, the detailed mechanism of the direct action of bimatoprost on retinal ganglion cells (RGC) has rarely been understood. Thus, in this study, we elucidated the mechanism of the protective effects of bimatoprost on RGC against oxidative stress. To examine the protective effects of bimatoprost, cultured RGC with various concentrations of bimatoprost (in both free acid and amide form) were exposed to l-buthionin-(S,R)-sulfoximine (BSO) plus glutamate or serum depletion in vitro and intravitreal injection of N-methyl-D-aspartate (NMDA) was used to induce retinal damage in vivo. To elucidate the protective mechanism of bimatoprost, we used western blot analysis to investigate the phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Bimatoprost significantly reduced BSO plus glutamate- and serum deprivation-induced death in concentration-dependent manners. Bimatoprost induced activation of Akt and ERK, and a phosphatidylinositol 3-kinase inhibitor, LY294002, attenuated the protective effect of bimatoprost. On the other hand, a mitogen-activated protein kinase kinase inhibitor, U0126, exhibited protective effect unexpectedly. Moreover, ERK was more phosphorylated by attenuation of Akt activity in cultured RGC. In an in vivo study, bimatoprost reduced NMDA-induced RGC death. Taken together, these findings indicate that bimatoprost has protective effects on in vitro and in vivo retinal damage, suggesting that the mechanism underlying may be via the Akt pathway, which may modulate the ERK pathway.

  1. Analysis of mitotic phosphorylation of Borealin

    Directory of Open Access Journals (Sweden)

    Date Dipali A

    2007-01-01

    Full Text Available Abstract Background The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro. Results Here, we show that Borealin is phosphorylated during mitosis in human cells. Dephosphorylation of Borealin occurs as cells exit mitosis. The phosphorylated form of Borealin is found in an INCENP-containing complex in mitosis. INCENP-containing complexes from cells in S phase are enriched in the phosphorylated form suggesting that phosphorylation may encourage entry of Borealin into the chromosomal passenger complex. Although Aurora B Kinase is found in complexes that contain Borealin, it is not required for the mitotic phosphorylation of Borealin. Mutation of T106 or S165 of Borealin to alanine does not alter the electrophoretic mobility shift of Borealin. Experiments with cyclohexamide and the phosphatase inhibitor sodium fluoride suggest that Borealin is phosphorylated by a protein kinase that can be active in interphase and mitosis and that the phosphorylation may be regulated by a short-lived phosphatase that is active in interphase but not mitosis. Conclusion Borealin is phosphorylated during mitosis. Neither residue S165, T106 nor phosphorylation of Borealin by Aurora B Kinase is required to generate the mitotic, shifted form of Borealin. Suppression of phosphorylation during interphase is ensured by a labile protein, possibly a cell cycle regulated phosphatase.

  2. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China); Liu, Zengxun [Department of Psychiatry, School of Medicine, Shandong University, Jinan, Shandong, 250012 China (China); Sun, Jinhao, E-mail: sunjinhao@gmail.com [Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012 (China)

    2015-09-25

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.

  3. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  4. BAD Phosphorylation: A Novel Link between Apoptosis and Cancer

    OpenAIRE

    Polzien, Lisa

    2011-01-01

    BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating se...

  5. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  6. Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin [alpha]1

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Tempel, Wolfram; Wang, Hui; Yamada, Kaori; Shen, Limin; Senisterra, Guillermo A.; MacKenzie, Farrell; Chishti, Athar H.; Park, Hee-Won (Toronto); (UICM)

    2011-11-07

    Phosphatidylinositol 3,4,5-triphosphate (PIP3) plays a key role in neuronal polarization and axon formation. PIP3-containing vesicles are transported to axon tips by the kinesin KIF13B via an adaptor protein, centaurin {alpha}1 (CENTA1). KIF13B interacts with CENTA1 through its forkhead-associated (FHA) domain. We solved the crystal structures of CENTA1 in ligand-free, KIF13B-FHA domain-bound, and PIP3 head group (IP4)-bound conformations, and the CENTA1/KIF13B-FHA/IP4 ternary complex. The first pleckstrin homology (PH) domain of CENTA1 specifically binds to PIP3, while the second binds to both PIP3 and phosphatidylinositol 3,4-biphosphate (PI(3,4)P2). The FHA domain of KIF13B interacts with the PH1 domain of one CENTA1 molecule and the ArfGAP domain of a second CENTA1 molecule in a threonine phosphorylation-independent fashion. We propose that full-length KIF13B and CENTA1 form heterotetramers that can bind four phosphoinositide molecules in the vesicle and transport it along the microtubule.

  7. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    Science.gov (United States)

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  8. Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease.

    Science.gov (United States)

    Hanatani, Shinsuke; Izumiya, Yasuhiro; Araki, Satoshi; Rokutanda, Taku; Kimura, Yuichi; Walsh, Kenneth; Ogawa, Hisao

    2014-12-01

    Muscle wasting is frequently observed in patients with kidney disease, and low muscle strength is associated with poor outcomes in these patients. However, little is known about the effects of skeletal muscle growth per se on kidney diseases. In this study, we utilized a skeletal muscle-specific, inducible Akt1 transgenic (Akt1 TG) mouse model that promotes the growth of functional skeletal muscle independent of exercise to investigate the effects of muscle growth on kidney diseases. Seven days after Akt1 activation in skeletal muscle, renal injury was induced by unilateral ureteral obstruction (UUO) in Akt1 TG and wild-type (WT) control mice. The expression of atrogin-1, an atrophy-inducing gene in skeletal muscle, was upregulated 7 days after UUO in WT mice but not in Akt1 TG mice. UUO-induced renal interstitial fibrosis, tubular injury, apoptosis, and increased expression of inflammatory, fibrosis-related, and adhesion molecule genes were significantly diminished in Akt1 TG mice compared with WT mice. An increase in the activating phosphorylation of eNOS in the kidney accompanied the attenuation of renal damage by myogenic Akt1 activation. Treatment with the NOS inhibitor L-NAME abolished the protective effect of skeletal muscle Akt activation on obstructive kidney disease. In conclusion, Akt1-mediated muscle growth reduces renal damage in a model of obstructive kidney disease. This improvement appears to be mediated by an increase in eNOS signaling in the kidney. Our data support the concept that loss of muscle mass during kidney disease can contribute to renal failure, and maintaining muscle mass may improve clinical outcome.

