WorldWideScience

Sample records for akari infrared camera

  1. Summary of observations of the infrared camera (IRC) onboard AKARI

    Science.gov (United States)

    Onaka, T.; Matsuhara, H.; Wada, T.; Ishihara, D.; Ohyama, Y.; Sakon, I.; Shimonishi, T.; Ohsawa, R.; Mori, T. I.; Egusa, F.; Usui, F.; Takita, S.; Murakami, H.; Oyabu, S.; Yamagishi, M.; Mori, T.; Mouri, A.; Kondo, T.; Suzuki, S.; Kaneda, H.; Ita, Y.; Ootsubo, T.

    2012-09-01

    AKARI, the Japanese satellite mission dedicated to infrared astronomy was launched in 2006 February and exhausted its liquid helium in 2007 August. During the cold mission phase, the Infrared Camera (IRC) onboard carried out an all-sky survey at 9 and 18µm with better spatial resolution and higher sensitivity than IRAS. Both bands also have slightly shorter wavelength coverage than IRAS 12 and 25μm bands and thus provide different information on the infrared sky. All-sky image data of the IRC are now in the final processing and will be released to the public within a year. After the exhaustion of the cryogen, the telescope and focal plane instruments of AKARI had still been kept at sufficiently low temperatures owing to the onboard cryocooler. Near-infrared (NIR) imaging and spectroscopic observations with the IRC had continued until 2011 May, when the spacecraft had a serious problem in the power supply system that forced us to terminate the observation. The IRC carried out nearly 20000 pointing observations in total despite of its near-earth orbit. About a half of them were performed after the exhaustion of the cryogen in the spectroscopic modes, which provided high-sensitivity NIR spectra from 2 to 5µm without disturbance of the terrestrial atmosphere. During the warm mission phase, the temperature of the instrument gradually increased and changed the array operation conditions. We present a summary of AKARI/IRC observations, including the all-sky mid-infrared diffuse data as well as the data taken in the warm mission phase.

  2. Near-infrared and Mid-infrared Spectroscopy with the Infrared Camera (IRC) for AKARI

    CERN Document Server

    Ohyama, Youichi; Matsuhara, Hideo; Wada, Takehiko; Kim, Woojung; Fujishiro, Naofumi; Uemizu, Kazunori; Sakon, Itsuki; Cohen, Martin; Ishigaki, Miho; Ishihara, Daisuke; Ita, Yoshifusa; Kataza, Hirokazu; Matsumoto, Toshio; Murakami, Hiroshi; Oyabu, Shinki; Tanabe, Toshihiko; Takagi, Toshinobu; Ueno, Munetaka; Usui, Fumio; Watarai, Hidenori; Pearson, Chris P; Takeyama, Norihide; Yamamuro, Tomoyasu; Ikeda, Yuji

    2007-01-01

    The Infrared Camera (IRC) is one of the two instruments on board the AKARI satellite. In addition to deep imaging from 1.8-26.5um for the pointed observation mode of the AKARI, it has a spectroscopic capability in its spectral range. By replacing the imaging filters by transmission-type dispersers on the filter wheels, it provides low-resolution (lambda/d_lambda ~ 20-120) spectroscopy with slits or in a wide imaging field-of-view (approximately 10'X10'). The IRC spectroscopic mode is unique in space infrared missions in that it has the capability to perform sensitive wide-field spectroscopic surveys in the near- and mid-infrared wavelength ranges. This paper describes specifications of the IRC spectrograph and its in-orbit performance.

  3. Slow-scan Observations with the Infrared Camera (IRC) on-board AKARI

    CERN Document Server

    Takita, Satoshi; Kitamura, Yoshimi; Ishihara, Daisuke; Kataza, Hirokazu; Kawamura, Akiko; Oyabu, Shinki; Ueno, Munetaka; Yamamura, Issei

    2012-01-01

    We present the characterization and calibration of the slow-scan observation mode of the Infrared Camera (IRC) on-board AKARI. The IRC slow-scan observations were operated at the S9W (9 $\\mu$m) and L18W (18 $\\mu$m) bands. We have developed a toolkit for data reduction of the IRC slow-scan observations. We introduced a "self-pointing reconstruction" method to improve the positional accuracy to as good as 1". The sizes of the point spread functions were derived to be $\\sim6"$ at the S9W band and $\\sim7"$ at the L18W bands in full width at half maximum. The flux calibrations were achieved with the observations of 3 and 4 infrared standard stars at the S9W and L18W bands, respectively. The flux uncertainties are estimated to be better than 20% from comparisons with the AKARI IRC PSC and the WISE preliminary catalog.

  4. AKARI Infrared Camera Survey of the Large Magellanic Cloud. I. Point Source Catalog

    CERN Document Server

    Kato, Daisuke; Onaka, Takashi; Tanabe, Toshihiko; Shimonishi, Takashi; Sakon, Itsuki; Kaneda, Hidehiro; Kawamura, Akiko; Wada, Takehiko; Usui, Fumihiko; Koo, Bon-Chul; Matsuura, Mikako; Takahashi, Hidenori

    2012-01-01

    We present a near- to mid-infrared point source catalog of 5 photometric bands at 3.2, 7, 11, 15 and 24 um for a 10 deg2 area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera (IRC) onboard the AKARI satellite. To cover the survey area the observations were carried out at 3 separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10-sigma limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15 and 24 um, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 um and 0.06--0.07 mag in the other bands. The position accuracy is 0.3" at 3.2, 7 and 11um and 1.0" at 15 and 24 um. The sensitivities at 3.2, 7, and 24 um are roughly comparable to those of the Spitzer SAGE LMC point source catalog, while the AKARI catalog provides the data at 11 and 15 um, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the...

  5. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    International Nuclear Information System (INIS)

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared

  6. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. I. POINT-SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Daisuke; Onaka, Takashi; Shimonishi, Takashi; Sakon, Itsuki [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Tanabe, Toshihiko; Takahashi, Hidenori [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Kaneda, Hidehiro [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wada, Takehiko; Usui, Fumihiko [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Koo, Bon-Chul [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Matsuura, Mikako, E-mail: kato@ir.isas.jaxa.jp, E-mail: onaka@astron.s.u-tokyo.ac.jp [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2012-12-01

    We present a near- to mid-infrared point-source catalog of five photometric bands at 3.2, 7, 11, 15, and 24 {mu}m for a 10 deg{sup 2} area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera on board the AKARI satellite. To cover the survey area the observations were carried out at three separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10{sigma} limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15, and 24 {mu}m, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 {mu}m and 0.06-0.07 mag in the other bands. The position accuracy is 0.''3 at 3.2, 7, and 11 {mu}m and 1.''0 at 15 and 24 {mu}m. The sensitivities at 3.2, 7, and 24 {mu}m are roughly comparable to those of the Spitzer SAGE LMC point-source catalog, while the AKARI catalog provides the data at 11 and 15 {mu}m, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point-source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24 {mu}m, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11 {mu}m band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects toward the LMC.

  7. Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels on Board AKARI

    Science.gov (United States)

    Arimatsu, Ko; Onaka, Takashi; Sakon, Itsuki; Oyabu, Shinki; Ita, Yoshifusa; Tanabé, Toshihiko; Kato, Daisuke; Egusa, Fumi; Wada, Takehiko; Matsuhara, Hideo

    2011-08-01

    Mid-infrared images frequently suffer artifacts and extended point-spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the infrared camera (IRC) on board AKARI at four mid-infrared bands of the S7 (7 μm), S11 (11 μm), L15 (15 μm), and L24 (24 μm). Removal of the artifacts significantly improves the reliability of the reference data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, which consists of the deconvolution with the PSF and the convolution with an appropriate Gaussian. The appropriate removal of the artifacts, improved flat-fielding, and image reconstruction with the extended PSFs enable us to investigate detailed structures of extended sources in IRC mid-infrared images.

  8. Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels onboard AKARI

    CERN Document Server

    Arimatsu, Ko; Sakon, Itsuki; Oyabu, Shinki; Ita, Yoshifusa; Tanabé, Toshihiko; Kato, Daisuke; Egusa, Fumi; Wada, Takehiko; Matsuhara, Hideo

    2011-01-01

    Mid-infrared images frequently suffer artifacts and extended point spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the Infrared Camera (IRC) onboard AKARI at four mid-infrared bands of the S7 (7{\\mu}m), S11 (11{\\mu}m), L15 (15{\\mu}m), and L24 (24 {\\mu}m). Removal of the artifacts significantly improves the reliability of the ref- erence data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, whi...

  9. The Infrared Astronomical Mission AKARI

    CERN Document Server

    Murakami, H; Barthel, P; Clements, D L; Cohen, M; Doi, Y; Enya, K; Figueredo, E; Fujishiro, N; Fujiwara, H; Fujiwara, M; García-Lario, P; Goto, T; Hasegawa, S; Hibi, Y; Hirao, T; Hiromoto, N; Hong, S S; Imai, K; Ishigaki, M; Ishiguro, M; Ishihara, D; Ita, Y; Jeong, W -S; Jeong, K S; Kaneda, H; Kataza, H; Kawada, M; Kawai, T; Kawamura, A; Kessler, M F; Kester, Do; Kii, T; Kim, D C; Kim, W; Kobayashi, H; Koo, B C; Kwon, S M; Lee, H M; Lorente, R; Makiuti, S; Matsuhara, H; Matsumoto, T; Matsuo, H; Matsuura, S; Müller, T G; Murakami, N; Nagata, H; Nakagawa, T; Naoi, T; Narita, M; Noda, M; Oh, S H; Ohnishi, A; Ohyama, Y; Okada, Y; Okuda, H; Oliver, S; Onaka, T; Ootsubo, T; Oyabu, S; Pak, S; Park, Y S; Pearson, C P; Rowan-Robinson, M; Saitô, T; Sakon, I; Salama, A; Sato, S; Savage, R S; Serjeant, S; Shibai, H; Shirahata, M; Sohn, J J; Suzuki, T; Takagi, T; Takahashi, H; Tanabé, T; Takeuchi, T T; Takita, S; Thomson, M; Uemizu, K; Ueno, M; Usui, F; Verdugo, E; Wada, T; Wang, L; Watabe, T; Watarai, H; White, G J; Yamamura, I; Yamauchi, C; Yasuda, A

    2007-01-01

    AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from the mid- to far-infrared. The instruments also have the capability for imaging and spectroscopy in the wavelength range 2 - 180 micron in the pointed observation mode, occasionally inserted into the continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90 percent of the whole sky with higher spatial resolution and wider wavelength coverage than that of the previous IRAS all-sky survey. Point source catalogues of the All-Sky Survey will be released to the astronomical community. The pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional ...

  10. Neptune's Atmospheric Composition from AKARI Infrared Spectroscopy

    CERN Document Server

    Fletcher, Leigh N; Burgdorf, Martin; Orton, Glenn; Encrenaz, Therese; 10.1051/0004-6361/200913358

    2010-01-01

    Aims: Disk-averaged infrared spectra of Neptune between 1.8 and 13 $\\mu$m, obtained by the AKARI Infrared Camera (IRC) in May 2007, have been analysed to (a) determine the globally-averaged stratospheric temperature structure; (b) derive the abundances of stratospheric hydrocarbons; and (c) detect fluorescent emission from CO at 4.7 $\\mu$m. Methods: Mid-infrared spectra were modelled using a line-by-line radiative transfer code to determine the temperature structure between 1-1000 $\\mu$bar and the abundances of CH$_4$, CH$_3$D and higher-order hydrocarbons. A full non-LTE radiative model was then used to determine the best fitting CO profile to reproduce the fluorescent emission observed at 4.7 $\\mu$m in the NG channel (with a spectral resolution of 135). Results: The globally-averaged stratospheric temperature structure is quasi-isothermal between 1-1000 $\\mu$bar, which suggests little variation in global stratospheric conditions since studies by the Infrared Space Observatory a decade earlier. The derived C...

  11. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey

    Science.gov (United States)

    Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; Ishihara, Daisuke; Kataza, Hirokazu; Takita, Satoshi; Oyabu, Shinki; Ueno, Munetaka; Matsuhara, Hideo; Onaka, Takashi

    2011-10-01

    We present the results of an unbiased asteroid survey in the mid-infrared wavelength region with the Infrared Camera (IRC) on board the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these ``residual events''. We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a new brand of asteroid catalog, named the Asteroid Catalog Using AKARI (AcuA), which contains 5120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4953 main belt asteroids, 58 near-Earth asteroids, and 109 Jovian Trojan asteroids. The catalog is publicly available via the Internet.

  12. The AKARI/IRC Mid-Infrared All-Sky Survey

    CERN Document Server

    Ishihara, Daisuke; Kataza, Hirokazu; Salama, Alberto; Alfageme, Carlos; Cassatella, Angelo; Cox, Nick; Garcia-Lario, Pedro; Stephenson, Craig; Cohen, Martin; Fujishiro, Naofumi; Fujiwara, Hideaki; Hasegawa, Sunao; Ita, Yoshifusa; Kim, Woojung; Matsuhara, Hideo; Murakami, Hiroshi; Muller, Thomas G; Nakagawa, Takao; Ohyama, Youichi; Oyabu, Shinki; Pyo, Jeonghyun; Sakon, Itsuki; Shibai, Hiroshi; Takita, Satoshi; Tanabe, Toshihiko; Uemizu, Kazunori; Ueno, Munetaka; Usui, Fumihiko; Wada, Takehiko; Watarai, Hiden ori; Yamamura, Issei; Yamauchi, Chisato

    2010-01-01

    Context : AKARI is the first Japanese astronomical satellite dedicated to infrar ed astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 and 200um during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9um and 18um b ands) of the survey carried out with one of the on-board instruments, the Infrar ed Camera (IRC). Aims : We present unprecedented observational results of the 9 and 18um AKARI al l-sky survey and detail the operation and data processing leading to the point s ource detection and measurements. Methods : The raw data are processed to produce small images for every scan and point sources candidates, above the 5-sigma noise level per single scan, are der ived. The celestial coordinates and fluxes of the events are determined statisti cally and the reliability of their detections is secured through multiple detect ions of the same source within milli-seconds, hours, and months from each other. Resu...

  13. Total infrared luminosity estimation from local galaxies in AKARI all sky survey

    CERN Document Server

    Solarz, A; Pollo, A

    2016-01-01

    We aim to use the a new and improved version of AKARI all sky survey catalogue of far-infrared sources to recalibrate the formula to derive the total infrared luminosity. We cross-match the faint source catalogue (FSC) of IRAS with the new AKARI-FIS and obtained a sample of 2430 objects. Then we calculate the total infrared (TIR) luminosity $L_{\\textrm{TIR}}$ from the Sanders at al. (1996) formula and compare it with total infrared luminosity from AKARI FIS bands to obtain new coefficients for the general relation to convert FIR luminosity from AKARI bands to the TIR luminosity.

  14. AcuA: the AKARI/IRC Mid-infrared Asteroid Survey

    CERN Document Server

    Usui, Fumihiko; Mueller, Thomas G; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; Ishihara, Daisuke; Kataza, Hirokazu; Takita, Satoshi; Oyabu, Shinki; Ueno, Munetaka; Matsuhara, Hideo; Onaka, Takashi

    2011-01-01

    We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these "residual events". We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via th...

  15. Dusty Universe viewed by AKARI far infrared detector

    CERN Document Server

    Malek, K; Takeuchi, T T; Giovannoli, E; Buat, V; Burgarella, D; Malkan, M; Kurek, A

    2013-01-01

    We present the results of the analysis of multiwavelength Spectral Energy Distributions (SEDs) of far-infrared galaxies detected in the AKARI Deep Field-South (ADF--S) Survey. The analysis uses a carefully selected sample of 186 sources detected at the 90 $\\mu$m AKARI band, identified as galaxies with cross-identification in public catalogues. For sources without known spectroscopic redshifts, we estimate photometric redshifts after a test of two independent methods: one based on using mainly the optical -- mid infrared range, and one based on the whole range of ultraviolet -- far infrared data. We observe a vast improvement in the estimation of photometric redshifts when far infrared data are included, compared with an approach based mainly on the optical -- mid infrared range. We discuss the physical properties of our far-infrared-selected sample. We conclude that this sample consists mostly of rich in dust and young stars nearby galaxies, and, furthermore, that almost 25% of these sources are (Ultra)Lumino...

  16. The Far-Infrared Surveyor (FIS) for AKARI

    OpenAIRE

    Kawada, Mitsunobu; Baba, Hajime; Barthel, Peter D.; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to ...

  17. Interstellar dust properties of M51 from AKARI mid-infrared images

    CERN Document Server

    Egusa, Fumi; Sakon, Itsuki; Onaka, Takashi; Arimatsu, Ko; Matsuhara, Hideo

    2013-01-01

    Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera (IRC) onboard the AKARI satellite, S7 (7 um), S11 (11 um), L15 (15 um), and L24 (24 um), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to its spiral arm structure. The arm and interarm regions being defined based on a spatially filtered stellar component model image, we measure the arm-to-interarm contrast for each band. The contrast is lowest in the S11 image, which is interpreted as that among the four AKARI MIR bands the S11 image best correlates with the spatial distribution of dust grains including colder components, while the L24 image with the highest contrast traces warmer dust heated by star forming activities. The surface brightness ratio between the bands, i.e. color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and well traces the global spiral arm pattern while L15/S11 and L24/S11 peak at i...

  18. Ultraluminous infrared galaxies in the AKARI all-sky survey

    Energy Technology Data Exchange (ETDEWEB)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  19. Far infrared and submillimetre surveys: from IRAS to Akari, Herschel and Planck

    CERN Document Server

    Rowan-Robinson, Michael

    2015-01-01

    We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.

  20. Ultraluminous Infrared Galaxies in the AKARI All Sky Survey

    CERN Document Server

    Eser, E Kilerci; Doi, Y

    2014-01-01

    We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the 'main sequence' up to z~1; their off-set from the z~2 'main sequence' is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (...

  1. The AKARI/IRC mid-infrared all-sky survey

    Science.gov (United States)

    Ishihara, D.; Onaka, T.; Kataza, H.; Salama, A.; Alfageme, C.; Cassatella, A.; Cox, N.; García-Lario, P.; Stephenson, C.; Cohen, M.; Fujishiro, N.; Fujiwara, H.; Hasegawa, S.; Ita, Y.; Kim, W.; Matsuhara, H.; Murakami, H.; Müller, T. G.; Nakagawa, T.; Ohyama, Y.; Oyabu, S.; Pyo, J.; Sakon, I.; Shibai, H.; Takita, S.; Tanabé, T.; Uemizu, K.; Ueno, M.; Usui, F.; Wada, T.; Watarai, H.; Yamamura, I.; Yamauchi, C.

    2010-05-01

    Context. AKARI is the first Japanese astronomical satellite dedicated to infrared astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 μm and 200 μm during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9 μm and 18 μm bands) of the survey carried out with one of the on-board instruments, the infrared camera (IRC). Aims: We present unprecedented observational results of the 9 μm and 18 μm AKARI all-sky survey and detail the operation and data processing leading to the point source detection and measurements. Methods: The raw data are processed to produce small images for every scan, and the point sources candidates are derived above the 5σ noise level per single scan. The celestial coordinates and fluxes of the events are determined statistically and the reliability of their detections is secured through multiple detections of the same source within milli-seconds, hours, and months from each other. Results: The sky coverage is more than 90% for both bands. A total of 877 091 sources (851 189 for 9 μm, 195 893 for 18 μm) are confirmed and included in the current release of the point source catalog. The detection limit for point sources is 50 mJy and 90 mJy for the 9 μm and 18 μm bands, respectively. The position accuracy is estimated to be better than 2''. Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9 μm band and 4% for the 18 μm band. The coordinates and fluxes of detected sources in this survey are also compared with those of the IRAS survey and are found to be statistically consistent. Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/514/A1

  2. The Far-Infrared Surveyor (FIS) for AKARI

    CERN Document Server

    Kawada, Mitsunobu; Barthel, Peter D; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro; Kawai, Toshihide; Kawamura, Akiko; Kester, Do; Kii, Tsuneo; Kobayashi, Hisato; Kwon, Suk Minn; Lee, Hyung Mok; Makiuti, Sin'itirou; Matsuo, Hiroshi; Matsuura, Shuji; Müller, Thomas G; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Ootsubo, Takafumi; Pak, Soojong; Park, Yong-Sun; Pearson, Chris P; Rowan-Robinson, Michael; Saito, Toshinobu; Salama, Alberto; Sato, Shinji; Savage, Richard S; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; Thomson, Matthew; Usui, Fumihiko; Verdugo, Eva; Watabe, Toyoki; White, Glenn J; Wang, Lingyu; Yamamura, Issei; Yamamuchi, Chisato; Yasuda, Akiko

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, i...

  3. The $AKARI$ Far-Infrared All-Sky Survey Maps

    CERN Document Server

    Doi, Yasuo; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Figueredo, Elysandra

    2015-01-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $\\mu$m, 90 $\\mu$m, 140 $\\mu$m, and 160 $\\mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $\\sim$50 and 200 $\\mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.

  4. The AKARI far-infrared all-sky survey maps

    Science.gov (United States)

    Doi, Yasuo; Takita, Satoshi; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J.; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Cypriano, Elysandra F.

    2015-06-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese AKARI satellite. The survey covers > 99% of the sky in four photometric bands centred at 65 μm, 90 μm, 140 μm, and 160 μm, with spatial resolutions ranging from 1' to 1{^''.}5. These data provide crucial information on the investigation and characterisation of the properties of dusty material in the interstellar medium (ISM), since a significant portion of its energy is emitted between ˜ 50 and 200 μm. The large-scale distribution of interstellar clouds, their thermal dust temperatures, and their column densities can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use in the astronomical community.

  5. AKARI Far-Infrared All-Sky Survey Maps

    CERN Document Server

    Doi, Yasuo; Kawada, Mitsunobu; Takita, Satoshi; Arimatsu, Ko; Ikeda, Norio; Kato, Daisuke; Kitamura, Yoshimi; Nakagawa, Takao; Ootsubo, Takafumi; Morishima, Takahiro; Hattori, Makoto; Tanaka, Masahiro; White, Glenn J; Etxaluze, Mireya; Shibai, Hiroshi

    2012-01-01

    Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~100 and 200 um. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range 50 -- 180 um. Covering >99% of the sky in four photometric bands with four filters centred at 65 um, 90 um, 140 um, and 160 um wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of <10 MJy sr-1, with absolute and relative photometric accuracies of <20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostar...

  6. Interstellar Dust Properties of M51 from AKARI Mid-infrared Images

    Science.gov (United States)

    Egusa, Fumi; Wada, Takehiko; Sakon, Itsuki; Onaka, Takashi; Arimatsu, Ko; Matsuhara, Hideo

    2013-11-01

    Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera on board the AKARI satellite, S7 (7 μm), S11 (11 μm), L15 (15 μm), and L24 (24 μm), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to their spiral arm structure. The arm and interarm regions are defined based on a spatially filtered stellar component model image and we measure the arm/interarm contrast for each band. The contrast is lowest in the S11 image, which we interpret as meaning that among the four AKARI MIR bands, the S11 image best correlates with the spatial distribution of dust grains including colder components. On the other hand, the L24 image, with the highest contrast, traces warmer dust heated by star forming activity. The surface brightness ratio between the bands, i.e., color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and traces the global spiral arm pattern well while L15/S11 and L24/S11 peak at individual H II regions. This result indicates that the ionization state of polycyclic aromatic hydrocarbons (PAHs) is related to the spiral structure. Comparison with observational data and dust models also supports the importance of the variation in the PAH ionization state within the M51a disk. However, the mechanism driving this variation is not yet clear from the currently available datasets. Another suggestion from the comparison with the models is that the PAH fraction in the total dust mass is higher than previously estimated.

  7. The North Ecliptic Pole Wide survey of AKARI: a near- and mid-infrared source catalog

    CERN Document Server

    Kim, Seong Jin; Matsuhara, Hideo; Wada, Takehiko; Oyabu, Shinki; Im, Myungshin; Jeon, Yiseul; Kang, Eugene; Ko, Jongwan; Lee, Myung Gyoon; Takagi, Toshinobu; Pearson, Chris; White, Glenn J; Jeong, Woong-Seob; Serjeant, Stephen; Nakagawa, Takao; Ohyama, Youichi; Goto, Tomotsugu; Takeuchi, Tsutomu T; Pollo, Agnieszka; Solarz, Aleksandra; Pepiak, Agata

    2012-01-01

    We present a photometric catalog of infrared (IR) sources based on the North Ecliptic PoleWide field (NEP-Wide) survey of AKARI, which is an infrared space telescope launched by Japan. The NEP-Wide survey covered 5.4 deg2 area, a nearly circular shape centered on the North Ecliptic Pole, using nine photometric filter-bands from 2 - 25 {\\mu}m of the Infrared Camera (IRC). Extensive efforts were made to reduce possible false objects due to cosmic ray hits, multiplexer bleeding phenomena around bright sources, and other artifacts. The number of detected sources varied depending on the filter band: with about 109,000 sources being cataloged in the near-IR bands at 2 - 5 {\\mu}m, about 20,000 sources in the shorter parts of the mid-IR bands between 7 - 11 {\\mu}m, and about 16,000 sources in the longer parts of the mid-IR bands, with \\sim 4,000 sources at 24 {\\mu}m. The estimated 5? detection limits are approximately 21 magnitude (mag) in the 2 - 5 {\\mu}m bands, 19.5 - 19 mag in the 7 - 11 {\\mu}m, and 18.8 - 18.5 ma...

  8. Revised calibration for near- and mid-infrared images from ~4000 pointed observations with AKARI/IRC

    CERN Document Server

    Egusa, Fumi; Murata, Kazumi; Yamashita, Takuji; Yamamura, Issei; Onaka, Takashi

    2015-01-01

    The Japanese infrared astronomical satellite AKARI performed ~4000 pointed observations for 16 months until the end of 2007 August, when the telescope and instruments were cooled by liquid Helium. Observation targets include solar system objects, Galactic objects, local galaxies, and galaxies at cosmological distances. We describe recent updates on calibration processes of near- and mid-infrared images taken by the Infrared Camera (IRC), which has nine photometric filters covering 2-27 um continuously. Using the latest data reduction toolkit, we created calibrated and stacked images from each pointed observation. About 90% of the stacked images have a position accuracy better than 1.5". Uncertainties in aperture photometry estimated from a typical standard sky deviation of stacked images are a factor of ~2-4 smaller than those of AllWISE at similar wavelengths. The processed images together with documents such as process logs as well as the latest toolkit are available online.

  9. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    CERN Document Server

    Isobe, Naoki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-01-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $\\mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $\\Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 ...

  10. Evolution of mid-infrared galaxy luminosity functions from the entire AKARI NEP-Deep field with new CFHT photometry

    CERN Document Server

    Goto, Tomotsugu; Ohyama, Youichi; Malkan, Matthew; Matsuhara, Hideo; Wada, Takehiko; Karouzos, Marios; Im, Myungshin; Nakagawa, Takao; Buat, Veronique; Burgarella, Denis; Sedgwick, Chris; Toba, Yoshiki; Jeong, Woong-Seob; Marchetti, Lucia; Małek, Katarzyna; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; Pearson, Chris; Takagi, Toshinobu; Lee, Hyung Mok; Serjeant, Stephen; Takeuchi, Tsutomu T; Kim, Seong Jin

    2015-01-01

    We present infrared galaxy luminosity functions (LFs) in the AKARI North Ecliptic Pole (NEP) deep field using recently-obtained, wider CFHT optical/near-IR images. AKARI has obtained deep images in the mid-infrared (IR), covering 0.6 deg$^2$ of the NEP deep field. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of optical coverage of the full AKARI NEP survey. To rectify the situation, we recently obtained CFHT optical and near-IR images over the entire AKARI NEP deep field. These new CFHT images are used to derive accurate photometric redshifts, allowing us to fully exploit the whole AKARI NEP deep field. AKARI's deep, continuous filter coverage in the mid-IR wavelengths (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\\mu$m) exists nowhere else, due to filter gaps of other space telescopes. It allows us to estimate restframe 8$\\mu$m and 12$\\mu$m luminosities without using a large extrapolation based on spectral energy distribution (SED) fitting, which was the largest uncer...

  11. AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    CERN Document Server

    Ita, Y; Tanabe, T; Matsunaga, N; Matsuura, M; Yamamura, I; Nakada, Y; Izumiura, H; Ueta, T; Mito, H; Fukushi, H; Kato, D

    2010-01-01

    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.

  12. Infrared two-colour diagrams for AGB stars using AKARI, MSX, IRAS and NIR data

    CERN Document Server

    Suh, Kyung-Won

    2011-01-01

    Using a revised version of the catalog of AGB stars by Suh & Kwon (2009), we present various infrared two-colour diagrams (2CDs) for 3003 O-rich, 1168 C-rich, 362 S-type and 35 silicate carbon stars in our Galaxy. For each object in the new catalog, we cross-identify the AKARI, MSX and 2MASS counterparts by finding the nearest one from the position information in the IRAS PSC. For the large sample of AGB stars, we present infrared two-colour diagrams using IRAS (PSC), AKARI (PSC and BSC), MSX (PSC) and near infrared (K and L bands; including 2MASS data at KS band) data for different classes of AGB stars based on the chemistry of the dust shell and/or the central star. The infrared 2CDs of AGB stars can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. On the 2CDs, we plot tracks of the theoretical radiative transfer model results with increasing dust shell optical depths. Comparing the observations with the theoretical models on the new 2CDs, ...

  13. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    Science.gov (United States)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-10-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  14. Modeling of the Zodiacal Emission for the AKARI/IRC Mid-infrared All-sky Diffuse Maps

    Science.gov (United States)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi

    2016-03-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  15. MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Ootsubo, Takafumi [Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Onaka, Takashi, E-mail: kondo@u.phys.nagoya-u.ac.jp, E-mail: ishihara@u.phys.nagoya-u.ac.jp [Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-03-15

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  16. AKARI Near-Infrared Spectroscopic Observations of Interstellar Ices in Edge-on Starburst Galaxy NGC253

    CERN Document Server

    Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki

    2011-01-01

    We present the spatially-resolved near-infrared (2.5-5.0 um) spectra of the edge-on starburst galaxy NGC253 obtained with the Infrared Camera onboard AKARI. Near the center of the galaxy, we clearly detect the absorption features of interstellar ices (H_2O: 3.05 um, CO_2: 4.27 um, and XCN: 4.62 um) and the emission of polycyclic aromatic hydrocarbons (PAHs) at 3.29 um and hydrogen recombination line Br alpha at 4.05 um. We find that the distributions of the ices differ from those of the PAH and gas. We calculate the column densities of the ices and derive the abundance ratios of N(CO_2)/N(H_2O) = 0.17 +- 0.05. They are similar to those obtained around the massive young stellar objects in our Galaxy (0.17 +- 0.03), although much stronger interstellar radiation field and higher dust temperature are expected near the center of NGC253.

  17. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  18. Modeling of the zodiacal emission for the AKARI/IRC mid-infrared all-sky diffuse maps

    CERN Document Server

    Kondo, T; Kaneda, H; Nakamichi, K; Takaba, S; Kobayashi, H; Ootsubo, T; Pyo, J; Onaka, T

    2016-01-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our Solar System, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. We therefore aim to improve the IPD cloud model based on Kelsall et al. 1998, using the AKARI 9 and 18 micron all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest ...

  19. Galactic planetary nebulae in the AKARI far-infrared surveyor bright source catalog

    CERN Document Server

    Cox, Nick; García-Lario, Pedro; Szczerba, Ryszard

    2009-01-01

    We present the results of our preliminary study of all known Galactic PNe (included in the Kerber 2003 catalog) which are detected by the AKARI/FIS All-Sky Survey as identified in the AKARI/FIS Bright Source Catalog (BSC) Version Beta-1.