  9. Silencing p110{beta} prevents rapid depletion of nuclear pAkt

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhi-wei; Ghalali, Aram; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm (Sweden); Stenius, Ulla, E-mail: ulla.stenius@ki.se [Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer p110{beta} was essential for the statin- and ATP-induced depletion of nuclear pAkt and an associated inhibition of growth. Black-Right-Pointing-Pointer p110{beta} knock-out inhibited statin-induced changes in binding between FKBP51, pAkt and PTEN. Black-Right-Pointing-Pointer Data supports the hypothesis that nuclear pAkt is important for anti-cancer effects of statins. -- Abstract: The p110{beta} subunit in the class IA PI3K family may act as an oncogene and is critical for prostate tumor development in PTEN knockout mice. We tested the possible involvement of p110{beta} in a recently described rapid depletion of phosphorylated Akt (pAkt) in the nucleus. Previous work showed that this down-regulation is induced by extracellular ATP or by statins and is mediated by the purinergic receptor P2X7. Here, we used p110{beta} knock out mouse embryonic fibroblasts (MEFs) and siRNA-treated cancer cells. We found that p110{beta} is essential for ATP- or statin-induced nuclear pAkt depletion in MEFs and in several cancer cell lines including prostate cancer cells. ATP, statin or the selective P2X7 agonist BzATP also inhibited cell growth, and this inhibition was not seen in p110{beta} knock out cells. We also found that p110{beta} was necessary for statin-induced changes in binding between FKBP51, pAkt and PTEN. Our data show that p110{beta} is essential for the ATP- and statin-induced effects and support a role of nuclear pAkt in cancer development. They also provide support for a chemopreventive effect of statins mediated by depletion of nuclear pAkt.

  10. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  11. Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment.

    Science.gov (United States)

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-11-01

    The specific phosphorylation sites and degree of phosphorylation (DP) at each site are directly related to protein's structure and functional properties. Thus, characterizing the introduced phosphate groups is of great importance. This study was to monitor the phosphorylation sites, DP and the number of phosphorylation sites in P-Oval achieved by dry heating in the presence of pyrophosphate for 1, 2 and 5days by using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Two phosphorylation sites were found in natural ovalbumin, but the number of phosphorylation sites increased to 8, 8 and 10 after dry-heating phosphorylation for 1, 2 and 5days, respectively. In addition, dual-phosphorylated peptides were detected for samples without extensive heating. The phosphorylation sites were found to be mainly on Ser residues, which could be the preferred phosphorylation site for dry heating in the presence of pyrophosphate.

  12. Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses

    Directory of Open Access Journals (Sweden)

    Caron Marc-André

    2011-11-01

    Full Text Available Abstract Background Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, Akt, glycogen synthase kinase-3β (GSK-3β, muscle RING finger protein 1 (MuRF1 and p70 S6 kinase (p70 S6K. Six healthy subjects underwent four biopsies of the vastus lateralis, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1 followed by a second in the left leg in the afternoon (AF. At visit 2, a second basal biopsy (R2 was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions was performed and a final biopsy (Mob was collected using the same incision site as R2. Results Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins. Conclusions This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.

  13. IL-13 induces YY1 through the AKT pathway in lung fibroblasts.

    Science.gov (United States)

    Guo, Jia; Yao, Hongwei; Lin, Xin; Xu, Haodong; Dean, David; Zhu, Zhou; Liu, Gang; Sime, Patricia

    2015-01-01

    A key feature of lung fibrosis is the accumulation of myofibroblasts. Interleukin 13 (IL-13) is a pro-fibrotic mediator that directly and indirectly influences the activation of myofibroblasts. Transforming growth factor beta (TGF-β) promotes the differentiation of fibroblasts into myofibroblasts, and can be regulated by IL-13. However, IL-13's downstream signaling pathways are not completely understood. We previously reported that the transcription factor Yin Yang 1 (YY1) is upregulated in fibroblasts treated with TGF-β and in the lungs of mice and patients with pulmonary fibrosis. Moreover, YY1 directly regulates collagen and alpha smooth muscle actin (α-SMA) expression in fibroblasts. However, it is not known if IL-13 regulates fibroblast activation through YY1 expression. We hypothesize that IL-13 up-regulates YY1 expression through regulation of AKT activation, leading to fibroblast activation. In this study we found that YY1 was upregulated by IL-13 in lung fibroblasts in a dose- and time-dependent manner, resulting in increased α-SMA. Conversely, knockdown of YY1 blocked IL-13-induced α-SMA expression in fibroblasts. Furthermore, AKT phosphorylation was increased in fibroblasts treated with IL-13, and AKT overexpression upregulated YY1, whereas blockade of AKT phosphorylation suppressed the induction of YY1 by IL-13 in vitro. In vivo YY1 was upregulated in fibrotic lungs from CC10-IL-13 transgenic mice compared to that from wild-type littermates, which was associated with increased AKT phosphorylation. Taken together, these findings demonstrate that IL-13 is a potent stimulator and activator of fibroblasts, at least in part, through AKT-mediated YY1 activation.

  14. Effect of Phosphorylation on Hydrogen-Bonding Interactions of the Active Site Histidine of the Phosphocarrier Protein HPr of the Phosphoenolpyruvate-Dependent Phosphotransferase System Determined by 15N NMR Spectroscopy

    NARCIS (Netherlands)

    Dijk, Alard A. van; Lange, Liesbeth C.M. de; Bachovchin, William W.; Robillard, George T.

    1990-01-01

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidi

  15. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    Science.gov (United States)

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  16. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  17. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    Science.gov (United States)

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-01-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p diabetic and insulin-treated groups compared with control (p diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition.

  18. Multistep phosphorylation systems: tunable components of biological signaling circuits.

    Science.gov (United States)

    Valk, Evin; Venta, Rainis; Ord, Mihkel; Faustova, Ilona; Kõivomägi, Mardo; Loog, Mart

    2014-11-05

    Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase-dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.

  19. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  20. 1α,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells.

    Science.gov (United States)

    Buitrago, Claudia G; Arango, Nadia S; Boland, Ricardo L

    2012-04-01

    We previously reported that 1α,25-dihydroxy-vitamin D(3) [1α,25(OH)(2)D(3)] induces non-transcriptional rapid responses through activation of Src and MAPKs in the skeletal muscle cell line C2C12. In the present study we investigated the modulation of Akt by the secosteroid hormone in C2C12 cells at proliferative stage (myoblasts) and at early differentiation stage. In proliferating cells, 1α,25(OH)(2)D(3) activates Akt by phosphorylation in Ser473 in a time-dependent manner (5-60 min). When these cells were pretreated with methyl-beta-cyclodextrin to disrupt caveolae microdomains, hormone-induced activation of Akt was suppressed. Similar results were obtained by siRNA silencing of caveolin-1 expression, further indicating that hormone effects on cell membrane caveolae are required for downstream signaling. PI3K and p38 MAPK, but not ERK1/2, participate in 1α,25(OH)(2)D(3) activation of Akt in myoblasts. The involvement of p38 MAPK in Akt phosphorylation by the hormone probably occurs through MAPK-activated protein kinase 2 (MK2), which is activated by the steroid. In addition, the participation of Src in Akt phosphorylation by 1α,25(OH)(2)D(3) was demonstrated using the inhibitor PP2 and antisense oligodeoxynucleotides that suppress Src expression. We also observed that PI3K participates in hormone-induced proliferation. During the early phase of C2C12 cell differentiation 1α,25(OH)(2)D(3) also increases Akt phosphorylation and activates Src. Of relevance, Src and PI3K are involved in Akt activation and in MHC and myogenin increased expression by 1α,25(OH)(2)D(3). Altogether, these data suggest that 1α,25(OH)(2)D(3) upregulates Akt through Src, PI(3)K, and p38 MAPK to stimulate myogenesis in C2C12 cells.

  1. Activation of Akt by advanced glycation end products (AGEs: involvement of IGF-1 receptor and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Su-Jung Yang

    Full Text Available Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs. AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(PH oxidase inhibitor DPI, suggesting the involvement of Src and NAD(PH oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(PH oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1 levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(PH oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1

  2. Akt Regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis.

    Directory of Open Access Journals (Sweden)

    Colleen R McNamara

    Full Text Available Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS. In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1 kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1. Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.

  3. Silencing p110β prevents rapid depletion of nuclear pAkt.

    Science.gov (United States)

    Ye, Zhi-wei; Ghalali, Aram; Högberg, Johan; Stenius, Ulla

    2011-12-02

    The p110β subunit in the class IA PI3K family may act as an oncogene and is critical for prostate tumor development in PTEN knockout mice. We tested the possible involvement of p110β in a recently described rapid depletion of phosphorylated Akt (pAkt) in the nucleus. Previous work showed that this down-regulation is induced by extracellular ATP or by statins and is mediated by the purinergic receptor P2X7. Here, we used p110β knock out mouse embryonic fibroblasts (MEFs) and siRNA-treated cancer cells. We found that p110β is essential for ATP- or statin-induced nuclear pAkt depletion in MEFs and in several cancer cell lines including prostate cancer cells. ATP, statin or the selective P2X7 agonist BzATP also inhibited cell growth, and this inhibition was not seen in p110β knock out cells. We also found that p110β was necessary for statin-induced changes in binding between FKBP51, pAkt and PTEN. Our data show that p110β is essential for the ATP- and statin-induced effects and support a role of nuclear pAkt in cancer development. They also provide support for a chemopreventive effect of statins mediated by depletion of nuclear pAkt.

  4. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    Science.gov (United States)

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  5. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    Science.gov (United States)

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  6. Recent Development of Anticancer Therapeutics Targeting Akt

    OpenAIRE

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Eugene A Mash; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellu...

  7. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  8. Ghrelin Protects against the Detrimental Consequences of Porphyromonas gingivalis-Induced Akt Inactivation through S-Nitrosylation on Salivary Mucin Synthesis

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2011-01-01

    Full Text Available Disturbances in nitric oxide synthase isozyme system and the impairment in salivary mucin synthesis are well-recognized features associated with oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis. In this study, using rat sublingual gland acinar cells, we report that P. gingivalis LPS-induced impairment in mucin synthesis and associated suppression in Akt kinase activity were accompanied by a decrease in constitutive nitric oxide synthase (cNOS activity and an induction in inducible nitric oxide synthase (iNOS expression. The LPS effect on Akt inactivation was manifested in the kinase S-nitrosylation and a decrease in its phosphorylation at Ser473. Further, we demonstrate that a peptide hormone, ghrelin, countered the LPS-induced impairment in mucin synthesis. This effect of ghrelin was reflected in the suppression of iNOS and the increase in Akt activation, associated with the loss in S-nitrosylation and the increase in phosphorylation, as well as cNOS activation through phosphorylation. Our findings suggest that induction in iNOS expression by P. gingivalis-LPS leads to Akt kinase inactivation through S-nitrosylation that detrimentally impacts cNOS activation through phosphorylation as well as mucin synthesis. We also show that the countering effect of ghrelin on P. gingivalis-induced impairment in mucin synthesis is associated with Akt activation through phosphorylation.

  9. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    Science.gov (United States)

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  10. AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients.

    Science.gov (United States)

    Avan, Abolfazl; Avan, Amir; Le Large, Tessa Y S; Mambrini, Andrea; Funel, Niccola; Maftouh, Mina; Ghayour-Mobarhan, Majid; Cantore, Maurizio; Boggi, Ugo; Peters, Godefridus J; Pacetti, Paola; Giovannetti, Elisa

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) patients have the highest risk of developing cachexia, which is a direct cause of reduced quality of life and shorter survival. Novel biomarkers to identify patients at risk of cachexia are needed and might have a substantial impact on clinical management. Here we investigated the prognostic value and association of SELP-rs6136, IL6-rs1800796 and AKT1-rs1130233 polymorphisms with cachexia in PDAC. Genotyping was performed in DNA from blood samples of a test and validation cohorts of 151 and 152 chemo-naive locally-advanced/metastatic PDAC patients, respectively. The association of SELP-rs6136, IL6-rs1800796 and AKT1-rs1130233 polymorphisms with cachexia as well as the correlation between cachexia and the candidate polymorphisms and overall survival were analyzed. Akt expression and phosphorylation in muscle biopsies were evaluated by specific ELISA assays. SELP-rs6136-AA and AKT1-rs1130233-AA/GA genotypes were associated with increased risk of developing cachexia in both cohorts (SELP: p = 0.011 and p = 0.045; AKT1: p = 0.004 and p = 0.019 for the first and second cohorts, respectively), while patients carrying AKT1-rs1130233-GG survived significantly longer (p = 0.002 and p = 0.004 for the first and second cohorts, respectively). In the multivariate analysis AKT1-rs1130233-AA/GA genotypes were significant predictors for shorter survival, with an increased risk of death of 1.7 (p = 0.002) and 1.6 (p = 0.004), in the first and second cohorts, respectively. This might be explained by the reduced phosphorylation of Akt1 in muscle biopsies from patients harboring AKT1-rs1130233-AA/GA (p = 0.003), favoring apoptosis induction. In conclusion, SELP and AKT1 polymorphisms may play a role in the risk of cachexia and death in PDAC patients, and should be further evaluated in larger prospective studies.