  20. The Clementine longwave infrared camera

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D. [Lawrence Livermore National Lab., CA (United States); Massie, M.A. [Pacific Advanced Technology, Solvang, CA (United States); Metschuleit, K. [Amber/A Raytheon Co., Goleta, CA (United States)

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  1. Far Infrared Luminosity Function of Local Star-forming Galaxies in the AKARI Deep Field South

    CERN Document Server

    Sedgwick, Chris; Pearson, Chris; Matsuura, Shuji; Shirahata, Mai; Oyabu, Shinki; Goto, Tomotsugu; Matsuhara, Hideo; Clements, D L; Negrello, Mattia; White, Glenn J

    2011-01-01

    We present a far-infrared galaxy luminosity function for the local universe. We have obtained 389 spectroscopic redshifts for galaxies observed at 90 microns in the AKARI Deep Field South, using the AAOmega fibre spectrograph via optical identifications in the digitized sky survey and 4m-class optical imaging. For the luminosity function presented in this paper, we have used those galaxies which have redshifts 0Infrared and optical completeness functions were estimated using earlier Spitzer data and APM B-band optical data respectively, and the luminosity function has been prepared using the 1/Vmax method. We also separate the luminosity function between galaxies which show evidence of predominantly star-forming activity and predominantly active galactic nucleus (AGN) activity in their optical spectra. Our luminosity function is in good agreement with the previous 90 micron lumino...

  2. Revised Wavelength and Spectral Response Calibrations for AKARI Near-Infrared Grism Spectroscopy: Cryogenic Phase

    CERN Document Server

    Baba, S; Shirahata, M; Isobe, N; Usui, F; Ohyama, Y; Onaka, T; Yano, K; Kochi, C

    2016-01-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to quantitatively correct for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5--5.0 micron with a spectral resolving power of 120 at 3.6 micron, is found to be contaminated by second-order light at wavelengths longer than 4.9 micron which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 micron compared with the revised wavelengths at 2.5--5.0 micron. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Second, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with dif...

  3. AKARI NEAR-INFRARED SPECTROSCOPY OF SDSS-SELECTED BLUE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    A near-infrared (NIR; 2.5-4.5 μm) spectroscopic survey of Sloan Digital Sky Survey (SDSS)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star formation (SF)/Seyfert/LINER-type composition. For high signal-to-noise ratio, we stack the BEG spectra in its entirety and in bins of several properties: color, specific star formation rate, and optically determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 μm polycyclic aromatic hydrocarbon (PAH) emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(simple stellar population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent SF or active galactic nucleus (AGN) activity and the BEGs have a clear feature of PAH emission, evidence of current SF. BEGs show NIR features different from those of ULIRGs from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert, and LINER BEGs form an evolutionary sequence: SF → Seyfert → LINER.

  4. AKARI Near-Infrared Spectroscopy of SDSS-Selected Blue Early-Type Galaxies

    CERN Document Server

    Lee, Joon Hyeop; Lee, Myung Gyoon; Lee, Jong Chul; Matsuhara, Hideo

    2010-01-01

    A near-infrared (NIR; 2.5 - 4.5 micron) spectroscopic survey of SDSS(Sloan Digital Sky Survey)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star-formation(SF)/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 micron PAH emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(Simple Stellar Population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent star formation or AGN activity and the BEGs have a clear feature of PAH emission, the evidence of current SF. BEGs show NIR features different from those of ULIRGs, from which we do not f...

  5. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    International Nuclear Information System (INIS)

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 μm, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 μm) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 μm), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 ± 0.23 nW m–2 sr–1 or 0.05% of the brightness at 24 μm and at least 0.47 ± 0.14 nW m–2 sr–1 or 0.02% at 18 μm. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2σ error into account.

  6. A survey of T Tauri stars with AKARI toward the Taurus-Auriga region

    CERN Document Server

    Takita, Satoshi; Kitamura, Yoshimi; Ishihara, Daisuke; Ita, Yoshifusa; Oyabu, Shinki; Ueno, Munetaka

    2010-01-01

    Aims: We search new T Tauri star (TTS) candidates with the mid-infrared (MIR) part of the AKARI All-Sky Survey at 9 and 18 um wavelengths. Methods: We used the point source catalogue (PSC), obtained by the Infrared Camera (IRC) on board AKARI. We combined the 2MASS PSC and the 3rd version of the USNO CCD Astrograph Catalogue (UCAC) with the AKARI IRC-PSC, and surveyed 517 known TTSs over a 1800-square-degree part of the Taurus-Auriga region to find criteria to extract TTSs. We considered asymptotic giant branch (AGB) stars, post-AGB stars, Planetary Nebulae (PNe), and galaxies, which have similar MIR colours, to separate TTSs from these sources. Results: Of the 517 known TTSs, we detected 133 sources with AKARI. Based on the colour-colour and colour-magnitude diagrams made from the AKARI, 2MASS, and UCAC surveys, we propose the criteria to extract TTS candidates from the AKARI All-Sky data. On the basis of our criteria, we selected 176/14725 AKARI sources as TTS candidates which are located around the Taurus-...

  7. Mid-Infrared Luminosity Function of Local Star-Forming Galaxies in the NEP-Wide Survey Field of AKARI

    CERN Document Server

    Kim, Seong Jin; Jeong, Woong-Seob; Goto, Tomotsugu; Matsuhara, Hideo; Im, Myungshin; Shim, Hyunjin; Kim, Min Gyu; Lee, Myung Gyoon

    2015-01-01

    We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break lu...

  8. Albedo Properties of Main Belt Asteroids Based on the Infrared All-Sky Survey of the Astronomical Satellite AKARI

    CERN Document Server

    Usui, Fumihiko; Hasegawa, Sunao; Ishiguro, Masateru; Kuroda, Daisuke; Mueller, Thomas G; Ootsubo, Takafumi; Matsuhara, Hideo

    2012-01-01

    We present an analysis of the albedo properties of main belt asteroids detected by the All-Sky Survey of the infrared satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the Standard Thermal Model, using inputs of infrared fluxes and absolute magnitudes. Main belt asteroids, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06 to 3.27 AU. AcuA provides a complete data set of all main belt asteroids brighter than the absolute magnitude of H 20 km. We confirmed that the albedo distribution of the main belt asteroids is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite ...

  9. VizieR Online Data Catalog: AKARI NEP Deep Survey revised catalog (Murata+, 2013)

    Science.gov (United States)

    Murata, K.; Matsuhara, H.; Wada, T.; Arimatsu, K.; Oi, N.; Takagi, T.; Oyabu, S.; Goto, T.; Ohyama, Y.; Malkan, M.; Pearson, C.; Malek, K.; Solarz, A.

    2013-09-01

    This is the revised catalogue of the AKARI North Ecliptic Pole Deep survey. The survey was carried out with the InfraRed Camera (IRC) onboard AKARI which has a comprehensive mid-IR wavelength coverage in nine photometric bands at 2-24 micron. For mid-IR source extraction we used a detection image while for near-IR source detection we used optical to near-IR ground-based catalogue which is based on CFHT/MegaCam z', CFHT/WIRCam Ks and Subaru/Scam z' band detection. Here we present an AKARI source with the identification from the ground-based catalogue. For objects with multiple counterparts, all of these were listed in the catalogue with an upper limit for the AKARI flux. The magnitudes are given in the AB system. (1 data file).

  10. AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Ryou [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Onaka, Takashi; Sakon, Itsuki [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuura, Mikako [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA (United Kingdom); Kaneda, Hidehiro, E-mail: ohsawa@ioa.s.u-tokyo.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2016-04-15

    Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.

  11. Effects of high-energy ionizing particles on the Si:As mid-infrared detector array on board the AKARI satellite

    CERN Document Server

    Mouri, Akio; Ishihara, Daisuke; Oyabu, Shinki; Yamagishi, Mituyoshi; Mori, Tatuya; Onaka, Takashi; Wada, Takehiko; Kataza, Hirokazu

    2011-01-01

    We evaluate the effects of high-energy ionizing particles on the Si:As impurity band conduction (IBC) mid-infrared detector on board AKARI, the Japanese infrared astronomical satellite. IBC-type detectors are known to be little influenced by ionizing radiation. However we find that the detector is significantly affected by in-orbit ionizing radiation even after spikes induced by ionizing particles are removed. The effects are described as changes mostly in the offset of detector output, but not in the gain. We conclude that the changes in the offset are caused mainly by increase in dark current. We establish a method to correct these ionizing radiation effects. The method is essential to improve the quality and to increase the sky coverage of the AKARI mid-infrared all-sky-survey map.

  12. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    International Nuclear Information System (INIS)

    We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 μm and 15 μm, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are ∼80% for objects with R ☉ yr–1. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter

  13. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  14. Mid-infrared camera without lens (MIRACLE) for SPICA

    Science.gov (United States)

    Wada, Takehiko; Kataza, Hirokazu

    2010-07-01

    Mid-InfRAred Camera w/o LEns (MIRACLE) is a focal plane instrument for the future JAXA/ESA infrared astronomical mission, SPICA. MIRACLE is designed for wide field imaging (5' × 5') and low-resolution spectroscopic observations (R~100) over a wide spectral range in the mid-infrared wavelengths (5-38μm). Thanks to the SPICA's large aperture (3-m class) and cold (MIRACLE has a better sensitivity than JWST/MIRI at the wavelength over 20μm (3.5 μJy at 20μm, R=5, S/N=5, 3600 seconds) and its wider field of view (FOV) provides a faster mapping speed in its full spectral range for point sources. Confocal off-axis reflective imaging system provides a wide FOV with diffraction limited image quality over wide spectral range. MIRACLE consists of two channels: MIRACLE-S and MIRACLE-L, which are optimized for 5-26μm and 20- 38μm, respectively. Each of them consists of a fore-optics and a rear-optics, each of which has a pupil position equipped with a filter wheel and a grating wheel, respectively. A field stop wheel, which provides optimal slits in the spectroscopic mode and a wide FOV in the imaging mode, is installed at the focal plane of the fore-optics. A large format array detector (Si:As 2K×2K for MIRACLE-S and Si:Sb 1K×1K for MIRACLE-L) is installed at the focal plane of the rear-optics in order to achieve Nyquist sampling of the point spread function. Contiguous wavelength coverage is considered in choice of the filter bands from the experiences in the Spitzer and AKARI observations. We will present the results of conceptual design study including sensitivity analysis.

  15. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    International Nuclear Information System (INIS)

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the abundance of P-types increases beyond 3 AU. This

  16. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    CERN Document Server

    Hattori, Yasuki; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-01-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${\\mu}{\\rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${\\mu}{\\rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morpholog...

  17. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    Science.gov (United States)

    Hattori, Yasuki; Kaneda, Hidehiro; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-06-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 μm images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken, and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140, and 160 μm, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm, and cold dust components by decomposing six-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities, and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morphological types. In particular, they follow a power-law relation with an index of ˜3 between the total IR luminosity and radius, as expected from the conventional picture of the Strömgren sphere. The exceptions are large broken bubbles; they indicate higher total IR luminosities, lower fractional luminosities of the PAH emission, and dust heating sources located nearer to the shells. We discuss the implications of those differences for a massive star-formation scenario.

  18. Cepheid period-luminosity relation from the AKARI observations

    Science.gov (United States)

    Ngeow, Chow-Choong; Ita, Yoshifusa; Kanbur, Shashi M.; Neilson, Hilding; Onaka, Takashi; Kato, Daisuke

    2010-10-01

    In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARI's Infrared Camera sources were matched to the Optical Gravitational Lensing Experiment-III (OGLE-III) LMC Cepheid catalogue. Together with the available I-band light curves from the OGLE-III catalogue, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands; hence, only the P-L relation in the N3 band is derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single-epoch AKARI data; even though the derived P-L relation is consistent with the P-L relation without random-phase correction, however there is an ~7 per cent improvement in the dispersion of the P-L relation. The final adopted N3-band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.

  19. Infrared Camera Analysis of Laser Hardening

    Directory of Open Access Journals (Sweden)

    J. Tesar

    2012-01-01

    Full Text Available The improvement of surface properties such as laser hardening becomes very important in present manufacturing. Resulting laser hardening depth and surface hardness can be affected by changes in optical properties of material surface, that is, by absorptivity that gives the ratio between absorbed energy and incident laser energy. The surface changes on tested sample of steel block were made by engraving laser with different scanning velocity and repetition frequency. During the laser hardening the process was observed by infrared (IR camera system that measures infrared radiation from the heated sample and depicts it in a form of temperature field. The images from the IR camera of the sample are shown, and maximal temperatures of all engraved areas are evaluated and compared. The surface hardness was measured, and the hardening depth was estimated from the measured hardness profile in the sample cross-section. The correlation between reached temperature, surface hardness, and hardening depth is shown. The highest and the lowest temperatures correspond to the lowest/highest hardness and the highest/lowest hardening depth.

  20. Far-infrared cameras for automotive safety

    Science.gov (United States)

    Lonnoy, Jacques; Le Guilloux, Yann; Moreira, Raphael

    2005-02-01

    Far Infrared cameras used initially for the driving of military vehicles are slowly coming into the area of commercial (luxury) cars while providing with the FIR imagery a useful assistance for driving at night or in adverse conditions (fog, smoke, ...). However this imagery needs a minimum driver effort as the image understanding is not so natural as the visible or near IR one. A developing field of FIR cameras is ADAS (Advanced Driver Assistance Systems) where FIR processed imagery fused with other sensors data (radar, ...) is providing a driver warning when dangerous situations are occurring. The communication will concentrate on FIR processed imagery for object or obstacles detection on the road or near the road. FIR imagery highlighting hot spots is a powerful detection tool as it provides a good contrast on some of the most common elements of the road scenery (engines, wheels, gas exhaust pipes, pedestrians, 2 wheelers, animals,...). Moreover FIR algorithms are much more robust than visible ones as there is less variability in image contrast with time (day/night, shadows, ...). We based our detection algorithm on one side on the peculiar aspect of vehicles, pedestrians in FIR images and on the other side on the analysis of motion along time, that allows anticipation of future motion. We will show results obtained with FIR processed imagery within the PAROTO project, supported by the French Ministry of Research, that ended in spring 04.

  1. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral focal plane array and camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is...

  2. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is particularly suitable for...

  3. Properties of dust in the Galactic center region probed by AKARI far-infrared spectral mapping - detection of a dust feature

    CERN Document Server

    Kaneda, H; Onaka, T; Kawada, M; Murakami, N; Nakagawa, T; Okada, Y; Takahashi, H

    2012-01-01

    We investigate the properties of interstellar dust in the Galactic center region toward the Arches and Quintuplet clusters. With the Fourier Transform Spectrometer of the AKARI/Far-Infrared Surveyor, we performed the far-infrared (60 - 140 cm^-1) spectral mapping of an area of about 10' x 10' which includes the two clusters to obtain a low-resolution (R = 1.2 cm^-1) spectrum at every spatial bin of 30" x 30". We derive the spatial variations of dust continuum emission at different wavenumbers, which are compared with those of the [O III] 88 micron (113 cm^-1) emission and the OH 119 micron (84 cm^-1) absorption. The spectral fitting shows that two dust modified blackbody components with temperatures of ~20 K and ~50 K can reproduce most of the continuum spectra. For some spectra, however, we find that there exists a significant excess on top of a modified blackbody continuum around 80 - 90 cm^-1 (110 - 130 microns). The warmer dust component is spatially correlated well with the [O III] emission and hence lik...

  4. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  5. Handheld Longwave Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact handheld longwave infrared camera based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. Based on...

  6. Spectrally-Tunable Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a SPECTRALLY-TUNABLE INFRARED CAMERA based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. This will build...

  7. Galactic distributions of carbon- and oxygen-rich AGB stars revealed by the AKARI mid-infrared all-sky survey

    CERN Document Server

    Ishihara, Daisuke; Onaka, Takashi; Ita, Yoshifusa; Matsuura, Mikako; Matsunaga, Noriyuki

    2011-01-01

    Context: The environmental conditions for asympotic giant branch (AGB) stars to reach the carbon-rich (C-rich) phase are important to understand the evolutionary process of AGB stars. The difference between the spatial distributions of C-rich and oxygen-rich (O-rich) AGB stars is essential for the study of the Galactic structure and the chemical evolution of the interstellar medium (ISM). Aims: We quantitatively investigate the spatial distributions of C-rich and O-rich AGB stars in our Galaxy. We discuss the difference between them and its origin. Methods: We classify a large number of AGB stars newly detected by the AKARI id-infrared all-sky survey. In the color-color diagrams, we define their occupation zones based on the locations of known objects. We then obtain the spatial distributions of C-rich and O-rich AGB stars, assuming that they have the same luminosity for a given mass-loss rate. Results: We find that O-rich AGB stars are concentrated toward the Galactic center and that the density decreases wi...

  8. AKARI near-infrared spectroscopy of the extended green object G318.05+0.09: Detection of CO fundamental ro-vibrational emission

    CERN Document Server

    Onaka, Takashi; Sakon, Itsuki; Ardaseva, Aleksandra

    2016-01-01

    We present the results of near-infrared (2.5--5.4um) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25um, 4.67um, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7um. The former source is located close to the ultra compact HII region IRAS 14498-5856 and is identified as an embedded massive young stellar object. The spectrum of the latter source can be interpreted by blue-shifted (-3000 ~ -6000km/s) optically-thin emission of the fundamental ro-vibrational transitions (v=1-0) of CO molecules with temperatures of 12000--3700K without noticeable H2 and HI emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.

  9. A selection of AKARI FIS BSC extragalactic objects

    Science.gov (United States)

    Marton, G.; Tóth, L. V.; Balázs, L. G.; Zahorecz, S.; Bagoly, Z.; Horváth, I.; Rácz, I. I.; Nagy, A.

    The point sources in the Bright Source Catalogue (BSC) of the AKARI Far-Infrared Surveyor (FIS) were classified based on their far-IR and mid-IR fluxes and colours using Quadratic Discriminant Analysis method (QDA) and Support Vector Machines (SVM). The reliability of our results show that we can successfully separate galactic and extragalactic AKARI point sources in the multidimensional space of fluxes and colours. However, differentiating among the extragalactic sub-types needs further information.

  10. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  11. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  12. Infrared stereo camera for human machine interface

    Science.gov (United States)

    Edmondson, Richard; Vaden, Justin; Chenault, David

    2012-06-01

    Improved situational awareness results not only from improved performance of imaging hardware, but also when the operator and human factors are considered. Situational awareness for IR imaging systems frequently depends on the contrast available. A significant improvement in effective contrast for the operator can result when depth perception is added to the display of IR scenes. Depth perception through flat panel 3D displays are now possible due to the number of 3D displays entering the consumer market. Such displays require appropriate and human friendly stereo IR video input in order to be effective in the dynamic military environment. We report on a stereo IR camera that has been developed for integration on to an unmanned ground vehicle (UGV). The camera has auto-convergence capability that significantly reduces ill effects due to image doubling, minimizes focus-convergence mismatch, and eliminates the need for the operator to manually adjust camera properties. Discussion of the size, weight, and power requirements as well as integration onto the robot platform will be given along with description of the stand alone operation.

  13. AKARI-CAS --- Online Service for AKARI All-Sky Catalogues

    CERN Document Server

    Yamauchi, C; Ikeda, N; Inada, K; Katano, M; Kataza, H; Makiuti, S; Matsuzaki, K; Takita, S; Yamamoto, Y; Yamamura, I; 10.1086/660926

    2011-01-01

    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers' requirements. As a result of our discussion, we concluded that supporting users' SQL submissions is the best solution for the requirements. Therefore, we implemented...

  14. Observations of the Optical Transient in NGC 300 with AKARI/IRC: Possibilities of Asymmetric Dust Formation

    OpenAIRE

    Ohsawa, R; Sakon, I.; Onaka, T.; M. Tanaka; Moriya, T.; Nozawa, T; Maeda, K.; Nomoto, K.; Tominaga, N.; Usui, F.; Matsuhara, H.; Nakagawa, T.; H. Murakami

    2010-01-01

    We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC300 (NGC300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) onboard AKARI. NIR spectra (2--5 um) of NGC300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 um bands. The spectral...

  15. Multi-band infrared camera systems

    Science.gov (United States)

    Davis, Tim; Lang, Frank; Sinneger, Joe; Stabile, Paul; Tower, John

    1994-12-01

    The program resulted in an IR camera system that utilizes a unique MOS addressable focal plane array (FPA) with full TV resolution, electronic control capability, and windowing capability. Two systems were delivered, each with two different camera heads: a Stirling-cooled 3-5 micron band head and a liquid nitrogen-cooled, filter-wheel-based, 1.5-5 micron band head. Signal processing features include averaging up to 16 frames, flexible compensation modes, gain and offset control, and real-time dither. The primary digital interface is a Hewlett-Packard standard GPID (IEEE-488) port that is used to upload and download data. The FPA employs an X-Y addressed PtSi photodiode array, CMOS horizontal and vertical scan registers, horizontal signal line (HSL) buffers followed by a high-gain preamplifier and a depletion NMOS output amplifier. The 640 x 480 MOS X-Y addressed FPA has a high degree of flexibility in operational modes. By changing the digital data pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or noninterlaced format. The thermal sensitivity performance of the second system's Stirling-cooled head was the best of the systems produced.

  16. Detection of CFIRB with AKARI/FIS Deep Observations

    CERN Document Server

    Jeong, Woong-Seob; Lee, Hyung Mok; Matsuura, Shuji; Kawada, Mitsunobu; Nakagawa, Takao; Oh, Sang Hoon; Shirahata, Mai; Lee, Sungho; Hwang, Ho Seong; Matsuhara, Hideo

    2007-01-01

    The Cosmic Far-Infrared Background (CFIRB) contains information about the number and distribution of contributing sources and thus gives us an important key to understand the evolution of galaxies. Using a confusion study to set a fundamental limit to the observations, we investigate the potential to explore the CFIRB with AKARI/FIS deep observations. The Far-Infrared Surveyor (FIS) is one of the focal-plane instruments on the AKARI (formerly known as ASTRO-F) satellite, which was launched in early 2006. Based upon source distribution models assuming three different cosmological evolutionary scenarios (no evolution, weak evolution, and strong evolution), an extensive model for diffuse emission from infrared cirrus, and instrumental noise estimates, we present a comprehensive analysis for the determination of the confusion levels for deep far-infrared observations. We use our derived sensitivities to suggest the best observational strategy for the AKARI/FIS mission to detect the CFIRB fluctuations. If the sour...

  17. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    Science.gov (United States)

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds. PMID:19498585

  18. ESA Collaboration on the AKARI mission

    Science.gov (United States)

    Salama, Alberto; Alfageme, Carlos; Garcia-Lario, Pedro; Kessler, Martin; Lorente, Rosario; Pearson, Chris; Stephenson, Craig; Unal, Martin; Verdugo, Eva

    AKARI (formerly ASTRO-F), is the first Japanese satellite dedicated to infrared astronomy, from JAXA and collaborators. Its main objective is to perform an all-sky survey with better spatial resolution and wider wavelength coverage than IRAS, mapping the entire sky in six infrared bands from 9 to 180 micron. AKARI operated with a 68.5 cm-diameter telescope cooled down to 6K and observed in the wavelength range 2-180 µm from a sun-synchronous polar orbit at 700 km altitude. AKARI All-Sky Survey observations were carried out in the midto far-infrared spectral region with six photometric bands, during the cryogenic mission phase of AKARI from May 8, 2006 to August 26, 2007. Launched on 21 February 2006, AKARI ran out of its on-board supply of cryogen on August 26th, 2007, after successful operation and observations that began on May 8th, 2006, achieving the expected lifetime of 550 days. More than 94than 5,000 pointed observations over the wavelength range 2-180 µm in 13 bands, providing comprehensive multi-wavelength photometric and spectroscopic coverage of a wide variety of astronomical sources AKARI is entering now into the Post-Helium Phase, dedicated to pointed observations, with imaging and spectroscopic capabilities in the 1.8 to 5.5 micron wavelength range. This presentation will illustrate the collaboration ESA is having with JAXA/ISAS in order to increase the scientific output of the mission; (i) by capturing all of the possible data (providing tracking support from the ESA ground station in Kiruna) and (ii) to accelerate the production of the sky catalogues, which will be extremely valuable in the exploitation of the Herschel and Planck missions, via provision of pointing reconstruction. In return for this collaboration, ESA received 10non-survey parts of the mission, which is distributed to European scientists, via the traditional route of Calls for Proposals, followed by peer-review.

  19. A catalogue of AKARI FIS BSC extragalactic objects

    Science.gov (United States)

    Marton, Gabor; Toth, L. Viktor; Gyorgy Balazs, Lajos

    2015-08-01

    We combined photometric data of about 70 thousand point sources from the AKARI Far-Infrared Surveyor Bright Source Catalogue with AllWISE catalogue data to identify galaxies. We used Quadratic Discriminant Analysis (QDA) to classify our sources. The classification was based on a 6D parameter space that contained AKARI [F65/F90], [F90/F140], [F140/F160] and WISE W1-W2 colours along with WISE W1 magnitudes and AKARI [F140] flux values. Sources were classified into 3 main objects types: YSO candidates, evolved stars and galaxies. The training samples were SIMBAD entries of the input point sources wherever an associated SIMBAD object was found within a 30 arcsecond search radius. The QDA resulted more than 5000 AKARI galaxy candidate sources. The selection was tested cross-correlating our AKARI extragalactic catalogue with the Revised IRAS-FSC Redshift Catalogue (RIFSCz). A very good match was found. A further classification attempt was also made to differentiate between extragalactic subtypes using Support Vector Machines (SVMs). The results of the various methods showed that we can confidently separate cirrus dominated objects (type 1 of RIFSCz). Some of our “galaxy candidate” sources are associated with 2MASS extended objects, and listed in the NASA Extragalactic Database so far without clear proofs of their extragalactic nature. Examples will be presented in our poster. Finally other AKARI extragalactic catalogues will be also compared to our statistical selection.

  20. Low-cost uncooled VOx infrared camera development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  1. PANIC: A Near-infrared Camera for the Magellan Telescopes

    CERN Document Server

    Martini, P; Murphy, D C; Birk, C; Shectman, S A; Grunnels, S M; Koch, E

    2004-01-01

    PANIC (Persson's Auxiliary Nasmyth Infrared Camera) is a near-infrared camera designed to operate at any one of the f/11 folded ports of the 6.5m Magellan telescopes at Las Campanas Observatory, Chile. The instrument is built around a simple, all-refractive design that reimages the Magellan focal plane to a plate scale of 0.125'' pixel^{-1} onto a Rockwell 1024x1024 HgCdTe detector. The design goals for PANIC included excellent image quality to sample the superb seeing measured with the Magellan telescopes, high throughput, a relatively short construction time, and low cost. PANIC has now been in regular operation for over one year and has proved to be highly reliable and produce excellent images. The best recorded image quality has been ~0.2'' FWHM.

  2. Strategic options towards an affordable high-performance infrared camera

    Science.gov (United States)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise ( 500 frames per second (FPS)) at full resolution, and low power consumption (security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  3. Students' framing of laboratory exercises using infrared cameras

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-12-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N =30 ) partook in four IR-camera laboratory activities, designed around the predict-observe-explain approach of White and Gunstone. The activities involved central thermal concepts that focused on heat conduction and dissipative processes such as friction and collisions. Students' interactions within each activity were videotaped and the analysis focuses on how a purposefully selected group of three students engaged with the exercises. As the basis for an interpretative study, a "thick" narrative description of the students' epistemological and conceptual framing of the exercises and how they took advantage of the disciplinary affordance of IR cameras in the thermal domain is provided. Findings include that the students largely shared their conceptual framing of the four activities, but differed among themselves in their epistemological framing, for instance, in how far they found it relevant to digress from the laboratory instructions when inquiring into thermal phenomena. In conclusion, the study unveils the disciplinary affordances of infrared cameras, in the sense of their use in providing access to knowledge about macroscopic thermal science.

  4. A quality check of the $AKARI$ mid-infrared all-sky diffuse map toward the massive star-forming regions NGC 6334 and NGC 6357

    CERN Document Server

    Sano, Hidetoshi; Kondo, Toru; Nakamichi, Keichiro; Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Kaneda, Hidehiro; Tachihara, Kengo; Fukui, Yasuo

    2016-01-01

    We present a comparative study of CO and polycyclic aromatic hydrocarbon (PAH) emission toward a region including the massive star-forming regions of NGC 6334 and NGC 6357. We use the NANTEN $^{12}$CO($J$ = 1--0) data and the $AKARI$ 9 $\\mu$m All-Sky diffuse map in order to evaluate the calibration accuracy of the $AKARI$ data. We confirm that the overall CO distribution shows a good spatial correspondence with the PAH emission, and their intensities exhibit a good power-law correlation with a spatial resolution down to 4$'$ over the region of 10$^\\circ$$\\times$10$^\\circ$. We also reveal poorer correlation for small scale structures between the two quantities toward NGC 6357, due to strong UV radiation from local sources. Larger scatter in the correlation toward NGC 6357 indicates higher ionization degree and/or PAH excitation than that of NGC 6334.

  5. The near infrared camera for the Subaru Prime Focus Spectrograph

    Science.gov (United States)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Barkhouser, Robert; Vivès, Sebastien; Pascal, Sandrine; Carr, Michael; Hope, Stephen C.; Loomis, Craig; Hart, Murdock; Sugai, Hajime; Tamura, Naoyuki; Shimono, Atsushi

    2014-08-01

    We present the detailed design of the near infrared camera for the SuMIRe (Subaru Measurement of Images and Redshifts) Prime Focus Spectrograph (PFS) being developed for the Subaru Telescope. The PFS spectrograph is designed to collect spectra from 2394 objects simultaneously, covering wavelengths that extend from 380 nm - 1.26 μm. The spectrograph is comprised of four identical spectrograph modules, with each module collecting roughly 600 spectra from a robotic fiber positioner at the telescope prime focus. Each spectrograph module will have two visible channels covering wavelength ranges 380 nm - 640 nm and 640 nm - 955 nm, and one near infrared (NIR) channel with a wavelength range 955 nm - 1.26 μm. Dispersed light in each channel is imaged by a 300 mm focal length, f/1.07, vacuum Schmidt camera onto a 4k x 4k, 15 µm pixel, detector format. For the NIR channel a HgCdTe substrate-removed Teledyne 1.7 μm cutoff device is used. In the visible channels, CCDs from Hamamatsu are used. These cameras are large, having a clear aperture of 300 mm at the entrance window, and a mass of ~ 250 kg. Like the two visible channel cameras, the NIR camera contains just four optical elements: a two-element refractive corrector, a Mangin mirror, and a field flattening lens. This simple design produces very good imaging performance considering the wide field and wavelength range, and it does so in large part due to the use of a Mangin mirror (a lens with a reflecting rear surface) for the Schmidt primary. In the case of the NIR camera, the rear reflecting surface is a dichroic, which reflects in-band wavelengths and transmits wavelengths beyond 1.26 μm. This, combined with a thermal rejection filter coating on the rear surface of the second corrector element, greatly reduces the out-of-band thermal radiation that reaches the detector. The camera optics and detector are packaged in a cryostat and cooled by two Stirling cycle cryocoolers. The first corrector element serves as the

  6. Forward-Looking Infrared Cameras for Micrometeorological Applications within Vineyards.

    Science.gov (United States)

    Katurji, Marwan; Zawar-Reza, Peyman

    2016-01-01

    We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature (spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted by periods of turbulent heat flux surges, was shown to be related to the observed meteorological measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability. The infrared raster images were collected and the resultant self-organized spatial cluster provided the meteorological context when compared to in situ data. The spatial brightness temperature pattern was explained in terms of the presence or absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as demonstrated in this research provides positive evidence behind the application of thermal infrared cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent eddy interactions with the surface.

  7. Use of COTS Infrared Camera Arrays for Enhanced Human in the Loop Data Collection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate use of Microsoft Kinect infrared cameras in the application of passive data collection during human-in- the-loop (HITL) tests. Low-cost COTS cameras are...