  11. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels

    Science.gov (United States)

    Eagle, Andrew L.; Knox, Dayan; Roberts, Megan M.; Mulo, Kostika; Liberzon, Israel; Galloway, Matthew P.; Perrine, Shane A.

    2012-01-01

    Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype. PMID:23201176

  12. Complex regulation of PKCβ2 and PDK-1/AKT by ROCK2 in diabetic heart.

    Directory of Open Access Journals (Sweden)

    Guorong Lin

    Full Text Available OBJECTIVES: The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling. METHODS: Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy. RESULTS: Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4 to the plasma membrane in diabetic hearts. CONCLUSION: This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the

  13. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ekstrand, Anna Isinger; Jönsson, Mats; Lindblom, Annika;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...... and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59...... and 75% and were strongly associated (P = 0.005). Reduced/lost PTEN expression was found in 63% of the tumors. Though HNPCC-associated colorectal cancers show simple genetic profiles with few chromosomal alterations, we demonstrate frequent and repeated targeting of the PI3K/AKT/mTOR pathway, which...

  14. Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kyo Won Seo

    Full Text Available Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC, is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS. When VSMC was stimulated with MS (0-10% strain, 60 cycles/min, both production and gelatinolytic activity of MMP-2, but not MMP-9, were increased in a force-dependent manner. MS-enhanced MMP-2 expression and activity were inhibited by molecular inhibition of Akt using Akt siRNA as well as by PI3K/Akt inhibitors, LY293002 and AI, but not by MAPK inhibitors such as PD98059, SP600125 and SB203580. MS also increased Akt phosphorylation in VSMC, which was attenuated by AG1295, a PDGF receptor (PDGFR inhibitor, but not by inhibitors for other receptor tyrosine kinase including EGF, IGF, and FGF receptors. Although MS activated PDGFR-α as well as PDGFR-β in VSMC, MS-induced Akt phosphorylation was inhibited by molecular deletion of PDGFR-β using siRNA, but not by inhibition of PDGFR-α. Collectively, our data indicate that MS induces MMP-2 production in VSMC via activation of Akt pathway, that is mediated by activation of PDGFR-β signaling pathways.

  15. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2.

    Science.gov (United States)

    Burelout, Chantal; Naccache, Paul H; Bourgoin, Sylvain G

    2007-06-01

    PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.

  16. A phosphorylation cascade controls the degradation of active SREBP1.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan

    2009-02-27

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  17. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  18. Inhibition of TYRO3/Akt signaling participates in hypoxic injury in hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Yan-zhen Zhu; Wei Wang; Na Xian; Bing Wu

    2016-01-01

    In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylth-iazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunolfuorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-de-pendent manner. Taken together, these ifndings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury.

  19. Inhibition of PKB/Akt activity involved in apigenin-induced apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    YUAN LinHong; XIA Wei; ZHAO XiuJuan; ZHANG XiaoHua; ZHANG Ling; WU Kun

    2007-01-01

    Apigenin is a flavonoid widely distributed in fruits and vegetables.It possesses growth inhibitory properties against numerous cancer cell lines.However, the molecular mechanism(s) by which apigenin elicits its effects have not been fully elucidated.Here we studied whether apigenin inhibits growth and induces apoptosis in human gastric carcinoma cells.We showed that the flavonoid inhibited growth of the cells and caused apoptosis, as evidenced by DNA Ladder, cleavage of pro-caspase-3 in a time-dependent manner.Induction of apoptosis was dependent on inhibition of the PKB/Akt activity.We found that while apigenin had no effect on the expression of Akt and Bad, it inhibited specific phosphorylation of the two proteins that are associated with pro-survival mechanisms.We propose that this important flavonoid induces apoptosis in gastric cancer cells by inhibiting Akt activity.Since Akt is often activated in cancers, our findings may have clinical implications.

  20. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    Science.gov (United States)

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M

    2013-02-01

    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  1. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium.

    Science.gov (United States)

    Liu, Zhiwei; Yu, Xinyuan; Shaikh, Zahir A

    2008-05-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast cancer cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17 beta-estradiol. Specifically, treatment of MCF-7 cells, that express ER alpha, ER beta and GPR30, to 0.5-10 microM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ER beta, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ER alpha was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hER alpha significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ER alpha and GPR30, but not ER beta.

  2. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  3. Phosphorylation of Cdc5 regulates its accumulation

    Directory of Open Access Journals (Sweden)

    Simpson-Lavy Kobi J

    2011-12-01

    Full Text Available Abstract Background Cdc5 (polo kinase/Plk1 is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28 phosphorylation site present. Findings Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans and drastically reduces Clb2 levels. Conclusions Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1 caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

  4. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling

    Institute of Scientific and Technical Information of China (English)

    Zan Tong; Yan Fan; Weiqi Zhang; Jun Xu; Jing Cheng; Mingxiao Ding; Hongkui Deng

    2009-01-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insu-lin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hy-poglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of strepto-zotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the eleva-tion of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3β was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  5. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    Science.gov (United States)

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  6. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion.