  8. Star formation and dust extinction properties of local galaxies from the AKARI-GALEX all-sky surveys . First results from the most secure multiband sample from the far-ultraviolet to the far-infrared

    Science.gov (United States)

    Takeuchi, T. T.; Buat, V.; Heinis, S.; Giovannoli, E.; Yuan, F.-T.; Iglesias-Páramo, J.; Murata, K. L.; Burgarella, D.

    2010-05-01

    Aims: We explore spectral energy distributions (SEDs), star formation (SF), and dust extinction properties of galaxies in the Local Universe. Methods: The AKARI all-sky survey provided the first bright point source catalog detected at 90 μm. Beginning with this catalog, we selected galaxies by matching the AKARI sources with those in the IRAS point source catalog redshift survey. We measured the total GALEX FUV and NUV flux densities with a photometry software we specifically developed for this purpose. In a further step we matched this sample with the Sloan digital sky survey (SDSS) and 2 micron all sky survey (2MASS) galaxies. With this procedure we obtained a basic sample which consists of 776 galaxies. After removing objects whose photometry was contaminated by foreground sources (mainly in the SDSS), we defined the “secure sample” which contains 607 galaxies. Results: The sample galaxies have redshifts of ⪉0.15, and their 90-μm luminosities range from 106 to 1012 L_⊙, with a peak at 1010 L_⊙. The SEDs display a large variety, especially more than four orders of magnitude at the mid-far-infrared (M-FIR), but if we sort the sample with respect to 90 μm, the average SED shows a coherent trend: the more luminous an SED at 90 μm, the redder the global SED becomes. The Mr - NUV - r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley. We established formulae to convert the FIR luminosity from the AKARI bands to the total IR (TIR) luminosity LTIR. The luminosity related to the SF activity (LSF) is dominated by LTIR even if we take into account the FIR emission from dust heated by old stars. At a high SF rate (SFR) (>20 M_⊙ yr-1), the fraction of the directly visible SFR, SFRFUV, decreases. We also estimated the FUV attenuation AFUV from the FUV-to-TIR luminosity ratio. We examined the LTIR/LFUV-UV slope (FUV - NUV) relation. The majority of the sample has LTIR/LFUV ratios five to ten

  9. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  10. Cosmic star formation history and AGN evolution near and far: from AKARI to SPICA

    CERN Document Server

    Goto, Tomotsugu; Matsuhara, Hideo

    2015-01-01

    Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe these both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$\\mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$\\mu$m, 12$\\mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\\mu$m) by the AKARI satellite allows us to est...

  11. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  12. Evolution of INO Uncooled Infrared Cameras Towards Very High Resolution Imaging

    Science.gov (United States)

    Bergeron, Alain; Jerominek, Hubert; Chevalier, Claude; Le Noc, Loïc; Tremblay, Bruno; Alain, Christine; Martel, Anne; Blanchard, Nathalie; Morissette, Martin; Mercier, Luc; Gagnon, Lucie; Couture, Patrick; Desnoyers, Nichola; Demers, Mathieu; Lamontagne, Frédéric; Lévesque, Frédéric; Verreault, Sonia; Duchesne, François; Lambert, Julie; Girard, Marc; Savard, Maxime; Châteauneuf, François

    2011-02-01

    Along the years INO has been involved in development of various uncooled infrared devices. Todays, the infrared imagers exhibit good resolutions and find their niche in numerous applications. Nevertheless, there is still a trend toward high resolution imaging for demanding applications. At the same time, low-resolution for mass market applications are sought for low-cost imaging solutions. These two opposite requirements reflect the evolution of infrared cameras from the origin, when only few pixel-count FPAs were available, to megapixel-count FPA of the recent years. This paper reviews the evolution of infrared camera technologies at INO from the uncooled bolometer detector capability up to the recent achievement of 1280×960 pixels infrared camera core using INO's patented microscan technology.

  13. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  14. ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope

    OpenAIRE

    Konishi, Masahiro; Motohara, Kentaro; Tateuchi, Ken; TAKAHASHI, Hidenori; Kitagawa, Yutaro; Kato, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K.; Toshikawa, Koji; Ohsawa, Ryou; Yamamuro, Tomoyasu; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya

    2015-01-01

    We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5'.1 $\\times$ 5'.1 with a spatial resolution of 0".298 /pixel in the wavelength range of 0.95 to 2.4 $\\mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$\\alpha$ (Pa$\\alpha$, $\\lamb...

  15. Akari, SCUBA2 and Herschel data of pre-stellar cores

    CERN Document Server

    Ward-Thompson, Derek; Kirk, Jason Matthew; André, Philippe; Di Francesco, James

    2015-01-01

    We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. We present SCUBA2 and Herschel data of the Ophiuchus region and show how the environment is also affecting core evolution in this region. We discuss the effects of the magnetic field in the Lupus I region, and how this lends support to a model for the formation and evolution of cores in filamentary molecular clouds.

  16. ISOCAM, the ISO's satellite infra-red camera

    Science.gov (United States)

    de Sa, L.; Taride, S.

    1990-09-01

    Upon launch in 1993, the IR Space Observatory's 'ISOCAM' IR camera experiment will collect 2.5-5.5 and 4-17 micron astronomical data over an 18-month lifetime. On the basis of an open loop of superfluid He, ISOCAM's detectors, stepping motors, wheels, mechanisms, filters, lenses and primary mirror will all be cooled. The primary system design difficulties were encountered in the securing of low temperature stability for the detectors, as well as in the thermal control of high-inertia elements, and the cryogenic testing of the camera under spacelike conditions. Additional challenges were met in the development of such cryomechanical elements as stepping motors, ball bearings, and gears.

  17. Cepheid Period-Luminosity Relation from the AKARI Observations

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi M; Neilson, Hilding; Onaka, Takashi; Kato, Daisuke

    2010-01-01

    In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARI's IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a \\sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.

  18. Cameras Reveal Elements in the Short Wave Infrared

    Science.gov (United States)

    2010-01-01

    Goodrich ISR Systems Inc. (formerly Sensors Unlimited Inc.), based out of Princeton, New Jersey, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory, Marshall Space Flight Center, Kennedy Space Center, Goddard Space Flight Center, Ames Research Center, Stennis Space Center, and Langley Research Center to assist in advancing and refining indium gallium arsenide imaging technology. Used on the Lunar Crater Observation and Sensing Satellite (LCROSS) mission in 2009 for imaging the short wave infrared wavelengths, the technology has dozens of applications in military, security and surveillance, machine vision, medical, spectroscopy, semiconductor inspection, instrumentation, thermography, and telecommunications.

  19. Thermography of semi-transparent materials by a FLIR ThermaCAM SC3000 infrared camera

    NARCIS (Netherlands)

    Van der Tempel, L.

    2011-01-01

    An acceptance test for thermography of semi-transparent materials by a FLIR ThermaCAM SC3000 infrared camera with 8.0 µm low-wavelength-pass filter has been developed and performed on polycarbonate, PEN, quartz, Corning 1737 glass, G427 cone glas, G443 screen glass, Schott Zerodur, silicon and a bl

  20. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    Science.gov (United States)

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  1. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    International Nuclear Information System (INIS)

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (50, 200, and 600 field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented

  2. CISCO: Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope

    Science.gov (United States)

    Motohara, Kentaro; Iwamuro, Fumihide; Maihara, Toshinori; Oya, Shin; Tsukamoto, Hiroyuki; Imanishi, Masatoshi; Terada, Hiroshi; Goto, Miwa; Iwai, Jun'ichi; Tanabe, Hirohisa; Hata, Ryuji; Taguchi, Tomoyuki; Harashima, Takashi

    2002-04-01

    This paper describes a Cooled Infrared Spectrograph and Camera for OHS (CISCO), mounted on the Nasmyth focus of the Subaru telescope. It is primarily designed as a back-end camera of the OH-Airglow Suppressor (OHS), and is also used as an independent, general-purpose near-infrared camera/spectrograph. CISCO is based on a single 1024 × 1024 format HgCdTe HAWAII array detector, and is capable of either wide-field imaging of 1'.8 × 1'.8 field-of-view or low-resolution spectroscopy from 0.9 to 2.4 μm. The limiting magnitudes measured during test observations were found to be J=23.5 mag and K' = 22.4 mag (imaging, 1" aperture, S/N = 5, 1hr exposure).

  3. Observation of runaway electrons by infrared camera in J-TEXT

    Science.gov (United States)

    Tong, R. H.; Chen, Z. Y.; Zhang, M.; Huang, D. W.; Yan, W.; Zhuang, G.

    2016-11-01

    When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runaway current plateau following the massive gas injection triggered disruptions.

  4. CISCO Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope

    CERN Document Server

    Motohara, K; Maihara, T; Oya, S; Tsukamoto, H; Imanishi, M; Terada, H; Goto, M; Iwai, J; Tanabe, H; Hata, R; Taguchi, T; Harashima, T

    2002-01-01

    This paper describes a Cooled Infrared Spectrograph and Camera for OHS (CISCO), mounted on the Nasmyth focus of the Subaru telescope. It is primarily designed as a back-end camera of the OH-Airglow Suppressor (OHS), and is also used as an independent, general-purpose near-infrared camera/spectrograph. CISCO is based on a single 1024x1024 format HgCdTe HAWAII array detector, and is capable of either wide-field imaging of 1.8'x1.8' field-of-view or low-resolution spectroscopy from 0.9 to 2.4 um. The limiting magnitudes measured during test observations were found to be J=23.5mag and K'=22.4mag (imaging, 1" aperture, S/N=5, 1 hr exposure).

  5. Uncooled infrared camera for the noninvasive visualization of the vascular flow in an anastomotic vessel during neurological surgery: technical note.

    Science.gov (United States)

    Otani, Naoki; Ishihara, Miya; Nakai, Kanji; Fujita, Masanori; Wada, Kojiro; Mori, Kentaro

    2014-06-17

    We herein present our experience to assess intraoperative confirmation of vascular patency with an uncooled infrared camera in extracranial-intracranial (EC-IC) bypass surgery. This camera had distinguishing characteristics, including its small size, light weight, and adequate temperature resolution (camera to assess the vascular flow of the end-to-side anastomosis model in rats. In addition, we evaluated the vascular flow in continuous clinical series using this infrared camera during EC-IC bypass in 14 patients (17 sides). This infrared camera offers real-time information on the vascular patency of end-to-side anastomosis vessels of all relevant diameters. The spatial resolution and image quality are satisfactory, and the procedure can be safely repeatable. We have shown that the infrared camera could be a new and feasible technology for intraoperative imaging of the vascular flow and is considered to be clinically useful during cerebrovascular surgery.

  6. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  7. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  8. Deep Extragalactic Surveys around the Ecliptic Poles with AKARI (ASTRO-F)

    CERN Document Server

    Matsuhara, H; Matsuura, S; Nakagawa, T; Kawada, M; Oyama, Y; Pearson, C P; Oyabu, S; Takagi, T; Serjeant, S; White, G J; Hanami, H; Watarai, H; Takeuchi, T T; Kodama, T; Arimoto, N; Okamura, S; Lee, H M; Pak, S; Im, M S; Lee, M G; Kim, W; Jeong, W S; Imai, K; Fujishiro, N; Shirahata, M; Suzuki, T; Ihara, C; Sakon, I; Matsuhara, Hideo; Wada, Takehiko; Matsuura, Shuji; Nakagawa, Takao; Kawada, Mitsunobu; Oyama, Youichi; Pearson, Chris P.; Oyabu, Shinki; Takagi, Toshinobu; Serjeant, Stephen; White, Glenn J.; Hanami, Hitoshi; Watarai, Hidenori; Takeuchi, Tsutomu T.; Kodama, Tadayuki; Arimoto, Nobuo; Okamura, Sadanori; Lee, Hyung Mok; Pak, Soojong; Im, Myung Shin; Lee, Myung Gyoon; Kim, Woojung; Jeong, Woong Seob; Imai, Koji; Fujishiro, Naofumi; Shirahata, Mai; Suzuki, Toyoaki; Ihara, Chiaki; Sakon, Itsuki

    2006-01-01

    AKARI (formerly ASTRO-F) is an infrared space telescope designed for an all-sky survey at 10-180 (mu)m, and deep pointed surveys of selected areas at 2-180 (mu)m. The deep pointed surveys with AKARI will significantly advance our understanding of galaxy evolution, the structure formation of the Universe, the nature of the buried AGNs, and the cosmic infrared background. Here we describe the important characteristics of the AKARI mission: the orbit, and the attitude control system, and investigate the optimum survey area based on the updated pre-flight sensitivities of AKARI, taking into account the cirrus confusion noise as well as the surface density of bright stars. The North Ecliptic Pole (NEP) is concluded to be the best area for 2-26 (mu)m deep surveys, while the low-cirrus noise regions around the South Ecliptic Pole (SEP) are worth considering for 50-180 (mu)m pointed surveys to high sensitivities limited by the galaxy confusion noise. Current observational plans of these pointed surveys are described ...

  9. Design of mct1024×1 short wave infrared thermal camera

    Science.gov (United States)

    Jian, Xian Zhong; Zhang, Su Ying

    2005-10-01

    A thermal camera consists of 1024-element MCT line wavelength IRFPA with reading electrocircuit made in china. It is presented the composing of this infrared thermal camera and some key question of this thermal camera: 1) nonuniformity correction; 2) Correction of lines and rows. With same axial transmission optics and a 1-D equality angle scanner and 1024X1600 pixels per frame.the scan efficiency of the sensor is over 88% and the half periods of scanner is 5 seconds. we developed a IR instrument. the main technic target is followed: optics calibre: 90 mm, focus: 270.6 mm, identifiaction ratio:170 urad, wave band: 2-2.5um, the half period: 5 second, NEΔρ: 0.8%.

  10. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  11. Using Digital Cameras to Teach about Infrared Radiation and Instrumentation Technology

    Science.gov (United States)

    Pompea, S. M.; Croft, S. K.

    1998-12-01

    Digital cameras and image processing are used to create color composite images that illustrate the importance of the near infrared portion of the spectrum in providing additional information about an astronomical object. Demonstrations with digital cameras also help make infrared radiation real to students and illustrate the different aspects of a sensing system including the spectral emission properties of the source, the reflectivity of the object of interest, the use of filters, detector sensitivity, and the use of image processing. Using appropriate, easily available filters, students can demonstrate that two objects that appear green (such as a car and a plant) have very different properties in the near infrared, since chlorophyll in plants is reflective in the near IR. The results can be applied to imaging of the planets to look for chlorophyll features indicative of life. Digital cameras are affordable, relatively common devices which can be used in a wide variety of classroom and experimental settings. As such they can have a profound influence, in conjunction with image processing, on participatory teaching of observational astronomy and in sharing observations across the web. Some other general applications in this area as well as extensions to several areas of spectroscopy will also be discussed. This work was supported by an NSF instructional materials grant as part of the Astronomy Village: Investigating the Solar System development program. S. Pompea is an adjunct faculty member of Steward Observatory, University of Arizona.

  12. Imaging of breast cancer with mid- and long-wave infrared camera.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory. PMID:18432466

  13. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  14. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  15. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  16. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  17. Cryo-Transmittance and -Reflectance of Filters and Beamsplitters for the SIRTF Infrared Array Camera

    Science.gov (United States)

    Stewart, Kenneth P.; Quijada, Manuel A.a

    2000-01-01

    The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC) uses two dichroic beamsplitters, four bandpass filters, and four detector arrays to acquire images in four channels at wavelengths between 3 and 10 micron. Accurate knowledge of the pass bands is necessary because, in order to meet the science objectives, IRAC is required to do 2% relative photometry in each band relative to the other bands. We report the in-band and out-of-band polarized transmittance and reflectance of these optical elements measured near the instrument operating temperature of 1.4 K. Details of the experimental apparatus, which include a continuous flow liquid helium optical cryostat and a Fourier transform infrared (FTIR) spectrometer are discussed.

  18. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  19. The AKARI FU-HYU galaxy evolution program: First results from the GOODS-N field

    CERN Document Server

    Pearson, C P; Negrello, M; Takagi, T; Jeong, W -S; Matsuhara, H; Wada, T; Oyabu, S; Lee, H M; Im, M S

    2010-01-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands.We present the initial results for the FU-HYU survey in the GOODS-N field.We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produ...

  20. ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope

    CERN Document Server

    Konishi, Masahiro; Tateuchi, Ken; Takahashi, Hidenori; Kitagawa, Yutaro; Kato, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K; Toshikawa, Koji; Ohsawa, Ryou; Yamamuro, Tomoyasu; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Matsunaga, Noriyuki; Minezaki, Takeo; Morokuma, Tomoki; Nakashima, Asami; Takagi, Toshinobu; Tanabé, Toshihiko; Uchiyama, Mizuho; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kato, Daisuke; Kawara, Kimiaki; Kohno, Kotaro; Miyata, Takashi; Nakamura, Tomohiko; Okada, Kazushi; Soyano, Takao; Tamura, Yoichi; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2015-01-01

    We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5'.1 $\\times$ 5'.1 with a spatial resolution of 0".298 /pixel in the wavelength range of 0.95 to 2.4 $\\mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$\\alpha$ (Pa$\\alpha$, $\\lambda=$1.8751 $\\mu$m in air) narrow-band imaging observations, at which wavelength ground-based observations have been quite difficult due to deep atmospheric absorption mainly from water vapor. We have been successfully obtaining Pa$\\alpha$ images of Galactic objects and nearby galaxies since the first-light observation in 2009 with ANIR. The throughputs at the narrow-band filters ($N1875$, $N191$) including the atmospheric absorption show larger dispersion (~10%) than those at broad-band filters (a few %), indicating that ...

  1. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    Science.gov (United States)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  2. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    Science.gov (United States)

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  3. Research on the affect of differential-images technique to the resolution of infrared spatial camera

    Science.gov (United States)

    Jin, Guang; An, Yuan; Qi, Yingchun; Hu, Fusheng

    2007-12-01

    The optical system of infrared spatial camera adopts bigger relative aperture and bigger pixel size on focal plane element. These make the system have bulky volume and low resolution. The potential of the optical systems can not be exerted adequately. So, one method for improving resolution of infrared spatial camera based on multi-frame difference-images is introduced in the dissertation. The method uses more than one detectors to acquire several difference images, and then reconstructs a new high-resolution image from these images through the relationship of pixel grey value. The technique of difference-images that uses more than two detectors is researched, and it can improve the resolution 2.5 times in theory. The relationship of pixel grey value between low-resolution difference-images and high-resolution image is found by analyzing the energy of CCD sampling, a general relationship between the enhanced times of the resolution of the detected figure with differential method and the least count of CCD that will be used to detect figure is given. Based on the research of theory, the implementation process of utilizing difference-images technique to improve the resolution of the figure was simulated used Matlab software by taking a personality image as the object, and the software can output the result as an image. The result gotten from the works we have finished proves that the technique is available in high-resolution image reconstruction. The resolution of infrared spatial camera can be improved evidently when holding the size of optical structure or using big size detector by applying for difference image technique. So the technique has a high value in optical remote fields.

  4. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.

    Science.gov (United States)

    Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M

    2012-10-01

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.

  5. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    柳钦火; 顾行法; 李小文; 田国良; 余涛; F.Jacob; J.F.Hanocq; M.Friedl; A.H.Strahler

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies, a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80?FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces. Accordingly, multi-angle directional brightness temperatures were acquired at different view angles for individual pixel. The flight experiment was carried out from January 1997 to October 1997 over a 5 kmx5 km flat agricultural area, located near Avignon, southeastern France.This paper presents results from analyses performed using these data including instrument calibration, radiometric correction, atmospheric correction, temperature temporal adjustment, geometric matching and registration of images. Results are presented for different thermal infrared emission patterns of different surface types including bare soil, wheat, maize and sunflower at different growth stages.

  6. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies,a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80o FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces.Accordingly,multi-angle directional brightness temperatures were acquired at different view angles for individual pixel.The flight experiment was carried out from January 1997 to October 1997 over a 5 km×5 km flat agricultural area,located near Avignon,southeastern France.This paper presents results from analyses performed using these data including instrument calibration,radiometric correction,atmospheric correction,temperature temporal adjustment,geometric matching and registration of images.Results are presented for different thermal infrared emission patterns of different surface types including bare soil,wheat,maize and sunflower at different growth stages.

  7. Control software and user interface for the Canarias Infrared Camera Experiment (CIRCE)

    Science.gov (United States)

    Marín-Franch, Antonio; Eikenberry, Stephen S.; Charcos-Llorens, Miguel V.; Edwards, Michelle L.; Varosi, Frank; Hon, David B.; Raines, Steven N.; Warner, Craig D.; Rashkin, David

    2006-06-01

    The Canarias InfraRed Camera Experiment (CIRCE) is a near-infrared visitor instrument for the 10.4-meter Gran Telescopio Canarias (GTC). This document shows CIRCE software. It will have two major functions: instrument control and observatory interface. The instrument control software is based on the UFLIB library, currently used to operate FLAMINGOS-1 and T-ReCS (as well as the CanariCam and FLAMINGOS-2 instruments under development in the University of Florida). The software interface with the telescope will be based on a CORBA server-client architecture. Finally, the user interface will consist of two java-based interfaces for the mechanism/detector control, and for quick look and analysis of data.

  8. Selecting among competing models of electro-optic, infrared camera system range performance

    Science.gov (United States)

    Nichols, Jonathan M.; Hines, James E.; Nichols, James D.

    2013-01-01

    Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.

  9. Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera (Compovision)

    Institute of Scientific and Technical Information of China (English)

    Daitaro Ishikawa; Asako Motomura; Yoko Igarashi; Yukihiro Ozaki

    2015-01-01

    This review paper reports near‐infrared (NIR) imaging studies using a newly‐developed NIR camer‐a ,Compovision .Compovision can measure a significantly wide area of 150 mm × 250 mm at high speed of be‐tween 2 and 5 s .It enables a wide spectral region measurement in the 1 000~2 350 nm range at 6 nm inter‐vals .We investigated the potential of Compovision in the applications to industrial problems such as the evalu‐ation of pharmaceutical tablets and polymers .Our studies have demonstrated that NIR imaging based on Com‐povision can solve several issues such as long acquisition times and relatively low sensitivity of detection .NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products ,biomedical substances and organic and inorganic materials .

  10. REMIR: the REM infrared camera to follow up the early phases of GRBs afterglows

    International Nuclear Information System (INIS)

    REMIR is a near-infrared camera, covering the 0.95-2.3 μm range with 5 filters (z, J, H, Ks and H2), mounted at one of the Nasmyth foci of the REM (Rapid Eye Mount) telescope. REM is a fully robotic fast-slewing 60 cm telescope, primarily designed to follow-up the early phases of the afterglow of GRBs detected by dedicated instruments onboard satellites (like SWIFT, a satellite entirely dedicated to GRBs science launched the 12 November 2004). Moreover REM hosts a slitless spectrograph covering the range 0.45-0.95 μm, with 30 sample points and with the possibility to perform broad-band V, R, I photometry (ROSS, REM Optical Slitless Spectrograph). The main task of REMIR is to perform realtime NIR observations of GRBs, detected by gamma-ray monitors onboard satellites, looking for any possible infrared transient source. As soon as a transient source is detected in the IR images, larger telescope are promptly alerted to perform early spectroscopy of the afterglow. All the above operations are performed in a fully automatic way and without any human supervision. We present the results of on-site tests that have been done to characterize the REMIR camera and the performances of the dedicated reduction pipeline AQuA (Automatic Quick Analysis), suited for fast transients detection

  11. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    CERN Document Server

    Cardenas, M C; Lenzen, R; Sanchez-Blanco, E

    2008-01-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 micron pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the...

  12. REMIR: The REM infrared camera to follow up the early phases of GRBs afterglows

    Science.gov (United States)

    Calzoletti, L.; Melandri, A.; Testa, V.; Antonelli, L. A.; Vitali, F.; D'Alessio, F.; di Paola, A.; Zerbi, F. M.; Chincarini, G.; Cunniffe, R.; Jordan, B.; Rodonò, M.; Conconi, P.; Covino, S.; Cutispoto, G.; Molinari, E.; Tosti, G.; Ross/Rem Team

    2005-07-01

    REMIR is a near-infrared camera, covering the 0.95-2.3 μm range with 5 filters (z,J,H,Ks and H2), mounted at one of the Nasmyth foci of the REM (Rapid Eye Mount) telescope. REM is a fully robotic fast-slewing 60 cm telescope, primarily designed to follow-up the early phases of the afterglow of GRBs detected by dedicated instruments onboard satellites (like SWIFT, a satellite entirely dedicated to GRBs science launched the 12 November 2004). Moreover REM hosts a slitless spectrograph covering the range 0.45-0.95 μm, with 30 sample points and with the possibility to perform broad-band V,R,I photometry (ROSS, REM Optical Slitless Spectrograph). The main task of REMIR is to perform realtime NIR observations of GRBs detected by gamma-ray monitors onboard satellites, looking for any possible infrared transient source. As soon as a transient source is detected in the IR images, larger telescopes are promptly alerted to perform early spectroscopy of the afterglow. All the above operations are performed in a fully automatic way and without any human supervision. We present the results of on-site tests that have been done to characterize the REMIR camera and the performances of the dedicated reduction pipeline AQuA (Automatic Quick Analysis), suited for fast transients detection.

  13. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  14. Infrared Camera System for Visualization of IR-Absorbing Gas Leaks

    Science.gov (United States)

    Youngquist, Robert; Immer, Christopher; Cox, Robert

    2010-01-01

    Leak detection and location remain a common problem in NASA and industry, where gas leaks can create hazardous conditions if not quickly detected and corrected. In order to help rectify this problem, this design equips an infrared (IR) camera with the means to make gas leaks of IR-absorbing gases more visible for leak detection and location. By comparing the output of two IR cameras (or two pictures from the same camera under essentially identical conditions and very closely spaced in time) on a pixel-by-pixel basis, one can cancel out all but the desired variations that correspond to the IR absorption of the gas of interest. This can be simply done by absorbing the IR lines that correspond to the gas of interest from the radiation received by one of the cameras by the intervention of a filter that removes the particular wavelength of interest from the "reference" picture. This can be done most sensitively with a gas filter (filled with the gas of interest) placed in front of the IR detector array, or (less sensitively) by use of a suitable line filter in the same location. This arrangement would then be balanced against the unfiltered "measurement" picture, which will have variations from IR absorption from the gas of interest. By suitable processing of the signals from each pixel in the two IR pictures, the user can display only the differences in the signals. Either a difference or a ratio output of the two signals is feasible. From a gas concentration viewpoint, the ratio could be processed to show the column depth of the gas leak. If a variation in the background IR light intensity is present in the field of view, then large changes in the difference signal will occur for the same gas column concentration between the background and the camera. By ratioing the outputs, the same signal ratio is obtained for both high- and low-background signals, even though the low-signal areas may have greater noise content due to their smaller signal strength. Thus, one

  15. AKARI and Spitzer observations of heavily obscured C-rich AGB/post-AGB stars

    CERN Document Server

    García-Hernández, D A; Engels, D; Perea-Calderón, J V; García-Lario, P

    2009-01-01

    We present AKARI/IRC and Spitzer/IRS observations of a selected sample of galactic IRAS sources considered to be heavily obscured AGB/post-AGB stars based on their characteristic IRAS colours. All of them are completely invisible in the optical range but extremely bright in the infrared. Based on AKARI and Spitzer spectroscopy and using DUSTY we are able to determine the dominant chemistry of their circumstellar shells as well as the properties of the dust grains contained in these shells. Most of the sources are found to be C-rich (being the reddest C-rich stars observed so far). We find only molecular absorptions (and no PAH features) such as acetylene (C2H2) at 13.7 micron, indicative of an early post-AGB stage. We shortly discuss our findings in the context of stellar evolution during the hidden "transition phase" from AGB stars to Planetary Nebulae.

  16. The temperature fields measurement of air in the car cabin by infrared camera

    Science.gov (United States)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  17. The temperature fields measurement of air in the car cabin by infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek M.

    2013-04-01

    Full Text Available The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  18. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    Science.gov (United States)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  19. Taking on the Heat—a Narrative Account of How Infrared Cameras Invite Instant Inquiry

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Schönborn, Konrad J.

    2015-06-01

    Integration of technology, social learning and scientific models offers pedagogical opportunities for science education. A particularly interesting area is thermal science, where students often struggle with abstract concepts, such as heat. In taking on this conceptual obstacle, we explore how hand-held infrared (IR) visualization technology can strengthen students' understanding of thermal phenomena. Grounded in the Swedish physics curriculum and part of a broader research programme on educational uses of IR cameras, we have developed laboratory exercises around a thermal storyline, in conjunction with the teaching of a heat-flow model. We report a narrative analysis of how a group of five fourth-graders, facilitated by a researcher, predicts, observes and explains (POE) how the temperatures change when they pour hot water into a ceramic coffee mug and a thin plastic cup. Four chronological episodes are described and analysed as group interaction unfolded. Results revealed that the students engaged cognitively and emotionally with the POE task and, in particular, held a sustained focus on making observations and offering explanations for the scenarios. A compelling finding was the group's spontaneous generation of multiple "what-ifs" in relation to thermal phenomena, such as blowing on the water surface, or submerging a pencil into the hot water. This was followed by immediate interrogation with the IR camera, a learning event we label instant inquiry. The students' expressions largely reflected adoption of the heat-flow model. In conclusion, IR cameras could serve as an access point for even very young students to develop complex thermal concepts.

  20. Taking on the Heat—a Narrative Account of How Infrared Cameras Invite Instant Inquiry

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Schönborn, Konrad J.

    2016-10-01

    Integration of technology, social learning and scientific models offers pedagogical opportunities for science education. A particularly interesting area is thermal science, where students often struggle with abstract concepts, such as heat. In taking on this conceptual obstacle, we explore how hand-held infrared (IR) visualization technology can strengthen students' understanding of thermal phenomena. Grounded in the Swedish physics curriculum and part of a broader research programme on educational uses of IR cameras, we have developed laboratory exercises around a thermal storyline, in conjunction with the teaching of a heat-flow model. We report a narrative analysis of how a group of five fourth-graders, facilitated by a researcher, predicts, observes and explains (POE) how the temperatures change when they pour hot water into a ceramic coffee mug and a thin plastic cup. Four chronological episodes are described and analysed as group interaction unfolded. Results revealed that the students engaged cognitively and emotionally with the POE task and, in particular, held a sustained focus on making observations and offering explanations for the scenarios. A compelling finding was the group's spontaneous generation of multiple "what-ifs" in relation to thermal phenomena, such as blowing on the water surface, or submerging a pencil into the hot water. This was followed by immediate interrogation with the IR camera, a learning event we label instant inquiry. The students' expressions largely reflected adoption of the heat-flow model. In conclusion, IR cameras could serve as an access point for even very young students to develop complex thermal concepts.

  1. The infrared camera prototype characterization for the JEM-EUSO space mission

    Energy Technology Data Exchange (ETDEWEB)

    Morales de los Ríos, J.A., E-mail: josealberto.morales@uah.es [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Ebisuzaki Computational Astrophysics Laboratory, RIKEN (Japan); Joven, E. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Peral, L. del [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Leonard E. Parker Center for Gravitation, Cosmology and Astrophysics, University of Wisconsin-Milwaukee (United States); Reyes, M. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Licandro, J. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, Tenerife (Spain); Rodríguez Frías, M.D. [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain)

    2014-06-01

    JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) is an advanced observatory that will be on-board the International Space Station (ISS) and use the Earth's atmosphere as a huge calorimeter detector. However, the atmospheric clouds introduce uncertainties in the signals measured by JEM-EUSO. Therefore, it is extremely important to know the atmospheric conditions and properties of the clouds in the Field of View (FoV) of the telescope. The Atmospheric Monitoring System (AMS) of JEM-EUSO includes a lidar and an infrared imaging system, IR-Camera, aimed to detect the presence of clouds and to obtain the cloud coverage and cloud top altitude during the observations of the JEM-EUSO main telescope. To define the road-map for the design of the electronics, the detector has been tested extensively with a first prototype. The actual design of the IR-Camera, the test of the prototype, and the outcome of this characterization are presented in this paper.