    Science.gov (United States)

    Li, H-Y; Zhang, Q-G; Chen, J-W; Chen, S-Q; Chen, S-Y

    2013-09-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine with fibrogenic properties. Previous studies demonstrated that Phosphatidylinositol 3-Kinase (PI3K)/Akt/ mammalian target of Ramycin (mTOR), a non-Smad TGF-β pathway, plays an important role in the fibrotic pathogenesis of different organs such as the lung, kidney, skin and liver. However, the role of PI3k-Akt pathway in fibrosis in injured skeletal muscle is still unclear. In this study, we determined the fibrotic role of PI3K-Akt pathway in injured skeletal muscle. We established a mouse model for acute muscle contusion. Western blotting analysis showed that TGF-β, phosphorylated Akt and phosphorylated mTOR were increased in muscles after acute contusion, which indicated that the PI3K-Akt- mTOR pathway was activated in skeletal muscle after acute contusion. The pathway was inhibited by a PI3K inhibitor, LY294002. Moreover, the expression of fibrosis markers vimentin, α SMA and collagen I and the area of scar decreased in injured skeletal muscle after PI3K pathway was blocked. The muscle function improved in terms of both fast-twitch and tetanic strength after PI3K/Akt pathway was inhibited in injured skeletal muscle. In conclusion, activation of PI3K-Akt-mTOR pathway might promote collagen production and scar formation in the acute contused skeletal muscle. Blocking of PI3K-Akt-mTOR pathway could improve the function of injured skeletal muscle.

  7. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  8. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Giulia Pinton

    Full Text Available BACKGROUND: PI3K/AKT signalling pathway is aberrantly active and plays a critical role for cell cycle progression of human malignant pleural mesothelioma (MMe cells. AKT is one of the important cellular targets of perifosine, a novel bio-available alkylphospholipid that has displayed significant anti-proliferative activity in vitro and in vivo in several human tumour model systems and is currently being tested in clinical trials. METHODS: We tested Perifosine activity on human mesothelial cells and different mesothelioma cell lines, in order to provide evidence of its efficacy as single agent and combined therapy. RESULTS: We demonstrate here that perifosine, currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials, caused a dose-dependent reduction of AKT activation, at concentrations causing MMe cell growth arrest. In this study we firstly describe that MMe cells express aside from AKT1 also AKT3 and that either the myristoylated, constitutively active, forms of the two proteins, abrogated perifosine-mediated cell growth inhibition. Moreover, we describe here a novel mechanism of perifosine that interferes, upstream of AKT, affecting EGFR and MET phosphorylation. Finally, we demonstrate a significant increase in cell toxicity when MMe cells were treated with perifosine in combination with cisplatin. CONCLUSIONS: This study provides a novel mechanism of action of perifosine, directly inhibiting EGFR/MET-AKT1/3 axis, providing a rationale for a novel translational approach to the treatment of MMe.

  9. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    Science.gov (United States)

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  10. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN

    OpenAIRE

    Makoto Nakakido; Zhenzhong Deng; Takehiro Suzuki; Naoshi Dohmae; Yusuke Nakamura; Ryuji Hamamoto

    2015-01-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine meth...

  11. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway.

    Science.gov (United States)

    Liu, Yanwei; Chen, Sen; Xue, Rui; Zhao, Juan; Di, Maojun

    2016-02-05

    Deregulation of PI3K/Akt/mTOR pathway has been recently identified to play a crucial role in the progress of human gastric cancer. In this study, we show that mefloquine, a FDA-approved anti-malarial drug, effectively targets human gastric cancer cells. Mefloquine potently inhibits proliferation and induces apoptosis of a panel of human gastric cancer cell lines, with EC50 ∼ 0.5-0.7 μM. In two independent gastric cancer xenograft mouse models, mefloquine significantly inhibits growth of both tumors. The combination of mefloquine with paclitaxel enhances the activity of either drug alone in in vitro and in vivo. In addition, mefloquine potently decreased phosphorylation of PI3K, Akt, mTOR and rS6. Overexpression of constitutively active Akt significantly restored mefloquine-mediated inhibition of mTOR phosphorylation and growth, and induction of apoptosis, suggesting that mefloquine acts on gastric cancer cells via suppressing PI3K/Akt/mTOR pathway. We further show that mefloquine-mediated inhibition of Akt/mTOR singaling is phosphatase-dependent as pretreatment with calyculin A does-dependently reversed mefloquine-mediated inhibition of Akt/mTOR phosphorylation. Since mefloquine is already available for clinic use, these results suggest that it is a useful addition to the treatment armamentarium for gastric cancer.

  12. Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins?

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Jørgensen, Claus; Linding, Rune

    2010-01-01

    Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that man...... evolutionary approaches to interpret physiological important sites....

  13. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ping Lin

    Full Text Available Caffeic acid phenethyl ester (CAPE treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.

  14. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice.

    Science.gov (United States)

    Jiang, Wenbin; Li, Zhengwei; Zhao, Wei; Chen, Hao; Wu, Youyang; Wang, Yi; Shen, Zhida; He, Jialin; Chen, Shengyu; Zhang, Jiefang; Fu, Guosheng

    2016-01-01

    Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling.

  15. Marine Cyclotripeptide X-13 Promotes Angiogenesis in Zebrafish and Human Endothelial Cells via PI3K/Akt/eNOS Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2012-06-01

    Full Text Available Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508. We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or l-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.

  16. Constitutive Activation of AKT Pathway Inhibits TNF-induced Apoptosis in Mitochondrial DNA-Deficient human myelogenous leukemia ML-1a

    OpenAIRE

    Suzuki, Seigo; Naito, Akihiro; Asano, Takayuki; Evans, Teresa T; Reddy, Shrikanth A.G.; Higuchi, Masahiro

    2008-01-01

    TNF plus protein synthesis inhibitor cycloheximide induced apoptosis in human myelogenous leukemia ML-1a but not in C19, respiration minus mitochondrial DNA deficient C19 cells, derived from ML-1a. To investigate how mitochondrial DNA depletion inhibits apoptosis, we investigated AKT. Both AKT and its phosphorylated form were observed only in C19, indicating that depletion of mtDNA increased protein and the active form of AKT. Treatment of C19 with LY294002, which inhibits PI-3 kinase and inh...

  17. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation

    DEFF Research Database (Denmark)

    Macek, B.; Gnad, F.; Soufi, Boumediene

    2008-01-01

    we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation...... sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site...

  18. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    Science.gov (United States)

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  19. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation.

    Science.gov (United States)

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-09-24

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  20. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    Directory of Open Access Journals (Sweden)

    Jin‑Chung Chen

    2012-09-01

    Full Text Available The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3. To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2 activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  1. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    Science.gov (United States)

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  2. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  3. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xin WANG; Chun Sun JIANG; Lei LIU; Xiao Hui WANG; Hai Jing JIN; Qiao WU; Quan CHEN

    2005-01-01

    The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARγ and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.