  2. TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Doyon, R; Nadeau, D; Racine, R; Riopel, M; Vallee, P; Lafreniere, D

    2005-04-08

    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024 x 1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 {micro}m, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronoagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, {nu}-And and {chi}-And. TRIDENT can detect (6{sigma}) a methanated companion with {Delta}H = 9.5 at 0.5'' separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.

  3. NIRCam: Development and Testing of the JWST Near-Infrared Camera

    Science.gov (United States)

    Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.

    2011-01-01

    The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).

  4. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  5. A regional density distribution based wide dynamic range algorithm for infrared camera systems

    Science.gov (United States)

    Park, Gyuhee; Kim, Yongsung; Joung, Shichang; Shin, Sanghoon

    2014-10-01

    Forward Looking InfraRed (FLIR) imaging system has been widely used for both military and civilian purposes. Military applications include target acquisition and tracking, night vision system. Civilian applications include thermal efficiency analysis, short-ranged wireless communication, weather forecasting and other various applications. The dynamic range of FLIR imaging system is larger than one of commercial display. Generally, auto gain controlling and contrast enhancement algorithm are applied to FLIR imaging system. In IR imaging system, histogram equalization and plateau equalization is generally used for contrast enhancement. However, they have no solution about the excessive enhancing when luminance histogram has been distributed in specific narrow region. In this paper, we proposed a Regional Density Distribution based Wide Dynamic Range algorithm for Infrared Camera Systems. Depending on the way of implementation, the result of WDR is quite different. Our approach is single frame type WDR algorithm for enhancing the contrast of both dark and white detail without loss of bins of histogram with real-time processing. The significant change in luminance caused by conventional contrast enhancement methods may introduce luminance saturation and failure in object tracking. Proposed method guarantees both the effective enhancing in contrast and successive object tracking. Moreover, since proposed method does not using multiple images on WDR, computation complexity might be significantly reduced in software / hardware implementation. The experimental results show that proposed method has better performance compared with conventional Contrast enhancement methods.

  6. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    Science.gov (United States)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  7. Period-luminosity relations for Small Magellanic Cloud Cepheid based on AKARI archival data

    Science.gov (United States)

    Ngeow, Chow-Choong; Citro, Danielle M.; Kanbur, Shashi M.

    2012-02-01

    In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment III (OGLE-III) catalogue to derive the mid-infrared period-luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colours obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7-, S11-, L15- and L24-band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were N3 =-3.370 log P + 16.527 and N4 =-3.402 log P + 16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.

  8. Period-Luminosity Relations for Small Magellanic Cloud Cepheid Based on AKARI Archival Data

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi M

    2011-01-01

    In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment-III (OGLE-III) catalog to derive the mid-infrared period luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colors obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7, S11, L15, and L24 band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were: N3 = -3.370 logP + 16.527 and N4 = -3.402 logP + 16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.

  9. New high spectral resolution spectrograph and mid-IR camera for the NASA Infrared Telescope Facility

    Science.gov (United States)

    Tokunaga, Alan T.; Bus, Schelte J.; Connelley, Michael; Rayner, John

    2016-10-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0 m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. We show new observational capabilities resulting from the completion of iSHELL, a 1–5 μm echelle spectrograph with resolving power of 70,000 using a 0.375 arcsec slit. This instrument will be commissioned starting in August 2016. The spectral grasp of iSHELL is enormous due to the cross-dispersed design and use of a 2Kx2K HgCdTe array. Raw fits files will be publicly archived, allowing for more effective use of the large amount of spectral data that will be collected. The preliminary observing manual for iSHELL, containing the instrument description, observing procedures and estimates of sensitivity can be downloaded at http://irtfweb.ifa.hawaii.edu/~ishell/iSHELL_observing_manual.pdf. This manual and instrument description papers can be downloaded at http://bit.ly/28NFiMj. We are also working to restore to service our 8–25 μm camera, MIRSI. It will be upgraded with a closed cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable a wider range of Solar System studies at mid-IR wavelengths, with particular focus on thermal observations of NEOs. The MIRSI upgrade includes plans to integrate a visible CCD camera that will provide simultaneous imaging and guiding capabilities. This visible imager will utilize similar hardware and software as the MORIS system on SpeX. The MIRSI upgrade is being done in collaboration with David Trilling (NAU) and Joseph Hora (CfA). For further information on the IRTF and its instruments including visitor instruments, see: http:// irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate, and NASA grant NNX15AF81G (Trilling, Hora) for the upgrade of MIRSI.

  10. An AKARI Search for Intracluster Dust of Globular Clusters

    CERN Document Server

    Matsunaga, N; Nakada, Y; Fukushi, H; Tanabé, T; Ita, Y; Izumiura, H; Matsuura, M; Ueta, T; Yamamura, I

    2008-01-01

    We report the observations of 12 globular clusters with the AKARI/FIS. Our goal is to search for emission from the cold dust within clusters. We detect diffuse emissions toward NGC 6402 and 2808, but the IRAS 100-micron maps show the presence of strong background radiation. They are likely emitted from the galactic cirrus, while we cannot rule out the possible association of a bump of emission with the cluster in the case of NGC 6402. We also detect 28 point-like sources mainly in the WIDE-S images (90 micron). At least several of them are not associated with the clusters but background galaxies based on some external catalogs. We present the SEDs by combining the near-and-mid infrared data obtained with the IRC if possible. The SEDs suggest that most of the point sources are background galaxies. We find one candidate of the intracluster dust which has no mid-infrared counterpart unlike the other point-like sources, although some features such as its point-like appearance should be explained before we conclud...

  11. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    CERN Document Server

    Esplin, T L

    2015-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 $\\mu$m bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7$^{\\rm th}$ and 8$^{\\rm th}$ order distortion corrections for the 3.6 and 4.5 $\\mu$m arrays of IRAC, ...

  12. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  13. Using infrared cameras, fuzzy logic and acoustic temperature measurement to improve combustion in MWCs

    Energy Technology Data Exchange (ETDEWEB)

    Daimer, P.; Schaefers, W.; Hartenstein, H.U.; Licata, A.

    1998-07-01

    A significant step for the improvement of firing rate and combustion control is the use of infrared thermography. Such a system has been successfully applied by L. and C. Steinmuller GmbH (Steinmuller) a long period of time at the Stapelfele municipal waste combustor (MWC) located in Germany. A camera installed on the boiler top casing supplies instantaneous information on the combustion conditions on the grate. In the event of undesired changes in firing position or firing length, countermeasures may be instituted immediately. A control system based on fuzzy logic, divided into several stage each of which includes a short-term and a long-term strategy, has been developed for this purpose. This system reduces fluctuations during combustion to an unavoidable minimum. The acoustic temperature measurement system installed in the first pass of the boiler provides valuable information about the temperature distribution in the zone. This allows the control room operator to adjust the distribution of secondary air to the front and rear row of nozzles so that uniform temperature and flow distribution are maintained at all times. Both installations allow the firing system to operate at more optimized conditions which results in such positive effects as reduced emissions and increased steam production.

  14. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    CERN Document Server

    Gomez, Laura; Schuller, Frederic; Menten, Karl; Ballesteros-Paredes, Javier

    2013-01-01

    We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition me...

  15. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  16. Human tracking with an infrared camera using a curve matching framework

    Science.gov (United States)

    Lee, Suk Jin; Shah, Gaurav; Bhattacharya, Arka Aloke; Motai, Yuichi

    2012-12-01

    The Kalman filter (KF) has been improved for a mobile robot to human tracking. The proposed algorithm combines a curve matching framework and KF to enhance prediction accuracy of target tracking. Compared to other methods using normal KF, the Curve Matched Kalman Filter (CMKF) method predicts the next movement of the human by taking into account not only his present motion characteristics, but also the previous history of target behavior patterns-the CMKF provides an algorithm that acquires the motion characteristics of a particular human and provides a computationally inexpensive framework of human-tracking system. The proposed method demonstrates an improved target tracking using a heuristic weighted mean of two methods, i.e., the curve matching framework and KF prediction. We have conducted the experimental test in an indoor environment using an infrared camera mounted on a mobile robot. Experimental results validate that the proposed CMKF increases prediction accuracy by more than 30% compared to normal KF when the characteristic patterns of target motion are repeated in the target trajectory.

  17. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    Science.gov (United States)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s‑1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  18. A Wide-Field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    CERN Document Server

    Findlay, Joseph R; Weger, James S; Bucher, Gerald A; Perry, Marvin C; Myers, Adam D; Pierce, Michael J; Vogel, Conrad

    2016-01-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully-remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit/s 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several real-time video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. Construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40' field-of-view with a new 4096x4096 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20'' rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical ...

  19. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    CERN Document Server

    Greene, Thomas P; Egami, Eiichi; Hodapp, Klaus W; Kelly, Douglas M; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-01-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.'2 $\\times$ 2.'2 fields of view that are capable of either imaging or spectroscopic observations. Either of two $R \\sim 1500$ grisms with orthogonal dispersion directions can be used for slitless spectroscopy over $\\lambda = 2.4 - 5.0$ $\\mu$m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 -- 2.3 $\\mu$m) imaging observations of the 2.4 -- 5.0 $\\mu$m spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 -- 2.0 $\\mu$m spectroscopy (simultaneously with 2.4 -- 5.0 $\\mu$m) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, wea...

  20. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  1. A customizable commercial miniaturized 320×256 indium gallium arsenide shortwave infrared camera

    Science.gov (United States)

    Huang, Shih-Che; O'Grady, Matthew; Groppe, Joseph V.; Ettenberg, Martin H.; Brubaker, Robert M.

    2004-10-01

    The design and performance of a commercial short-wave-infrared (SWIR) InGaAs microcamera engine is presented. The 0.9-to-1.7 micron SWIR imaging system consists of a room-temperature-TEC-stabilized, 320x256 (25 μm pitch) InGaAs focal plane array (FPA) and a high-performance, highly customizable image-processing set of electronics. The detectivity, D*, of the system is greater than 1013 cm-√Hz/W at 1.55 μm, and this sensitivity may be adjusted in real-time over 100 dB. It features snapshot-mode integration with a minimum exposure time of 130 μs. The digital video processor provides real time pixel-to-pixel, 2-point dark-current subtraction and non-uniformity compensation along with defective-pixel substitution. Other features include automatic gain control (AGC), gamma correction, 7 preset configurations, adjustable exposure time, external triggering, and windowing. The windowing feature is highly flexible; the region of interest (ROI) may be placed anywhere on the imager and can be varied at will. Windowing allows for high-speed readout enabling such applications as target acquisition and tracking; for example, a 32x32 ROI window may be read out at over 3500 frames per second (fps). Output video is provided as EIA170-compatible analog, or as 12-bit CameraLink-compatible digital. All the above features are accomplished in a small volume < 28 cm3, weight < 70 g, and with low power consumption < 1.3 W at room temperature using this new microcamera engine. Video processing is based on a field-programmable gate array (FPGA) platform with a soft-embedded processor that allows for ease of integration/addition of customer-specific algorithms, processes, or design requirements. The camera was developed with the high-performance, space-restricted, power-conscious application in mind, such as robotic or UAV deployment.

  2. Measured performance of a low-cost thermal infrared pushbroom camera based on uncooled microbolometer FPA for space applications

    Science.gov (United States)

    Geoffray, Herve; Guerin, Francois

    2001-12-01

    The FUEGO system is a remote sensing satellite constellation aimed at providing early fire alarms throughout the forest fire risk area of Europe and other temperate areas. An excellent revisit time (<16 min.) can be achieved from a low earth orbit constellation of 12 mini-satellites. Each mini-satellite carries infrared sensors in MIR, TIR, and VIS/NIR bands operating in push-broom mode and a depointing mirror to cover a large swath. This can ensure early detection of fire outbreaks with a 2500 km swath. This paper presents the thermal infrared (TIR) camera characteristics. The main purposes of the TIR channels are the discrimination of clouds and detection of forest fire false alarms during low light or night operation. The main requirements for the TIR camera are: spectral range 8 - 12 micrometers ; FOV equals +/- 7.2 degree(s) (177 km on ground); ground resolution 369 m; NETD < 0.4 K 300 K (blackbody temperature); large dynamic range of radiance (equivalent blackbody temperature 240 K to 380 K). The TIR pushbroom camera is built around an off-the- shelf SOFRADIR microbolometer FPA of 320 X 240 elements with a pitch of 45 micrometers . The focal plane is uncooled and operates at T equals 303 K. The paper details the tests performed on the engineering model of the camera. More particularly, radiometric characterization and MTF measurement are described. The demonstrated camera performance together with the low cost and complexity of the camera offer a large field of opportunities for future space applications.

  3. Calibration of microbolometer infrared cameras for measuring volcanic ash mass loading

    Science.gov (United States)

    Carroll, Russell C.

    Small spacecraft with thermal infrared (TIR) imaging capabilities are needed to detect dangerous levels of volcanic ash that can severely damage jet aircraft engines and must be avoided. Grounding aircraft after a volcanic eruption may cost the airlines millions of dollars per day, while accurate knowledge of volcanic ash density might allow for safely routing aircraft around dangerous levels of volcanic ash. There are currently limited numbers of satellites with TIR imaging capabilities so the elapsed time between revisits can be large, and these instruments can only resolve total mass loading along the line-of-sight. Multiple small satellites could allow for decreased revisit times as well as multiple viewing angles to reveal the three-dimensional structure of the ash cloud through stereoscopic techniques. This paper presents the design and laboratory evaluation of a TIR imaging system that is designed to fit within the resource constraints of a multi-unit CubeSat to detect volcanic ash mass loading. The laboratory prototype of this TIR imaging system uses a commercial off-the shelf (COTS) camera with an uncooled microbolometer sensor, two narrowband filters, a black body source and a custom filter wheel. The infrared imaging system detects the difference in attenuation of volcanic ash at 11 mum and 12 mum by measuring the brightness temperature at each band. The brightness temperature difference method is used to measure the column mass loading. Multi-aspect images and stereoscopic techniques are needed to estimate the mass density from the mass loading, which is the measured mass per unit area. Laboratory measurements are used to characterize the noise level and thermal stability of the sensor. A calibration technique is developed to compensate for sensor temperature drift. The detection threshold of volcanic ash density of this TIR imaging system is found to be from 0.35 mg/m3 to 26 mg/m3 for ash clouds that have thickness of 1 km, while ash cloud densities

  4. J and H-band Imaging of AKARI North Ecliptic Pole Survey Field

    CERN Document Server

    Jeon, Yiseul; Kang, Eugene; Lee, Hyung Mok; Matsuhara, Hideo

    2015-01-01

    We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14" and 0.17" for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.

  5. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    Science.gov (United States)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  6. Star forming galaxies in the AKARI Deep Field South: identifications and SEDs

    CERN Document Server

    Pollo, A; Bienias, P; Shirahata, M; Matsuura, S; Kawada, M

    2009-01-01

    To investigate the nature and properties of far-infrared (FIR) sources from the AKARI Deep Field South (ADF-S), we performed an extensive search for the counterparts of 1000 ADF-S objects brighter than 0.0301 Jy in the WIDE-S (90 $\\mu$m) AKARI band in the public databases (NED and SIMBAD). We analyzed the properties of the resulting sample: statistic of the identified objects, number counts, redshift distribution and morphological types. We also made a crude analysis of the clustering properties of the sources and constructed spectral energy distributions (SEDs) of 47 selected objects with the best photometry. Among 1000 investigated ADF-S sources, 545 were identified at other wavelengths. From them, 518 are known galaxies, and 343 of them were not known previously as infra-red sources. We found redshifts of 48 extragalactic objects and morphological types of 77 galaxies. We conclude that the bright FIR point sources observed in the ADF-S are mostly nearby galaxies.Their properties are very similar to propert...

  7. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, Ralph Barton [ORNL; Parris, Larkin S. [Wichita State University; Lindal, John M. [Oak Ridge National Laboratory (ORNL); Kunc, Vlastimil [ORNL

    2016-01-01

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image. An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.

  8. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  9. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    International Nuclear Information System (INIS)

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  10. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    Science.gov (United States)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  11. Search for Water in Outer Main Belt Based on AKARI Asteroid Catalog

    Science.gov (United States)

    Usui, Fumihiko

    2012-06-01

    We propose a program to search water ice on the surface of asteroids in the outer main belt regions, which have high albedo measured with AKARI. The distribution of water in the main belt provides important information to understanding of the formation and evolution of the solar system, because water is a good indicator of temperature in the early solar nebula. The existence of water ice is a hot topic in the solar system studies today. Water ice is recently found in the outer region of the main asteroid belt and some of them are linked to the main belt comets. Brand-new albedo data brought by AKARI opens the possibility of detection of water ice on the C-type asteroids. Here we propose to make the spectroscopic observations with the Subaru telescope in the near-infrared wavelengths to detect water ice on these high-albedo C-type asteroids. Thanks to a large aperture of Subaru telescope and a high altitude of Mauna Kea, it can be only possible to observe a weak signal of the existence of water on the surface of asteroids with a certain S/N. In addition, using the imaging data taken prior to IRCS spectroscopic mode, we intend to seek any comet-like activities by investigating diffuseness of the asteroids, which can be detected by comparing the observed point-spread functions with those of field stars.

  12. AKARI/FIS Mapping of the ISM-Wind Bow Shock around Alpha Ori

    CERN Document Server

    Ueta, Toshiya; Yamamura, Issei; Nakada, Yoshikazu; Matsuura, Mikako; Ita, Yoshifusa; Tanabe, Toshihiko; Fukushi, Hinako; Matsunaga, Noriyuki; Mito, Hiroyuki

    2008-01-01

    We present 10' x 50' scan maps around an M supergiant Alpha Ori at 65, 90, 140 and 160 microns obtained with the AKARI Infrared Astronomy Satellite. Higher spatial resolution data with the exact analytic solution permit us to fit the de-projected shape of the stellar wind bow shock around Alpha Ori to have the stand-off distance of 4.8', position angle of 55 degrees and inclination angle of 56 degrees. The shape of the bow shock suggests that the peculiar velocity of Alpha Ori with respect to the local medium is v_* = 40 (n_H)^(-1/2), where n_H is the hydrogen nucleus density at Alpha Ori. We find that the local medium is of n_H = 1.5 to 1.9 cm^(-3) and the velocity of the local flow is at 11 km s^(-1) by using the most recent astrometric solutions for Alpha Ori under the assumption that the local medium is moving away from the Orion OB 1 association. AKARI images may also reveal a vortex ring due to instabilities on the surface of the bow shock as demonstrated by numerical models. This research exemplifies t...

  13. Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis

    Science.gov (United States)

    Gordo, Paulo; Amorim, Antonio; Abreu, Jorge; Eisenhauer, Frank; Anugu, Narsireddy; Garcia, Paulo; Pfuhl, Oliver; Haug, Marcus; Sturm, Eckhard; Wieprecht, Ekkehard; Perrin, Guy; Brandner, Wolfgang; Straubmeier, Christian; Perraut, Karine; Naia, M. Duarte; Guimarães, M.

    2014-07-01

    The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.

  14. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  15. Blast furnace infrared camera monitoring system%高炉摄像头温度监测系统

    Institute of Scientific and Technical Information of China (English)

    赵海豹; 李耀辉; 马春芽

    2011-01-01

    介绍1种基于nRF905的高炉摄像头温度监测系统,系统选用DS18B20采集温度并传输给ATMEGA 16L处理,然后利用SPI接口与nRF905无线发送模块通信,实现温度的无线传输.在接收端,对数据进行并行的2种处理方法,一是由ATMFEGA16L经MAX232转化为串口数据发送给上位机以供集中监控使用;另一种方法是通过ATMEGA16L发送给液晶RT12864M实时显示,以进行便携式温度监控.主要优点是实现了多点温度的实时测量和显示.该系统用于高炉红外摄像监控系统中摄像头的温度监控,现场工作人员根据温度数据调节循环水的流速从而延长了摄像头的寿命.%Blast furnace infrared camera monitoring system based on the nRF905 is introduced, which can realize the wireless temperature transmission. The system uses DS18B20 to collect the temperature data and transmit the data to ATMEGA16L and uses the SPI interface to corresponde with the wireless transceiver module of the nRF905. In the receiver,there are two methods to deal with the data. One is that the data which is changed to serial data by MAX232 is sent to the PC by ATMEGA16L for centralized monitoring. The other is that the data is sent to the LCD RT1286M to display the real-time temperature by the ATMEGA16L for portable temperature monitoring. The main advantage of this system is that it can realize the multi-spot temperature to measure and display . This system is used in blast furnace infrared camera monitoring system to monitor the camera's temperature. According to temperature data, the working staff adjusts the circulating water velocity in order to extend the camera's life.

  16. First Science Observations with SOFIA/FORCAST: The FORCAST Mid-infrared Camera

    CERN Document Server

    Herter, T L; De Buizer, J M; Gull, G E; Schoenwald, J; Henderson, C P; Keller, L D; Nikola, T; Stacey, G; Vacca, W D

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed thirteen science flights on SOFIA. In this paper we describe the design, operation and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near diffraction-limited images for lambda > 30 microns allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.

  17. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA

    Energy Technology Data Exchange (ETDEWEB)

    Herter, T. L.; Adams, J. D.; Gull, G. E.; Schoenwald, J.; Henderson, C. P.; Nikola, T.; Stacey, G. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); De Buizer, J. M.; Vacca, W. D. [Universities Space Research Association, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035 (United States); Keller, L. D. [Department of Physics, Ithaca College, Ithaca, NY 14850 (United States)

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed 13 science flights on SOFIA. In this Letter, we describe the design, operation, and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near-diffraction-limited images for {lambda} > 30 {mu}m allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.

  18. Detection of parent H2O and CO2 molecules in the 2.5--5 micron spectrum of comet C/2007 N3 (Lulin) observed with AKARI

    CERN Document Server

    Ootsubo, Takafumi; Kawakita, Hideyo; Ishiguro, Masateru; Furusho, Reiko; Hasegawa, Sunao; Ueno, Munetaka; Watanabe, Jun-ichi; Sekiguchi, Tomohiko; Wada, Takehiko; Ohyama, Youichi; Oyabu, Shinki; Matsuhara, Hideo; Onaka, Takashi; Nakagawa, Takao; Murakami, Hiroshi

    2010-01-01

    Comet C/2007 N3 (Lulin) was observed with the Japanese infrared satellite AKARI in the near-infrared at a post-perihelion heliocentric distance of 1.7 AU. Observations were performed with the spectroscopic (2.5--5.0 micron) and imaging (2.4, 3.2, and 4.1 micron) modes on 2009 March 30 and 31 UT, respectively. AKARI images of the comet exhibit a sunward crescent-like shape coma and a dust tail extended toward the anti-solar direction. The 4.1 micron image (CO/CO2 and dust grains) shows a distribution different from the 2.4 and 3.2 micron images (H2O and dust grains). The observed spectrum shows distinct bands at 2.66 and 4.26 micron, attributed to H2O and CO2, respectively. This is the fifth comet in which CO2 has been directly detected in the near-infrared spectrum. In addition, CO at 4.67 micron and a broad 3.2--3.6 micron emission band from C-H bearing molecules were detected in the AKARI spectrum. The relative abundance ratios CO2/H2O and CO/H2O derived from the molecular production rates are \\sim 4%--5% a...

  19. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    Science.gov (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  20. On-board Data Processing to Lower Bandwidth Requirements on an Infrared Astronomy Satellite: Case of Herschel-PACS Camera

    Directory of Open Access Journals (Sweden)

    Christian Reimers

    2005-09-01

    Full Text Available This paper presents a new data compression concept, “on-board processing,” for infrared astronomy, where space observatories have limited processing resources. The proposed approach has been developed and tested for the PACS camera from the European Space Agency (ESA mission, Herschel. Using lossy and lossless compression, the presented method offers high compression ratio with a minimal loss of potentially useful scientific data. It also provides higher signal-to-noise ratio than that for standard compression techniques. Furthermore, the proposed approach presents low algorithmic complexity such that it is implementable on the resource-limited hardware. The various modules of the data compression concept are discussed in detail.

  1. Infrared camera assessment of skin surface temperature--effect of emissivity.

    Science.gov (United States)

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account.

  2. Infrared camera assessment of skin surface temperature--effect of emissivity.

    Science.gov (United States)

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. PMID:23084004

  3. Near-infrared colors of asteroid 2012 DA14 at its closest approach to Earth: Observations with the Nishiharima Infrared Camera (NIC)

    Science.gov (United States)

    Takahashi, Jun; Urakawa, Seitaro; Terai, Tsuyoshi; Hanayama, Hidekazu; Arai, Akira; Honda, Satoshi; Takagi, Yuhei; Itoh, Yoichi; Zenno, Takahiro; Ishiguro, Masateru

    2014-06-01

    We present the results of our JHKs photometry of asteroid 2012 DA14 at its closest approach to Earth on 2013 February 15. Possible spectral changes associated with resurfacing by planetary encounters are of great interest. The Earth flyby of 2012 DA14 provided a rare opportunity to investigate this effect. Our observations were conducted using the Nishiharima Infrared Camera (NIC) attached to the 2.0 m Nayuta telescope at the Nishi-Harima Astronomical Observatory. Despite the extraordinarily fast sky motion of up to near 50″ s-1, the telescope successfully tracked the asteroid. The NIC achievement of three-band simultaneous observations allowed us to reliably deduce the colors of this fast-moving object. The derived near-infrared relative reflectances are flat, which is consistent with the classification of the asteroid as L-type. The J - H and H - Ks colors at 0.5-1 hr after the closest approach are compared with those observed by de León (2013, A&A, 555, L2) at ˜ 10 hr after the closest time. We did not detect color changes significantly exceeding the photometric errors, which are ˜ 0.1 mag. This project has demonstrated the potential of the NIC as a three-band simultaneous imager, especially for observations of rapidly time-variable phenomena.

  4. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

  5. RATIR: Reionization and Transients Infra-Red Camera. A New Instrument to Identify High Red-Shift GRBs

    Science.gov (United States)

    Rapchun, David A.

    2011-01-01

    We are currently constructing the cryogenic infrared portion of the RATIR instrument at NASA's Goddard Space Flight Center (GSFC) in collaboration with University of California, Berkeley (UCB) and The University of Mexico (UNAM). The infrared instrument will consist of two 2048x2048 Hawaii 2RG detectors, one on axis and one off axis using diachronic. The detectors will be operated using state-of-the-art Teledyne SIDECAR (System Image, Digitizing, Enhancing, Controlling, And Retrieving) ASICs (Application- Specific Integrated Circuits) similar to NIRSpec on JWST. The visible portion of the instrument is currently being developed at UCB consisting of two CCD imagining cameras. Once completed, the two sections will be integrated into the RATIR instrument. Mounted on a dedicated, fully-automated 1.5-m telescope, the instrument will provide rapid (UNAM), located on the Sierra de San Pedro Martir in Baja California, Mexico, provides great seeing (-1 aresec), good weather, dark skies, and significant sky coverage so that RATIR will detect a significant number of Swift afterglows. While not all GRBs will be at high red shifts, the resulting light curves, combined with X-ray/UV observations, will address several open questions, including the nature of both "dark GRBs" and the GRB emission mechanism.

  6. Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX

    International Nuclear Information System (INIS)

    Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.

  7. Design and development of wafer-level near-infrared micro-camera

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2015-08-01

    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  8. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view. PMID:26573644

  9. IO:I: A Near-Infrared Camera for the Liverpool Telescope

    CERN Document Server

    Barnsley, Robert; Steele, Iain; Smith, Robert; Bates, Stuart; Mottram, Chris

    2015-01-01

    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near infrared. Cost has been minimised by use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7$\\mu m$ cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller and JADE2 interface card. In this paper, the mechanical, electronic and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterisation tests, including measurements of read noise, conversion gain, full well depth and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data.

  10. Advances in shutter drive technology to enhance man-portable infrared cameras

    Science.gov (United States)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  11. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    Science.gov (United States)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  12. Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2014-02-01

    Full Text Available Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz ground-based uncooled thermal imager (Cyclops, operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7–14 μm, has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4–0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

  13. AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field South: source catalogue and number counts

    CERN Document Server

    Hatsukade, B; Aretxaga, I; Austermann, J E; Ezawa, H; Hughes, D H; Ikarashi, S; Iono, D; Kawabe, R; Khan, S; Matsuo, H; Matsuura, S; Nakanishi, K; Oshima, T; Perera, T; Scott, K S; Shirahata, M; Takeuchi, T T; Tamura, Y; Tanaka, K; Tosaki, T; Wilson, G W; Yun, M S

    2010-01-01

    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1...

  14. Difference in the spatial distribution between H_2O and CO_2 ices in M82 found with AKARI

    CERN Document Server

    Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki; Minh, Young Chol

    2013-01-01

    With AKARI, we obtain the spatially-resolved near-infrared (2.5 - 5.0 um) spectra for the nearby starburst galaxy M82. These spectra clearly show the absorption features due to interstellar ices. Based on the spectra, we created the column density maps of H_2O and CO_2 ices. As a result, we find that the spatial distribution of H_2O ice is significantly different from that of CO_2 ice; H_2O ice is widely distributed, while CO_2 ice is concentrated near the galactic center. Our result for the first time reveals variations in CO_2/H_2O ice abundance ratio on a galactic scale, suggesting that the ice-forming interstellar environment changes within a galaxy. We discuss the cause of the spatial variations in the ice abundance ratio, utilizing spectral information on the hydrogen recombination Br{\\alpha} and Br{\\beta} lines and the polycyclic aromatic hydrocarbon 3.3 um emission appearing in the AKARI near-infrared spectra.

  15. Near-Infrared Photon-Counting Camera for High-Sensitivity Observations

    Science.gov (United States)

    Jurkovic, Michael

    2012-01-01

    The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.

  16. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators

    Science.gov (United States)

    Müller, Johannes; Hartmann, Josefin; Bert, Christoph

    2016-04-01

    The purpose of this work was to provide a feasible and easy to apply phantom-based quality assurance (QA) procedure for superficial hyperthermia (SHT) applicators by means of infrared (IR) thermography. The VarioCAM hr head (InfraTec, Dresden, Germany) was used to investigate the SA-812, the SA-510 and the SA-308 applicators (all: Pyrexar Medical, Salt Lake City, UT, USA). Probe referencing and thermal equilibrium procedures were applied to determine the emissivity of the muscle-equivalent agar phantom. Firstly, the disturbing potential of thermal conduction on the temperature distribution inside the phantom was analyzed through measurements after various heating times (5-50 min). Next, the influence of the temperature of the water bolus between the SA-812 applicator and the phantom’s surface was evaluated by varying its temperature. The results are presented in terms of characteristic values (extremal temperatures, percentiles and effective field sizes (EFS)) and temperature-area-histograms (TAH). Lastly, spiral antenna applicators were compared by the introduced characteristics. The emissivity of the used phantom was found to be ɛ  =  0.91  ±  0.03, the results of both methods coincided. The influence of thermal conduction with regard to heating time was smaller than expected; the EFS of the SA-812 applicator had a size of (68.6  ±  6.7) cm2, averaged group variances were  ±3.0 cm2. The TAHs show that the influence of the water bolus is mostly limited to depths of  technical QA.

  17. Rice Crop Field Monitoring System with Radio Controlled Helicopter Based Near Infrared Cameras Through Nitrogen Content Estimation and Its Distribution Monitoring

    OpenAIRE

    Kohei Arai; Yuko Miura; Osamu Shigetomi; Hideaki Munemoto

    2013-01-01

    Rice crop field monitoring system with radio controlled helicopter based near infrared cameras is proposed together with nitrogen content estimation method for monitoring its distribution in the field in concern. Through experiments at the Saga Prefectural Agricultural Research Institute: SPARI, it is found that the proposed system works well for monitoring nitrogen content in the rice crop which indicates quality of the rice crop and its distribution in the field in concern. Therefore, it be...