  4. Mechanistic Analysis of AKT1 Regulation by the CBL-CIPK-PP2CA Interactions

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhi Lan; Sung-Chul Lee; Yu-Fen Che; Yuan-Qing Jiang; Sheng Luan

    2011-01-01

    T Arabidopsis K+ transporter 1 (AKT1) participates in K+ uptake in roots, especially under low-K conditions. We recently identified a Ca2+ signaling pathway consisting of multiple calcineurin B-like calcium sensors (CBLs) and multiple target kinases (CBL-interacting protein kinases or CIPKs) that phosphorylate and activate AKT1, whereas a specific PP2C-type phosphatase inactivates CIPK-dependent AKT1 activity. In this study, we analyzed the interactions between PP2Cs and the CBL-CIPK pathway and found previously unsuspected mechanisms underlying the CBL-CIPK-PP2C signaling processes. The interaction between the CIPKs and PP2Cs involves the kinase domain of the CIPK component, in addition to the protein phosphatase interacting motif (PPI) in the regulatory domain. Furthermore, specific CBLs physically interact with and inactivate PP2C phosphatases to recover the CIPK-dependent AKT1 channel activity. These findings provide further insights into the signaling network consisting of CBL-CIPK-PP2C interactions in the activation of the AKT1 channel.

  5. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  6. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  7. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  8. Apm4, the mu subunit of yeast AP-2 interacts with Pkc1, and mutation of the Pkc1 consensus phosphorylation site Thr176 inhibits AP-2 recruitment to endocytic sites

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Ayscough, Kathryn R

    2014-01-01

    The AP-2 endocytic adaptor has been extensively characterized in mammalian cells and is considered to play a role both in cargo binding and in formation of endocytic sites. However, despite our detailed knowledge of mechanistic aspects of endocytic complex assembly and disassembly in the model organism Saccharomyces cerevisiae, no function of AP-2 had been described in wild-type yeast under normal growth conditions. A recent study however revealed that disruption of the complex caused by deletion of the gene encoding its mu subunit (APM4) caused defects in cell polarity such that responses to pheromone, nutritional status and cell wall damage were affected. Furthermore, a homozygous deletion of the mu subunit gene in Candida albicans affected its ability to grow hyphae. Direct binding to the yeast cell wall stress sensor Mid2 was detected, and in an apm4 deletion strain Mid2 showed reduced re-localization to the mother bud neck region following cell wall damage with calcofluor or to the mating projection tip. Here we demonstrate an interaction between Apm4 and the yeast cell wall integrity pathway component Pkc1 and show that mutation of the predicted Pkc1 site in the Apm4 hinge region affects recruitment of the AP-2 complex to endocytic sites. PMID:25346786

  9. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available BACKGROUND: The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. METHODOLOGY/PRINCIPAL FINDINGS: We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. CONCLUSIONS/SIGNIFICANCE: Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular

  10. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  11. VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells.

    Directory of Open Access Journals (Sweden)

    Cheng-Chou Yu

    Full Text Available Previous studies have demonstrated that valosin-containing protein (VCP is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.

  12. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway.

    Directory of Open Access Journals (Sweden)

    Longzai Lin

    Full Text Available IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons.

  13. Sex-Specific and Estrous Cycle-Dependent Antidepressant-Like Effects and Hippocampal Akt Signaling of Leptin.

    Science.gov (United States)

    Carrier, Nicole; Wang, Xuezhen; Sun, Linshan; Lu, Xin-Yun

    2015-10-01

    Sex differences in the incidence of depression and antidepressant treatment responses are well documented. Depression is twice as common in women as in men. Recent studies indicate that low levels of leptin, an adipocyte-derived hormone, are associated with increased symptoms of depression in women. Leptin has been shown to produce antidepressant-like effects in male rodents. In the present study, we examined sex differences and estrous cycle variations in antidepressant-like responses to leptin. Leptin administration significantly reduced immobility, a putative measure of behavioral despair, in the forced swim test in intact female mice in the proestrus phase but not in the diestrus phase of the estrous cycle. Moreover, leptin administration stimulated Akt phosphorylation in the hippocampus of female mice in proestrus but not in diestrus, in correlation with its differential behavioral effects in these two phases of the cycle. Leptin-induced behavioral responses and stimulation of hippocampal Akt phosphorylation in female mice were abolished by ovariectomy. By contrast, the antidepressant-like effect of leptin in male mice was not affected by gonadectomy (castration). Pretreatment with 17β-estradiol restored sensitivity to the effects of leptin on behavior and hippocampal Akt phosphorylation in ovariectomized female mice. These results suggest leptin regulates depression-like behavior and hippocampal Akt signaling in a sex-specific and estrous cycle-dependent manner.

  14. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    Science.gov (United States)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  15. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  16. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  17. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Nakamura, Shigeo [Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 (Japan); Ono, Toshiya; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511 (Japan); Yagi, Syota; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Watanabe, Hisami [Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan); Ohe, Tomoyuki; Mashino, Tadahiko [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  18. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Zhihong Chen; Yaqiang He; Chengjun Song; Zhijun Dong; Zhejun Su; Jingfeng Xue

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.

  19. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    Science.gov (United States)

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  20. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  1. Astaxanthin Alleviates Early Brain Injury Following Subarachnoid Hemorrhage in Rats: Possible Involvement of Akt/Bad Signaling

    Directory of Open Access Journals (Sweden)

    Xiang-Sheng Zhang

    2014-07-01

    Full Text Available Apoptosis has been proven to play a crucial role in early brain injury pathogenesis and to represent a target for the treatment of subarachnoid hemorrhage (SAH. Previously, we demonstrated that astaxanthin (ATX administration markedly reduced neuronal apoptosis in the early period after SAH. However, the underlying molecular mechanisms remain obscure. In the present study, we tried to investigate whether ATX administration is associated with the phosphatidylinositol 3-kinase-Akt (PI3K/Akt pathway, which can play an important role in the signaling of apoptosis. Our results showed that post-SAH treatment with ATX could cause a significant increase of phosphorylated Akt and Bad levels, along with a significant decrease of cleaved caspase-3 levels in the cortex after SAH. In addition to the reduced neuronal apoptosis, treatment with ATX could also significantly reduce secondary brain injury characterized by neurological dysfunction, cerebral edema and blood-brain barrier disruption. In contrast, the PI3K/Akt inhibitor, LY294002, could partially reverse the neuroprotection of ATX in the early period after SAH by downregulating ATX-induced activation of Akt/Bad and upregulating cleaved caspase-3 levels. These results provided the evidence that ATX could attenuate apoptosis in a rat SAH model, potentially, in part, through modulating the Akt/Bad pathway.

  2. Recent development of anticancer therapeutics targeting Akt.

    Science.gov (United States)

    Morrow, John K; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J; Mash, Eugene A; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.

  3. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  4. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  5. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation.

    Science.gov (United States)

    Yao, Wenfang; Feng, Duiping; Bian, Weihua; Yang, Longyan; Li, Yang; Yang, Zhiyu; Xiong, Ying; Zheng, Junfang; Zhai, Renyou; He, Junqi

    2012-11-01

    Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.

  6. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  7. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    Directory of Open Access Journals (Sweden)

    Özel Cem

    2012-04-01

    Full Text Available Abstract Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a

  8. ROLE OF PI3K-AKT-mTOR AND Wnt SIGNALING PATHWAYS IN G1-S TRANSITION OF CELL CYCLE IN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    LAKSHMIPATHI eVADLAKONDA

    2013-04-01

    Full Text Available The PI3K–Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR is a highly deregulated pathway in cancers. There is a reciprocal relation between the Akt phosphorylation and mTOR complexes. Akt phosphorylated at T308 activates mTORC1 by inhibition of the tuberous sclerosis complex (TSC1/2, where as mTORC2 is recognized as the kinase that phosphorylates Akt at S473. Recent developments in the research on regulatory mechanisms of autophagy places mTORC1 mediated inhibition of autophagy at the central position in activation of proliferation and survival pathways in cells. Autophagy is a negative regulator of Wnt signaling pathway and the downstream effectors of Wnt signaling pathway, cyclin D1 and the c-Myc, are the key players in initiation of cell cycle and regulation of the G1-S transition in cancer cells. Production of reaction oxygen species (ROS, a common feature of a cancer cell metabolism, activates several downstream targets like the transcription factors FoxO, which play key roles in promoting the progression of cell cycle. A model is presented on the role of PI3K -Akt - mTOR and Wnt pathways in regulation of the progression of cell cycle through Go-G1-and S phases.

  9. dbPPT: a comprehensive database of protein phosphorylation in plants.

    Science.gov (United States)

    Cheng, Han; Deng, Wankun; Wang, Yongbo; Ren, Jian; Liu, Zexian; Xue, Yu

    2014-01-01

    As one of the most important protein post-translational modifications, the reversible phosphorylation is critical for plants in regulating a variety of biological processes such as cellular metabolism, signal transduction and responses to environmental stress. Numerous efforts especially large-scale phosphoproteome profiling studies have been contributed to dissect the phosphorylation signaling in various plants, while a large number of phosphorylation events were identified. To provide an integrated data resource for further investigations, here we present a comprehensive database of dbPPT (database of Phosphorylation site in PlanTs, at http://dbppt.biocuckoo.org), which contains experimentally identified phosphorylation sites in proteins from plants. The phosphorylation sites in dbPPT were manually curated from the literatures, whereas datasets in other public databases were also integrated. In total, there were 82,175 phosphorylation sites in 31,012 proteins from 20 plant organisms in dbPPT, presenting a larger quantity of phosphorylation sites and a higher coverage of plant species in comparison with other databases. The proportions of residue types including serine, threonine and tyrosine were 77.99, 17.81 and 4.20%, respectively. All the phosphoproteins and phosphorylation sites in the database were critically annotated. Since the phosphorylation signaling in plants attracted great attention recently, such a comprehensive resource of plant protein phosphorylation can be useful for the research community. Database URL: http://dbppt.biocuckoo.or

  10. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sam Coffey

    Full Text Available Diabetes mellitus (DM has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160 and cytoplasmic tail of megalin. Mice with type 1 DM (T1D displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN at an earlier stage.

  11. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Science.gov (United States)

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.

  12. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  13. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells.

    Science.gov (United States)

    Lin, Ying-Hsi; Chen, Bert Yu-Hung; Lai, Wei-Ting; Wu, Shao-Fu; Guh, Jih-Hwa; Cheng, Ann-Lii; Hsu, Lih-Ching

    2015-01-01

    Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.

  14. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway.

    Science.gov (United States)

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-11-01

    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  15. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  16. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.;

    2013-01-01

    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  17. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Hasan Korkaya

    2009-06-01

    Full Text Available Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/beta-catenin pathway through the phosphorylation of GSK3-beta. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/beta-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.

  18. Akt- and CREB-Mediated Prostate Cancer Cell Proliferation Inhibition by Nexrutine, a Phellodendron amurense Extract

    Directory of Open Access Journals (Sweden)

    Gretchen E. Garcia

    2006-06-01

    Full Text Available Evidence from epidemiological studies suggests that plant-based diets can reduce the risk of prostate cancer. However, very little information is available concerning the use of botanicals in preventing prostate cancer. As a first step toward developing botanicals as prostate cancer preventives, we examined the effect of Nexrutine on human prostate cancer cells. Nexrutine is a herbal extract developed from Phellodendron amurense. Phellodendron extracts have been used traditionally in Chinese medicine for hundreds of years as an antidiarrheal, astringent, and anti-inflammatory agent. The present study investigated its potential antitumor effect on human prostate cancer cells. Our results suggest that it inhibits tumor cell proliferation through apoptosis induction and inhibition of cell survival signaling. The results of the present study indicate that Nexrutine treatment 1 inhibits the proliferation of both androgenresponsive and androgen-independent human prostate cancer cells through induction of apoptosis; 2 reduces levels of pAkt, phosphorylated cAMP response-binding protein (pCREB, and CREB DNA-binding activity; and 3 induces apoptosis in prostate cancer cells stably overexpressing Bcl-2. Further Akt kinase activity was reduced in cells treated with Nexrutine, and ectopic expression of myristoylated Akt protected from Nexrutine induced inhibition of proliferation, implicating a role for Akt signaling.

  19. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling.