  18. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  19. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  20. Akari Observations of Brown Dwarfs. II CO2 as Probe of Carbon and Oxygen Abundances in Brown Dwarfs

    CERN Document Server

    Tsuji, Takashi; Sorahana, Satoko

    2011-01-01

    Recent observations with the infrared astronomical satellite AKARI have shown that the CO2 bands at 4.2 micron in three brown dwarfs are much stronger than expected from the unified cloudy model (UCM) based on recent solar C & O abundances. This result has been a puzzle, but we now find that this is simply an abundance effect: We show that these strong CO2 bands can be explained with the UCMs based on the classical C & O abundances (log Ac and log Ao), which are about 0.2 dex larger compared to the recent values. Since three other brown dwarfs could be well interpreted with the recent solar C & O abundances, we require at least two model sequences based on the different chemical compositions to interpret all the AKARI spectra. The reason for this is that the CO2 band is especially sensitive to C & O abundances, since the CO2 abundance depends approximately on AcAo^2 --- the cube of C & O abundances. For this reason, even low resolution spectra of very cool dwarfs, especially of CO2 cannot ...

  1. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  2. A Precise Determination of the Mid-infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    Science.gov (United States)

    Xue, Mengyao; Jiang, B. W.; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-06-01

    A precise measure of the mid-infrared interstellar extinction law is crucial for investigating the properties of interstellar dust, especially larger-sized grains. Based on the stellar parameters derived from the SDSS-III/Apache Point Observatory Galaxy Evolution Experiment (APOGEE) spectroscopic survey, we select a large sample of G-type and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinctions (relative to {A}{{{K}}{{S}}}, the K S-band extinction at wavelength λ = 2.16 μm) for the four Wide-field Infrared Survey Explorer (WISE) bands at 3.4, 4.6, 12, and 22 μm, the four Spitzer/Infrared Array Camera bands at 3.6, 4.5, 5.8, and 8 μm, the Spitzer/MIPS24 band at 23.7 μm, and, for the first time, the AKARI/S9W band at 8.23 μm. Our results agree with previous works in that the extinction curve is flat in the ˜3-8 μm wavelength range and is generally consistent with the {R}V = 5.5 model curve, except our determination exceeds the model prediction in the WISE/W4 band. Although some previous works found that the mid-IR extinction law appears to vary with the extinction depth {A}{{{K}}{{S}}}, no noticeable variation has been found in this work. The uncertainties are analyzed in terms of the bootstrap resampling method and Monte-Carlo simulation and are found to be rather small.

  3. Design and calibration of a two-camera (visible to near-infrared and short-wave infrared) hyperspectral acquisition system for the characterization of metallic alloys from the recycling industry

    Science.gov (United States)

    Barnabé, Pierre; Dislaire, Godefroid; Leroy, Sophie; Pirard, Eric

    2015-11-01

    The conception of a prototype combining two hyperspectral cameras, one ranging from visible to near-infrared and the other covering short-wave infrared, is presented. The prototype aims at the characterization of millimeter-sized metallic alloys particles, originating from end-of-life vehicles and waste electrical and electronic equipment recycling. This paper is meant to serve as a support for a similar project by presenting difficulties encountered and available solutions. The calibration steps necessary to obtain quality reflectance data are also described. Classification results obtained on 100 metallic fragments dataset are finally presented.

  4. A New Sample of Obscured AGNs Selected from the XMM-Newton and AKARI Surveys

    CERN Document Server

    Terashima, Yuichi; Awaki, Hisamitsu; Oyabu, Shinki; Gandhi, Poshak; Toba, Yoshiki; Matsuhara, Hideo

    2015-01-01

    We report a new sample of obscured active galactic nuclei (AGNs) selected from the XMM serendipitous source and AKARI point-source catalogs. We match X-ray sources with infrared (18 and 90 micron) sources located at |b|>10 deg to create a sample consisting of 173 objects. Their optical classifications and absorption column densities measured by X-ray spectra are compiled and study efficient selection criteria to find obscured AGNs. We apply the criteria (1) X-ray hardness ratio defined by using the 2-4.5 keV and 4.5-12 keV bands >-0.1 and (2) EPIC-PN count rate (CR) in the 0.2-12 keV to infrared flux ratio CR/F90700 eV is found in 26 objects. Six among them are classified as Compton-thick AGNs, and four are represented by either Compton-thin or Compton-thick spectral models. The success rate of finding obscured AGNs combining our analysis and the literature is 92% if the 18 micron condition is used. Of the 26 objects, 4 are optically classified as an HII nucleus and are new "elusive AGNs" in which star format...

  5. Initial analysis of extragalactic fields using a new AKARI/IRC analysis pipeline

    CERN Document Server

    Davidge, H R; Pearson, C P

    2016-01-01

    We present the first results of a new data analysis pipeline for processing extragalactic AKARI/IRC images. The main improvements of the pipeline over the standard analysis are the removal of Earth shine and image distortion correction. We present the differential number counts of the AKARI/IRC S11 filter IRAC validation field. The differential number counts are consistent with S11 AKARI NEP deep and 12 microns WISE NEP number counts, and with a phenomenological backward evolution galaxy model, at brighter fluxes densities. There is a detection of deeper galaxies in the IRAC validation field.

  6. Commissioning ShARCS: the Shane Adaptive optics infraRed Camera-Spectrograph for the Lick Observatory 3-m telescope

    CERN Document Server

    McGurk, Rosalie; Gavel, Donald; Kupke, Renate; Peck, Michael; Pfister, Terry; Ward, Jim; Deich, William; Gates, John; Gates, Elinor; Alcott, Barry; Cowley, David; Dillon, Daren; Lanclos, Kyle; Sandford, Dale; Saylor, Mike; Srinath, Srikar; Weiss, Jason; Norton, Andrew

    2014-01-01

    We describe the design and first-light early science performance of the Shane Adaptive optics infraRed Camera-Spectrograph (ShARCS) on Lick Observatory's 3-m Shane telescope. Designed to work with the new ShaneAO adaptive optics system, ShARCS is capable of high-efficiency, diffraction-limited imaging and low-dispersion grism spectroscopy in J, H, and K-bands. ShARCS uses a HAWAII-2RG infrared detector, giving high quantum efficiency (>80%) and Nyquist sampling the diffraction limit in all three wavelength bands. The ShARCS instrument is also equipped for linear polarimetry and is sensitive down to 650 nm to support future visible-light adaptive optics capability. We report on the early science data taken during commissioning.

  7. Clustering of the AKARI NEP Deep Field 24 $\\mu$m selected galaxies

    CERN Document Server

    Solarz, A; Takeuchi, T T; Małek, K; Matsuhara, H; White, G J; Pȩpiak, A; Goto, T; Wada, T; Oyabu, S; Takagi, T; Ohyama, Y; Pearson, C P; Hanami, H; Ishigaki, T; Malkan, M

    2015-01-01

    We present a method of selection of 24~$\\mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 \\mbox{ }\\mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $\\mu$m selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80\\%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter ($r_{0}$) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. We observe two differe...

  8. A Novel Approach to Synchronous Image Acquisition from Near Infrared Camera in Optical-Surgery Navigation System

    Directory of Open Access Journals (Sweden)

    Rongqian Yang

    2015-10-01

    Full Text Available The positional accuracy of an optical-surgery navigation system is significantly affected by two factors. One is the acquisition synchronism of the two cameras in the system, and the other is the phase difference in image transmission acquired by these cameras. To further enhance image-acquisition synchronism, a field programmable gate array (FPGA- based synchronous-acquisition method is introduced in this paper. The FPGA control circuit board is independently designed to equalize the length of all data lines, thereby reducing differences in image transmission. Two Complementary Metal Oxide Semiconductors (CMOS image sensor chips of MT9V032 are also adopted to enable synchronous acquisition in passive acquisition mode. Moreover, the control of exposure time and frame number of MT9V032 under the passive acquisition mode is discussed. Finally, the proposed method is validated and the experimental results the two cameras show h

  9. AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis

    Science.gov (United States)

    Murata, K.; Matsuhara, H.; Wada, T.; Arimatsu, K.; Oi, N.; Takagi, T.; Oyabu, S.; Goto, T.; Ohyama, Y.; Malkan, M.; Pearson, C.; Małek, K.; Solarz, A.

    2013-11-01

    Context. We present the revised near- to mid-infrared catalogue of the AKARI North Ecliptic Pole deep survey. The survey has the unique advantage of continuous filter coverage from 2 to 24 μm over nine photometric bands, but the initial version of the survey catalogue leaves room for improvement in the image analysis stage; the original images are strongly contaminated by the behaviour of the detector and the optical system. Aims: The purpose of this study is to devise new image analysis methods and to improve the detection limit and reliability of the source extraction. Methods: We removed the scattered light and stray light from the Earth limb, and corrected for artificial patterns in the images by creating appropriate templates. We also removed any artificial sources due to bright sources by using their properties or masked them out visually. In addition, for the mid-infrared source extraction, we created detection images by stacking all six bands. This reduced the sky noise and enabled us to detect fainter sources more reliably. For the near-infrared source catalogue, we considered only objects with counterparts from ground-based catalogues to avoid fake sources. For our ground-based catalogues, we used catalogues based on the CFHT/MegaCam z' band, CFHT/WIRCam Ks band and Subaru/Scam z' band. Objects with multiple counterparts were all listed in the catalogue with a merged flag for the AKARI flux. Results: The detection limits of all mid-infrared bands were improved by ~20%, and the total number of detected objects was increased by ~2000 compared with the previous version of the catalogue; it now has 9560 objects. The 5σ detection limits in our catalogue are 11, 9, 10, 30, 34, 57, 87, 93, and 256 μJy in the N2, N3, N4, S7, S9W, S11, L15, L18W, and L24 bands, respectively. The astrometric accuracies of these band detections are 0.48, 0.52, 0.55, 0.99, 0.95, 1.1, 1.2, 1.3, and 1.6 arcsec, respectively. The false-detection rate of all nine bands was decreased

  10. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    Directory of Open Access Journals (Sweden)

    Sáez-Cano G.

    2015-01-01

    Full Text Available The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS and its aim is to detect Ultra High Energy Cosmic Rays (UHECR and Extremely High Energy Cosmic Rays (EHECR by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS. This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  11. Design of the Front End Electronics for the Infrared Camera of JEM-EUSO, and manufacturing and verification of the prototype model

    CERN Document Server

    Maroto, Oscar; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven, Enrique; Martín, Yolanda; Ríos, J A Morales de los; Del Peral, Luis; Frías, M D Rodríguez

    2015-01-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above $10^{19}$ eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an unco...

  12. The AKARI Deep Field South: Pushing to High Redshift

    CERN Document Server

    Clements, David L

    2016-01-01

    The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/submm images, including studies of cold dust in nearby galaxies, the identification of strongly lensed distant galaxies, and the use of colour selection to find candidate very high redshift sources. I conclude that the potential for significant new results from the ADF-S is very great. The addition of new wavelength bands in the future, eg. from Euclid, SKA, ALMA and elsewhere, will boost the importance of this field still further.

  13. 3-D Dynamics of Interactions between Stellar Winds and the Interstellar Medium as Seen by AKARI and Spitzer

    CERN Document Server

    Ueta, Toshiya; Yamamura, Issei; Stencel, Robert E; Nakada, Yoshikazu; Matsuura, Mikako; Ita, Yoshifusa; Tanabe, Toshihiko; Fukushi, Hinako; Matsunaga, Noriyuki; Mito, Hiroyuki; Speck, Angela K

    2009-01-01

    Recent far-infrared mapping of mass-losing stars by the AKARI Infrared Astronomy Satellite and Spitzer Space Telescope have suggested that far-infrared bow shock structures are probably ubiquitous around these mass-losing stars, especially when these stars have high proper motion. Higher spatial resolution data of such far-infrared bow shocks now allow detailed fitting to yield the orientation of the bow shock cone with respect to the heliocentric space motion vector of the central star, using the analytical solution for these bow shocks under the assumption of momentum conservation across a physically thin interface between the stellar winds and interstellar medium (ISM). This fitting analysis of the observed bow shock structure would enable determination of the ambient ISM flow vector, founding a new technique to probe the 3-D ISM dynamics that are local to these interacting systems. In this review, we will demonstrate this new technique for three particular cases, Betelgeuse, R Hydrae, and R Cassiopeiae.

  14. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  15. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Ryan, R. E.; Koekemoer, A. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Schneider, G.; Fan, X. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hathi, N. P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Roettgering, H. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Strauss, M. A. [Princeton University Observatory, Princeton, NJ 08544 (United States); Yan, H. J. [Department of Physics and Astronomy, The University of Missouri, 701 South College Ave, Columbia, MO 65211 (United States)

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  16. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera.

    Science.gov (United States)

    Cao, Yanpeng; Tisse, Christel-Loic

    2014-02-01

    In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

  17. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-01-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489

  18. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.

  19. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489

  20. Infrared Camera Characterization of Bi-Propellant Reaction Control Engines during Auxiliary Propulsion Systems Tests at NASA's White Sands Test Facility in Las Cruces, New Mexico

    Science.gov (United States)

    Holleman, Elizabeth; Sharp, David; Sheller, Richard; Styron, Jason

    2007-01-01

    This paper describes the application of a FUR Systems A40M infrared (IR) digital camera for thermal monitoring of a Liquid Oxygen (LOX) and Ethanol bi-propellant Reaction Control Engine (RCE) during Auxiliary Propulsion System (APS) testing at the National Aeronautics & Space Administration's (NASA) White Sands Test Facility (WSTF) near Las Cruces, New Mexico. Typically, NASA has relied mostly on the use of ThermoCouples (TC) for this type of thermal monitoring due to the variability of constraints required to accurately map rapidly changing temperatures from ambient to glowing hot chamber material. Obtaining accurate real-time temperatures in the JR spectrum is made even more elusive by the changing emissivity of the chamber material as it begins to glow. The parameters evaluated prior to APS testing included: (1) remote operation of the A40M camera using fiber optic Firewire signal sender and receiver units; (2) operation of the camera inside a Pelco explosion proof enclosure with a germanium window; (3) remote analog signal display for real-time monitoring; (4) remote digital data acquisition of the A40M's sensor information using FUR's ThermaCAM Researcher Pro 2.8 software; and (5) overall reliability of the system. An initial characterization report was prepared after the A40M characterization tests at Marshall Space Flight Center (MSFC) to document controlled heat source comparisons to calibrated TCs. Summary IR digital data recorded from WSTF's APS testing is included within this document along with findings, lessons learned, and recommendations for further usage as a monitoring tool for the development of rocket engines.

  1. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  2. Masterpieces unmasked: New high-resolution infrared cameras produce rich, detailed images of artwork, and create new controversies

    CERN Multimedia

    Marshall, J

    2002-01-01

    Luca Pezzati is a physicist who heads a group called Art Diagnostics, which is a part of the Opificio delle Pietre Dure, an institute devoted to the research and conservation of artworks in Italy. Pezzati and his group use high-resolution infrared scanning device to produce colour images of what lies below the surface of paintings. Their scanner is able to produce the best-known quality of images without harming the painting under examination (1 page).

  3. Design of the front end electronics for the infrared camera of JEM-EUSO, and manufacturing and verification of the prototype model

    Science.gov (United States)

    Maroto, Oscar; Diez-Merino, Laura; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven-Alvarez, Enrique; Martín, Yolanda; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.

    2014-07-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 1019 eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μV from 1Hz to 10MHz, temperature control of the microbolometer, from 10°C to 40°C with stability better than 10mK over 4.8hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction. It also shows the modifications implemented in the FEE prototype design to perform a trade-off of different technologies, such as the convenience of using linear or switched regulation for the temperature control, the possibility to check the camera performances when both microbolometer and analog electronics are moved further away from the power and digital electronics, and

  4. DIFFERENCE IN THE SPATIAL DISTRIBUTION BETWEEN H{sub 2}O AND CO{sub 2} ICES IN M 82 FOUND WITH AKARI

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Mitsuyoshi; Kaneda, Hidehiro; Ishihara, Daisuke; Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, Takashi [Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shimonishi, Takashi [Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501 (Japan); Suzuki, Toyoaki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Minh, Young Chol, E-mail: yamagishi@u.phys.nagoya-u.ac.jp [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong, Daejeon 305-348 (Korea, Republic of)

    2013-08-20

    With AKARI, we obtain the spatially resolved near-infrared (NIR) (2.5-5.0 {mu}m) spectra for the nearby starburst galaxy M 82. These spectra clearly show absorption features due to interstellar ices. Based on the spectra, we created the column density maps of H{sub 2}O and CO{sub 2} ices. As a result, we find that the spatial distribution of H{sub 2}O ice is significantly different from that of CO{sub 2} ice; H{sub 2}O ice is widely distributed, while CO{sub 2} ice is concentrated near the galactic center. Our result reveals for the first time variations in CO{sub 2}/H{sub 2}O ice abundance ratio on a galactic scale, suggesting that an ice-forming interstellar environment changes within a galaxy. We discuss the cause of the spatial variations in the ice abundance ratio, utilizing spectral information on the hydrogen recombination Br{alpha} and Br{beta} lines and the polycyclic aromatic hydrocarbon 3.3 {mu}m emission appearing in the AKARI NIR spectra.

  5. Environmental dependence of polycyclic aromatic hydrocarbon emission at z~0.8. Investigation by observing the RX J0152.7-1357 with AKARI

    CERN Document Server

    Murata, Kazumi; Tanaka, Masayuki; Matsuhara, Hideo; Kodama, Tadayuki

    2015-01-01

    We study the environmental dependence of the strength of polycyclic aromatic hydrocarbon (PAH) emission by AKARI observations of RX J0152.7-1357, a galaxy cluster at z=0.84. PAH emission reflects the physical conditions of galaxies and dominates 8 um luminosity (L8), which can directly be measured with the L15 band of AKARI. L8 to infrared luminosity (LIR) ratio is used as a tracer of the PAH strength. Both photometric and spectroscopic redshifts are applied to identify the cluster members. The L15-band-detected galaxies tend to reside in the outskirt of the cluster and have optically green colour, R-z'~ 1.2. We find no clear difference of the L8/LIR behaviour of galaxies in field and cluster environment. The L8/LIR of cluster galaxies decreases with specific-star-formation rate divided by that of main-sequence galaxies, and with LIR, consistent with the results for field galaxies. The relation between L8/LIR and LIR is between those at z=0 and z=2 in the literature. Our data also shows that starburst galaxie...

  6. Planetcam: A Visible And Near Infrared Lucky-imaging Camera To Study Planetary Atmospheres And Solar System Objects

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; de Bilbao, L.; Murga, G.; Ariño, J.; Mendikoa, I.

    2012-10-01

    PlanetCam is a two-channel fast-acquisition and low-noise camera designed for a multispectral study of the atmospheres of the planets (Venus, Mars, Jupiter, Saturn, Uranus and Neptune) and the satellite Titan at high temporal and spatial resolutions simultaneously invisible (0.4-1 μm) and NIR (1-2.5 μm) channels. This is accomplished by means of a dichroic beam splitter that separates both beams directing them into two different detectors. Each detector has filter wheels corresponding to the characteristic absorption bands of each planetary atmosphere. Images are acquired and processed using the “lucky imaging” technique in which several thousand images of the same object are obtained in a short time interval, coregistered and ordered in terms of image quality to reconstruct a high-resolution ideally diffraction limited image of the object. Those images will be also calibrated in terms of intensity and absolute reflectivity. The camera will be tested at the 50.2 cm telescope of the Aula EspaZio Gela (Bilbao) and then commissioned at the 1.05 m at Pic-duMidi Observatory (Franca) and at the 1.23 m telescope at Calar Alto Observatory in Spain. Among the initially planned research targets are: (1) The vertical structure of the clouds and hazes in the planets and their scales of variability; (2) The meteorology, dynamics and global winds and their scales of variability in the planets. PlanetCam is also expected to perform studies of other Solar System and astrophysical objects. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  7. Star Formation in Ultraluminous Infrared Galaxies Probed with AKARI Near-Infrared Spectroscopy

    CERN Document Server

    Yano, Kenichi; Isobe, Naoki; Shirahata, Mai

    2016-01-01

    We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected f...

  8. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Luketina, K. M.

    2016-10-01

    Drones are now routinely used for collecting aerial imagery and creating digital elevation models (DEM). Lightweight thermal sensors provide another payload option for generation of very high-resolution aerial thermal orthophotos. This technology allows for the rapid and safe survey of thermal areas, often present in inaccessible or dangerous terrain. Here we present a 2.2 km2 georeferenced, temperature-calibrated thermal orthophoto of the Waikite geothermal area, New Zealand. The image represents a mosaic of nearly 6000 thermal images captured by drone over a period of about 2 weeks. This is thought by the authors to be the first such image published of a significant geothermal area produced by a drone equipped with a thermal camera. Temperature calibration of the image allowed calculation of heat loss (43 ± 12 MW) from thermal lakes and streams in the survey area (loss from evaporation, conduction and radiation). An RGB (visible spectrum) orthomosaic photo and digital elevation model was also produced for this area, with ground resolution and horizontal position error comparable to commercially produced LiDAR and aerial imagery obtained from crewed aircraft. Our results show that thermal imagery collected by drones has the potential to become a key tool in geothermal science, including geological, geochemical and geophysical surveys, environmental baseline and monitoring studies, geotechnical studies and civil works.

  9. Advances on Sensitive Electron-injection based Cameras for Low-Flux, Short-Wave-Infrared Applications

    Science.gov (United States)

    Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman

    2016-08-01

    Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two

  10. Advances on Sensitive Electron-injection based Cameras for Low-Flux, Short-Wave-Infrared Applications

    Directory of Open Access Journals (Sweden)

    Vala Fathipour

    2016-08-01

    Full Text Available Short-wave infrared (SWIR photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range.We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI detector was demonstrated for the first time (in 2007. It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs, and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K.EI detectors have been designed, fabricated, and

  11. Near infrared thermography by CCD cameras and application to first wall components of Tore Supra tokamak; Thermographie proche infrarouge par cameras CCD et application aux composants de premiere paroi du tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, F.

    1996-06-07

    In the Tokamak TORE-SUPRA, the plasma facing components absorbs and evacuate (active cooling) high power fluxes (up to 10 MW/m{sup 2}). Their thermal behavior study is essential for the success of controlled thermonuclear fusion line. The first part is devoted to the study of power deposition on the TORE-SUPRA actively cooled limiters. A model of power deposition on one of the limiters is developed. It takes into account the magnetic topology and a description of the plasma edge. The model is validated with experimental calorimetric data obtained during a series of shots. This will allow to compare the surface temperature measurements with the predicted ones. The main purpose of this thesis was to evaluate and develop a new temperature measurement system. It works in the near infrared range (890 nm) and is designed to complete the existing thermographic diagnostic of TORE-SUPRA. By using the radiation laws (for a blackbody and the plasma) and the laboratory calibration one can estimate the surface temperature of the observed object. We evaluate the performances and limits of such a device in the harsh conditions encountered in a Tokamak environment. On the one hand, in a quasi ideal situation, this analysis shows that the range of measurements is 600 deg. C to 2500 deg. C. On the other hand, when one takes into account of the plasma radiation (with an averaged central plasma density of 6.10{sup 19} m{sup -3}), we find that the minimum surface temperature rise to 900 deg. C instead of 700 deg. C. In the near future, according to the development of IR-CCD cameras working in the near infrared range up to 2 micrometers, we will be able to keep the good spatial resolution with an improved lower limit for the temperature down to 150 deg. C. The last section deals with a number of computer tools to process the images obtained from experiments on TORE-SUPRA. A pattern recognition application was developed to detect a complex plasma iso-intensity structure. 87 refs.

  12. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  13. THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808

    International Nuclear Information System (INIS)

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ∼65% and ∼35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin.

  14. The infrared eye of the Wide-Field Camera 3 on the Hubble Space Telescope reveals multiple main sequences of very low-mass stars in NGC 2808

    CERN Document Server

    Milone, A P; Cassisi, S; Piotto, G; Bedin, L R; Anderson, J; Allard, F; Aparicio, A; Bellini, A; Buonanno, R; Monelli, M; Pietrinferni, A

    2012-01-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope (HST) to study the multiple main sequences (MSs) of NGC 2808. Below the turn off, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ~65% and ~35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD), and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abund...

  15. Hubble Space Telescope hot Jupiter Transmission Spectral Survey: detection of water in HAT-P-1b from Wide Field Camera 3 near-infrared spatial scan observations

    CERN Document Server

    Wakeford, H R; Deming, D; Gibson, N P; Fortney, J J; Burrows, A S; Ballester, G; Nikolov, N; Aigrain, S; Henry, G; Knutson, H; Etangs, A Lecavelier des; Pont, F; Showman, A P; Vidal-Madjar, A; Zahnle, K

    2013-01-01

    We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {\\mu}m. These time series observations were taken with the newly available spatial scan mode that increases the duty cycle by nearly a factor of two, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R*=0.11709+/-0.00038 in the white light curve with the centre of transit occurring at 2456114.345+/-0.000133 (JD). We achieve S/N levels per exposure of 1840 (0.061%) at a resolution of {\\Delta\\lambda}=19.2nm (R~70) in the 1.1173 - 1.6549{\\mu}m spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultan...

  16. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    CERN Document Server

    Sáez-Cano, G; del Peral, L; Neronov, A; Wada, S; Frías, M D Rodríguez

    2015-01-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the ret...

  17. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  18. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  19. VizieR Online Data Catalog: AKARI observations of SMC Cepheids (Ngeow+, 2012)

    Science.gov (United States)

    Ngeow, C.-C.; Citro, D. M.; Kanbur, S. M.

    2012-07-01

    The AKARI data used in this work is based on the SMC bright point source catalogue presented in Ita et al. (2010, Cat. J/PASJ/62/273). Photometry in 3.2um (N3, 12899 sources), 4.1um (N4, 9748 sources), 7um (S7, 1838 sources), 11um (S11, 1045 sources), 15um (L15, 479 sources) and 24um (L24, 356 sources) bands provided from the AKARI catalogue. This catalogue was matched to the Optical Gravitational Lensing Experiment III (OGLE-III) SMC fundamental mode (FU) Cepheid catalogue from Soszynski et al. (2010, Cat. J/AcA/60/17). (1 data file).

  20. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  1. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  2. Bringing the infrared to light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Infrared imaging is usually done by use of infrared cameras. We present an effective alternative approach where infrared light is converted to near visible light in a non-linear process, and then detected by low cost, high performance camera. The approach is generic and can be applied towards many...

  3. Infrared studies of molecular shocks in the supernova remnant HB 21: II. Thermal admixture of shocked H2 gas in the south

    Science.gov (United States)

    Shinn, Jong-Ho; Koo, Bon-Chul; Burton, Michael; Lee, Ho-Gyu; Moon, Dae-Sik

    2010-02-01

    We present near- and mid-infrared observations on the shock-cloud interaction region in the southern part of the supernova remnant HB 21, performed with the InfraRed Camera (IRC) aboard AKARI satellite and the Wide InfraRed Camera (WIRC) at the Palomar 5 m telescope. The IRC 4 μm (N4), 7 μm (S7), and 11 μm (S11) band images and the WIRC Hυ=1→0S(1) 2.12 μm image show similar diffuse features, around a shocked CO cloud. We analyzed the emission through comparison with the H2 line emission of several shock models. The IRC colors are well explained by the thermal admixture model of H2 gas - whose infinitesimal H2 column density has a power-law relation with the temperature T, dN˜T-dT - with n(H)˜3.9×104cm-3,b˜4.2, and N(H;T>100K)˜2.8×1021cm-2. We interpreted these parameters with several different pictures of the shock-cloud interactions - multiple planar C-shocks, bow shocks, and shocked clumps - and discussed their weaknesses and strengths. The observed Hυ=1→0S(1) intensity is four times greater than the prediction from the power-law admixture model, the same tendency as found in the northern part of HB 21 (Paper I). We also explored the limitation of the thermal admixture model with respect to the derived model parameters.

  4. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    CERN Document Server

    Ishihara, Daisuke; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2016-01-01

    Context: Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 AU. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods : We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 micron detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks<4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H...

  5. ISO camera array development status

    Science.gov (United States)

    Sibille, F.; Cesarsky, C.; Agnese, P.; Rouan, D.

    1989-01-01

    A short outline is given of the Infrared Space Observatory Camera (ISOCAM), one of the 4 instruments onboard the Infrared Space Observatory (ISO), with the current status of its two 32x32 arrays, an InSb charge injection device (CID) and a Si:Ga direct read-out (DRO), and the results of the in orbit radiation simulation with gamma ray sources. A tentative technique for the evaluation of the flat fielding accuracy is also proposed.

  6. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  7. A SURVEY OF H{sub 2}O, CO{sub 2}, AND CO ICE FEATURES TOWARD BACKGROUND STARS AND LOW-MASS YOUNG STELLAR OBJECTS USING AKARI

    Energy Technology Data Exchange (ETDEWEB)

    Noble, J. A. [Aix-Marseille Université, PIIM UMR 7345, F-13397 Marseille (France); Fraser, H. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Aikawa, Y. [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Pontoppidan, K. M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sakon, I., E-mail: helen.fraser@open.ac.uk [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0003 (Japan)

    2013-10-01

    We present near-infrared spectroscopic observations of 19 molecular clouds made using the AKARI satellite, and the data reduction pipeline written to analyze those observations. The 2.5-5 μm spectra of 30 objects—22 field stars behind quiescent molecular clouds and 8 low-mass young stellar objects in cores—were successfully extracted using the pipeline. Those spectra are further analyzed to calculate the column densities of key solid phase molecular species, including H{sub 2}O, CO{sub 2}, CO, and OCN{sup –}. The profile of the H{sub 2}O ice band is seen to vary across the objects observed and we suggest that the extended red wing may be an evolutionary indicator of both dust and ice mantle properties. The observation of 22 spectra with fluxes as low as < 5 mJy toward background stars, including 15 where the column densities of H{sub 2}O, CO, and CO{sub 2} were calculated, provides valuable data that could help to benchmark the initial conditions in star-forming regions prior to the onset of star formation.

  8. A low-noise readout circuit in 0.35-μm CMOS for low-cost uncooled FPA infrared network camera

    Science.gov (United States)

    Mesgarzadeh, Behzad; Sadeghifar, M. Reza; Fredriksson, Per; Jansson, Christer; Niklaus, Frank; Alvandpour, Atila

    2009-05-01

    This paper describes a differential readout circuit technique for uncooled Infrared Focal Plane Arrays (IRFPA) sensors. The differential operation allows an efficient rejection of the common-mode noise during the biasing and readout of the detectors. This has been enabled by utilizing a number of blind and thermally-isolated IR bolometers as reference detectors. In addition, a pixel-wise detector calibration capability has been provided in order to allow efficient error corrections using digital signal processing techniques. The readout circuit for a 64×64 test bolometer-array has been designed in a standard 0.35-μm CMOS process. Circuit simulations show that the analog readout at 60 frames/s consumes 30 mW from a 3.3-V supply and results in a noise equivalent temperature difference (NETD) of 125 mK for infrared optics.

  9. Laser Dazzling of Focal Plane Array Cameras

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Dimmeler, A.; Eberle, B; Heuvel, J.C. van den; Mieremet, A.L.; Bekman, H.H.P.T.; Mellier, B.

    2007-01-01

    Laser countermeasures against infrared focal plane array cameras aim to saturate the full camera image. In this paper we will discuss the results of dazzling experiments performed with MWIR lasers. In the “low energy” pulse regime we observe an increasing saturated area with increasing power. The si

  10. Laser Dazzling of Focal Plane Array Cameras

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Heuvel, J.C. van den; Mieremet, A.J.; Mellier, B.; Putten, F.J.M. van

    2007-01-01

    Laser countermeasures against infrared focal plane array cameras aim to saturate the full camera image. In this paper we will discuss the results of three different dazzling experiments performed with MWIR lasers and show that the obtained results are independent of the read-out mechanism of the cam

  11. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Sullivan, I. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Cooray, A.; Mitchell-Wynne, K.; Smidt, J. [Center for Cosmology, University of California, Irvine, CA 92697 (United States); Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Institute of Astronomy and Astrophysics, Academia Sinica, National Taiwan University, Taipei 10617, Taiwan (China); Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Suzuki, K. [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan); and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  12. Optimising camera traps for monitoring small mammals.

    Science.gov (United States)

    Glen, Alistair S; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea), feral cats (Felis catus) and hedgehogs (Erinaceuseuropaeus). Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  13. 利用红外相机研究神农架自然保护区野生动物分布规律%Distribution of Wildlife Surveyed with Infra-Red Cameras in the Shennongjia National Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    李广良; 李迪强; 薛亚东; 王秀磊; 杨敬元; 余辉亮

    2014-01-01

    利用红外相机对神农架自然保护区的野生动物分布范围和活动规律进行调查。于2010年8-9月和2011年3-9月,在95个位点放置红外相机,每台相机在每个位点放置时间为1~2个月。共获得野生动物照片9665张,其中有效照片536张;有效照片中兽类占82%,鸟类占18%,经鉴定,兽类有19种,鸟类有9种。在海拔2219~2597 m的区域和寒温性针阔混交林中拍摄的动物种数和拍摄率均最高,说明这些区域的野生动物数量和种类最多。同种动物在不同的植被型下拍摄率不同,说明该种动物对各植被型的偏好程度不同。对6种最常见兽类和2种雉类的研究表明:在寒温性和温性针阔混交林中拍摄率最高的是斑羚、红腹角雉,在温性针阔混交林拍摄率最高的是毛冠鹿,在寒温性针阔混交林中拍摄率最高的是野猪、梅花鹿、红腹锦鸡,在针叶林中拍摄率最高的是鬣羚。%To investigate diversity and relative abundance of the wildlife in Hubei Shennongjia National Nature Reserve, infra-red cameras were installed in 95 sites,with each site maintained for one to two months and monitored the movement of the animals from August to September,2010,and from March to September,2011. The cameras totally took 9 665 photos with identified animals,and of them there are 536 effective photos,among which 82% were mammals,18% were birds. The total 19 species of mammals and 9 species of birds were identified. At different elevations and in different vegetation types the photographic rates ( PR ) of infra-red cameras were varied. The PR was significantly higher at elevation of 2 219 -2 597 m; PR of infra-red cameras in cold temperate mixed coniferous and broadleaved forest was the highest,indicating that diversity and abundance of mammals and birds in these places were more than other regions. For the same specie of animal in different vegetation the PR was different

  14. ESA joins forces with Japan on new infrared sky surveyor

    Science.gov (United States)

    2006-02-01

    Prof. David Southwood, ESA’s Director of Science, said: “The successful launch of ASTRO-F(Akari) is a big step. A decade ago, our Infrared Space Observatory (ISO) opened up this field of astronomy, and the Japanese took part then. It is wonderful to be cooperating again with Japan in this discipline.” “Our involvement with the Japanese in this programme responds to our long-term commitment in infrared astronomy, whose potential for discovery is huge. We are now off and rolling with ASTRO-F/Akari, but we are also working extremely hard towards the launch of the next-generation infrared telescope, ESA’s Herschel spacecraft, which will go up in the next two years”, he continued. “This will still not be the end of the story. Infrared astronomy is also a fundamental part of the future vision for ESA’s space research, as outlined in the ‘Cosmic Vision 2015-2025’ programme. The truth is, subjects such as the formation of stars and exoplanets, or the evolution of the early universe, are themes at the very core of our programme.” The mission : On 21 February, at 22:28 Central European Time, (22 February, 06:28 local time), a Japanese M-V rocket blasted off from the Uchinoura Space Centre, in the Kagoshima district of Japan, carrying the new infrared satellite into space. In about two weeks' time, ASTRO-F will be in polar orbit around the Earth at an altitude of 745 kilometres. From there, after two months of system check-outs and performance verification, it will survey the whole sky in about half a year, with much better sensitivity, spatial resolution and wider wavelength coverage than its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite (1983). The all-sky survey will be followed by a ten-month phase during which thousands of selected astronomical targets will be observed in detail. This will enable scientists to look at these individual objects for a longer time, and thus with increased sensitivity, to conduct their spectral

  15. Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope

    CERN Document Server

    Ehrenreich, David; Lovis, Christophe; Delfosse, Xavier; Forveille, Thierry; Mayor, Michel; Neves, Vasco; Santos, Nuno C; Udry, Stéphane; Ségransan, Damien

    2014-01-01

    The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the t...

  16. Radio-AGN in the AKARI-NEP field and their role in the evolution of galaxies

    OpenAIRE

    Karouzos, Marios; Im, Myungshin; team, the AKARI-NEP

    2013-01-01

    Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relative...

  17. Radio-AGN in the AKARI-NEP field and their role in the evolution of galaxies

    CERN Document Server

    Karouzos, Marios; 10.5303/PKAS.2012.27.4.287

    2013-01-01

    Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relatively old stellar populations.

  18. Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

    CERN Document Server

    Karouzos, Marios; Trichas, Markos

    2013-01-01

    We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.

  19. ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION

    International Nuclear Information System (INIS)

    We study the Spitzer Infrared Array Camera (IRAC) mid-infrared (rest-frame optical) fluxes of 14 newly WFC3/IR-detected z ∼ 7 z 850-dropout galaxies and 5z ∼ 8 Y 105-dropout galaxies. The WFC3/IR depth and spatial resolution allow accurate removal of contaminating foreground light, enabling reliable flux measurements at 3.6 μm and 4.5 μm. None of the galaxies are detected to [3.6] ∼ 26.9 (AB, 2σ), but a stacking analysis reveals a robust detection for the z 850-dropouts and an upper limit for the Y 105-dropouts. We construct average broadband spectral energy distributions using the stacked Advanced Camera for Surveys (ACS), WFC3, and IRAC fluxes and fit stellar population synthesis models to derive mean redshifts, stellar masses, and ages. For the z 850-dropouts, we find z = 6.9+0.1-0.1, (U - V)rest ∼ 0.4, reddening AV = 0, stellar mass (M*) = 1.2+0.3-0.6 x 109 M sun (Salpeter initial mass function). The best-fit ages ∼300 Myr, M/LV ∼ 0.2, and SSFR ∼1.7 Gyr-1 are similar to values reported for luminous z ∼ 7 galaxies, indicating the galaxies are smaller but not much younger. The sub-L* galaxies observed here contribute significantly to the stellar mass density and under favorable conditions may have provided enough photons for sustained reionization at 7 +0.1-0.2 Y 105-dropouts have stellar masses that are uncertain by 1.5 dex due to the near-complete reliance on far-UV data. Adopting the 2σ upper limit on the M/L(z = 8), the stellar mass density to M UV,AB +1.4-1.8 x 106 M sun Mpc-3 to ρ*(z = 8) 5 M sun Mpc-3, following ∝(1 + z)-6 over 3 < z < 8. Lower masses at z = 8 would signify more dramatic evolution, which can be established with deeper IRAC observations, long before the arrival of the James Webb Space Telescope.

  20. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (first report): trial products of beans-size Fourier-spectroscopic line-imager and feasibility experimental results of middle-infrared spectroscopic imaging

    Science.gov (United States)

    Ishimaru, Ichiro; Kawashima, Natsumi; Hosono, Satsuki

    2016-05-01

    We had already proposed and reported the little-finger size hyperspectral-camera that was able to be applied to visible and infrared lights. The proposed method has been expected to be mounted on smartphones for healthcare sensors, and unmanned air vehicles such as drones for antiterrorism measures or environmental measurements. In this report, we will mention the trial product of the thumb size apparatus whose lens diameter was 5[mm]. The proposed Fourier spectroscopic imager is a kind of wavefront-division and common-path phase-shift interferometers. We installed the relative inclined phase-shifter onto optical Fourier transform plane of infinity corrected optical systems. The infinity corrected optical systems was configured with an objective lens and a cylindrical imaging lens. The relative inclined phase-shifter, what was made from a thin glass less than 0.3[mm] thick, had the wedge-prism and cuboid-glass region, because half surface of a thin glass was polished at an oblique angle of around 1[deg.]. The collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams are interfered each other and form the infererogram as spatial fringe patterns. In this case, the horizontal axis on 2-dimensional light receiving device is assigned to the amount of phase-shift. And also the vertical axis is assigned to the imaging coordinates on a line view field. Thus, by installing thin phase-shifter onto optical Fourier transform plane, the line spectroscopic imager, what obtains 1 dimensional spectral character distributions, were able to be realized.

  1. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McCullough, Peter; Crouzet, Nicolas [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric; Dobbs-Dixon, Ian [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Desert, Jean-Michel; Knutson, Heather A.; Line, Michael [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Haynes, Korey [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Magic, Zazralt [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Mandell, Avi M.; Clampin, Mark [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Seager, Sara, E-mail: ddeming@astro.umd.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2013-09-10

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  2. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ∼ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g–1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component

  3. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    Science.gov (United States)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  4. Timeline analysis and wavelet multiscale analysis of the AKARI All-Sky Survey at 90 micron

    CERN Document Server

    Wang, Lingyu; Yamamura, Issei; Shibai, Hiroshi; Savage, Rich; Oliver, Seb; Thomson, Matthew; Rahman, Nurur; Clements, Dave; Figueredo, Elysandra; Goto, Tomotsugu; Hasegawa, Sunao; Jeong, Woong-Seob; Matsuura, Shuji; Muller, Thomas G; Nakagawa, Takao; Pearson, Chris P; Serjeant, Stephen; Shirahata, Mai; White, Glenn J

    2008-01-01

    We present a careful analysis of the point source detection limit of the AKARI All-Sky Survey in the WIDE-S 90 $\\mu$m band near the North Ecliptic Pole (NEP). Timeline Analysis is used to detect IRAS sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90 $\\mu$m flux of a source. Combined with a robust noise measurement, the point source flux detection limit at S/N $>5$ for a single detector row is $1.1\\pm0.1$ Jy which corresponds to a point source detection limit of the survey of $\\sim$0.4 Jy. Wavelet transform offers a multiscale representation of the Time Series Data (TSD). We calculate the continuous wavelet transform of the TSD and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above $4\\sigma$ can be identified as the only real sources at the Point Sourc...

  5. The First Source Counts at 18 microns from the AKARI NEP Survey

    CERN Document Server

    Pearson, Chris; Oyabu, S; Matsuhara, H; Wada, T; Goto, T; Takagi, T; Lee, H M; Im, M; Ohyama, Y; Kim, S J; Murata, K

    2014-01-01

    We present the first galaxy counts at 18 microns using the Japanese AKARI satellite's survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8 square degrees respectively. We describe a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 percent completeness) of 0.15mJy and 0.3mJy for the NEP-Deep and NEP-Wide surveys respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4 mJy consiste...

  6. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  7. True-color night vision cameras

    Science.gov (United States)

    Kriesel, Jason; Gat, Nahum

    2007-04-01

    This paper describes True-Color Night Vision cameras that are sensitive to the visible to near-infrared (V-NIR) portion of the spectrum allowing for the "true-color" of scenes and objects to be displayed and recorded under low-light-level conditions. As compared to traditional monochrome (gray or green) night vision imagery, color imagery has increased information content and has proven to enable better situational awareness, faster response time, and more accurate target identification. Urban combat environments, where rapid situational awareness is vital, and marine operations, where there is inherent information in the color of markings and lights, are example applications that can benefit from True-Color Night Vision technology. Two different prototype cameras, employing two different true-color night vision technological approaches, are described and compared in this paper. One camera uses a fast-switching liquid crystal filter in front of a custom Gen-III image intensified camera, and the second camera is based around an EMCCD sensor with a mosaic filter applied directly to the sensor. In addition to visible light, both cameras utilize NIR to (1) increase the signal and (2) enable the viewing of laser aiming devices. The performance of the true-color cameras, along with the performance of standard (monochrome) night vision cameras, are reported and compared under various operating conditions in the lab and the field. In addition to subjective criterion, figures of merit designed specifically for the objective assessment of such cameras are used in this analysis.

  8. Space-Based Thermal Infrared Studies of Asteroids

    CERN Document Server

    Mainzer, A; Trilling, D

    2015-01-01

    Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedos, and thermal inertia for large numbers of objects. Modern detector array technology has resulted in a significant improvement in spatial resolution and sensitivity compared with previous generations of space-based infrared telescopes, giving rise to a commensurate increase in the number of objects that have been observed at these wavelengths. Space-based infrared surveys of asteroids therefore offer an effective means of rapidly gathering information about small body populations' orbital and physical properties. The AKARI, WISE/NEOWISE, Spitzer, and Herschel missions have significantly increased the number of minor planets with well-determined diameters and albedos.

  9. 机载光电/惯性组合着舰导引算法的地面验证%Field verification of aircraft carrier landing algorithm based on integrated airborne infrared camera/inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    王丹; 王玮; 冯培德

    2012-01-01

    A new algorithm of aircraft carrier landing was studied utilizing airborne infrared camera/inertial integrated system, aiming to provide the guidance information and accomplish aircrafts semi-auto or auto landing. The mathematic relationship between guidance parameters and imaging information was modeled, and the relative position and attitude information between the carrier and the aircraft were estimated through least square method. Then the pitch, roll and heave movement of the carrier were compensated, so the touchdown point could be predicted in order to guide aircraft landing. Based on the theoretical research, the field verification tests were carried out, which adopted the minification scheme to simulate the process of aircraft carrier landing. In the experiments, the runway simulator simulated the motion of the carrier deck and the land vehicle was used as the aircraft. The results verify that the landing guidance system scheme is feasible and effective, and lays the technical foundation for the flight test and improves its safety.%研究了机载光电/惯性组合着舰导引新算法,综合光电探测系统获得的跑道成像信息和机载惯性导航信息,建立导引参数与成像信息之间的数学模型,利用最小二乘法估计舰/机相对位姿,补偿舰船纵摇、横摇及沉浮运动并预测舰载机着舰位置,以实现近程导引舰载机半自动或自动安全着舰.在算法研究的基础上,进行了地面车载验证实验.实验采用缩比方案,以着降跑道模拟器模拟运动中的着降跑道.试验车模拟舰载机,通过相对位姿关系的一致性模拟着舰过程.试验结果验证了着舰导引系统方案的可行性和有效性,为飞行实验奠定技术基础,有利于提高其安全性.

  10. Camera Systems Rapidly Scan Large Structures

    Science.gov (United States)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  11. Deep 15um AKARI observations in the CDFS: estimating dust luminosities for a MIR-selected sample and for Lyman Break Galaxies and the evolution of L(dust)/L(UV) with the redshift

    CERN Document Server

    Burgarella, Denis; Takeuchi, Tsutomu T; Wada, Takehiko; Pearson, Chris

    2008-01-01

    Deep observations of the CDFS have been secured at 15um with AKARI/IRC infrared space telescope (ESA open time). From these observations, we define a sample of MIR-selected galaxies at 15um and we also obtain 15um flux densities for a sample of LBGs at z=1 already observed at 24um with Spitzer/MIPS. Number counts for the MIR-selected sample show a bump around a 15um flux density of 0.2mJy that can be attributed to galaxies at z>0.4 and at z>0.8 for the fainter part of the bump. This bump seems to be shifted as compared to other works and a possible origin can be the Cosmic variance. Thanks to this dataset, we have tested, on the two above samples at z=1, the validity of the conversions from monochromatic luminosities nu.f(nu) at a rest-frame wavelength of 8um by a comparison with total dust luminosities estimated from Spitzer rest-frame 12um data that we use as a reference. We find that the 8um dust luminosities are not all consistent and that some of them are better when compared to L(dust) evaluated from lo...

  12. Cryogenic mechanism for ISO camera

    Science.gov (United States)

    Luciano, G.

    1987-12-01

    The Infrared Space Observatory (ISO) camera configuration, architecture, materials, tribology, motorization, and development status are outlined. The operating temperature is 2 to 3 K, at 2.5 to 18 microns. Selected material is a titanium alloy, with MoS2/TiC lubrication. A stepping motor drives the ball-bearing mounted wheels to which the optical elements are fixed. Model test results are satisfactory, and also confirm the validity of the test facilities, particularly for vibration tests at 4K.

  13. Deep 15μm AKARI Observations in the CDFS: Estimating Dust Luminosities for a MIR-Selected Sample and for Lyman Break Galaxies and the Evolution of Ldust/LUV with the Redshift

    Science.gov (United States)

    Burgarella, Denis; Buat, Véronique; Takeuchi, Tsutomu T.; Wada, Takehiko; Pearson, Chris

    2009-02-01

    Deep observations of the Chandra Deep Field South have been secured at 15μm with AKARI/IRC infrared space telescope. From these observations, we define a sample of mid infrared-selected galaxies at 15μm and we also obtain 15μm flux densities for a sample of Lyman Break Galaxies at z ˜ 1 already observed at 24μm with Spitzer/MIPS. Number counts for the mid infrared-selected sample show a bump around a 15μm flux density of 0.2mJy that can be attributed to galaxies at z > 0.4 and at z > 0.8 for the fainter part of the bump. This bump seems to be shifted as compared to other works and a possible origin can be the Cosmic variance. On the two above samples at z ˜ 1 we have tested the validity of the conversions from luminosities ν.fν at 8νm to total dust luminosities by comparing with luminosities estimated from 12νm data used as a reference. Some calibrations seem better when compared to evaluated from longer wavelength luminosities. We also find that the rest-frame 8μm luminosities provide good estimates of Ldust. By comparing our data to several libraries of spectral energy distributions, we find that models can explain the diversity of the observed f24/f15 ratio quite reasonably. However, when we analyse the luminosity dependence of this ratio, we find important discrepancies. Finally, we revisit the evolution of Ldust/LUV ratio with the redshift z by re-calibrating previous Ldust at z ˜ 2 based on our results and added new data points at higher redshifts. The decreasing trend is amplified as compared to the previous estimate.

  14. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  15. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  16. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  17. Cross-correlations between 21 cm,X-ray and infrared backgrounds

    Institute of Scientific and Technical Information of China (English)

    Huan-Yuan Shan; Bo Qin

    2009-01-01

    The history of the cosmological reionization is still unclear. Two ionizing sources, stars and QSOs, are believed to play important roles during this epoch. Besides the 21 cm signals, the infrared emission from Pop Ⅲ stars and X-ray photons from QSOs can be powerful probes of the reionization. Here we present a cross-correlation study of the 21 cm, infrared and X-ray backgrounds. The advantage of doing such cross-correlations is that we could highlight the correlated signals and eliminate irrelevant fore-grounds. We develop a shell model to describe the 21 cm signals and find that PopⅢ stars can provide higher 21 cm signals than QSOs. Using the ROSAT data for X-ray and AKARI data for infrared, we predict various cross power spectra analytically and dis-cuss prospects for detecting these cross-correlation signals in future low frequency radio surveys. We find that, although these cross-correlational signals have distinct features, so far, they have been difficult to detect due to the high noise of the soft X-ray and infrared backgrounds given by ROSAT and AKARI.

  18. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  19. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  20. Thermal characterization of a NIR hyperspectral camera

    Science.gov (United States)

    Parra, Francisca; Meza, Pablo; Pezoa, Jorge E.; Torres, Sergio N.

    2011-11-01

    The accuracy achieved by applications employing hyperspectral data collected by hyperspectral cameras depends heavily on a proper estimation of the true spectral signal. Beyond question, a proper knowledge about the sensor response is key in this process. It is argued here that the common first order representation for hyperspectral NIR sensors does not represent accurately their thermal wavelength-dependent response, hence calling for more sophisticated and precise models. In this work, a wavelength-dependent, nonlinear model for a near infrared (NIR) hyperspectral camera is proposed based on its experimental characterization. Experiments have shown that when temperature is used as the input signal, the camera response is almost linear at low wavelengths, while as the wavelength increases the response becomes exponential. This wavelength-dependent behavior is attributed to the nonlinear responsivity of the sensors in the NIR spectrum. As a result, the proposed model considers different nonlinear input/output responses, at different wavelengths. To complete the representation, both the nonuniform response of neighboring detectors in the camera and the time varying behavior of the input temperature have also been modeled. The experimental characterization and the proposed model assessment have been conducted using a NIR hyperspectral camera in the range of 900 to 1700 [nm] and a black body radiator source. The proposed model was utilized to successfully compensate for both: (i) the nonuniformity noise inherent to the NIR camera, and (ii) the stripping noise induced by the nonuniformity and the scanning process of the camera while rendering hyperspectral images.

  1. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  2. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera. Fe

  3. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishihara, Daisuke [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Shimonishi, Takashi, E-mail: morii@astron.s.u-tokyo.ac.jp [Department of Earth and Planetary Sciences, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada Kobe 657-8501 Japan (Japan)

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  4. Merging Galaxy Cluster Abell 2255 in Mid-Infrared

    CERN Document Server

    Shim, Hyunjin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2010-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, Abell 2255 by the AKARI space telescope. Using the AKARI's continuous wavelength coverage between 3-24 micron and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (11 micron) flux is a good indicator to discriminate galaxies at different evolutionary stages, and divide galaxies into three classes accordingly : strong MIR-excess (N3-S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies, weak MIR-excess (-2.05 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars, and intermediate MIR-excess (-1.2

  5. Revision of Stellar Intrinsic Colors in the Infrared by the Spectroscopic Surveys

    CERN Document Server

    Jian, Mingjie; Zhao, He; Jiang, Biwei

    2016-01-01

    Intrinsic colors of normal stars are derived in the popularly used infrared bands involving the 2MASS/JHKs, WISE, Spitzer/IRAC and AKARI/S9W filters. Based on three spectroscopic surveys -- LAMOST, RAVE and APOGEE, stars are classified into groups of giants and dwarfs, as well as metal-normal and metal-poor stars. An empirical analytical relation of the intrinsic color is obtained with stellar effective temperature (Teff) for each group of stars after the zero-reddening stars are selected from the blue edge in the $J-\\lambda$ versus (Teff) diagram. It is found that metallicity has little effect on the infrared colors. In the near-infrared bands, our results agree with previous work. In addition, the color indexes H-W2 and Ks-W1 that are taken as constant to calculate interstellar extinction are discussed. The intrinsic color of M-type stars are derived separately due to lack of accurate measurement of their effective temperature.

  6. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  7. Microchannel plate streak camera

    Science.gov (United States)

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  8. Application of the Passive Infrared Sensor Camera Technology in Monitoring the Vertebrate Diversity--A Case Study of Anhui Jiulongfeng Provincial Nature Reserve%运用红外感应相机技术监测脊椎动物多样性--以安徽省九龙峰省级自然保护区为例

    Institute of Scientific and Technical Information of China (English)

    汪长根; 曹新华; 曹清平; 晏龙; 吴孝兵

    2015-01-01

    Infrared sensor cameras were applied for long-term monitoring of the birds and mammals difficult to observe in Anhui Jiulongfeng Provincial Nature Reserve. In the monitoring periods photos were taken of the first-class national protected animals Muntiacus crinifrons and Syrmaticus ellioti, and second -class national protected animals Capricornis sumatraenis, Macaca thibetane, Martes flavigula, Lophura nycthemera and Pucrasia macrolopha. The monitoring results showed that there is high diversity of wild vertebrate species in the reserve, and infrared sensor cameras have more advantages and feasibility in the wildlife survey compared with traditional survey methods.%使用红外相机对安徽省九龙峰自然保护区内较难观察统计到的鸟类、兽类进行长期监测。监测期间拍摄到国家一级保护动物黑麂、白颈长尾雉,二级保护动物鬣羚、短尾猴、青鼬、白鹇、勺鸡等。监测结果表明,九龙峰自然保护区内野生脊椎动物物种多样性较高;红外相机在野生动物的调查中较传统的调查方法具有更多的优势和可行性。

  9. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  10. Massive-Star Forming Infrared Loop around the Crab-like Supernova Remnant G54.1+0.3: Post Main-Sequence Triggered Star Formation?

    OpenAIRE

    Koo, Bon-Chul; McKee, Christopher F.; Lee, Jae-Joon; Lee, Ho-Gyu; Lee, Jeong-Eun; Moon, Dae-Sik; Hong, Seung Soo; Kaneda, Hidehiro; Onaka, Takashi

    2007-01-01

    We report the discovery of a star-forming loop around the young, Crab-like supernova remnant (SNR) G54.1+0.3 using the AKARI infrared satellite. The loop consists of at least eleven young stellar objects (YSOs) embedded in a ring-like diffuse emission of radius ~1'. The YSOs are bright in the mid-infrared and are also visible in the Spitzer Space Telescope Galactic plane survey images. Their Spitzer colors are similar to those of class II YSOs in [3.6]-[5.8] but significantly redder in [8]-[2...

  11. Ringfield lithographic camera

    Science.gov (United States)

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  12. Camera traps can be heard and seen by animals.

    Science.gov (United States)

    Meek, Paul D; Ballard, Guy-Anthony; Fleming, Peter J S; Schaefer, Michael; Williams, Warwick; Falzon, Greg

    2014-01-01

    Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals' hearing and produce illumination that can be seen by many species.

  13. Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

    Science.gov (United States)

    Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro

    2016-05-01

    We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.

  14. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  15. Dry imaging cameras

    Directory of Open Access Journals (Sweden)

    I K Indrajit

    2011-01-01

    Full Text Available Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  16. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    OpenAIRE

    Chenghai Yang; Westbrook, John K.; Charles P.-C. Suh; Martin, Daniel E.; W. Clint Hoffmann; Yubin Lan; Bradley K. Fritz; John A. Goolsby

    2014-01-01

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR) images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control ...

  17. The near-to-mid infrared spectrum of quasars

    Science.gov (United States)

    Hernán-Caballero, Antonio; Hatziminaoglou, Evanthia; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-08-01

    We analyse a sample of 85 luminous (log (νLν(3µm)/erg s-1)>45.5) quasars with restframe ˜2-11 µm spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10 µm spectral energy distributions (SEDs). Excess emission at 1-2 µm over the best-fitting model suggests that hotter dust is necessary in addition to the ˜1200 K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. We generate a new quasar template that covers the restframe range 0.1-11 µm, and separate templates for the disk and dust components. Comparison with other infrared quasar composites suggests that previous ones are less reliable in the 2-4 µm range. Our template is the first one to provide a detailed view of the infrared emission on both sides of the 4 µm bump.

  18. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  19. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  20. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  1. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  2. The MKID Camera

    Science.gov (United States)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  3. A Signature of Chromospheric Activity in Brown Dwarfs Revealed by 2.5-5.0 Micron AKARI Spectra

    CERN Document Server

    Sorahana, Satoko; Yamamura, Issei

    2014-01-01

    We propose that the 2.7 micron H_2O, 3.3 micron CH_4 and 4.6 micron CO absorption bands can be good tracers of chromospheric activity in brown dwarfs. In our previous study, we found that there are difficulties in explaining entire spectra between 1.0 and 5.0 microns with the Unified Cloudy Model (UCM), a brown dwarf atmosphere model. Based on simple radiative equilibrium, temperature in a model atmosphere usually decreases monotonically with height. However, if a brown dwarf has a chromosphere, as inferred by some observations, the temperature in the upper atmosphere is higher. We construct a simple model that takes into account heating due to chromospheric activity by setting a temperature floor in an upper atmosphere, and find that the model spectra of 3 brown dwarfs with moderate H-alpha emission, an indicator of chromospheric activity, are considerably improved to match the AKARI spectra. Because of the higher temperatures in the upper atmospheres, the amount of CH_4 molecules is reduced and the absorpti...

  4. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  5. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  6. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  7. Deployable Wireless Camera Penetrators

    Science.gov (United States)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  8. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  9. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  10. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  11. The Dark Energy Camera

    Science.gov (United States)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  12. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  13. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  14. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  15. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  16. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  17. Illuminant estimation and detection using near infrared

    OpenAIRE

    Fredembach, Clement; Süsstrunk, Sabine

    2009-01-01

    Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose ...

  18. IRAS 15099-5856: Remarkable Mid-Infrared Source with Prominent Crystalline Silicate Emission Embedded in the Supernova Remnant MSH15-52

    OpenAIRE

    Koo, Bon-Chul; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S; Gaensler, B.M.; Kim, Hyun-Jeong; Lee, Jae-Joon; Jeong, Woong-Seob; Lee, Ho-Gyu; Im, Myungshin; Tatematsu, Kenichi

    2011-01-01

    We report new mid-infrared observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended (~4') arc-like filaments. The source is seen only at >= 10 um. The Spitzer MIR spectrum of IRS1 shows prominent emission features from Mg-r...

  19. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  20. The near-to-mid infrared spectrum of quasars

    CERN Document Server

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-01-01

    We analyse a sample of 85 luminous L3um > 10^45.5 erg/s quasars with restframe ~2-11um spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10um spectral energy distributions (SEDs). Excess emission at 1-2um over the best-fitting model suggests that hotter dust is necessary in addition to the ~1200K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. The equivalent width of P...

  1. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  2. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  3. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  4. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  5. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  6. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  7. A dynamic infrared source

    Science.gov (United States)

    Persky, M. J.

    2003-12-01

    A system is described that can be used for testing infrared focal plane cameras in situations where conventional blackbody sources are deficient. The system uses readily available components, electronics, and software. It can provide either a wide area or a point source of infrared flux that can be programmed to follow a prescribed temporal profile at higher rates than available from commercial blackbody sources and with excellent repeatability. Additionally, the system provides flux without suffering from the temporal noise characteristic of commercial, wide area, flat sheet sources that results from turbulence in front of the blackbody. The system consists of commercially available, rapid rise time infrared radiators, either coupled to an integrating sphere for broad area flux, or used individually with a pinhole and collimator as a point source. A programmable voltage supply provides the power versus time profile at frequencies to several Hertz. Transfer from a standard blackbody calibrates the flux levels. This article provides a description, testing results, and application examples.

  8. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  9. 红外相机技术在我国野生动物监测中的应用:问题与限制%Infrared camera traps in wildlife research and monitoring in China: issues and insights

    Institute of Scientific and Technical Information of China (English)

    张履冰; 崔绍朋; 黄元骏; 陈代强; 乔慧捷; 李春旺; 蒋志刚

    2014-01-01

    红外相机(camera traps)作为对野生动物进行“非损伤”性采样的技术,已成为研究动物多样性、种群生态学及行为学的常用手段之一.其发展和普及为中国野生动物多样性和物种保育研究带来了诸多机会.如今,国内大多数自然保护区都在运用红外相机技术开展物种监测工作.本文结合20年来已发表的相关研究,从内容、实验设计以及发展趋势方面,总结了目前红外相机技术在应用过程中出现的共性问题;并就相机对动物的干扰性、影像识别、研究的适用范围及安全保障四个方面,对该项技术在实践中存在的限制进行了探讨.最后结合红外相机技术未来的发展方向,提出了建立技术规范、数据集成和共享、影像数据版权维护、提高监测效率等问题.

  10. VizieR Online Data Catalog: IR sources spectroscopy in the AKARI NEP (Shim+, 2013)

    Science.gov (United States)

    Shim, H.; Im, M.; Ko, J.; Jeon, Y.; Karouzos, M.; Kim, S. J.; Lee, H. M.; Papovich, C.; Willmer, C.; Weiner, B. J.

    2013-09-01

    Most of the targets for the spectroscopic observation were selected from the optical to mid-infrared band-merged photometry catalog over the NEP-Wide field (Kim et al. 2012, Cat. J/A+A/548/A29). The observations, with the MMT/Hectospec spectrograph, were executed in queue mode: a total of five configurations were observed between 2008 May and November, with each configuration covering an area within a 1deg diameter circle. The observations used the 270 line/mm grating covering ~3700Å to ~8500Å, with a spectral resolution of about 6.2Å. We obtained optical spectra using the Hydra multi-object spectrograph on WIYN, the 3.5m telescope at the Kitt Peak National Observatory, on the nights of 2008 June 27-30. The covered wavelength range is 4500-9000Å, yet the spectrum quality is very poor beyond 8000Å. We used 98 red fibers feeding the bench spectrograph with a 316 lines/mm grating, yielding a spectral resolution of 5.7Å. (2 data files).

  11. Maser and Infrared Studies of Oxygen-Rich Late/Post-AGB Stars and Water Fountains: Development of a New Identification Method

    CERN Document Server

    Yung, Bosco; Henkel, Christian

    2014-01-01

    We explored an efficient method to identify evolved stars with oxygen-rich envelopes in the late AGB or post-AGB phase of stellar evolution, which include a rare class of objects - the "water fountains". Our method considers the OH and H2O maser spectra, the near infrared Q-parameters (these are colour indices accounting for the effect of extinction), and far-infrared AKARI colours. Here we first present the results of a new survey on OH and H2O masers. There were 108 colour-selected objects: 53 of them were observed in the three OH maser lines (1612, 1665, and 1667 MHz), with 24 detections (16 new for 1612 MHz); and 106 of them were observed in the H2O maser line (22 GHz) with 24 detections (12 new). We identify a new potential water fountain source, IRAS19356+0754, with large velocity coverages of both OH and H2O maser emission. In addition, several objects with high velocity OH maser emission are reported for the first time. The Q-parameters as well as the infrared [09]-[18] and [18]-[65] AKARI colours of ...

  12. Recent developments of in-vessel calibration of mid-IR cameras at JET

    Science.gov (United States)

    Balboa, I.; Silburn, S.; Drewelow, P.; Huber, V.; Huber, A.; Kinna, D.; Price, M.; Matthews, G. F.; Collins, S.; Fessey, J.; Rack, M.; Trimble, P.; Zastrow, K.-D.

    2016-11-01

    Recent improvements in software tools and methodology have allowed us to perform a more comprehensive in-vessel calibration for all mid-infrared camera systems at JET. A comparison of experimental methods to calculate the non-uniformity correction is described as well as the linearity for the different camera systems. Measurements of the temperature are assessed for the different diagnostics.

  13. A low-cost dual-camera imaging system for aerial applicators

    Science.gov (United States)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  14. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  15. NIR Camera/spectrograph: TEQUILA

    Science.gov (United States)

    Ruiz, E.; Sohn, E.; Cruz-Gonzalez, I.; Salas, L.; Parraga, A.; Torres, R.; Perez, M.; Cobos, F.; Tejada, C.; Iriarte, A.

    1998-11-01

    We describe the configuration and operation modes of the IR camera/spectrograph called TEQUILA, based on a 1024X1024 HgCdTe FPA (HAWAII). The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN$_2$ dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An optomechanical assembly cooled to -30oC that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provisions to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8 m Mexican Infrared-Optical Telescope (TIM).

  16. Combustion pinhole camera system

    Science.gov (United States)

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  17. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  18. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  19. Hemispherical Laue camera

    Science.gov (United States)

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  20. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  1. Auto-converging stereo cameras for 3D robotic tele-operation

    Science.gov (United States)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  2. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  3. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  4. Precise measurement of temperature Distribution for LCD TV using IR camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Seok; Ko, Han Seo [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Chung, Du Hwan [Samsung Electronics Co.,Ltd, Suwon (Korea, Republic of)

    2004-11-15

    An Infra-Red camera has been used to reduce errors and to save time, cost and efforts for measurement of temperature distribution. Because allowable ranges of major factors that affect results of the measurement of the IR camera had not been established yet, this study has been performed to investigate the major factors and ranges for the effective measurement techniques. In this study, surface temperature, surrounding humidity, distance between the camera and the surface, incident angle, and emissivity of the surface have been considered as the major factors for the experimental setup. Especially, it has been observed that the results of the IR camera have been affected by the surface emissivity greatly.

  5. Performance of new handheld IR camera using uncooled bolometer FPA

    Science.gov (United States)

    Sone, Takanori; Ohkawa, Norio; Kawashima, Yasuo; Matsui, Yasuji; Sugiura, Yosuke; Araki, Tomiharu; Kamozawa, Makoto; Ueno, Masashi; Kaneda, Osamu; Ishikawa, Tomohiro; Hata, Hisatoshi; Hashima, Kazuo; Nakagi, Yoshiyuki; Yamada, Akira; Kimata, Masafumi

    1996-06-01

    A camera using an uncooled infrared image sensor has been developed. This image sensor is a bolometer focal plane array (FPA), of which the readout circuit is designed to minimize the temperature drift or the pattern noise caused by the changes of the ambient temperature. The circuit has a bolometer for the load resistor, which has the same temperature coefficient of resistance as that of the pixel bolometer. Therefore the signal change induced by the temperature change of the FPA substrate is reduced because the resistance change of the load bolometer compensates for that of the pixel bolometer. The effectiveness of the drift- compensating circuit has been confirmed with a prototype handheld camera.

  6. The infra-red luminosities of ~332,000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey

    CERN Document Server

    Ellison, Sara L; Rosario, David J; Mendel, J Trevor

    2015-01-01

    The total infra-red (IR) luminosity (L_IR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infra-red Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of L_IR measurements for galaxies in the nearby universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent datasets (IRAS and AKARI) and demonstrated to predict the L_IR with a scatter sigma ~ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalog is presented wi...

  7. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    Science.gov (United States)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; Gonzlez-Hernandez, J. Jess; Lee, William H.; Loose, Markus; Lotkin, Gennadiy; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Romn-Zuniga, Carols; Samuel, Mathew V.; Sparr, Leroy M.; Watson, Alan M.

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  8. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  9. NV-CMOS HD camera for day/night imaging

    Science.gov (United States)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  10. The infrared signatures of very small grains in the Universe seen by JWST

    CERN Document Server

    Pilleri, Paolo; Joblin, Christine

    2015-01-01

    The near- and mid-IR spectrum of many astronomical objects is dominated by emission bands due to UV-excited polycyclic aromatic hydrocarbons (PAH) and evaporating very small grains (eVSG). Previous studies with the ISO, Spitzer and AKARI space telescopes have shown that the spectral variations of these features are directly related to the local physical conditions that induce a photo-chemical evolution of the band carriers. Because of the limited sensitivity and spatial resolution, these studies have focused mainly on galactic star-forming regions. We discuss how the advent of JWST will allow to extend these studies to previously unresolved sources such as near-by galaxies, and how the analysis of the infrared signatures of PAHs and eVSGs can be used to determine their physical conditions and chemical composition.

  11. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  12. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... repeatedly to convey the feeling of a man and a woman falling in love. This raises the question of why producers and directors choose certain stylistic features to narrate certain categories of content. Through the analysis of several short film and TV clips, this article explores whether...... or not there are perceptual aspects related to specific stylistic features that enable them to be used for delimited narrational purposes. The article further attempts to reopen this particular stylistic debate by exploring the embodied aspects of visual perception in relation to specific stylistic features...

  13. The infrared retina

    Science.gov (United States)

    Krishna, Sanjay

    2009-12-01

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  14. The infrared retina

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Sanjay, E-mail: skrishna@chtm.unm.ed [Center for High Technology Materials, Electrical and Computer Engineering Department University of New Mexico, 1313, Goddard Street SE, MSC04 2710 Albuquerque, NM, 87106 (United States)

    2009-12-07

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  15. Camera Mouse Including “Ctrl-Alt-Del” Key Operation Using Gaze, Blink, and Mouth Shape

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available This paper presents camera mouse system with additional feature: "CTRL - ALT - DEL" key. The previous gaze-based camera mouse systems are only considering how to obtain gaze and making selection. We proposed gaze-based camera mouse with "CTRL - ALT - DEL" key. Infrared camera is put on top of display while user looking ahead. User gaze is estimated based on eye gaze and head pose. Blinking and mouth detections are used to create "CTR - ALT - DEL" key. Pupil knowledge is used to improve robustness of eye gaze estimation against different users. Also, Gabor filter is used to extract face features. Skin color information and face features are used to estimate head pose. The experiments of each method have done and the results show that all methods work perfectly. By implemented this system, troubleshooting of camera mouse can be done by user itself and makes camera mouse be more sophisticated.

  16. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    OpenAIRE

    Warren, Clinton Gregory

    2010-01-01

    Thermal infrared detectors based on MEMS bimorph beams have the potential to exceed the performance of current uncooled thermal infrared cameras both in terms of sensitivity and cost. These cameras are part of a rapidly growing industry are used for a vast array of applications such as military and civilian night vision, industrial monitoring, and medical imaging. Many researchers have explored the use of metal-ceramic MEMS bimorphs for this application even though it has long been acknowle...

  17. Image upconversion - a low noise infrared sensor?

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. This feature effectively allows the use of silicon based cameras for...... detection of infrared images. Silicon cameras have much smaller intrinsic noise than their IR counter part- some models even offer near single photon detection capability. We demonstrate that an ordinary CCD camera combined with a low noise upconversion has superior noise characteristics when compared to...

  18. Image upconversion, a low noise infrared sensor?

    DEFF Research Database (Denmark)

    for detection of infrared images. Silicon cameras have much smaller intrinsic noise than their IR counter part- some models even offer near single photon detection capability. We demonstrate that an ordinary CCD camera combined with a low noise upconversion has superior noise characteristics when compared......Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. This feature effectively allows the use of silicon based cameras...

  19. Infrared colour properties of nearby radio-luminous galaxies

    CERN Document Server

    Yang, Xiao-hong; Huang, Yan

    2015-01-01

    By combining the data of the Two Micron All Sky Survey (2MASS), the Wide Field Infrared Survey Explorer (WISE) and the Akari satellite, we study the infrared colour properties of a sample of 2712 nearby radio-luminous galaxies (RLGs). These RLGs are divided into radio-loud (RL) active galactic nuclei (AGNs), mainly occurring at redshifts of $0.05$ 3.0. We also analyse the MIR colours of RL AGNs divided into low- and high-excitation radio galaxies (LERGs and HERGs, respectively). The ([3.4]-[4.6])$-$([4.6]-[12]) diagram clearly shows separate distributions of LERGs and HERGs and a region of overlap, which suggests that LERGs and HERGs have different MIR properties. LERGs are responsible for the double-core distribution of RL AGNs on the ([3.4]-[4.6])$-$([4.6]-[12]) diagram. In addition, we also suggest 90$-$140$\\mu$m band spectral index $\\alpha(90,140)<-1.4$ as a criterion of selecting nearby active galaxies with non-thermal emissions at FIR wavelengths.

  20. Monitoring of degradation of photovoltaic panels using infrared method

    International Nuclear Information System (INIS)

    Monitoring of solar panels is important in order to ensure optimal performance of solar panels. Their properties are subject to change due to aging, weather effects and exposure to environment. Infrared camera provides monitoring of degradation of solar panels. Similarly, thermal camera can detect errors in panels, which occurred during production or assembly. (authors)

  1. Radiation camera motion correction system

    Science.gov (United States)

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  2. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  3. Motion Robust Remote-PPG in Infrared.

    Science.gov (United States)

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2015-05-01

    Current state-of-the-art remote photoplethysmography (rPPG) algorithms are capable of extracting a clean pulse signal in ambient light conditions using a regular color camera, even when subjects move significantly. In this study, we investigate the feasibility of rPPG in the (near)-infrared spectrum, which broadens the scope of applications for rPPG. Two camera setups are investigated: one setup consisting of three monochrome cameras with different optical filters, and one setup consisting of a single RGB camera with a visible light blocking filter. Simulation results predict the monochrome setup to be more motion robust, but this simulation neglects parallax. To verify this, a challenging benchmark dataset consisting of 30 videos is created with various motion scenarios and skin tones. Experiments show that both camera setups are capable of accurate pulse extraction in all motion scenarios, with an average SNR of +6.45 and +7.26 dB, respectively. The single camera setup proves to be superior in scenarios involving scaling, likely due to parallax of the multicamera setup. To further improve motion robustness of the RGB camera, dedicated LED illumination with two distinct wavelengths is proposed and verified. This paper demonstrates that accurate rPPG measurements in infrared are feasible, even with severe subject motion.

  4. Camera sensitivity study

    Science.gov (United States)

    Schlueter, Jonathan; Murphey, Yi L.; Miller, John W. V.; Shridhar, Malayappan; Luo, Yun; Khairallah, Farid

    2004-12-01

    As the cost/performance Ratio of vision systems improves with time, new classes of applications become feasible. One such area, automotive applications, is currently being investigated. Applications include occupant detection, collision avoidance and lane tracking. Interest in occupant detection has been spurred by federal automotive safety rules in response to injuries and fatalities caused by deployment of occupant-side air bags. In principle, a vision system could control airbag deployment to prevent this type of mishap. Employing vision technology here, however, presents a variety of challenges, which include controlling costs, inability to control illumination, developing and training a reliable classification system and loss of performance due to production variations due to manufacturing tolerances and customer options. This paper describes the measures that have been developed to evaluate the sensitivity of an occupant detection system to these types of variations. Two procedures are described for evaluating how sensitive the classifier is to camera variations. The first procedure is based on classification accuracy while the second evaluates feature differences.

  5. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  6. Proportional counter radiation camera

    Science.gov (United States)

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  7. Mars Cameras Make Panoramic Photography a Snap

    Science.gov (United States)

    2008-01-01

    If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.

  8. Infrared astronomy

    International Nuclear Information System (INIS)

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  9. Vision Sensors and Cameras

    Science.gov (United States)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  10. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Directory of Open Access Journals (Sweden)

    Achmad Ariefiandy

    Full Text Available Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis, an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψand varied detection probabilities (p according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site, p (site survey; ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  11. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  12. Mid and Far Infrared Properties of a Complete Sample of Local AGNs

    CERN Document Server

    Ichikawa, Kohei; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Matsuta, Keiko; Nakagawa, Takao

    2012-01-01

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local Active Galactic Nuclei (AGNs) detected in the Swift/BAT all sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with IRAS and WISE. Out of 135 non-blazer AGNs in the Swift/BAT 9 month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 um band. We find good correlation between their hard X-ray and MIR luminosities over 3 orders of magnitude (42< log lambda L_{lambda}(9, 18 um)< 45), which is tighter than that with the FIR luminosities at 90 um. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 um in the averaged infrared spectral ...

  13. The future of consumer cameras

    Science.gov (United States)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  14. Temperature of the Limiter Surface Measured by IR Camera in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    SHI Bo; LIN Hui; HUANG Juan; LUO Nanchang; GONG Xianzu; ZHANG Xiaodong; LUO Guangnan; YANG Zhongshi; LI Qiang

    2008-01-01

    Temperature measurement by IR (infrared) camera was performed on HT-7 tokamak, particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.

  15. Supplementary material: Modeling and Compensating Temperature-dependent Non-uniformity Noise in IR Microbolometer Cameras

    OpenAIRE

    Wolf, A.; Pezoa, J. E.; Figueroa, M.

    2016-01-01

    Abstract: Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: ...

  16. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  17. Optimal conception of an IR camera

    Energy Technology Data Exchange (ETDEWEB)

    Papini, F.; Petit, J.L.; David, J.P. [Universite d`Aix-Marseille Centre Scientifique de Saint Jerome, 13397 Marseille, Cedex 13 (FR)

    1990-12-31

    This paper deals with the conclusions drawn from infrared thermal analysis experiments that were carried out over a period of several years. In the context of these experiments the authors analyzed the aptitude of a system to switch between two functions an imaging and a measuring system for thermal flux. Temperature measurements were not dealt with in this analysis, as temperature readings introduce numerical values associated with material properties and radiative balance that are in no way characteristic of infrared analysis. The authors` analysis deals with single-detector motion-picture cameras fitted with a line/column scanning system and with signal sampling on the amplified output of the detector. The image was thus reconstituted on a micro-computer, using the pixels from the sampling data, with a numerical depth determined by the digital convertor. This analysis was conducted within the constraints imposed by calibration procedures. These constraints are particularly severe when calibrating the spatial frequencies response function (within the frequency range). This calibration leads to a study of the image`s structure and of its ability to produce output values that are of the same order of those produced by a measuring device.

  18. High Resolution Camera for Mapping Titan Surface

    Science.gov (United States)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  19. Understanding the near infrared spectrum of quasars

    Science.gov (United States)

    Hernán-Caballero, Antonio; Hatziminaoglou, Evanthia; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-08-01

    The rest-frame near infrared (NIR) is a key spectral range for understanding the physics of AGN, but progress has been hindered by the difficulty in defining the NIR spectrum of the accretion disk and removing contamination from stellar emission in the host galaxy. In this talk I will present the analysis of a sample of 85 luminous (L3µm>10^45.5 erg/s) quasars with rest-frame NIR spectroscopy from AKARI and Spitzer/IRS. Their high luminosity allows a direct determination of the NIR shape of the quasar spectrum clean from host galaxy emission. We find that the entire UV-to-MIR SED can be accurately reproduced with a semi-empirical disk+dust model that uses a single template for the accretion disk and two blackbody components (hot and warm) for the dust. The observed diversity in individual SEDs can be accounted for by varying levels of extinction affecting the disk component and differences in the relative luminosities of the disk and dust components. We present a new quasar template [0.1-10µm] as well as separate templates for the disk and dust components, and conclude that previous templates based on less luminous quasars suffer from contamination by stellar emission in the host galaxy, which accounts for up to ~30% of the flux at 1µm. We also perform the first ever measurement of the Paschen_α emission in a large sample of luminous quasars and find that the Paschen_α to optical continuum luminosity ratio is boosted in our sample compared to less luminous quasars.

  20. SUB-CAMERA CALIBRATION OF A PENTA-CAMERA

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-03-01

    Full Text Available Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors

  1. Terahertz and Mid Infrared

    CERN Document Server

    Shulika, Oleksiy; Detection of Explosives and CBRN (Using Terahertz)

    2014-01-01

    The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m).  Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications.  From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Det...

  2. Merging Galaxy Cluster A2255 in Mid-infrared

    Science.gov (United States)

    Shim, Hyunjin; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2011-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 μm and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (~11 μm) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 - S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (-2.0 S11 5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (-1.2 S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is ~130 M sun yr-1, which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red, quiescent galaxies from the infall region through near the core which can be explained

  3. Imaging in the Infrared

    Science.gov (United States)

    Falco, Charles

    2010-03-01

    Many common pigments are partially transparent to near infrared (IR) light, making it possible to use IR-sensitive imaging sensors to capture information from surfaces covered by several tens of micrometers of such pigments. Because of this, ``IR reflectograms'' have been made of paintings since the late 1960s, revealing important aspects of many works of art that are not observable in the visible. However, although a number of paintings have been studied this way, the high cost and specialized nature of available IR cameras have limited such work to a small fraction of the two- and three-dimensional works of art that could be usefully studied in the IR. After a brief introduction to IR reflectography, I will describe the characteristics of a high resolution imaging system based on a modified Canon EOS digital camera that operates over the wavelength range 830--1100 nm [1]. This camera and autofocus Canon 20 mm f/2.8 lens make it possible to obtain IR reflectograms of works of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. After describing its relevant imaging properties of sensitivity, resolution, noise and contrast, I will illustrate its capabilities with IR and visible images of various types of art in museums on three continents. IR reflectograms of one painting, in particular, have revealed important new information about the working practices of the 16th century artist Lorenzo Lotto who our previous work has shown used projected images as aids for producing some of the features in this painting [2]. [4pt] [1] Charles M. Falco, Rev. Sci. Instrum. 80, 071301 (2009). [0pt] [2] see, for example, David Hockney and Charles M. Falco, Proc. of the SPIE 5666, 326 (2005).

  4. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  5. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  6. BLAST Autonomous Daytime Star Cameras

    CERN Document Server

    Rex, M; Devlin, M J; Gundersen, J; Klein, J; Pascale, E; Wiebe, D; Rex, Marie; Chapin, Edward; Devlin, Mark J.; Gundersen, Joshua; Klein, Jeff; Pascale, Enzo; Wiebe, Donald

    2006-01-01

    We have developed two redundant daytime star cameras to provide the fine pointing solution for the balloon-borne submillimeter telescope, BLAST. The cameras are capable of providing a reconstructed pointing solution with an absolute accuracy < 5 arcseconds. They are sensitive to stars down to magnitudes ~ 9 in daytime float conditions. Each camera combines a 1 megapixel CCD with a 200 mm f/2 lens to image a 2 degree x 2.5 degree field of the sky. The instruments are autonomous. An internal computer controls the temperature, adjusts the focus, and determines a real-time pointing solution at 1 Hz. The mechanical details and flight performance of these instruments are presented.

  7. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  8. Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing

    Science.gov (United States)

    Crooke, Julie A.

    2003-01-01

    The simple addition of a charge-coupled-device (CCD) camera to a theodolite makes it safe to measure the pointing direction of a laser beam. The present state of the art requires this to be a custom addition because theodolites are manufactured without CCD cameras as standard or even optional equipment. A theodolite is an alignment telescope equipped with mechanisms to measure the azimuth and elevation angles to the sub-arcsecond level. When measuring the angular pointing direction of a Class ll laser with a theodolite, one could place a calculated amount of neutral density (ND) filters in front of the theodolite s telescope. One could then safely view and measure the laser s boresight looking through the theodolite s telescope without great risk to one s eyes. This method for a Class ll visible wavelength laser is not acceptable to even consider tempting for a Class IV laser and not applicable for an infrared (IR) laser. If one chooses insufficient attenuation or forgets to use the filters, then looking at the laser beam through the theodolite could cause instant blindness. The CCD camera is already commercially available. It is a small, inexpensive, blackand- white CCD circuit-board-level camera. An interface adaptor was designed and fabricated to mount the camera onto the eyepiece of the specific theodolite s viewing telescope. Other equipment needed for operation of the camera are power supplies, cables, and a black-and-white television monitor. The picture displayed on the monitor is equivalent to what one would see when looking directly through the theodolite. Again, the additional advantage afforded by a cheap black-and-white CCD camera is that it is sensitive to infrared as well as to visible light. Hence, one can use the camera coupled to a theodolite to measure the pointing of an infrared as well as a visible laser.

  9. Thermal human phantom for testing of millimeter wave cameras

    Science.gov (United States)

    Palka, Norbert; Ryniec, Radoslaw; Piszczek, Marek; Szustakowski, Mieczyslaw; Zyczkowski, Marek; Kowalski, Marcin

    2012-06-01

    Screening cameras working in millimetre band gain more and more interest among security society mainly due to their capability of finding items hidden under clothes. Performance of commercially available passive cameras is still limited due to not sufficient resolution and contrast in comparison to other wavelengths (visible or infrared range). Testing of such cameras usually requires some persons carrying guns, bombs or knives. Such persons can have different clothes or body temperature, what makes the measurements even more ambiguous. To avoid such situations we built a moving phantom of human body. The phantom consists of a polystyrene manikin which is covered with a number of small pipes with water. Pipes were next coated with a silicone "skin". The veins (pipes) are filled with water heated up to 37 C degrees to obtain the same temperature as human body. The phantom is made of non-metallic materials and is placed on a moving wirelessly-controlled platform with four wheels. The phantom can be dressed with a set of ordinary clothes and can be equipped with some dangerous (guns, bombs) and non-dangerous items. For tests we used a passive commercially available camera TS4 from ThruVision Systems Ltd. operating at 250 GHz. We compared the images taken from phantom and a man and we obtained good similarity both for naked as well as dressed man/phantom case. We also tested the phantom with different sets of clothes and hidden items and we got good conformity with persons.

  10. Search for radiative decays of cosmic background neutrino using cosmic infrared background energy spectrum

    International Nuclear Information System (INIS)

    We propose to search for the neutrino radiative decay by fitting a photon energy spectrum of the cosmic infrared background to a sum of the photon energy spectrum from the neutrino radiative decay and a continuum. By comparing the present cosmic infrared background energy spectrum observed by AKARI and Spitzer to the photon energy spectrum expected from neutrino radiative decay with a maximum likelihood method, we obtained a lifetime lower limit of 3.1x1012 to 3.8x1012 years at 95% confidence level for the third generation neutrino v3 in the v3 mass range between 50 and 150 meV/c2 under the present constraints by the neutrino oscillation measurements. In the left-right symmetric model, the minimum lifetime of v3 is predicted to be 1.5x1017 years for m3 of 50 meV/c2. We studied the feasibility of the observation of the neutrino radiative decay with a lifetime of 1.5x1017 years, by measuring a continuous energy spectrum of the cosmic infrared background. (author)

  11. Comparison of Diffuse Infrared and Far-Ultraviolet emission in the Large Magellanic Cloud: The Data

    CERN Document Server

    Saikia, Gautam; Gogoi, Rupjyoti; Pathak, Amit

    2016-01-01

    Dust scattering is the main source of diffuse emission in the far-ultraviolet (FUV). For several locations in the Large Magellanic Cloud (LMC), Far Ultraviolet Spectroscopic Explorer (FUSE) satellite has observed diffuse radiation in the FUV with intensities ranging from 1000 - 3 X 10^5 photon units and diffuse fraction between 5% - 20% at 1100 {\\deg}A. Here, we compare the FUV diffuse emission with the mid-infrared (MIR) and far-infrared (FIR) diffuse emission observed by the Spitzer Space Telescope and the AKARI satellite for the same locations. The intensity ratios in the different MIR and FIR bands for each of the locations will enable us to determine the type of dust contributing to the diffuse emission as well as to derive a more accurate 3D distribution of stars and dust in the region, which in turn may be used to model the observed scattering in the FUV. In this work we present the infrared (IR) data for two different regions in LMC, namely N11 and 30 Doradus. We also present the FUV~IR correlation fo...

  12. Infrared Time Lags for the Periodic Quasar PG 1302-102

    CERN Document Server

    Jun, Hyunsung D; Graham, Matthew J; Djorgovski, S G; Mainzer, Amy; Cutri, Roc M; Drake, Andrew J; Mahabal, Ashish A

    2015-01-01

    The optical light curve of the quasar PG 1302-102 at $z = 0.278$ shows a strong, smooth 5.2 yr periodic signal, detectable over a period of $\\sim 20$ yr. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within $\\sim 10^{5}$ yr due to gravitational wave emission alone. Here we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from {\\it WISE} and {\\it Akari}, we confirm that the periodic behavior reported in the optical light curve from Graham et al. (2015) is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and $4.6 \\mu$m time lags of $(2219 \\pm 153, 2408 \\pm 148)$ days for a near face-on orientation of the torus, or $(4103\\pm 153, 4292 \\pm 148)$ days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared ...

  13. Firefly: A HOT camera core for thermal imagers with enhanced functionality

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim

    2015-06-01

    Raising the operating temperature of mercury cadmium telluride infrared detectors from 80K to above 160K creates new applications for high performance infrared imagers by vastly reducing the size, weight and power consumption of the integrated cryogenic cooler. Realizing the benefits of Higher Operating Temperature (HOT) requires a new kind of infrared camera core with the flexibility to address emerging applications in handheld, weapon mounted and UAV markets. This paper discusses the Firefly core developed to address these needs by Selex ES in Southampton UK. Firefly represents a fundamental redesign of the infrared signal chain reducing power consumption and providing compatibility with low cost, low power Commercial Off-The-Shelf (COTS) computing technology. This paper describes key innovations in this signal chain: a ROIC purpose built to minimize power consumption in the proximity electronics, GPU based image processing of infrared video, and a software customisable infrared core which can communicate wirelessly with other Battlespace systems.

  14. A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.

    2015-01-01

    We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity. 

  15. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  16. Early Science with SOFIA, the Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Young, E T; Marcum, P M; Roellig, T L; De Buizer, J M; Herter, T L; Güsten, R; Dunham, E W; Temi, P; Andersson, B -G; Backman, D; Burgdorf, M; Caroff, L J; Casey, S C; Davidson, J A; Erickson, E F; Gehrz, R D; Harper, D A; Harvey, P M; Helton, L A; Horner, S D; Howard, C D; Klein, R; Krabbe, A; McLean, I S; Meyer, A W; Miles, J W; Morris, M R; Reach, W T; Rho, J; Richter, M J; Roeser, H -P; Sandell, G; Sankrit, R; Savage, M L; Smith, E C; Shuping, R Y; Vacca, W D; Vaillancourt, J E; Wolf, J; Zinnecker, H; 10.1088/2041-8205/749/2/L17

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.

  17. NEOCam: The Near-Earth Object Camera

    Science.gov (United States)

    Mainzer, Amy K.; NEOCam Science Team

    2016-10-01

    The Near-Earth Object Camera (NEOCam) is a Discovery mission in Phase A study designed to carry out a large-scale survey of the inner solar system's minor planets. Its primary science objectives are to understand the origins of the solar system's small bodies and the processes that evolved them into their present state. The mission will also characterize the impact hazard from near-Earth objects as well as rare populations such as Earth Trojans and interior-to-Earth objects. In the process, NEOCam can identify targets for future robotic or human exploration. Using a 50 cm telescope operating in two infrared wavelengths (4-5.2 and 6-10 um), the mission is expected to detect and characterize close to 100,000 NEOs and thousands of comets. By achieving high survey completeness in the main belt down to kilometer-scale objects, NEOCam-derived size and albedo distributions can be directly compared to those of the NEOs. The hypotheses that small, dark NEOs and comets are preferentially disrupted at low perihelia can be tested by searching for correlations between size, orbital elements, and albedos. NEOCam's Sun-Earth L1 Lagrange point halo orbit enables a large instantaneous field of regard with a view of low solar elongations, high data rates, and a cold thermal environment. Like its predecessor, WISE/NEOWISE, candidate minor planet detections will be rapidly disseminated to the community via the Minor Planet Center. NEOCam images, source databases, and tables of derived physical properties will be delivered to the community via NASA's Infrared Science Archive and PDS.

  18. YSO Clusters on Galactic Infrared Loops

    Science.gov (United States)

    Marton, Gábor; Kiss, Zoltán Tamás; Tóth, L. Viktor; Zahorecz, Sarolta; Pásztor, László; Ueno, Munateka; Kitamura, Yoshimi; Tamura, Motohide; Kawamura, Akiko; Onishi, Toshikazu

    The AKARI all sky survey (Murakami et al. Publ. Astron. Soc. Jpn. 59:369, 2007) was investigated for YSO candidates. Distribution of candidate sources have been analysed and compared to that of galactic CO and medium scale structures. Clustering and other inhomogenities have been found.

  19. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  20. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  1. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  2. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  3. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  4. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  5. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective...... known as ‘the poetics of cinema.’ The dissertation embraces two branches of research within this perspective: stylistics and historical poetics (stylistic history). The dissertation takes on three questions in relation to camera movement and is accordingly divided into three major sections. The first...... cinematic poetics and interpretive criticism sensitive to style may gain from each other. There is no reason why stylistically informed interpretive criticism cannot be considered within a functional framework and there is no reason why one should not use a functional taxonomy as a basis on which to launch...

  6. Combustion pinhole-camera system

    Science.gov (United States)

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  7. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  8. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  9. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  10. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  11. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  12. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  13. Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

    International Nuclear Information System (INIS)

    In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

  14. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  15. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  16. Mini gamma camera, camera system and method of use

    Science.gov (United States)

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  17. Infrared emissivity measurements of building and civil engineering materials: a new device for measuring emissivity

    OpenAIRE

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-01-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such...

  18. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  19. Use Of Infrared Imagery In Continuous Flow Wind Tunnels

    Science.gov (United States)

    Stallings, D. W.; Whetsel, R. G.

    1983-03-01

    Thermal mapping with infrared imagery is a very useful test technique in continuous flow wind tunnels. Convective-heating patterns over large areas of a model can be obtained through remote sensing of the surface temperature. A system has been developed at AEDC which uses a commercially available infrared scanning camera to produce these heat-transfer maps. In addition to the camera, the system includes video monitors, an analog tape recording, an analog-to-digital converter, a digitizer control, and two minicomputers. This paper will describe the individual components, data reduction techniques, and typical applications. *

  20. Modeling the evolution of infrared galaxies: A Parametric backwards evolution model

    CERN Document Server

    Béthermin, Matthieu; Lagache, Guilaine; Borgne, Damien Le; Pénin, Aurélie

    2010-01-01

    We aim at modeling the infrared galaxy evolution in an as simple as possible way and reproduce statistical properties among which the number counts between 15 microns and 1.1 mm, the luminosity functions, and the redshift distributions. We then aim at using this model to interpret the recent observations (Spitzer, Akari, BLAST, LABOCA, AzTEC, SPT and Herschel), and make predictions for future experiments like CCAT or SPICA. This model uses an evolution in density and luminosity of the luminosity function with two breaks at redshift ~0.9 and 2 and contains the two populations of the Lagache et al. (2004) model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. It has 13 free parameters and 8 additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel and AzTEC measurements with a Monte-Carlo Markov chain. The model ajusted on deep counts at key wavelengths reproduces the counts from the mid-infrared to...

  1. Physical properties of asteroids in comet-like orbits in infrared asteroid survey catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoonyoung; Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-07-10

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have a size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.

  2. A high-resolution SWIR camera via compressed sensing

    Science.gov (United States)

    McMackin, Lenore; Herman, Matthew A.; Chatterjee, Bill; Weldon, Matt

    2012-06-01

    Images from a novel shortwave infrared (SWIR, 900 nm to 1.7 μm) camera system are presented. Custom electronics and software are combined with a digital micromirror device (DMD) and a single-element sensor; the latter are commercial off-the-shelf devices, which together create a lower-cost imaging system than is otherwise available in this wavelength regime. A compressive sensing (CS) encoding schema is applied to the DMD to modulate the light that has entered the camera. This modulated light is directed to a single-element sensor and an ensemble of measurements is collected. With the data ensemble and knowledge of the CS encoding, images are computationally reconstructed. The hardware and software combination makes it possible to create images with the resolution of the DMD while employing a substantially lower-cost sensor subsystem than would otherwise be required by the use of traditional focal plane arrays (FPAs). In addition to the basic camera architecture, we also discuss a technique that uses the adaptive functionality of the DMD to search and identify regions of interest. We demonstrate adaptive CS in solar exclusion experiments where bright pixels, which would otherwise reduce dynamic range in the images, are automatically removed.

  3. Video clustering using camera motion

    OpenAIRE

    Tort Alsina, Laura

    2012-01-01

    Com el moviment de càmera en un clip de vídeo pot ser útil per a la seva classificació en termes semàntics. [ANGLÈS] This document contains the work done in INP Grenoble during the second semester of the academic year 2011-2012, completed in Barcelona during the first months of the 2012-2013. The work presented consists in a camera motion study in different types of video in order to group fragments that have some similarity in the content. In the document it is explained how the data extr...

  4. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    CERN Document Server

    Xue, Mengyao; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-01-01

    A precise measure of the mid-infrared interstellar extinction law is crucial to the investigation of the properties of interstellar dust, especially of the grains in the large size end. Based on the stellar parameters derived from the SDSS-III/APOGEE spectroscopic survey, we select a large sample of G- and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinction (relative to the K$_{\\rm S}$ band at wavelength $\\lambda=2.16\\mu$m) for the four \\emph{WISE} bands at 3.4, 4.6, 12 and 22$\\mu$m, the four \\emph{Spitzer}/IRAC bands at 3.6, 4.5, 5.8 and 8$\\mu$m, the \\emph{Spitzer}/MIPS24 band at 23.7$\\mu$m and for the first time, the \\emph{AKARI}/S9W band at 8.23$\\mu$m. Our results agree with previous works in that the extinction curve is flat in the ~3--8$\\m...

  5. The Dark Energy Camera (DECam)

    CERN Document Server

    Honscheid, K; Abbott, T; Annis, J; Antonik, M; Barcel, M; Bernstein, R; Bigelow, B; Brooks, D; Buckley-Geer, E; Campa, J; Cardiel, L; Castander, F; Castilla, J; Cease, H; Chappa, S; Dede, E; Derylo, G; Diehl, T; Doel, P; De Vicente, J; Eiting, J; Estrada, J; Finley, D; Flaugher, B; Gaztañaga, E; Gerdes, D; Gladders, M; Guarino, V; Gutíerrez, G; Hamilton, J; Haney, M; Holland, S; Huffman, D; Karliner, I; Kau, D; Kent, S; Kozlovsky, M; Kubik, D; Kühn, K; Kuhlmann, S; Kuk, K; Leger, F; Lin, H; Martínez, G; Martínez, M; Merritt, W; Mohr, J; Moore, P; Moore, T; Nord, B; Ogando, R; Olsen, J; Onal, B; Peoples, J; Qian, T; Roe, N; Sánchez, E; Scarpine, V; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Selen, M; Shaw, T; Simaitis, V; Slaughter, J; Smith, C; Spinka, H; Stefanik, A; Stuermer, W; Talaga, R; Tarle, G; Thaler, J; Tucker, D; Walker, A; Worswick, S; Zhao, A

    2008-01-01

    In this paper we describe the Dark Energy Camera (DECam), which will be the primary instrument used in the Dark Energy Survey. DECam will be a 3 sq. deg. mosaic camera mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). It consists of a large mosaic CCD focal plane, a five element optical corrector, five filters (g,r,i,z,Y), a modern data acquisition and control system and the associated infrastructure for operation in the prime focus cage. The focal plane includes of 62 2K x 4K CCD modules (0.27"/pixel) arranged in a hexagon inscribed within the roughly 2.2 degree diameter field of view and 12 smaller 2K x 2K CCDs for guiding, focus and alignment. The CCDs will be 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). Production of the CCDs and fabrication of the optics, mechanical structure, mechanisms, and control system for DECam are underway; delivery of the instrument to CTIO is scheduled ...

  6. Infrared imaging system using nanocarbon materials

    Science.gov (United States)

    Lai, King Wai Chiu; Xi, Ning; Chen, Hongzhi; Chen, Liangliang; Song, Bo

    2012-06-01

    Nanocarbon materials, such as carbon nanotubes and graphene, can potentially overcome the short comes in traditional infrared detector materials because of their excellent electrical and optical properties such as adjustable electrical band gap, low dark current, fast optical response time etc. This paper will present the development of an infrared imaging system that is capable of infrared imaging without cooling. The sensing elements of the system are carbon nanotubes and graphene. When they are illumined by an infrared light, the nano devices generate photocurrents, respectively. As a result, infrared images can be presented based on using compressive sensing after the collection of photocurrent from the nano devices. The development of this imaging system overcomes two major difficulties. First, the system uses singlepixel nano photodetector, so the pixel crosstalk phenomena of conventional sensor arrays can be eliminated. Second, the requirement of single-pixel unit reduces the manufacturing difficulties and costs. Under this compressive sensing camera configuration, 50 × 50 pixel infrared images can be reconstructed efficiently. The results demonstrated a possible solution to overcome the limitation of current infrared imaging.

  7. LLiST - a new star tracker camera for tip-tilt correction at IOTA

    OpenAIRE

    Schuller, P.A.; Lacasse, M. G.; Lydon, D.; McGonagle, W. H.; Pedretti, E; Reich, R. K.; Schloerb, F. P.; Traub, W. A.

    2004-01-01

    The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that ...

  8. LLiST - a new star tracker camera for tip-tilt correction at IOTA

    CERN Document Server

    Schuller, P A; Lydon, D; McGonagle, W H; Pedretti, E; Reich, R K; Schloerb, F P; Traub, W A

    2004-01-01

    The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that their error imposed on visibility measurements becomes comparable to, and even smaller than, that of higher-order aberrations.

  9. Broadband Sub-terahertz Camera Based on Photothermal Conversion and IR Thermography

    Science.gov (United States)

    Romano, M.; Chulkov, A.; Sommier, A.; Balageas, D.; Vavilov, V.; Batsale, J. C.; Pradere, C.

    2016-05-01

    This paper describes a fast sub-terahertz (THz) camera that is based on the use of a quantum infrared camera coupled with a photothermal converter, called a THz-to-Thermal Converter (TTC), thus allowing fast image acquisition. The performance of the experimental setup is presented and discussed, with an emphasis on the advantages of the proposed method for decreasing noise in raw data and increasing the image acquisition rate. A detectivity of 160 pW Hz-0.5 per pixel has been achieved, and some examples of the practical implementation of sub-THz imaging are given.

  10. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    OpenAIRE

    Alejandro Wolf; Jorge E Pezoa; Miguel Figueroa

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant...

  11. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  12. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  13. Development of biostereometric experiments. [stereometric camera system

    Science.gov (United States)

    Herron, R. E.

    1978-01-01

    The stereometric camera was designed for close-range techniques in biostereometrics. The camera focusing distance of 360 mm to infinity covers a broad field of close-range photogrammetry. The design provides for a separate unit for the lens system and interchangeable backs on the camera for the use of single frame film exposure, roll-type film cassettes, or glass plates. The system incorporates the use of a surface contrast optical projector.

  14. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  15. Comparative evaluation of consumer grade cameras and mobile phone cameras for close range photogrammetry

    Science.gov (United States)

    Chikatsu, Hirofumi; Takahashi, Yoji

    2009-08-01

    The authors have been concentrating on developing convenient 3D measurement methods using consumer grade digital cameras, and it was concluded that consumer grade digital cameras are expected to become a useful photogrammetric device for the various close range application fields. On the other hand, mobile phone cameras which have 10 mega pixels were appeared on the market in Japan. In these circumstances, we are faced with alternative epoch-making problem whether mobile phone cameras are able to take the place of consumer grade digital cameras in close range photogrammetric applications. In order to evaluate potentials of mobile phone cameras in close range photogrammetry, comparative evaluation between mobile phone cameras and consumer grade digital cameras are investigated in this paper with respect to lens distortion, reliability, stability and robustness. The calibration tests for 16 mobile phone cameras and 50 consumer grade digital cameras were conducted indoors using test target. Furthermore, practability of mobile phone camera for close range photogrammetry was evaluated outdoors. This paper presents that mobile phone cameras have ability to take the place of consumer grade digital cameras, and develop the market in digital photogrammetric fields.

  16. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  17. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  18. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  19. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  20. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  1. Framework for Evaluating Camera Opinions

    Directory of Open Access Journals (Sweden)

    K.M. Subramanian

    2015-03-01

    Full Text Available Opinion mining plays a most important role in text mining applications in brand and product positioning, customer relationship management, consumer attitude detection and market research. The applications lead to new generation of companies/products meant for online market perception, online content monitoring and reputation management. Expansion of the web inspires users to contribute/express opinions via blogs, videos and social networking sites. Such platforms provide valuable information for analysis of sentiment pertaining a product or service. This study investigates the performance of various feature extraction methods and classification algorithm for opinion mining. Opinions expressed in Amazon website for cameras are collected and used for evaluation. Features are extracted from the opinions using Term Document Frequency and Inverse Document Frequency (TDFIDF. Feature transformation is achieved through Principal Component Analysis (PCA and kernel PCA. Naïve Bayes, K Nearest Neighbor and Classification and Regression Trees (CART classification algorithms classify the features extracted.

  2. Illumination box and camera system

    Science.gov (United States)

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  3. Mid infrared upconversion spectroscopy using diffuse reflectance

    Science.gov (United States)

    Sanders, Nicolai; Kehlet, Louis; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Beato, Pablo; Pedersen, Christian

    2014-02-01

    We present a novel approach for mid infrared (mid-IR) spectral analysis using upconversion technology applied in a diffuse reflectance setup. We demonstrate experimentally that mid-IR spectral features in the 2.6-4 μm range using different test samples (e.g. zeolites) can be obtained. The results are in good agreement with published data. We believe that the benefit of low noise upconversion methods combined with spectral analysis will provide an alternative approach to e.g. mid-IR Fourier Transform microscopy. We discuss in detail the experimental aspects of the proposed method. The upconversion unit consists of a PP:LN crystal situated as an intracavity component in a Nd:YVO4 laser. Mixing incoming spectrally and spatially incoherent light from the test sample with the high power intracavity beam of the Nd:YVO4 laser results in enhanced conversion efficiency. The upconverted light is spectrally located in the near infrared (NIR) wavelength region easily accessible for low noise Silicon CCD camera technology. Thus the room temperature upconversion unit and the Silicon CCD camera replaces noisy mid infrared detectors used in existing Fourier Transform Infrared Spectroscopy. We demonstrate specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly scattering or absorbing samples.

  4. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  5. Fast infrared variability from a relativistic jet in GX 339−4

    NARCIS (Netherlands)

    P. Casella; T.J. Maccarone; K. O'Brien; R.P. Fender; D.M. Russell; M. van der Klis; A. Pe'er; D. Maitra; D. Altamirano; T. Belloni; G. Kanbach; M. Klein-Wolt; E. Mason; P. Soleri; A. Stefanescu; K. Wiersema; R. Wijnands

    2010-01-01

    We present the discovery of fast infrared/X-ray correlated variability in the black hole transient GX 339-4. The source was observed with subsecond time resolution simultaneously with Very Large Telescope/Infrared Spectrometer And Array Camera and Rossi X-ray Timing Explorer/Proportional Counter Arr

  6. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  7. Processing of polarimetric infrared images for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.

    2003-01-01

    Infrared (IR) cameras are often used in a vehicle based multi-sensor platform for landmine detection. Additional to thermal contrasts, an IR polarimetric sensor also measures surface properties and therefore has the potential of increased detection performance. We have developed a polarimetric IR se

  8. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  9. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many ca

  10. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial relationsh

  11. Camera self-calibration from translation by referring to a known camera.

    Science.gov (United States)

    Zhao, Bin; Hu, Zhaozheng

    2015-09-01

    This paper presents a novel linear method for camera self-calibration by referring to a known (or calibrated) camera. The method requires at least three images, with two images generated by the uncalibrated camera from pure translation and one image generated by the known reference camera. We first propose a method to compute the infinite homography from scene depths. Based on this, we use two images generated by translating the uncalibrated camera to recover scene depths, which are further utilized to linearly compute the infinite homography between an arbitrary uncalibrated image, and the image from the known camera. With the known camera as reference, the computed infinite homography is readily decomposed for camera calibration. The proposed self-calibration method has been tested with simulation and real image data. Experimental results demonstrate that the method is practical and accurate. This paper proposes using a "known reference camera" for camera calibration. The pure translation, as required in the method, is much more maneuverable, compared with some strict motions in the literature, such as pure rotation. The proposed self-calibration method has good potential for solving online camera calibration problems, which has important applications, especially for multicamera and zooming camera systems.

  12. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, Bernd

    2011-09-15

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  13. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    International Nuclear Information System (INIS)

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  14. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  15. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  16. A BASIC CAMERA UNIT FOR MEDICAL PHOTOGRAPHY.

    Science.gov (United States)

    SMIALOWSKI, A; CURRIE, D J

    1964-08-22

    A camera unit suitable for most medical photographic purposes is described. The unit comprises a single-lens reflex camera, an electronic flash unit and supplementary lenses. Simple instructions for use of th's basic unit are presented. The unit is entirely suitable for taking fine-quality photographs of most medical subjects by persons who have had little photographic training.

  17. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  18. CCD Color Camera Characterization for Image Measurements

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2007-01-01

    In this article, we will analyze a range of different types of cameras for its use in measurements. We verify a general model of a charged coupled device camera using experiments. This model includes gain and offset, additive and multiplicative noise, and gamma correction. It is shown that for sever

  19. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  20. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  1. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm. PMID:26685238

  2. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  3. Fazendo 3d com uma camera so

    CERN Document Server

    Lunazzi, J J

    2010-01-01

    A simple system to make stereo photography or videos based in just two mirrors was made in 1989 and recently adapted to a digital camera setup. Um sistema simples para fazer fotografia ou videos em estereo baseado em dois espelhos que dividem o campo da imagem foi criado no ano 1989, e recentemente adaptado para camera digital.

  4. Creating and Using a Camera Obscura

    Science.gov (United States)

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  5. Infrared hyperspectral upconversion imaging using spatial object translation

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Sanders, Nicolai Højer; Tidemand-Lichtenberg, Peter;

    2015-01-01

    and an image is recorded for each position. A sequence of such images is post-processed into a series of monochromatic images in a wavelength range defined by the phasematch condition and numerical aperture of the upconversion system. A standard USAF resolution target and a polystyrene film are used......In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators...

  6. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition.

    Science.gov (United States)

    Thomas, Jean-Baptiste; Lapray, Pierre-Jean; Gouton, Pierre; Clerc, Cédric

    2016-01-01

    Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields. PMID:27367690

  7. Compact high-performance MWIR camera with exposure control and 12-bit video processor

    Science.gov (United States)

    Villani, Thomas S.; Loesser, Kenneth A.; Perna, Steve N.; McCarthy, D. R.; Pantuso, Francis P.

    1998-07-01

    The design and performance of a compact infrared camera system is presented. The 3 - 5 micron MWIR imaging system consists of a Stirling-cooled 640 X 480 staring PtSi infrared focal plane array (IRFPA) with a compact, high-performance 12-bit digital image processor. The low-noise CMOS IRFPA is X-Y addressable, utilizes on-chip-scanning registers and has electronic exposure control. The digital image processor uses 16-frame averaged, 2-point non-uniformity compensation and defective pixel substitution circuitry. There are separate 12- bit digital and analog I/O ports for display control and video output. The versatile camera system can be configured in NTSC, CCIR, and progressive scan readout formats and the exposure control settings are digitally programmable.

  8. Errors in Thermographic Camera Measurement Caused by Known Heat Sources and Depth Based Correction

    Directory of Open Access Journals (Sweden)

    Mark Christian E. Manuel

    2016-03-01

    Full Text Available Thermal imaging has shown to be a better tool for the quantitative measurement of temperature than single spot infrared thermometers. However, thermographic cameras can encounter errors in acquiring accurate temperature measurements in the presence of other environmental heat sources. Some of these errors arise due to the inability of the thermal camera to detect objects and features in the infrared domain. In this paper, the thermal image is registered as a stereo image from a Kinect system prior to depth-based correction. Experiments demonstrating the error are presented together with the determination of the measurement errors under prior knowledge of the thermographed scene. The proposed correction scheme improves the accuracy of the thermal image through augmentation using the Kinect system.

  9. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    Science.gov (United States)

    Thomas, Jean-Baptiste; Lapray, Pierre-Jean; Gouton, Pierre; Clerc, Cédric

    2016-01-01

    Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields. PMID:27367690

  10. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Thomas

    2016-06-01

    Full Text Available Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields.

  11. Flow visualization by mobile phone cameras

    Science.gov (United States)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  12. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  13. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    the viewpoint movements to the player type and her game-play style. Ultimately, the methodology is applied to a 3D platform game and is evaluated through a controlled experiment; the results suggest that the resulting adaptive cinematographic experience is favoured by some player types and it can generate......Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose...... a novel approach to virtual camera control, which builds upon camera control and player modelling to provide the user with an adaptive point-of-view. To achieve this goal, we propose a methodology to model the player’s preferences on virtual camera movements and we employ the resulting models to tailor...

  14. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... industry and game AI research focus on the devel- opment of increasingly sophisticated systems to automate the control of the virtual camera integrating artificial intel- ligence algorithms within physical simulations. However, in both industry and academia little research has been carried out...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...

  15. Infrared Astronomy

    Science.gov (United States)

    Mampaso, A.; Prieto, M.; Sánchez, F.

    2004-01-01

    What do we understand of the birth and death of stars? What is the nature of the tiny dust grains that permeate our Galaxy and other galaxies? And how likely is the existence of brown dwarfs, extrasolar planets or other sub-stellar mass objects? These are just a few of the questions that can now be addressed in a new era of infrared observations. IR astronomy has been revolutionised over the past few years by the widespread availability of large, very sensitive IR arrays and the success of IR satellites (IRAS in particular). Several IR space missions due for launch over the next few years promise an exciting future too. For these reasons, the IV Canary Islands Winter School of Astrophysics was dedicated to this burgeoning field. Its primary goal was to introduce graduate students and researchers from other areas to the important new observations and physical ideas that are emerging in this wide-ranging field of research. Lectures from nine leading researchers, renowned for their teaching abilities, are gathered in this volume. These nine chapters provide an excellent introduction as well as a thorough and up-to-date review of developments - essential reading for graduate students entering IR astronomy, and professionals from other areas who realise the importance that IR astronomy may have on their research.

  16. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  17. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  18. Cloud Computing with Context Cameras

    Science.gov (United States)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  19. Cloud Computing with Context Cameras

    CERN Document Server

    Pickles, A J

    2013-01-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every 2 minutes through BVriz filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of 0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-comp...

  20. Smart Camera Technology Increases Quality

    Science.gov (United States)

    2004-01-01

    When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.

  1. True three-dimensional camera

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  2. Unveiling the Dynamic Infrared Sky with Gattini-IR

    CERN Document Server

    Moore, Anna M; Gelino, Christopher R; Jencson, Jacob E; Jones, Mike I; Kirkpatrick, J Davy; Lau, Ryan M; Ofek, Eran; Petrunin, Yuri; Smith, Roger; Terebizh, Valery; Steinbring, Eric; Yan, Lin

    2016-01-01

    While optical and radio transient surveys have enjoyed a renaissance over the past decade, the dynamic infrared sky remains virtually unexplored. The infrared is a powerful tool for probing transient events in dusty regions that have high optical extinction, and for detecting the coolest of stars that are bright only at these wavelengths. The fundamental roadblocks in studying the infrared time-domain have been the overwhelmingly bright sky background (250 times brighter than optical) and the narrow field-of-view of infrared cameras (largest is 0.6 sq deg). To begin to address these challenges and open a new observational window in the infrared, we present Palomar Gattini-IR: a 25 sq degree, 300mm aperture, infrared telescope at Palomar Observatory that surveys the entire accessible sky (20,000 sq deg) to a depth of 16.4 AB mag (J band, 1.25um) every night. Palomar Gattini-IR is wider in area than every existing infrared camera by more than a factor of 40 and is able to survey large areas of sky multiple time...

  3. Visibility through the gaseous smoke in airborne remote sensing using a DSLR camera

    Science.gov (United States)

    Chabok, Mirahmad; Millington, Andrew; Hacker, Jorg M.; McGrath, Andrew J.

    2016-08-01

    Visibility and clarity of remotely sensed images acquired by consumer grade DSLR cameras, mounted on an unmanned aerial vehicle or a manned aircraft, are critical factors in obtaining accurate and detailed information from any area of interest. The presence of substantial haze, fog or gaseous smoke particles; caused, for example, by an active bushfire at the time of data capture, will dramatically reduce image visibility and quality. Although most modern hyperspectral imaging sensors are capable of capturing a large number of narrow range bands of the shortwave and thermal infrared spectral range, which have the potential to penetrate smoke and haze, the resulting images do not contain sufficient spatial detail to enable locating important objects or assist search and rescue or similar applications which require high resolution information. We introduce a new method for penetrating gaseous smoke without compromising spatial resolution using a single modified DSLR camera in conjunction with image processing techniques which effectively improves the visibility of objects in the captured images. This is achieved by modifying a DSLR camera and adding a custom optical filter to enable it to capture wavelengths from 480-1200nm (R, G and Near Infrared) instead of the standard RGB bands (400-700nm). With this modified camera mounted on an aircraft, images were acquired over an area polluted by gaseous smoke from an active bushfire. Processed data using our proposed method shows significant visibility improvements compared with other existing solutions.

  4. The interface between the stellar wind and interstellar medium around R Cassiopeiae revealed by far-infrared imaging

    CERN Document Server

    Ueta, T; Yamamura, I; Geise, K M; Karska, A; Izumiura, H; Nakada, Y; Matsuura, M; Ita, Y; Tanabe, T; Fukushi, H; Matsunaga, N; Mito, H; Speck, A K

    2009-01-01

    The circumstellar dust shells of intermediate initial-mass (about 1 to 8 solar masses) evolved stars are generated by copious mass loss during the asymptotic giant branch phase. The density structure of their circumstellar shell is the direct evidence of mass loss processes, from which we can investigate the nature of mass loss. We used the AKARI Infrared Astronomy Satellite and the Spitzer Space Telescope to obtain the surface brightness maps of an evolved star R Cas at far-infrared wavelengths, since the temperature of dust decreases as the distance from the star increases and one needs to probe dust at lower temperatures, i.e., at longer wavelengths. The observed shell structure and the star's known proper motion suggest that the structure represents the interface regions between the dusty wind and the interstellar medium. The deconvolved structures are fitted with the analytic bow shock structure to determine the inclination angle of the bow shock cone. Our data show that (1) the bow shock cone of 1 - 5 x...

  5. Far-infrared and accretion luminosities of the present-day active galactic nuclei

    CERN Document Server

    Matsuoka, Kenta

    2015-01-01

    We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We adopt FIR luminosities at 90 and 100 um as SF luminosities, assuming the proposed linear proportionality of star formation rate with FIR luminosities. By estimating AGN luminosities from [OIII]5007 and [OI]6300 emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with the recent reports that low-luminosity AGNs show essentially no correlation between FIR and X-ray luminosities, while the discrepancy is likely due to the Malmquist and sample selection biases. By analyzing the spectral energy distribution, we find that pure-AGN candidates, of which FIR radiation is thought to be AGN-dominated, show significantly low-SF activities. These AGNs hosted by low-SF galaxies are...

  6. Infrared Time Lags for the Periodic Quasar PG 1302-102

    Science.gov (United States)

    Jun, Hyunsung D.; Stern, Daniel; Graham, Matthew J.; Djorgovski, S. G.; Mainzer, Amy; Cutri, Roc M.; Drake, Andrew J.; Mahabal, Ashish A.

    2015-11-01

    The optical light curve of the quasar PG 1302-102 at z=0.278 shows a strong, smooth 5.2 year periodic signal, detectable over a period of ∼20 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within ∼ {10}5 years due to gravitational wave emission alone. Here, we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from WISE and Akari, we confirm that the periodic behavior reported in the optical light curve from Graham et al. is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and 4.6 μ {{m}} time lags of (2219 ± 153, 2408 ± 148) days for a near face-on orientation of the torus, or (4103 ± 153, 4292 ± 148) days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared light curves and the light-travel time of the accretion disk photons to reach the dust glowing regions support that a source within the accretion disk is responsible for the optical variability of PG 1302-102, echoed at the farther out dusty regions. The implied distance of this dusty, assumed toroidal region is ∼1.5 pc for a near face-on geometry or ∼1.1 pc for the relativistic Doppler-boosted case.

  7. Use of VNIR Camera System to Estimate Lava Temperature

    Science.gov (United States)

    Vaughan, R.; Keszthelyi, L. P.

    2012-12-01

    We present initial results from using a visible and near infrared (VNIR) camera as an optical pyrometer at Kilauea Volcano, Hawai`i. The basic concept of pyrometry simply converts the color of incandescent material into a temperature and has been used on Kilauea since the earliest days of regular volcano monitoring. However, these temperatures have always been lower than expected, raising the concern that the emissivity of lava at these wavelengths was not close to a blackbody. We carefully calibrated a system that uses 3 digital cameras with wavelengths similar to the green, red, and near-infrared channels of the Landsat Enhanced Thematic Mapper plus (ETM+) and Advanced Spaceborne Thermal Emissions and Reflection Radiometer (ASTER) VNIR instruments by imaging a high-temperature blackbody. Following techniques used to estimate lava temperatures on Jupiter's moon, Io, we obtained relationships between band ratios and blackbody temperatures. The green/red ratio provides good temperature estimates for any reasonable temperature above 1000 °C, while the red/NIR is useful from about 700-1200 °C. We also observed the glow from the lava lake in Halema`uma`u as reflected and scattered from the steam plume above it. We found that the temperatures inferred from the glow are much too high (~1400 °C) from the red/NIR ratios and much too low (night for determining if a volcano is actively erupting mafic lava. We propose that further refinement of this methodology using ETM+, ASTER, and other instruments could provide a useful complement to other near-real-time thermal alert systems.

  8. Detection and tracking of drones using advanced acoustic cameras

    Science.gov (United States)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  9. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-20 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  10. Sky camera geometric calibration using solar observations

    Science.gov (United States)

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  11. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  12. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (''bang-bang'') closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator ''seasickness'' caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator System SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system

  13. Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    CERN Document Server

    Wang, Shiang-Yu; Huang, Pin-Jie; Ling, Hung-Hsu; Karr, Jennifer; Chang, Yin-Chang; Hu, Yen-Shan; Hsu, Shu-Fu; Chen, Hsin-Yo; Gunn, James E; Reiley, Dan J; Tamura, Naoyuki; Takato, Naruhisa; Shimono, Atsushi

    2016-01-01

    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are ...

  14. On the use of non additive entropy to determine the presence of vibrations in the videos of jet cameras

    International Nuclear Information System (INIS)

    In many domains where images are produced and acquired, the field of view of cameras can be subject to oscillations and movements, which can induce errors in the interpretation of the frame contents and can even jeopardize the analysis of the videos. The problem is particularly severe in applications such as nuclear fusion, in which, typically, no stable and reliable reference points exist within the camera fields of view to register the frames. A non additive form of entropy Sq, which is more sensitive to long-range correlations than the Shannon entropy, has been applied to the problem of automatically detecting such camera movements in the videos of a JET wide-angle infrared camera. A systematic analysis of the results, covering more than 110 000 frames, has been undertaken, and the results obtained, reaching a total success rate of almost 97%, are more than satisfactory. (authors)

  15. A solid state streak camera

    Science.gov (United States)

    Kleinfelder, Stuart; Kwiatkowski, Kris; Shah, Ashish

    2005-03-01

    A monolithic solid-state streak camera has been designed and fabricated in a standard 0.35 μm, 3.3V, thin-oxide digital CMOS process. It consists of a 1-D linear array of 150 integrated photodiodes, followed by fast analog buffers and on-chip, 150-deep analog frame storage. Each pixel's front-end consists of an n-diffusion / p-well photodiode, with fast complementary reset transistors, and a source-follower buffer. Each buffer drives a line of 150 sample circuits per pixel, with each sample circuit consisting of an n-channel sample switch, a 0.1 pF double-polysilicon sample capacitor, a reset switch to definitively clear the capacitor, and a multiplexed source-follower readout buffer. Fast on-chip sample clock generation was designed using a self-timed break-before-make operation that insures the maximum time for sample settling. The electrical analog bandwidth of each channels buffer and sampling circuits was designed to exceed 1 GHz. Sampling speeds of 400 M-frames/s have been achieved using electrical input signals. Operation with optical input signals has been demonstrated at 100 MHz sample rates. Sample output multiplexing allows the readout of all 22,500 samples (150 pixels times 150 samples per pixel) in about 3 ms. The chip"s output range was a maximum of 1.48 V on a 3.3V supply voltage, corresponding to a maximum 2.55 V swing at the photodiode. Time-varying output noise was measured to be 0.51 mV, rms, at 100 MHz, for a dynamic range of ~11.5 bits, rms. Circuit design details are presented, along with the results of electrical measurements and optical experiments with fast pulsed laser light sources at several wavelengths.

  16. Determining camera parameters for round glassware measurements

    Science.gov (United States)

    Baldner, F. O.; Costa, P. B.; Gomes, J. F. S.; Filho, D. M. E. S.; Leta, F. R.

    2015-01-01

    Nowadays there are many types of accessible cameras, including digital single lens reflex ones. Although these cameras are not usually employed in machine vision applications, they can be an interesting choice. However, these cameras have many available parameters to be chosen by the user and it may be difficult to select the best of these in order to acquire images with the needed metrological quality. This paper proposes a methodology to select a set of parameters that will supply a machine vision system with the needed quality image, considering the measurement required of a laboratory glassware.

  17. Uncertainty of temperature measurement with thermal cameras

    Science.gov (United States)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  18. Close-range photogrammetry with video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  19. Screen-Camera Calibration Using Gray Codes

    OpenAIRE

    FRANCKEN, Yannick; Hermans, Chris; Bekaert, Philippe

    2009-01-01

    In this paper we present a method for efficient calibration of a screen-camera setup, in which the camera is not directly facing the screen. A spherical mirror is used to make the screen visible to the camera. Using Gray code illumination patterns, we can uniquely identify the reflection of each screen pixel on the imaged spherical mirror. This allows us to compute a large set of 2D-3D correspondences, using only two sphere locations. Compared to previous work, this means we require less manu...

  20. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.