    Science.gov (United States)

    Sokołowska, Paulina; Urbańska, Anna; Biegańska, Kaja; Wagner, Waldemar; Ciszewski, Wojciech; Namiecińska, Magdalena; Zawilska, Jolanta B

    2014-01-01

    Orexins A and B are peptides produced mainly by hypothalamic neurons that project to numerous brain structures. We have previously demonstrated that rat cortical neurons express both types of orexin receptors, and their activation by orexins initiates different intracellular signals. The present study aimed to determine the effect of orexins on the Akt kinase activation in the rat neuronal cultures and the significance of that response in neurons subjected to hypoxic stress. We report the first evidence that orexins A and B stimulated Akt in cortical neurons in a concentration- and time-dependent manner. Orexin B more potently than orexin A increased Akt phosphorylation, but the maximal effect of both peptides on the kinase activation was very similar. Next, cultured cortical neurons were challenged with cobalt chloride, an inducer of reactive oxygen species and hypoxia-mediated signaling pathways. Under conditions of chemical hypoxia, orexins potently increased neuronal viability and protected cortical neurons against oxidative stress. Our results also indicate that Akt kinase plays an important role in the pro-survival effects of orexins in neurons, which implies a possible mechanism of the orexin-induced neuroprotection.

  20. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  1. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  2. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    OpenAIRE

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glyc...

  3. The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Dong Qin

    2015-01-01

    Full Text Available Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR. Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.

  4. 4-Hydroxy-3-Methoxybenzoic Acid Methyl Ester: A Curcumin Derivative Targets Akt/NFκB Cell Survival Signaling Pathway: Potential for Prostate Cancer Management

    Directory of Open Access Journals (Sweden)

    Addanki P. Kumar

    2003-05-01

    Full Text Available Transcription factor NFKB and the serine/threonine kinase Akt play critical roles in mammalian cell survival signaling and have been shown to be activated in various malignancies including prostate cancer (PCA. We have developed an analogue of curcumin called 4hydroxy-3-methoxybenzoic acid methyl ester (HMBME that targets the Akt/NFκB signaling pathway. Here, we demonstrate the ability of this novel compound to inhibit the proliferation of human and mouse PCA cells. HMBME-induced apoptosis in these cells was tested by using multiple biochemical approaches, in addition to morphological analysis. Overexpression of constitutively active Akt reversed the HMBME-induced growth inhibition and apoptosis, illustrating the direct role of Akt signaling in HMBME-mediated growth inhibition and apoptosis. Further, investigation of the molecular events associated with its action in LNCaP cells shows that: 1 HMBME reduces the level of activated form of Akt (phosphorylated Akt; and 2 inhibits the Akt kinase activity. Further, the transcriptional activity of NFκB, the DNA-binding activity of NFκB, and levels of p65 were all significantly reduced following treatment with HMBME. Overexpression of constitutively active Akt, but not the kinase dead mutant of Akt, activated the basal NFκB transcriptional activity. HMBME treatment had no influence on this constitutively active Aktaugmented NFκB transcriptional activity. These data indicate that HMBME-mediated inhibition of Akt kinase activity may have a potential in suppressing/decreasing the activity of major survival/antiapoptotic pathways. The potential use of HMBME as an agent that targets survival mechanisms in PCA cells is discussed.

  5. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway.

    Science.gov (United States)

    Chen, Lin; Zhang, Yi; Sun, Xiuli; Li, Hui; LeSage, Gene; Javer, Avani; Zhang, Xiumei; Wei, Xinbing; Jiang, Yulin; Yin, Deling

    2009-07-01

    As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3beta (GSK3beta). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3beta pathway.

  6. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Rie [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Hong, Zhang [Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Ushida, Takashi [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  7. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Chang Cheng

    Full Text Available BACKGROUND: Phosphoinositide 3-kinase (PI3K/Akt pathway is linked to the development of asthma. Anti-malarial drug artesunate is a semi-synthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua, and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Female BALB/c mice sensitized and challenged with ovalbumin (OVA developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model. CONCLUSION/SIGNIFICANCE: Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma.

  8. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.

    Science.gov (United States)

    Cui, Yue; Zhang, X Q; Cui, Y; Xin, W J; Jing, J; Liu, X G

    2010-11-24

    Hippocampus is a critical structure for the acquisition of morphine-induced conditioned place preference (CPP), which is a usual learning paradigm for assessing drug reward. However, the precise mechanisms remain largely unknown. Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt, mammalian target of Rapamycin (mTOR) and 70-kDa ribosomal S6 kinase (p70S6K), are critical molecules implicated in learning and memory. Here, we tested the role of PI3K/Akt-mTOR-p70S6K signaling pathway in morphine-induced CPP in the hippocampus. Our results showed that the acquisition of morphine CPP increased phosphorylation of Akt in the hippocampal CA3, but not in the nucleus accumbens (NAc), the ventral tegmental area (VTA) or the CA1. Moreover, the phosphorylated Akt exclusively expressed in the CA3 neurons. Likewise, levels of phosphorylated mTOR and p70S6K were significantly enhanced in the CA3 following morphine CPP. The alterations of these phosphorylated proteins are positively correlated with the acquisition of morphine CPP. More importantly, microinjection of PI3K inhibitor (LY294002) or mTOR inhibitor (Rapamycin) into the CA3 prevented the acquisition of CPP and inhibited the activation of PI3K-Akt signaling pathway. In addition, pre-infusion of β-FNA (β-funaltrexamine hydrochloride), a selective irreversible μ opioid receptor antagonist, into CA3 significantly prevented the acquisition of CPP and impaired Akt phosphorylation. All these results strongly implied that the PI3K-Akt signaling pathway activated by μ opioid receptor in hippocampal CA3 plays an important role in acquisition of morphine-induced CPP.

  9. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Fernanda M Cerqueira

    Full Text Available Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR. Since treatment of mice with dinitrophenol (DNP promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

  10. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  11. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Zhang, Z.Z.; Wu, Y.; Ke, J.J.; He, X.H.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan (China)

    2013-09-24

    Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

  12. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-09-01

    Full Text Available Quercetin (Que, a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group: sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05. Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05. Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

  13. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    Science.gov (United States)

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.

  14. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    Science.gov (United States)

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  15. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  16. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    OpenAIRE

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  17. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    Science.gov (United States)

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect