WorldWideScience

Sample records for akari infrared camera

  1. The Infrared Camera (IRC) for AKARI - Design and Imaging Performance

    CERN Document Server

    Onaka, T; Wada, T; Fujishiro, N; Fujiwara, H; Ishigaki, M; Ishihara, D; Ita, Y; Kataza, H; Kim, W; Matsumoto, T; Murakami, H; Ohyama, Y; Oyabu, S; Sakon, I; Tanabé, T; Takagi, T; Uemizu, K; Ueno, M; Usui, F; Watarai, H; Cohen, M; Enya, K; Ootsubo, T; Pearson, C P; Takeyama, N; Yamamuro, T; Ikeda, Y

    2007-01-01

    The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10' x 10' and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature an...

  2. AKARI Infrared Camera Survey of the Large Magellanic Cloud. I. Point Source Catalog

    CERN Document Server

    Kato, Daisuke; Onaka, Takashi; Tanabe, Toshihiko; Shimonishi, Takashi; Sakon, Itsuki; Kaneda, Hidehiro; Kawamura, Akiko; Wada, Takehiko; Usui, Fumihiko; Koo, Bon-Chul; Matsuura, Mikako; Takahashi, Hidenori

    2012-01-01

    We present a near- to mid-infrared point source catalog of 5 photometric bands at 3.2, 7, 11, 15 and 24 um for a 10 deg2 area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera (IRC) onboard the AKARI satellite. To cover the survey area the observations were carried out at 3 separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10-sigma limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15 and 24 um, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 um and 0.06--0.07 mag in the other bands. The position accuracy is 0.3" at 3.2, 7 and 11um and 1.0" at 15 and 24 um. The sensitivities at 3.2, 7, and 24 um are roughly comparable to those of the Spitzer SAGE LMC point source catalog, while the AKARI catalog provides the data at 11 and 15 um, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the...

  3. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    International Nuclear Information System (INIS)

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared

  4. The Infrared Astronomical Mission AKARI

    OpenAIRE

    Murakami, H.; Baba, H.; Barthel, P.; Clements, D. L.; Cohen, M.; Doi, Y.; Enya, K.; Figueredo, E.; Fujishiro, N.; Fujiwara, H.; Fujiwara, M.; Garcia-Lario, P.; T. Goto; Hasegawa, S.; Hibi, Y.

    2007-01-01

    AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from the mid- to far-infrared. The instruments also have the capability for imaging and spectroscopy in the wavelength range 2 - 180 micron in the pointed observation mode, occasionally inserted into the continuous sur...

  5. AKARI Infrared Camera Observations of the 3.3 {\\mu}m PAH feature in Swift/BAT AGNs

    CERN Document Server

    Castro, Angel; Shirahata, M; Ichikawa, K; Oyabu, S; Clark, D; Imanishi, M; Nakagawa, T; Ueda, Y

    2014-01-01

    We explore the relationships between the 3.3 {\\mu}m polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at $E \\lesssim 10$ keV. These X-ray spectra provide measurements of the neutral hydrogen column density ($N_{\\rm H}$) towards the AGNs. We use the 3.3 {\\mu}m PAH luminosity ($L_{\\rm 3.3{\\mu}m}$) as a proxy for star formation activity and hard X-ray luminosity ($L_{\\rm 14-195keV}$) as an indicator of the AGN activity. We search for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper-limits of the PAH lines into account utilizing survival analysis methods....

  6. Neptune's Atmospheric Composition from AKARI Infrared Spectroscopy

    CERN Document Server

    Fletcher, Leigh N; Burgdorf, Martin; Orton, Glenn; Encrenaz, Therese; 10.1051/0004-6361/200913358

    2010-01-01

    Aims: Disk-averaged infrared spectra of Neptune between 1.8 and 13 $\\mu$m, obtained by the AKARI Infrared Camera (IRC) in May 2007, have been analysed to (a) determine the globally-averaged stratospheric temperature structure; (b) derive the abundances of stratospheric hydrocarbons; and (c) detect fluorescent emission from CO at 4.7 $\\mu$m. Methods: Mid-infrared spectra were modelled using a line-by-line radiative transfer code to determine the temperature structure between 1-1000 $\\mu$bar and the abundances of CH$_4$, CH$_3$D and higher-order hydrocarbons. A full non-LTE radiative model was then used to determine the best fitting CO profile to reproduce the fluorescent emission observed at 4.7 $\\mu$m in the NG channel (with a spectral resolution of 135). Results: The globally-averaged stratospheric temperature structure is quasi-isothermal between 1-1000 $\\mu$bar, which suggests little variation in global stratospheric conditions since studies by the Infrared Space Observatory a decade earlier. The derived C...

  7. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey

    Science.gov (United States)

    Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; Ishihara, Daisuke; Kataza, Hirokazu; Takita, Satoshi; Oyabu, Shinki; Ueno, Munetaka; Matsuhara, Hideo; Onaka, Takashi

    2011-10-01

    We present the results of an unbiased asteroid survey in the mid-infrared wavelength region with the Infrared Camera (IRC) on board the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these ``residual events''. We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a new brand of asteroid catalog, named the Asteroid Catalog Using AKARI (AcuA), which contains 5120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4953 main belt asteroids, 58 near-Earth asteroids, and 109 Jovian Trojan asteroids. The catalog is publicly available via the Internet.

  8. AKARI Far-Infrared All Sky Survey

    CERN Document Server

    Doi, Y; White, G; Figuered, E; Chinone, Y; Hattori, M; Ikeda, N; Kitamura, Y; Komugi, S; Nakagawa, T; Yamauchi, C; Matsuoka, Y; Kaneda, H; Kawada, M; Shibai, H

    2009-01-01

    We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 Feb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient respo...

  9. The AKARI/IRC Mid-Infrared All-Sky Survey

    CERN Document Server

    Ishihara, Daisuke; Kataza, Hirokazu; Salama, Alberto; Alfageme, Carlos; Cassatella, Angelo; Cox, Nick; Garcia-Lario, Pedro; Stephenson, Craig; Cohen, Martin; Fujishiro, Naofumi; Fujiwara, Hideaki; Hasegawa, Sunao; Ita, Yoshifusa; Kim, Woojung; Matsuhara, Hideo; Murakami, Hiroshi; Muller, Thomas G; Nakagawa, Takao; Ohyama, Youichi; Oyabu, Shinki; Pyo, Jeonghyun; Sakon, Itsuki; Shibai, Hiroshi; Takita, Satoshi; Tanabe, Toshihiko; Uemizu, Kazunori; Ueno, Munetaka; Usui, Fumihiko; Wada, Takehiko; Watarai, Hiden ori; Yamamura, Issei; Yamauchi, Chisato

    2010-01-01

    Context : AKARI is the first Japanese astronomical satellite dedicated to infrar ed astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 and 200um during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9um and 18um b ands) of the survey carried out with one of the on-board instruments, the Infrar ed Camera (IRC). Aims : We present unprecedented observational results of the 9 and 18um AKARI al l-sky survey and detail the operation and data processing leading to the point s ource detection and measurements. Methods : The raw data are processed to produce small images for every scan and point sources candidates, above the 5-sigma noise level per single scan, are der ived. The celestial coordinates and fluxes of the events are determined statisti cally and the reliability of their detections is secured through multiple detect ions of the same source within milli-seconds, hours, and months from each other. Resu...

  10. AKARI Detections of Hot Dust in Luminous Infrared Galaxies

    CERN Document Server

    Oyabu, S; Malkan, M; Matsuhara, H; Wada, T; Nakagawa, T; Ohyama, Y; Toba, Y; Onaka, T; Takita, S; Kataza, H; Yamamura, I; Shirahata, M

    2011-01-01

    We have made a new sample of Active Galactic Nuclei (AGNs), using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. First, we selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. Then, we obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. Based on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs, which show their nonstellar activity not in the optical, but in the near- and mid-infrared bands--i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in opti...

  11. Total infrared luminosity estimation from local galaxies in AKARI all sky survey

    CERN Document Server

    Solarz, A; Pollo, A

    2016-01-01

    We aim to use the a new and improved version of AKARI all sky survey catalogue of far-infrared sources to recalibrate the formula to derive the total infrared luminosity. We cross-match the faint source catalogue (FSC) of IRAS with the new AKARI-FIS and obtained a sample of 2430 objects. Then we calculate the total infrared (TIR) luminosity $L_{\\textrm{TIR}}$ from the Sanders at al. (1996) formula and compare it with total infrared luminosity from AKARI FIS bands to obtain new coefficients for the general relation to convert FIR luminosity from AKARI bands to the TIR luminosity.

  12. AKARI far-infrared maps of the zodiacal dust bands

    Science.gov (United States)

    Ootsubo, Takafumi; Doi, Yasuo; Takita, Satoshi; Nakagawa, Takao; Kawada, Mitsunobu; Kitamura, Yoshimi; Matsuura, Shuji; Usui, Fumihiko; Arimatsu, Ko

    2016-06-01

    Zodiacal emission is thermal emission from interplanetary dust. Its contribution to the sky brightness is non-negligible in the region near the ecliptic plane, even in the far-infrared (far-IR) wavelength regime. We analyze zodiacal emission observed by the AKARI far-IR all-sky survey, which covers 97% of the entire sky at arcminute-scale resolution in four photometric bands, with central wavelengths of 65, 90, 140, and 160 μm. AKARI detected small-scale structures in the zodiacal dust cloud, including the asteroidal dust bands and the circumsolar ring, at far-IR wavelengths. Although the smooth component of the zodiacal emission structure in the far-IR sky can be reproduced well by models based on existing far-IR observations, previous zodiacal emission models have discrepancies in the small-scale structures compared with observations. We investigate the geometry of the small-scale dust-band structures in the AKARI far-IR all-sky maps and construct template maps of the asteroidal dust bands and the circumsolar ring components based on the AKARI far-IR maps. In the maps, ± 1.4°, ± 2.1°, and ± 10° asteroidal dust-band structures are detected in the 65 μm and 90 μm bands. A possible ± 17° band may also have been detected. No evident dust-band structures are identified in either the 140 μm or the 160 μm bands. By subtracting the dust-band templates constructed in this paper, we can achieve a similar level of flux calibration of the AKARI far-IR all-sky maps in the |β| 40°.

  13. AcuA: the AKARI/IRC Mid-infrared Asteroid Survey

    CERN Document Server

    Usui, Fumihiko; Mueller, Thomas G; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; Ishihara, Daisuke; Kataza, Hirokazu; Takita, Satoshi; Oyabu, Shinki; Ueno, Munetaka; Matsuhara, Hideo; Onaka, Takashi

    2011-01-01

    We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these "residual events". We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via th...

  14. Dusty Universe viewed by AKARI far infrared detector

    CERN Document Server

    Malek, K; Takeuchi, T T; Giovannoli, E; Buat, V; Burgarella, D; Malkan, M; Kurek, A

    2013-01-01

    We present the results of the analysis of multiwavelength Spectral Energy Distributions (SEDs) of far-infrared galaxies detected in the AKARI Deep Field-South (ADF--S) Survey. The analysis uses a carefully selected sample of 186 sources detected at the 90 $\\mu$m AKARI band, identified as galaxies with cross-identification in public catalogues. For sources without known spectroscopic redshifts, we estimate photometric redshifts after a test of two independent methods: one based on using mainly the optical -- mid infrared range, and one based on the whole range of ultraviolet -- far infrared data. We observe a vast improvement in the estimation of photometric redshifts when far infrared data are included, compared with an approach based mainly on the optical -- mid infrared range. We discuss the physical properties of our far-infrared-selected sample. We conclude that this sample consists mostly of rich in dust and young stars nearby galaxies, and, furthermore, that almost 25% of these sources are (Ultra)Lumino...

  15. AKARI far-infrared maps of the zodiacal dust bands

    CERN Document Server

    Ootsubo, Takafumi; Takita, Satoshi; Nakagawa, Takao; Kawada, Mitsunobu; Kitamura, Yoshimi; Matsuura, Shuji; Usui, Fumihiko; Arimatsu, Ko

    2016-01-01

    Zodiacal emission is thermal emission from interplanetary dust. Its contribution to the sky brightness is non-negligible in the region near the ecliptic plane, even in the far-infrared (far-IR) wavelength regime. We analyse zodiacal emission observed by the AKARI far-IR all-sky survey, which covers 97% of the entire sky at arcminute-scale resolution in four photometric bands, with central wavelengths of 65, 90, 140, and 160 $\\mu$m. AKARI detected small-scale structures in the zodiacal dust cloud, including the asteroidal dust bands and the circumsolar ring, at far-IR wavelengths. Although the smooth component of the zodiacal emission structure in the far-IR sky can be reproduced well by models based on existing far-IR observations, previous zodiacal emission models have discrepancies in the small-scale structures compared with observations. We investigate the geometry of the small-scale dust-band structures in the AKARI far-IR all-sky maps and construct template maps of the asteroidal dust bands and the circu...

  16. The Far-Infrared Surveyor (FIS) for AKARI

    OpenAIRE

    Kawada, Mitsunobu; Baba, Hajime; Barthel, Peter D.; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to ...

  17. The Mid-infrared View of Red Sequence Galaxies in Abell 2218 with AKARI

    CERN Document Server

    Ko, Jongwan; Lee, Hyung Mok; Lee, Myung Gyoon; Hopwood, Ros H; Serjeant, Stephen; Smail, Ian; Hwang, Ho Seong; Hwang, Narae; Shim, Hyunjin; Kim, Seong Jin; Lee, Jong Chul; Lim, Sungsoon; Seo, Hyunjong; Goto, Tomotsugu; Hanami, Hitoshi; Matsuhara, Hideo; Takagi, Toshinobu; Wada, Takehiko

    2009-01-01

    We present the {\\it AKARI} InfraRed Camera (IRC) imaging observation of early-type galaxies in A2218 at z $\\simeq$ 0.175. Mid-infrared (MIR) emission from early-type galaxies traces circumstellar dust emission from AGB stars or/and residual star formation. Including the unique imaging capability at 11 and 15 $\\mu$m, our {\\it AKARI} data provide an effective way to investigate MIR properties of early-type galaxies in the cluster environment. Among our flux-limited sample of 22 red sequence early-type galaxies with precise dynamical and line strength measurements ($<$ 18 mag at 3 $\\mu m$), we find that at least 41% have MIR-excess emission. The $N3-S11$ versus $N3$ (3 and 11 $\\mu$m) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A SED analysis reveals that the dust emission from AGB stars is the most likely cause for the MIR-excess, with low level of star formation being the next possible explanation. The MI...

  18. Far infrared and submillimetre surveys: from IRAS to Akari, Herschel and Planck

    CERN Document Server

    Rowan-Robinson, Michael

    2015-01-01

    We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.

  19. The AKARI/IRC mid-infrared all-sky survey

    Science.gov (United States)

    Ishihara, D.; Onaka, T.; Kataza, H.; Salama, A.; Alfageme, C.; Cassatella, A.; Cox, N.; García-Lario, P.; Stephenson, C.; Cohen, M.; Fujishiro, N.; Fujiwara, H.; Hasegawa, S.; Ita, Y.; Kim, W.; Matsuhara, H.; Murakami, H.; Müller, T. G.; Nakagawa, T.; Ohyama, Y.; Oyabu, S.; Pyo, J.; Sakon, I.; Shibai, H.; Takita, S.; Tanabé, T.; Uemizu, K.; Ueno, M.; Usui, F.; Wada, T.; Watarai, H.; Yamamura, I.; Yamauchi, C.

    2010-05-01

    Context. AKARI is the first Japanese astronomical satellite dedicated to infrared astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 μm and 200 μm during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9 μm and 18 μm bands) of the survey carried out with one of the on-board instruments, the infrared camera (IRC). Aims: We present unprecedented observational results of the 9 μm and 18 μm AKARI all-sky survey and detail the operation and data processing leading to the point source detection and measurements. Methods: The raw data are processed to produce small images for every scan, and the point sources candidates are derived above the 5σ noise level per single scan. The celestial coordinates and fluxes of the events are determined statistically and the reliability of their detections is secured through multiple detections of the same source within milli-seconds, hours, and months from each other. Results: The sky coverage is more than 90% for both bands. A total of 877 091 sources (851 189 for 9 μm, 195 893 for 18 μm) are confirmed and included in the current release of the point source catalog. The detection limit for point sources is 50 mJy and 90 mJy for the 9 μm and 18 μm bands, respectively. The position accuracy is estimated to be better than 2''. Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9 μm band and 4% for the 18 μm band. The coordinates and fluxes of detected sources in this survey are also compared with those of the IRAS survey and are found to be statistically consistent. Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/514/A1

  20. The AKARI far-infrared all-sky survey maps

    Science.gov (United States)

    Doi, Yasuo; Takita, Satoshi; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J.; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Cypriano, Elysandra F.

    2015-06-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese AKARI satellite. The survey covers > 99% of the sky in four photometric bands centred at 65 μm, 90 μm, 140 μm, and 160 μm, with spatial resolutions ranging from 1' to 1{^''.}5. These data provide crucial information on the investigation and characterisation of the properties of dusty material in the interstellar medium (ISM), since a significant portion of its energy is emitted between ˜ 50 and 200 μm. The large-scale distribution of interstellar clouds, their thermal dust temperatures, and their column densities can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use in the astronomical community.

  1. THE MID-INFRARED VIEW OF RED SEQUENCE GALAXIES IN ABELL 2218 WITH AKARI

    International Nuclear Information System (INIS)

    We present the AKARI Infrared Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z≅ 0.175. Mid-infrared (MIR) emission from ETGs traces circumstellar dust emission from asymptotic giant branch (AGB) stars or/and residual star formation. Including the unique imaging capability at 11 and 15 μm, our AKARI data provide an effective way to investigate MIR properties of ETGs in the cluster environment. Among our flux-limited sample of 22 red sequence ETGs with precise dynamical and line strength measurements (less than 18 mag at 3 μm), we find that at least 41% have MIR-excess emission. The N3 - S11 versus N3 (3 and 11 μm) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A spectral energy distribution analysis reveals that the dust emission from AGB stars is the most likely cause of the MIR excess, with a low level of star formation being the next possible explanation. The MIR-excess galaxies show a wide spread of N3 - S11 colors, implying a significant spread (2-11 Gyr) in the estimated mean ages of stellar populations. We study the environmental dependence of MIR-excess ETGs over an area out to a half virial radius (∼1 Mpc). We find that the MIR-excess ETGs are preferentially located in the outer region. From this evidence, we suggest that the fainter, MIR-excess ETGs have just joined the red sequence, possibly due to the infall and subsequent morphological/spectral transformation induced by the cluster environment.

  2. Revised calibration for near- and mid-infrared images from ˜4000 pointed observations with AKARI/IRC

    Science.gov (United States)

    Egusa, Fumi; Usui, Fumihiko; Murata, Kazumi; Yamashita, Takuji; Yamamura, Issei; Onaka, Takashi

    2016-04-01

    The Japanese infrared astronomical satellite AKARI performed ˜4000 pointed observations for 16 months until the end of August 2007, when the telescope and instruments were cooled by liquid helium. Observation targets include solar system objects, Galactic objects, local galaxies, and galaxies at cosmological distances. We describe recent updates on calibration processes of near- and mid-infrared images taken by the Infrared Camera (IRC), which has nine photometric filters covering 2-27 μm continuously. Using the latest data reduction toolkit, we created calibrated and stacked images from each pointed observation. About 90% of the stacked images have a position accuracy better than 1{^''.}5. Uncertainties in aperture photometry estimated from a typical standard sky deviation of stacked images are a factor of ˜2-4 smaller than those of AllWISE at similar wavelengths. The processed images, together with documents such as process logs, as well as the latest toolkit are available online.

  3. Revised calibration for near- and mid-infrared images from ~4000 pointed observations with AKARI/IRC

    CERN Document Server

    Egusa, Fumi; Murata, Kazumi; Yamashita, Takuji; Yamamura, Issei; Onaka, Takashi

    2015-01-01

    The Japanese infrared astronomical satellite AKARI performed ~4000 pointed observations for 16 months until the end of 2007 August, when the telescope and instruments were cooled by liquid Helium. Observation targets include solar system objects, Galactic objects, local galaxies, and galaxies at cosmological distances. We describe recent updates on calibration processes of near- and mid-infrared images taken by the Infrared Camera (IRC), which has nine photometric filters covering 2-27 um continuously. Using the latest data reduction toolkit, we created calibrated and stacked images from each pointed observation. About 90% of the stacked images have a position accuracy better than 1.5". Uncertainties in aperture photometry estimated from a typical standard sky deviation of stacked images are a factor of ~2-4 smaller than those of AllWISE at similar wavelengths. The processed images together with documents such as process logs as well as the latest toolkit are available online.

  4. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    CERN Document Server

    Isobe, Naoki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-01-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $\\mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $\\Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 ...

  5. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  6. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H2O) at 2.7 μm and carbon dioxide (CO2) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H2O, gas production rate ratios of CO2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO2/H2O production rate ratios in comets obtained so far. The CO2/H2O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H2O ice fully sublimates there. The CO2/H2O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  7. Evolution of mid-infrared galaxy luminosity functions from the entire AKARI NEP-Deep field with new CFHT photometry

    CERN Document Server

    Goto, Tomotsugu; Ohyama, Youichi; Malkan, Matthew; Matsuhara, Hideo; Wada, Takehiko; Karouzos, Marios; Im, Myungshin; Nakagawa, Takao; Buat, Veronique; Burgarella, Denis; Sedgwick, Chris; Toba, Yoshiki; Jeong, Woong-Seob; Marchetti, Lucia; Małek, Katarzyna; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; Pearson, Chris; Takagi, Toshinobu; Lee, Hyung Mok; Serjeant, Stephen; Takeuchi, Tsutomu T; Kim, Seong Jin

    2015-01-01

    We present infrared galaxy luminosity functions (LFs) in the AKARI North Ecliptic Pole (NEP) deep field using recently-obtained, wider CFHT optical/near-IR images. AKARI has obtained deep images in the mid-infrared (IR), covering 0.6 deg$^2$ of the NEP deep field. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of optical coverage of the full AKARI NEP survey. To rectify the situation, we recently obtained CFHT optical and near-IR images over the entire AKARI NEP deep field. These new CFHT images are used to derive accurate photometric redshifts, allowing us to fully exploit the whole AKARI NEP deep field. AKARI's deep, continuous filter coverage in the mid-IR wavelengths (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\\mu$m) exists nowhere else, due to filter gaps of other space telescopes. It allows us to estimate restframe 8$\\mu$m and 12$\\mu$m luminosities without using a large extrapolation based on spectral energy distribution (SED) fitting, which was the largest uncer...

  8. Modeling of the Zodiacal Emission for the AKARI/IRC Mid-infrared All-sky Diffuse Maps

    Science.gov (United States)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi

    2016-03-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  9. AKARI Near-Infrared Spectroscopic Observations of Interstellar Ices in Edge-on Starburst Galaxy NGC253

    CERN Document Server

    Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki

    2011-01-01

    We present the spatially-resolved near-infrared (2.5-5.0 um) spectra of the edge-on starburst galaxy NGC253 obtained with the Infrared Camera onboard AKARI. Near the center of the galaxy, we clearly detect the absorption features of interstellar ices (H_2O: 3.05 um, CO_2: 4.27 um, and XCN: 4.62 um) and the emission of polycyclic aromatic hydrocarbons (PAHs) at 3.29 um and hydrogen recombination line Br alpha at 4.05 um. We find that the distributions of the ices differ from those of the PAH and gas. We calculate the column densities of the ices and derive the abundance ratios of N(CO_2)/N(H_2O) = 0.17 +- 0.05. They are similar to those obtained around the massive young stellar objects in our Galaxy (0.17 +- 0.03), although much stronger interstellar radiation field and higher dust temperature are expected near the center of NGC253.

  10. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  11. Modeling of the zodiacal emission for the AKARI/IRC mid-infrared all-sky diffuse maps

    CERN Document Server

    Kondo, T; Kaneda, H; Nakamichi, K; Takaba, S; Kobayashi, H; Ootsubo, T; Pyo, J; Onaka, T

    2016-01-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our Solar System, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. We therefore aim to improve the IPD cloud model based on Kelsall et al. 1998, using the AKARI 9 and 18 micron all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest ...

  12. Revised Wavelength and Spectral Response Calibrations for AKARI Near-Infrared Grism Spectroscopy: Cryogenic Phase

    CERN Document Server

    Baba, S; Shirahata, M; Isobe, N; Usui, F; Ohyama, Y; Onaka, T; Yano, K; Kochi, C

    2016-01-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to quantitatively correct for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5--5.0 micron with a spectral resolving power of 120 at 3.6 micron, is found to be contaminated by second-order light at wavelengths longer than 4.9 micron which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 micron compared with the revised wavelengths at 2.5--5.0 micron. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Second, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with dif...

  13. AKARI NEAR-INFRARED SPECTROSCOPY OF SDSS-SELECTED BLUE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    A near-infrared (NIR; 2.5-4.5 μm) spectroscopic survey of Sloan Digital Sky Survey (SDSS)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star formation (SF)/Seyfert/LINER-type composition. For high signal-to-noise ratio, we stack the BEG spectra in its entirety and in bins of several properties: color, specific star formation rate, and optically determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 μm polycyclic aromatic hydrocarbon (PAH) emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(simple stellar population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent SF or active galactic nucleus (AGN) activity and the BEGs have a clear feature of PAH emission, evidence of current SF. BEGs show NIR features different from those of ULIRGs from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert, and LINER BEGs form an evolutionary sequence: SF → Seyfert → LINER.

  14. AKARI Near-Infrared Spectroscopy of SDSS-Selected Blue Early-Type Galaxies

    CERN Document Server

    Lee, Joon Hyeop; Lee, Myung Gyoon; Lee, Jong Chul; Matsuhara, Hideo

    2010-01-01

    A near-infrared (NIR; 2.5 - 4.5 micron) spectroscopic survey of SDSS(Sloan Digital Sky Survey)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star-formation(SF)/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 micron PAH emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(Simple Stellar Population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent star formation or AGN activity and the BEGs have a clear feature of PAH emission, the evidence of current SF. BEGs show NIR features different from those of ULIRGs, from which we do not f...

  15. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Im, Myungshin; Jeon, Yiseul; Kim, Seong Jin; Lee, Hyung Mok [Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-742 (Korea, Republic of); Ko, Jongwan [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Center for the Exploration of the Origin of the Universe (CEOU), Seoul National University, Seoul 151-742 (Korea, Republic of); Papovich, Casey [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States); Willmer, Christopher; Weiner, Benjamin J., E-mail: hjshim@knu.ac.kr [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-08-15

    We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 {mu}m and 15 {mu}m, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are {approx}80% for objects with R < 21.5 mag. On the other hand, in WIYN/Hydra observations, the redshift identification rates are {approx}80% at R magnitudes brighter than 19 mag. The observed spectra were classified through the visual inspection or from the line diagnostics. We identified 1128 star-forming or absorption-line-dominated galaxies, 198 Type-1 active galactic nuclei (AGNs), 8 Type-2 AGNs, 121 Galactic stars, and 190 spectra in unknown category due to low signal-to-noise ratio. The spectra were flux-calibrated but to an accuracy of 0.1-0.18 dex for most of the targets and worse for the remainder. We derive star formation rates (SFRs) from the mid-infrared fluxes or from the optical emission lines, showing that our sample spans an SFR range of 0.1 to a few hundred M{sub Sun} yr{sup -1}. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter.

  16. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    International Nuclear Information System (INIS)

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 μm, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 μm) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 μm), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 ± 0.23 nW m–2 sr–1 or 0.05% of the brightness at 24 μm and at least 0.47 ± 0.14 nW m–2 sr–1 or 0.02% at 18 μm. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2σ error into account.

  17. Revised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy: Cryogenic phase

    Science.gov (United States)

    Baba, Shunsuke; Nakagawa, Takao; Shirahata, Mai; Isobe, Naoki; Usui, Fumihiko; Ohyama, Youichi; Onaka, Takashi; Yano, Kenichi; Kochi, Chihiro

    2016-04-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to correct quantitatively for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5-5.0 μm, with a spectral resolving power of 120 at 3.6 μm, is found to be contaminated by second-order light at wavelengths longer than 4.9 μm, which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 μm compared with the revised wavelengths at 2.5-5.0 μm. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Secondly, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 μm. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 μm up to 5.0 μm. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.

  18. Mid-Infrared Luminosity Function of Local Star-Forming Galaxies in the NEP-Wide Survey Field of AKARI

    CERN Document Server

    Kim, Seong Jin; Jeong, Woong-Seob; Goto, Tomotsugu; Matsuhara, Hideo; Im, Myungshin; Shim, Hyunjin; Kim, Min Gyu; Lee, Myung Gyoon

    2015-01-01

    We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break lu...

  19. Albedo Properties of Main Belt Asteroids Based on the Infrared All-Sky Survey of the Astronomical Satellite AKARI

    CERN Document Server

    Usui, Fumihiko; Hasegawa, Sunao; Ishiguro, Masateru; Kuroda, Daisuke; Mueller, Thomas G; Ootsubo, Takafumi; Matsuhara, Hideo

    2012-01-01

    We present an analysis of the albedo properties of main belt asteroids detected by the All-Sky Survey of the infrared satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the Standard Thermal Model, using inputs of infrared fluxes and absolute magnitudes. Main belt asteroids, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06 to 3.27 AU. AcuA provides a complete data set of all main belt asteroids brighter than the absolute magnitude of H 20 km. We confirmed that the albedo distribution of the main belt asteroids is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite ...

  20. VizieR Online Data Catalog: AKARI NEP Deep Survey revised catalog (Murata+, 2013)

    Science.gov (United States)

    Murata, K.; Matsuhara, H.; Wada, T.; Arimatsu, K.; Oi, N.; Takagi, T.; Oyabu, S.; Goto, T.; Ohyama, Y.; Malkan, M.; Pearson, C.; Malek, K.; Solarz, A.

    2013-09-01

    This is the revised catalogue of the AKARI North Ecliptic Pole Deep survey. The survey was carried out with the InfraRed Camera (IRC) onboard AKARI which has a comprehensive mid-IR wavelength coverage in nine photometric bands at 2-24 micron. For mid-IR source extraction we used a detection image while for near-IR source detection we used optical to near-IR ground-based catalogue which is based on CFHT/MegaCam z', CFHT/WIRCam Ks and Subaru/Scam z' band detection. Here we present an AKARI source with the identification from the ground-based catalogue. For objects with multiple counterparts, all of these were listed in the catalogue with an upper limit for the AKARI flux. The magnitudes are given in the AB system. (1 data file).

  1. AKARI/IRC Near-Infrared Spectral Atlas of Galactic Planetary Nebulae

    CERN Document Server

    Ohsawa, Ryou; Sakon, Itsuki; Matsuura, Mikako; Kaneda, Hidehiro

    2016-01-01

    Near-infrared (2.5-5.0$\\,\\mu$m) low-resolution ($\\lambda/\\Delta\\lambda{\\sim}100$) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a $1'{\\times}1'$ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3-3.5$\\,\\mu$m hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.

  2. The TNG Near Infrared Camera Spectrometer

    OpenAIRE

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.

    2001-01-01

    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  3. Effects of high-energy ionizing particles on the Si:As mid-infrared detector array on board the AKARI satellite

    CERN Document Server

    Mouri, Akio; Ishihara, Daisuke; Oyabu, Shinki; Yamagishi, Mituyoshi; Mori, Tatuya; Onaka, Takashi; Wada, Takehiko; Kataza, Hirokazu

    2011-01-01

    We evaluate the effects of high-energy ionizing particles on the Si:As impurity band conduction (IBC) mid-infrared detector on board AKARI, the Japanese infrared astronomical satellite. IBC-type detectors are known to be little influenced by ionizing radiation. However we find that the detector is significantly affected by in-orbit ionizing radiation even after spikes induced by ionizing particles are removed. The effects are described as changes mostly in the offset of detector output, but not in the gain. We conclude that the changes in the offset are caused mainly by increase in dark current. We establish a method to correct these ionizing radiation effects. The method is essential to improve the quality and to increase the sky coverage of the AKARI mid-infrared all-sky-survey map.

  4. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    International Nuclear Information System (INIS)

    We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 μm and 15 μm, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are ∼80% for objects with R ☉ yr–1. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter

  5. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  6. Mid-infrared camera without lens (MIRACLE) for SPICA

    Science.gov (United States)

    Wada, Takehiko; Kataza, Hirokazu

    2010-07-01

    Mid-InfRAred Camera w/o LEns (MIRACLE) is a focal plane instrument for the future JAXA/ESA infrared astronomical mission, SPICA. MIRACLE is designed for wide field imaging (5' × 5') and low-resolution spectroscopic observations (R~100) over a wide spectral range in the mid-infrared wavelengths (5-38μm). Thanks to the SPICA's large aperture (3-m class) and cold (MIRACLE has a better sensitivity than JWST/MIRI at the wavelength over 20μm (3.5 μJy at 20μm, R=5, S/N=5, 3600 seconds) and its wider field of view (FOV) provides a faster mapping speed in its full spectral range for point sources. Confocal off-axis reflective imaging system provides a wide FOV with diffraction limited image quality over wide spectral range. MIRACLE consists of two channels: MIRACLE-S and MIRACLE-L, which are optimized for 5-26μm and 20- 38μm, respectively. Each of them consists of a fore-optics and a rear-optics, each of which has a pupil position equipped with a filter wheel and a grating wheel, respectively. A field stop wheel, which provides optimal slits in the spectroscopic mode and a wide FOV in the imaging mode, is installed at the focal plane of the fore-optics. A large format array detector (Si:As 2K×2K for MIRACLE-S and Si:Sb 1K×1K for MIRACLE-L) is installed at the focal plane of the rear-optics in order to achieve Nyquist sampling of the point spread function. Contiguous wavelength coverage is considered in choice of the filter bands from the experiences in the Spitzer and AKARI observations. We will present the results of conceptual design study including sensitivity analysis.

  7. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    International Nuclear Information System (INIS)

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the abundance of P-types increases beyond 3 AU. This

  8. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    CERN Document Server

    Hattori, Yasuki; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-01-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${\\mu}{\\rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${\\mu}{\\rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morpholog...

  9. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    Science.gov (United States)

    Hattori, Yasuki; Kaneda, Hidehiro; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-04-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 μm images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken, and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140, and 160 μm, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm, and cold dust components by decomposing six-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities, and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morphological types. In particular, they follow a power-law relation with an index of ˜3 between the total IR luminosity and radius, as expected from the conventional picture of the Strömgren sphere. The exceptions are large broken bubbles; they indicate higher total IR luminosities, lower fractional luminosities of the PAH emission, and dust heating sources located nearer to the shells. We discuss the implications of those differences for a massive star-formation scenario.

  10. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    Science.gov (United States)

    Hattori, Yasuki; Kaneda, Hidehiro; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-06-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 μm images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken, and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140, and 160 μm, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm, and cold dust components by decomposing six-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities, and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morphological types. In particular, they follow a power-law relation with an index of ˜3 between the total IR luminosity and radius, as expected from the conventional picture of the Strömgren sphere. The exceptions are large broken bubbles; they indicate higher total IR luminosities, lower fractional luminosities of the PAH emission, and dust heating sources located nearer to the shells. We discuss the implications of those differences for a massive star-formation scenario.

  11. Infrared and hard X-ray diagnostics of AGN identification from the Swift/BAT and AKARI all-sky surveys

    CERN Document Server

    Matsuta, Keiko; Dotani, Tadayasu; Nakagawa, Takao; Isobe, Naoki; Ueda, Yoshihiro; Ichikawa, Kohei; Terashima, Yuichi; Oyabu, Shinki; Yamamura, Issei; Stawarz, Łukasz

    2012-01-01

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10keV) properties for local active galactic nuclei (AGN). The Swift/Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray detected AGN. Cross-correlating the 22-month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGN detected by the AKARI instruments. We find a strong correlation for most AGN between the infrared (9, 18, and 90 micron) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGN. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1s, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-r...

  12. Toward the characterization of infrared cameras

    Science.gov (United States)

    Tzannes, Alexis P.; Mooney, Jonathan M.

    1993-11-01

    This work focuses on characterizing the performance of various staring PtSi infrared cameras, based on estimating their spatial frequency response. Applying a modified knife edge technique, we arrive at an estimate of the edge spread function (ESF), which is used to obtain a profile through the center of the two-dimensional Modulation Transfer Function (MTF). The MTF of various cameras in the horizontal and vertical direction is measured and compared to the ideal system MTF. The influence of charge transfer efficiency (CTE) on the knife edge measurement and resulting MTF is also modeled and discussed. An estimate of the CTE can actually be obtained from the shape of the ESF in the horizontal direction. The effect of pixel fill factor on the estimated MTF in the horizontal and vertical directions is compared and explained.

  13. INFRARED AND HARD X-RAY DIAGNOSTICS OF ACTIVE GALACTIC NUCLEUS IDENTIFICATION FROM THE SWIFT/BAT AND AKARI ALL-SKY SURVEYS

    International Nuclear Information System (INIS)

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10 keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22 month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 μm) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR.

  14. AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z = 0.087: mid-infrared view of transition galaxies

    CERN Document Server

    Ko, Jongwan; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Shim, Hyunjin; Jeon, Yiseul; Hwang, Ho Seong; Willmer, Christopher N A; Malkan, Matthew A; Papovich, Casey; Weiner, Benjamin J; Matsuhara, Hideo; Oyabu, Shinki; Takagi, Toshinobu

    2011-01-01

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the North Ecliptic Pole region at z?0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg2) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {\\mu}m)-mid- IR (11 {\\mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of 1) "weak-SFG" (disk-dominated star-forming galaxies which have star formation rates lower by \\sim 4 \\times than blue-cloud galaxies), and 2) "intermediate- MXG" (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). Those two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find t...

  15. Development for calibration target for infrared thermal imaging camera

    International Nuclear Information System (INIS)

    Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

  16. Far-infrared cameras for automotive safety

    Science.gov (United States)

    Lonnoy, Jacques; Le Guilloux, Yann; Moreira, Raphael

    2005-02-01

    Far Infrared cameras used initially for the driving of military vehicles are slowly coming into the area of commercial (luxury) cars while providing with the FIR imagery a useful assistance for driving at night or in adverse conditions (fog, smoke, ...). However this imagery needs a minimum driver effort as the image understanding is not so natural as the visible or near IR one. A developing field of FIR cameras is ADAS (Advanced Driver Assistance Systems) where FIR processed imagery fused with other sensors data (radar, ...) is providing a driver warning when dangerous situations are occurring. The communication will concentrate on FIR processed imagery for object or obstacles detection on the road or near the road. FIR imagery highlighting hot spots is a powerful detection tool as it provides a good contrast on some of the most common elements of the road scenery (engines, wheels, gas exhaust pipes, pedestrians, 2 wheelers, animals,...). Moreover FIR algorithms are much more robust than visible ones as there is less variability in image contrast with time (day/night, shadows, ...). We based our detection algorithm on one side on the peculiar aspect of vehicles, pedestrians in FIR images and on the other side on the analysis of motion along time, that allows anticipation of future motion. We will show results obtained with FIR processed imagery within the PAROTO project, supported by the French Ministry of Research, that ended in spring 04.

  17. Post-AGB Stars in the AKARI Survey

    Science.gov (United States)

    Siódmiak, N.; Cox, N.; Szczerba, R.; García-Lario, P.

    2009-12-01

    Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky survey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data. We have cross-correlated the Toruń catalogue of Galactic post-AGB and related objects with the AKARI/FIS All-Sky Survey Bright Source Catalogue (for simplicity, hereafter AKARI). The scientific and technical aspects of our work are presented here as well as our plans for the future. In particular, we found that only 9 post-AGB sources were detected in all four AKARI bands. The most famous objects like: Red Rectangle, Egg Nebula, Minkowski’s Footprint belong to this group. From the technical point of view we discuss positional accuracy by comparing (mostly) 2MASS coordinates of post-AGB objects with those given by AKARI; flux reliability by comparing IRAS 60 and 100 μm fluxes with those from AKARI -N65 and AKARI -90 bands, respectively; as well as completeness of the sample as a function of the IRAS fluxes.

  18. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is particularly suitable for...

  19. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral focal plane array and camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is...

  20. Students' Framing of Laboratory Exercises Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N = 30) partook in four IR-camera laboratory activities, designed around the…

  1. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  2. Spectrally-Tunable Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a SPECTRALLY-TUNABLE INFRARED CAMERA based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. This will build...

  3. AKARI OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT z = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES

    International Nuclear Information System (INIS)

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z ∼ 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg2) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 μm)-mid-IR (11 μm) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominated star-forming galaxies that have star formation rates lower by ∼4 × than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (1010 M☉ * 10.5 M☉) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to * > 1010.5 M☉) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 1010 M☉ * 11 M☉ also decreases as the density and mass increase. In particular, ∼42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.

  4. AKARI near-infrared spectroscopy of the extended green object G318.05+0.09: Detection of CO fundamental ro-vibrational emission

    CERN Document Server

    Onaka, Takashi; Sakon, Itsuki; Ardaseva, Aleksandra

    2016-01-01

    We present the results of near-infrared (2.5--5.4um) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25um, 4.67um, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7um. The former source is located close to the ultra compact HII region IRAS 14498-5856 and is identified as an embedded massive young stellar object. The spectrum of the latter source can be interpreted by blue-shifted (-3000 ~ -6000km/s) optically-thin emission of the fundamental ro-vibrational transitions (v=1-0) of CO molecules with temperatures of 12000--3700K without noticeable H2 and HI emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.

  5. Galactic distributions of carbon- and oxygen-rich AGB stars revealed by the AKARI mid-infrared all-sky survey

    CERN Document Server

    Ishihara, Daisuke; Onaka, Takashi; Ita, Yoshifusa; Matsuura, Mikako; Matsunaga, Noriyuki

    2011-01-01

    Context: The environmental conditions for asympotic giant branch (AGB) stars to reach the carbon-rich (C-rich) phase are important to understand the evolutionary process of AGB stars. The difference between the spatial distributions of C-rich and oxygen-rich (O-rich) AGB stars is essential for the study of the Galactic structure and the chemical evolution of the interstellar medium (ISM). Aims: We quantitatively investigate the spatial distributions of C-rich and O-rich AGB stars in our Galaxy. We discuss the difference between them and its origin. Methods: We classify a large number of AGB stars newly detected by the AKARI id-infrared all-sky survey. In the color-color diagrams, we define their occupation zones based on the locations of known objects. We then obtain the spatial distributions of C-rich and O-rich AGB stars, assuming that they have the same luminosity for a given mass-loss rate. Results: We find that O-rich AGB stars are concentrated toward the Galactic center and that the density decreases wi...

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  7. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  8. AKARI-CAS --- Online Service for AKARI All-Sky Catalogues

    CERN Document Server

    Yamauchi, C; Ikeda, N; Inada, K; Katano, M; Kataza, H; Makiuti, S; Matsuzaki, K; Takita, S; Yamamoto, Y; Yamamura, I; 10.1086/660926

    2011-01-01

    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers' requirements. As a result of our discussion, we concluded that supporting users' SQL submissions is the best solution for the requirements. Therefore, we implemented...

  9. Detection of CFIRB with AKARI/FIS Deep Observations

    CERN Document Server

    Jeong, Woong-Seob; Lee, Hyung Mok; Matsuura, Shuji; Kawada, Mitsunobu; Nakagawa, Takao; Oh, Sang Hoon; Shirahata, Mai; Lee, Sungho; Hwang, Ho Seong; Matsuhara, Hideo

    2007-01-01

    The Cosmic Far-Infrared Background (CFIRB) contains information about the number and distribution of contributing sources and thus gives us an important key to understand the evolution of galaxies. Using a confusion study to set a fundamental limit to the observations, we investigate the potential to explore the CFIRB with AKARI/FIS deep observations. The Far-Infrared Surveyor (FIS) is one of the focal-plane instruments on the AKARI (formerly known as ASTRO-F) satellite, which was launched in early 2006. Based upon source distribution models assuming three different cosmological evolutionary scenarios (no evolution, weak evolution, and strong evolution), an extensive model for diffuse emission from infrared cirrus, and instrumental noise estimates, we present a comprehensive analysis for the determination of the confusion levels for deep far-infrared observations. We use our derived sensitivities to suggest the best observational strategy for the AKARI/FIS mission to detect the CFIRB fluctuations. If the sour...

  10. Multiple wavelength infrared cameras and their biomedical applications

    Science.gov (United States)

    Anbar, Michael

    1995-03-01

    There have been substantial advances in multiple wavelength infrared imaging systems that can measure emissivity and temperature of surfaces. Multiplewavelength measurements can be done (1) using an array of detectors, each sensitive to a different range of photon energies; (2) using a tunable filter in front of a broad-band infrared detector; or (3) by using a focal plane array of tunable detectors. In choosing a multiplewavelength infrared camera for biomedical research or for clinical practice, the parameters of importance include cost, spectral resolution, spatial resolution, and response time. For many biological systems the assessment of infrared emissivity and/or fluorescence must be done simultaneously with the temperature measurement, because these parameters may rapidly change independently from each other. In addition to providing accurate absolute temperature readings in any thermological study, the measurement of emissivity and fluorescence and the display of their spatial distribution can be especially helpful in dermatology, dermatological oncology, dermatological pharmacology (assessment of pharmacokinetics and of diaphoretic excretion of drug metabolites), skin toxicology, burns management, assessment of radiation overexposure and microtelecalorimetry of cells, micro-organisms and tissue cultures. The measurement of light induced cutaneous vasoconstriction pose novel biomedical research problems that require the use of multiplewavelength cameras. In addition to the use of more sophisticated cameras, precision clinical telethermometry requires a better controlled environment. One must take into account infrared fluorescence, photoreflectance and light induced vasoconstriction all of which are induced by environmental illumination.

  11. TIRCAM2: The TIFR near infrared imaging camera

    Science.gov (United States)

    Naik, M. B.; Ojha, D. K.; Ghosh, S. K.; Poojary, S. S.; Jadhav, R. B.; Meshram, G. S.; Sandimani, P. R.; Bhagat, S. B.; D'Costa, S. L. A.; Gharat, S. M.; Bakalkar, C. B.; Ninan, J. P.; Joshi, J. S.

    2012-12-01

    TIRCAM2 (TIFR near infrared imaging camera - II) is a closed cycle cooled imager that has been developed by the Infrared Astronomy Group at the Tata Institute of Fundamental Research for observations in the near infrared band of 1 to 3.7 μm with existing Indian telescopes. In this paper, we describe some of the technical details of TIRCAM2 and report its observing capabilities, measured performance and limiting magnitudes with the 2-m IUCAA Girawali telescope and the 1.2-m PRL Gurushikhar telescope. The main highlight is the camera's capability of observing in the nbL (3.59 mum) band enabling our primary motivation of mapping of Polycyclic Aromatic Hydrocarbon (PAH) emission at 3.3 mum.

  12. ESA Collaboration on the AKARI mission

    Science.gov (United States)

    Salama, Alberto; Alfageme, Carlos; Garcia-Lario, Pedro; Kessler, Martin; Lorente, Rosario; Pearson, Chris; Stephenson, Craig; Unal, Martin; Verdugo, Eva

    AKARI (formerly ASTRO-F), is the first Japanese satellite dedicated to infrared astronomy, from JAXA and collaborators. Its main objective is to perform an all-sky survey with better spatial resolution and wider wavelength coverage than IRAS, mapping the entire sky in six infrared bands from 9 to 180 micron. AKARI operated with a 68.5 cm-diameter telescope cooled down to 6K and observed in the wavelength range 2-180 µm from a sun-synchronous polar orbit at 700 km altitude. AKARI All-Sky Survey observations were carried out in the midto far-infrared spectral region with six photometric bands, during the cryogenic mission phase of AKARI from May 8, 2006 to August 26, 2007. Launched on 21 February 2006, AKARI ran out of its on-board supply of cryogen on August 26th, 2007, after successful operation and observations that began on May 8th, 2006, achieving the expected lifetime of 550 days. More than 94than 5,000 pointed observations over the wavelength range 2-180 µm in 13 bands, providing comprehensive multi-wavelength photometric and spectroscopic coverage of a wide variety of astronomical sources AKARI is entering now into the Post-Helium Phase, dedicated to pointed observations, with imaging and spectroscopic capabilities in the 1.8 to 5.5 micron wavelength range. This presentation will illustrate the collaboration ESA is having with JAXA/ISAS in order to increase the scientific output of the mission; (i) by capturing all of the possible data (providing tracking support from the ESA ground station in Kiruna) and (ii) to accelerate the production of the sky catalogues, which will be extremely valuable in the exploitation of the Herschel and Planck missions, via provision of pointing reconstruction. In return for this collaboration, ESA received 10non-survey parts of the mission, which is distributed to European scientists, via the traditional route of Calls for Proposals, followed by peer-review.

  13. Low-cost uncooled VOx infrared camera development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  14. Strategic options towards an affordable high-performance infrared camera

    Science.gov (United States)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise ( 500 frames per second (FPS)) at full resolution, and low power consumption (electronics, and dense or ultra-small pixel pitch devices.

  15. Students' framing of laboratory exercises using infrared cameras

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-12-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N =30 ) partook in four IR-camera laboratory activities, designed around the predict-observe-explain approach of White and Gunstone. The activities involved central thermal concepts that focused on heat conduction and dissipative processes such as friction and collisions. Students' interactions within each activity were videotaped and the analysis focuses on how a purposefully selected group of three students engaged with the exercises. As the basis for an interpretative study, a "thick" narrative description of the students' epistemological and conceptual framing of the exercises and how they took advantage of the disciplinary affordance of IR cameras in the thermal domain is provided. Findings include that the students largely shared their conceptual framing of the four activities, but differed among themselves in their epistemological framing, for instance, in how far they found it relevant to digress from the laboratory instructions when inquiring into thermal phenomena. In conclusion, the study unveils the disciplinary affordances of infrared cameras, in the sense of their use in providing access to knowledge about macroscopic thermal science.

  16. A quality check of the $AKARI$ mid-infrared all-sky diffuse map toward the massive star-forming regions NGC 6334 and NGC 6357

    CERN Document Server

    Sano, Hidetoshi; Kondo, Toru; Nakamichi, Keichiro; Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Kaneda, Hidehiro; Tachihara, Kengo; Fukui, Yasuo

    2016-01-01

    We present a comparative study of CO and polycyclic aromatic hydrocarbon (PAH) emission toward a region including the massive star-forming regions of NGC 6334 and NGC 6357. We use the NANTEN $^{12}$CO($J$ = 1--0) data and the $AKARI$ 9 $\\mu$m All-Sky diffuse map in order to evaluate the calibration accuracy of the $AKARI$ data. We confirm that the overall CO distribution shows a good spatial correspondence with the PAH emission, and their intensities exhibit a good power-law correlation with a spatial resolution down to 4$'$ over the region of 10$^\\circ$$\\times$10$^\\circ$. We also reveal poorer correlation for small scale structures between the two quantities toward NGC 6357, due to strong UV radiation from local sources. Larger scatter in the correlation toward NGC 6357 indicates higher ionization degree and/or PAH excitation than that of NGC 6334.

  17. The near infrared camera for the Subaru Prime Focus Spectrograph

    Science.gov (United States)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Barkhouser, Robert; Vivès, Sebastien; Pascal, Sandrine; Carr, Michael; Hope, Stephen C.; Loomis, Craig; Hart, Murdock; Sugai, Hajime; Tamura, Naoyuki; Shimono, Atsushi

    2014-08-01

    We present the detailed design of the near infrared camera for the SuMIRe (Subaru Measurement of Images and Redshifts) Prime Focus Spectrograph (PFS) being developed for the Subaru Telescope. The PFS spectrograph is designed to collect spectra from 2394 objects simultaneously, covering wavelengths that extend from 380 nm - 1.26 μm. The spectrograph is comprised of four identical spectrograph modules, with each module collecting roughly 600 spectra from a robotic fiber positioner at the telescope prime focus. Each spectrograph module will have two visible channels covering wavelength ranges 380 nm - 640 nm and 640 nm - 955 nm, and one near infrared (NIR) channel with a wavelength range 955 nm - 1.26 μm. Dispersed light in each channel is imaged by a 300 mm focal length, f/1.07, vacuum Schmidt camera onto a 4k x 4k, 15 µm pixel, detector format. For the NIR channel a HgCdTe substrate-removed Teledyne 1.7 μm cutoff device is used. In the visible channels, CCDs from Hamamatsu are used. These cameras are large, having a clear aperture of 300 mm at the entrance window, and a mass of ~ 250 kg. Like the two visible channel cameras, the NIR camera contains just four optical elements: a two-element refractive corrector, a Mangin mirror, and a field flattening lens. This simple design produces very good imaging performance considering the wide field and wavelength range, and it does so in large part due to the use of a Mangin mirror (a lens with a reflecting rear surface) for the Schmidt primary. In the case of the NIR camera, the rear reflecting surface is a dichroic, which reflects in-band wavelengths and transmits wavelengths beyond 1.26 μm. This, combined with a thermal rejection filter coating on the rear surface of the second corrector element, greatly reduces the out-of-band thermal radiation that reaches the detector. The camera optics and detector are packaged in a cryostat and cooled by two Stirling cycle cryocoolers. The first corrector element serves as the

  18. Conception of a cheap infrared camera using planar optics

    OpenAIRE

    Grulois, T.; Druart, G.; Guérineau, N.; Crastes, A.

    2014-01-01

    Huge efforts are made in the research and industrial areas to design miniaturized and low cost infrared optical systems. Indeed these new breakthroughs will contribute to spread these systems in new outlets. Our purpose is to design a cheap micro-imager using only one lens with minimum price of manufacturing process. The use of planar optics could be an interesting challenge to reduce the price of fabrication of the camera. They need few matters and moreover they can be made with cheap unconv...

  19. Measurement of the modulation transfer function of infrared cameras

    Science.gov (United States)

    Tzannes, Alexis P.; Mooney, Jonathan M.

    1995-06-01

    The performance of starting PtSi infrared cameras is characterized based on estimating their spatial frequency response. Applying a modified knife-edge technique, we arrive at an estimate of the edge spread function (ESF), which is used to obtain a profile through the center of the 2-D modulation transfer function (MTF). Using this technique, the complete system MTF in the horizontal and vertical direction is measured for various imaging systems. The influence of charge transfer efficiency (CTE) on the knife-edge measurement and resulting MTF is also modeled and discussed. An estimate of the CTE can actually be obtained from the shape of the ESF in the horizontal direction. In addition, we demonstrate that this technique can be used as a filed measurement. By applying the technique at long range, the MTF of the atmosphere can be measured.

  20. PRIMO: A Wide Field Prime Focus Infrared Mosaic Camera

    Science.gov (United States)

    Fischer, D.; Bally, J.; Green, J.; Morse, J.; Probst, R.; Green, R.; Joyce, R.; Liang, M.; Arentz, R.; Reitsema, H.; Marriott, J.

    2000-12-01

    We describe a proposal for a major new facility infrared camera for the NOAO 4-m telescopes. With a half-degree field of view at prime focus, a refractive collimator-camera design, and a 1-2.5 um range, PRIMO will enable deep, wide-field infrared surveys. The need for surveys which bridge the five-magnitude gap between 2MASS and 8-10 m spectroscopic sensitivity is well established. PRIMO will enable high-latitude broadband surveys to trace the luminosity and clustering evolution of galaxies, investigations into the composition and history of young stellar populations throughout the total volume of star-forming complexes, narrow-band imaging surveys of star forming regions, and of nebulae formed in late stellar evolutionary stages. The NOAO 4-m telescopes are well suited to this role, and PRIMO will also empower US investment in Gemini and other new generation very large telescopes. By leveraging this instrument with the previous NSF investment in these telescopes, we will provide the US community with a survey facility comparable to the UK VISTA project at a fraction of the latter's cost. This project will be carried out through teaming of an accomplished university group, CU-Boulder, a national center, NOAO, and an aerospace industry partner, Ball Aerospace & Technologies Corp. Our approach is a new model for developing major ground-based astronomical instruments. The instrument concept has been developed and costed, and we meet our performance goals with a straightforward, low-risk design. The project schedule is aggressive: two years from start of funding to first light.

  1. Star formation and dust extinction properties of local galaxies from the AKARI-GALEX all-sky surveys . First results from the most secure multiband sample from the far-ultraviolet to the far-infrared

    Science.gov (United States)

    Takeuchi, T. T.; Buat, V.; Heinis, S.; Giovannoli, E.; Yuan, F.-T.; Iglesias-Páramo, J.; Murata, K. L.; Burgarella, D.

    2010-05-01

    Aims: We explore spectral energy distributions (SEDs), star formation (SF), and dust extinction properties of galaxies in the Local Universe. Methods: The AKARI all-sky survey provided the first bright point source catalog detected at 90 μm. Beginning with this catalog, we selected galaxies by matching the AKARI sources with those in the IRAS point source catalog redshift survey. We measured the total GALEX FUV and NUV flux densities with a photometry software we specifically developed for this purpose. In a further step we matched this sample with the Sloan digital sky survey (SDSS) and 2 micron all sky survey (2MASS) galaxies. With this procedure we obtained a basic sample which consists of 776 galaxies. After removing objects whose photometry was contaminated by foreground sources (mainly in the SDSS), we defined the “secure sample” which contains 607 galaxies. Results: The sample galaxies have redshifts of ⪉0.15, and their 90-μm luminosities range from 106 to 1012 L_⊙, with a peak at 1010 L_⊙. The SEDs display a large variety, especially more than four orders of magnitude at the mid-far-infrared (M-FIR), but if we sort the sample with respect to 90 μm, the average SED shows a coherent trend: the more luminous an SED at 90 μm, the redder the global SED becomes. The Mr - NUV - r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley. We established formulae to convert the FIR luminosity from the AKARI bands to the total IR (TIR) luminosity LTIR. The luminosity related to the SF activity (LSF) is dominated by LTIR even if we take into account the FIR emission from dust heated by old stars. At a high SF rate (SFR) (>20 M_⊙ yr-1), the fraction of the directly visible SFR, SFRFUV, decreases. We also estimated the FUV attenuation AFUV from the FUV-to-TIR luminosity ratio. We examined the LTIR/LFUV-UV slope (FUV - NUV) relation. The majority of the sample has LTIR/LFUV ratios five to ten

  2. Winter risk estimations through infrared cameras an principal component analysis

    Science.gov (United States)

    Marchetti, M.; Dumoulin, J.; Ibos, L.

    2012-04-01

    Thermal mapping has been implemented since the late eighties to measure road pavement temperature along with some other atmospheric parameters to establish a winter risk describing the susceptibility of road network to ice occurrence. Measurements are done using a vehicle circulating on the road network in various road weather conditions. When the dew point temperature drops below road surface temperature a risk of ice occurs and therefore a loss of grip risk for circulating vehicles. To avoid too much influence of the sun, and to see the thermal behavior of the pavement enhanced, thermal mapping is usually done before dawn during winter time. That is when the energy accumulated by the road during daytime is mainly dissipated (by radiation, by conduction and by convection) and before the road structure starts a new cycle. This analysis is mainly done when a new road network is built, or when some major pavement changes are made, or when modifications in the road surroundings took place that might affect the thermal heat balance. This helps road managers to install sensors to monitor road status on specific locations identified as dangerous, or simply to install specific road signs. Measurements are anyhow time-consuming. Indeed, a whole road network can hardly be analysed at once, and has to be partitioned in stretches that could be done in the open time window to avoid temperature artefacts due to a rising sun. The LRPC Nancy has been using a thermal mapping vehicle with now two infrared cameras. Road events were collected by the operator to help the analysis of the network thermal response. A conventional radiometer with appropriate performances was used as a reference. The objective of the work was to compare results from the radiometer and the cameras. All the atmospheric parameters measured by the different sensors such as air temperature and relative humidity were used as input parameters for the infrared camera when recording thermal images. Road thermal

  3. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  4. Cosmic star formation history and AGN evolution near and far: from AKARI to SPICA

    CERN Document Server

    Goto, Tomotsugu; Matsuhara, Hideo

    2015-01-01

    Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe these both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$\\mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$\\mu$m, 12$\\mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\\mu$m) by the AKARI satellite allows us to est...

  5. Cosmic star formation history and AGN evolution near and far: AKARI reveals both

    CERN Document Server

    Goto, Tomotsugu

    2015-01-01

    Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$\\mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can much more precisely measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$\\mu$m, 12$\\mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\\mu$m) by the AKARI satellite allows...

  6. Estimating Clothing Thermal Insulation Using an Infrared Camera.

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing's temperature is more accurate within 3% error and lower clothing's temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively. PMID:27005625

  7. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  8. Optimizing an Infrared Camera for Observing Atmospheric Gravity Waves from a CubeSat Platform

    OpenAIRE

    Rønning, Snorre Stavik

    2012-01-01

    The NTNU Test Satellite (NUTS) is a double CubeSat deigned by master students at NTNU. The goal of the project is to image atmospheric gravity waves in the OH airglow layer. This thesis explores the theory behind gravity waves and discuss the design of an infrared camera as a payload onboard. Different requirement based on scientific and mechanical limitations are presented. Based on this a suitable infrared camera is presented.

  9. Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared.

    Science.gov (United States)

    Fossi, Armande Pola; Ferrec, Yann; Roux, Nicolas; D'almeida, Oscar; Guerineau, Nicolas; Sauer, Hervé

    2016-05-01

    We present the design and the realization of a compact and robust imaging spectrometer in the mid-infrared spectral range. This camera combines a small static Fourier transform birefringent interferometer and a cooled miniaturized infrared camera in order to build a robust and compact instrument that can be embedded in an unmanned aerial vehicle for hyperspectral imaging applications. This instrument has been tested during a gas detection measurement campaign. First results are presented. PMID:27128034

  10. Evolution of INO Uncooled Infrared Cameras Towards Very High Resolution Imaging

    Science.gov (United States)

    Bergeron, Alain; Jerominek, Hubert; Chevalier, Claude; Le Noc, Loïc; Tremblay, Bruno; Alain, Christine; Martel, Anne; Blanchard, Nathalie; Morissette, Martin; Mercier, Luc; Gagnon, Lucie; Couture, Patrick; Desnoyers, Nichola; Demers, Mathieu; Lamontagne, Frédéric; Lévesque, Frédéric; Verreault, Sonia; Duchesne, François; Lambert, Julie; Girard, Marc; Savard, Maxime; Châteauneuf, François

    2011-02-01

    Along the years INO has been involved in development of various uncooled infrared devices. Todays, the infrared imagers exhibit good resolutions and find their niche in numerous applications. Nevertheless, there is still a trend toward high resolution imaging for demanding applications. At the same time, low-resolution for mass market applications are sought for low-cost imaging solutions. These two opposite requirements reflect the evolution of infrared cameras from the origin, when only few pixel-count FPAs were available, to megapixel-count FPA of the recent years. This paper reviews the evolution of infrared camera technologies at INO from the uncooled bolometer detector capability up to the recent achievement of 1280×960 pixels infrared camera core using INO's patented microscan technology.

  11. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  12. ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope

    OpenAIRE

    Konishi, Masahiro; Motohara, Kentaro; Tateuchi, Ken; TAKAHASHI, Hidenori; Kitagawa, Yutaro; Kato, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K.; Toshikawa, Koji; Ohsawa, Ryou; Yamamuro, Tomoyasu; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya

    2015-01-01

    We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5'.1 $\\times$ 5'.1 with a spatial resolution of 0".298 /pixel in the wavelength range of 0.95 to 2.4 $\\mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$\\alpha$ (Pa$\\alpha$, $\\lamb...

  13. Akari, SCUBA2 and Herschel data of pre-stellar cores

    CERN Document Server

    Ward-Thompson, Derek; Kirk, Jason Matthew; André, Philippe; Di Francesco, James

    2015-01-01

    We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. We present SCUBA2 and Herschel data of the Ophiuchus region and show how the environment is also affecting core evolution in this region. We discuss the effects of the magnetic field in the Lupus I region, and how this lends support to a model for the formation and evolution of cores in filamentary molecular clouds.

  14. Method for measuring weld temperature using an infrared thermal imaging camera

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Chan Seung [Chosun University of Science and Technology, Gwangju (Korea, Republic of); Kim, Kyeong Suk; Chang, Ho Seob [Chosun University, Gwangju (Korea, Republic of)

    2014-08-15

    In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

  15. Cameras Reveal Elements in the Short Wave Infrared

    Science.gov (United States)

    2010-01-01

    Goodrich ISR Systems Inc. (formerly Sensors Unlimited Inc.), based out of Princeton, New Jersey, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory, Marshall Space Flight Center, Kennedy Space Center, Goddard Space Flight Center, Ames Research Center, Stennis Space Center, and Langley Research Center to assist in advancing and refining indium gallium arsenide imaging technology. Used on the Lunar Crater Observation and Sensing Satellite (LCROSS) mission in 2009 for imaging the short wave infrared wavelengths, the technology has dozens of applications in military, security and surveillance, machine vision, medical, spectroscopy, semiconductor inspection, instrumentation, thermography, and telecommunications.

  16. Thermography of semi-transparent materials by a FLIR ThermaCAM SC3000 infrared camera

    NARCIS (Netherlands)

    Van der Tempel, L.

    2011-01-01

    An acceptance test for thermography of semi-transparent materials by a FLIR ThermaCAM SC3000 infrared camera with 8.0 µm low-wavelength-pass filter has been developed and performed on polycarbonate, PEN, quartz, Corning 1737 glass, G427 cone glas, G443 screen glass, Schott Zerodur, silicon and a bl

  17. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    Science.gov (United States)

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  18. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    International Nuclear Information System (INIS)

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (50, 200, and 600 field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented

  19. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrence, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-05-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5/sup 0/, 20/sup 0/, and 60/sup 0/ field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented.

  20. CISCO Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope

    CERN Document Server

    Motohara, K; Maihara, T; Oya, S; Tsukamoto, H; Imanishi, M; Terada, H; Goto, M; Iwai, J; Tanabe, H; Hata, R; Taguchi, T; Harashima, T

    2002-01-01

    This paper describes a Cooled Infrared Spectrograph and Camera for OHS (CISCO), mounted on the Nasmyth focus of the Subaru telescope. It is primarily designed as a back-end camera of the OH-Airglow Suppressor (OHS), and is also used as an independent, general-purpose near-infrared camera/spectrograph. CISCO is based on a single 1024x1024 format HgCdTe HAWAII array detector, and is capable of either wide-field imaging of 1.8'x1.8' field-of-view or low-resolution spectroscopy from 0.9 to 2.4 um. The limiting magnitudes measured during test observations were found to be J=23.5mag and K'=22.4mag (imaging, 1" aperture, S/N=5, 1 hr exposure).

  1. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  2. Sharp Infrared Eyes The Journey of QWIPs from Concept to Large Inexpensive Sensitive Arrays in Hand-held Infrared Cameras

    Science.gov (United States)

    Gunapala, Sarath; Sundaram, Mani; Liu, Joun; Bandara, Sumith

    1996-01-01

    One of the simplest device realizations of the classic particle-in-a-box problem of basic quantum mechanics is the Quantum Well Infrared Photodetector (QWIP). Optimization of the detector design and material growth and processing has culminated in the realization of a camera with a large (256x256 pixel) focal plane array of QWIPs which can see at 8.5 mu m, holding forth great promise for a variety of applications in the 6-25 mu m wavelength range.

  3. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  4. Studies on suppression methodology of internal radiation for satellite-borne infrared camera

    Science.gov (United States)

    Peng, Honggang; Jin, Libing; Liu, Jianfeng; Zhou, Feng

    2015-08-01

    Infrared camera, which works on cryogenic or normal temperature, has thermal radiation inside. It is called interior radiation. In the space optical remote sensor, interior radiation will produce a lot of bad effects. Firstly, it can depress image contrast. What is more, dynamic range and integral time will be decreased. Lastly, interior radiation is one of the main factors that affect the measurement accuracy. So, restraining interior radiation is one of the key technologies to enhance the quality of infrared thermal imaging technology. In this paper, the typical technology of restraining interior radiation is summarized. At the end of the paper, blue prints for restraining interior radiation are proposed.

  5. Single camera imaging system for color and near-infrared fluorescence image guided surgery

    OpenAIRE

    Chen, Zhenyue; Zhu, Nan; Pacheco, Shaun; Wang, Xia; Liang, Rongguang

    2014-01-01

    Near-infrared (NIR) fluorescence imaging systems have been developed for image guided surgery in recent years. However, current systems are typically bulky and work only when surgical light in the operating room (OR) is off. We propose a single camera imaging system that is capable of capturing NIR fluorescence and color images under normal surgical lighting illumination. Using a new RGB-NIR sensor and synchronized NIR excitation illumination, we have demonstrated that the system can acquire ...

  6. Using Perl in basic science and calibration pipelines for Spitzer Infrared Array Camera data

    OpenAIRE

    Brandenburg, H.; Lowrance, P.; Laher, R.; Surace, J.; Moshir, M.

    2005-01-01

    Object oriented Perl language pipelines generate calibration products and basic calibrated data from raw images taken by the Infrared Array Camera (IRAC) onboard NASA's Spitzer Space Telescope. The pipelines gather input data and control files, initiate database interactions, and manage data flow through C, C++, and Fortran component programs. The compiled component programs perform instrumental signature correction, calibration, and data characterization. Core pipeline functionality is pr...

  7. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  8. Using Digital Cameras to Teach about Infrared Radiation and Instrumentation Technology

    Science.gov (United States)

    Pompea, S. M.; Croft, S. K.

    1998-12-01

    Digital cameras and image processing are used to create color composite images that illustrate the importance of the near infrared portion of the spectrum in providing additional information about an astronomical object. Demonstrations with digital cameras also help make infrared radiation real to students and illustrate the different aspects of a sensing system including the spectral emission properties of the source, the reflectivity of the object of interest, the use of filters, detector sensitivity, and the use of image processing. Using appropriate, easily available filters, students can demonstrate that two objects that appear green (such as a car and a plant) have very different properties in the near infrared, since chlorophyll in plants is reflective in the near IR. The results can be applied to imaging of the planets to look for chlorophyll features indicative of life. Digital cameras are affordable, relatively common devices which can be used in a wide variety of classroom and experimental settings. As such they can have a profound influence, in conjunction with image processing, on participatory teaching of observational astronomy and in sharing observations across the web. Some other general applications in this area as well as extensions to several areas of spectroscopy will also be discussed. This work was supported by an NSF instructional materials grant as part of the Astronomy Village: Investigating the Solar System development program. S. Pompea is an adjunct faculty member of Steward Observatory, University of Arizona.

  9. The development of automatic detection monitoring system for thermal failure part by infrared thermal vision camera

    International Nuclear Information System (INIS)

    The most part of various electric has been affected by thermal failure due to electric overload. Contact-sensor has been used, for detection to this thermal failure, until now. But, it is impossible to detect the unsuitable element by using contact-temperature-sensor. This problem, with development of the infrared thermal vision camera, will be solved. Because it take some advantages which are composed of non-contact detect and non-destructive detect for temperature distribution, it is possible to detect on the temperature of revolution part, high temperature part. We developed the automatic detection monitoring system for thermal failure part on electric with overload by using the infrared thermal vision camera. The first stage, thermal signal was detected from the infrared thermal vision camera, and then the data that was wanted from user was shown. The second stage, if the temperature that was decided to failure coded to the program, automatically electric was shut off, This monitoring system is possible to apply on various conveniences in the whole industrial sites.

  10. Imaging of breast cancer with mid- and long-wave infrared camera.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory. PMID:18432466

  11. Cryo-Transmittance and -Reflectance of Filters and Beamsplitters for the SIRTF Infrared Array Camera

    Science.gov (United States)

    Stewart, Kenneth P.; Quijada, Manuel A.a

    2000-01-01

    The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC) uses two dichroic beamsplitters, four bandpass filters, and four detector arrays to acquire images in four channels at wavelengths between 3 and 10 micron. Accurate knowledge of the pass bands is necessary because, in order to meet the science objectives, IRAC is required to do 2% relative photometry in each band relative to the other bands. We report the in-band and out-of-band polarized transmittance and reflectance of these optical elements measured near the instrument operating temperature of 1.4 K. Details of the experimental apparatus, which include a continuous flow liquid helium optical cryostat and a Fourier transform infrared (FTIR) spectrometer are discussed.

  12. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  13. ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope

    CERN Document Server

    Konishi, Masahiro; Tateuchi, Ken; Takahashi, Hidenori; Kitagawa, Yutaro; Kato, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K; Toshikawa, Koji; Ohsawa, Ryou; Yamamuro, Tomoyasu; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Matsunaga, Noriyuki; Minezaki, Takeo; Morokuma, Tomoki; Nakashima, Asami; Takagi, Toshinobu; Tanabé, Toshihiko; Uchiyama, Mizuho; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kato, Daisuke; Kawara, Kimiaki; Kohno, Kotaro; Miyata, Takashi; Nakamura, Tomohiko; Okada, Kazushi; Soyano, Takao; Tamura, Yoichi; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2015-01-01

    We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5'.1 $\\times$ 5'.1 with a spatial resolution of 0".298 /pixel in the wavelength range of 0.95 to 2.4 $\\mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$\\alpha$ (Pa$\\alpha$, $\\lambda=$1.8751 $\\mu$m in air) narrow-band imaging observations, at which wavelength ground-based observations have been quite difficult due to deep atmospheric absorption mainly from water vapor. We have been successfully obtaining Pa$\\alpha$ images of Galactic objects and nearby galaxies since the first-light observation in 2009 with ANIR. The throughputs at the narrow-band filters ($N1875$, $N191$) including the atmospheric absorption show larger dispersion (~10%) than those at broad-band filters (a few %), indicating that ...

  14. Visible–infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    Science.gov (United States)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  15. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    Science.gov (United States)

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  16. Searching for the Culprit of Anomalous Microwave Emission: An AKARI PAHrange Analysis of Probable Electric Dipole Emitting Regions

    CERN Document Server

    Bell, Aaron C; Sakon, Itsuki; Doi, Yasuo; Ishihara, Daisuke; Kaneda, Hidehiro; Giard, Martin; Lee, Ho-Gyu; Ohsawa, Ryou; Mori, Tamami; Hammonds, Markus

    2015-01-01

    In the evolutionary path of interstellar medium inquiry, many new species of interstellar dust have been modeled and discovered. The modes by which these species interact and evolve are beginning to be understood, but in recent years a peculiar new feature has appeared in microwave surveys. Anomalous microwave emission (AME), appearing between 10 and 90 GHz, has been correlated with thermal dust emission, leading to the popular suggestion that this anomaly is electric dipole emission from spinning dust. The observed frequencies suggest that spinning grains should be on the order of 10nm in size, hinting at poly-cyclic aromatic hydrocarbon molecules. We present data from AKARI/Infrared Camera (IRC), due to the effective PAH/Unidentified Infrared Band (UIR) coverage of its 9 micron survey to investigate their role within a few regions showing strong AME in the Planck low frequency data. We include the well studied Perseus and rho Ophiuchi clouds . We use the IRAS/IRIS 100 micron data to account for the overall ...

  17. Research on the affect of differential-images technique to the resolution of infrared spatial camera

    Science.gov (United States)

    Jin, Guang; An, Yuan; Qi, Yingchun; Hu, Fusheng

    2007-12-01

    The optical system of infrared spatial camera adopts bigger relative aperture and bigger pixel size on focal plane element. These make the system have bulky volume and low resolution. The potential of the optical systems can not be exerted adequately. So, one method for improving resolution of infrared spatial camera based on multi-frame difference-images is introduced in the dissertation. The method uses more than one detectors to acquire several difference images, and then reconstructs a new high-resolution image from these images through the relationship of pixel grey value. The technique of difference-images that uses more than two detectors is researched, and it can improve the resolution 2.5 times in theory. The relationship of pixel grey value between low-resolution difference-images and high-resolution image is found by analyzing the energy of CCD sampling, a general relationship between the enhanced times of the resolution of the detected figure with differential method and the least count of CCD that will be used to detect figure is given. Based on the research of theory, the implementation process of utilizing difference-images technique to improve the resolution of the figure was simulated used Matlab software by taking a personality image as the object, and the software can output the result as an image. The result gotten from the works we have finished proves that the technique is available in high-resolution image reconstruction. The resolution of infrared spatial camera can be improved evidently when holding the size of optical structure or using big size detector by applying for difference image technique. So the technique has a high value in optical remote fields.

  18. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  19. Infrared imaging spectroscopic system based on a PGP spectrograph and a monochrome infrared camera

    Science.gov (United States)

    Garcia-Allende, Pilar Beatriz; Anabitarte, Francisco; Conde, Olga M.; Madruga, Francisco J.; Lomer, Mauro; Lopez-Higuera, Jose M.

    2008-04-01

    Hyperspectral imaging spectroscopy has been widely used in remote sensing. However, its potential for applications in industrial and biological fields is enormous. Observation line spectrographs, based on the reflectance of the material under study in each field, can be obtained by means of an imaging spectrometer. In this way, imaging spectroscopy allows the simultaneous determination of the optical spectrum components and the spatial location of an object in a surface. A simple, small and low-cost spectrometer, such as those ones based on passive Prism-Grating-Prism (PGP) devices, is required for the abovementioned application fields. In this paper a non-intrusive and non-contact near infrared acquisition system based on a PGP spectrometer is presented. An extension to the whole near infrared range of the spectrum of a previously designed system in the Vis-NIR range has been performed. The reason under this investigation is to improve material characterization. To our knowledge, no imaging spectroscopic system based on a PGP device working in this range has been previously reported. The components of the system, its assembling, alignment and calibration procedures will be described in detail. This system can be generalized for a wide variety of applications employing a specific and adequate data processing

  20. Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera (Compovision)

    Institute of Scientific and Technical Information of China (English)

    Daitaro Ishikawa; Asako Motomura; Yoko Igarashi; Yukihiro Ozaki

    2015-01-01

    This review paper reports near‐infrared (NIR) imaging studies using a newly‐developed NIR camer‐a ,Compovision .Compovision can measure a significantly wide area of 150 mm × 250 mm at high speed of be‐tween 2 and 5 s .It enables a wide spectral region measurement in the 1 000~2 350 nm range at 6 nm inter‐vals .We investigated the potential of Compovision in the applications to industrial problems such as the evalu‐ation of pharmaceutical tablets and polymers .Our studies have demonstrated that NIR imaging based on Com‐povision can solve several issues such as long acquisition times and relatively low sensitivity of detection .NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products ,biomedical substances and organic and inorganic materials .

  1. REMIR: The REM infrared camera to follow up the early phases of GRBs afterglows

    Science.gov (United States)

    Calzoletti, L.; Melandri, A.; Testa, V.; Antonelli, L. A.; Vitali, F.; D'Alessio, F.; di Paola, A.; Zerbi, F. M.; Chincarini, G.; Cunniffe, R.; Jordan, B.; Rodonò, M.; Conconi, P.; Covino, S.; Cutispoto, G.; Molinari, E.; Tosti, G.; Ross/Rem Team

    2005-07-01

    REMIR is a near-infrared camera, covering the 0.95-2.3 μm range with 5 filters (z,J,H,Ks and H2), mounted at one of the Nasmyth foci of the REM (Rapid Eye Mount) telescope. REM is a fully robotic fast-slewing 60 cm telescope, primarily designed to follow-up the early phases of the afterglow of GRBs detected by dedicated instruments onboard satellites (like SWIFT, a satellite entirely dedicated to GRBs science launched the 12 November 2004). Moreover REM hosts a slitless spectrograph covering the range 0.45-0.95 μm, with 30 sample points and with the possibility to perform broad-band V,R,I photometry (ROSS, REM Optical Slitless Spectrograph). The main task of REMIR is to perform realtime NIR observations of GRBs detected by gamma-ray monitors onboard satellites, looking for any possible infrared transient source. As soon as a transient source is detected in the IR images, larger telescopes are promptly alerted to perform early spectroscopy of the afterglow. All the above operations are performed in a fully automatic way and without any human supervision. We present the results of on-site tests that have been done to characterize the REMIR camera and the performances of the dedicated reduction pipeline AQuA (Automatic Quick Analysis), suited for fast transients detection.

  2. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  3. REMIR: the REM infrared camera to follow up the early phases of GRBs afterglows

    International Nuclear Information System (INIS)

    REMIR is a near-infrared camera, covering the 0.95-2.3 μm range with 5 filters (z, J, H, Ks and H2), mounted at one of the Nasmyth foci of the REM (Rapid Eye Mount) telescope. REM is a fully robotic fast-slewing 60 cm telescope, primarily designed to follow-up the early phases of the afterglow of GRBs detected by dedicated instruments onboard satellites (like SWIFT, a satellite entirely dedicated to GRBs science launched the 12 November 2004). Moreover REM hosts a slitless spectrograph covering the range 0.45-0.95 μm, with 30 sample points and with the possibility to perform broad-band V, R, I photometry (ROSS, REM Optical Slitless Spectrograph). The main task of REMIR is to perform realtime NIR observations of GRBs, detected by gamma-ray monitors onboard satellites, looking for any possible infrared transient source. As soon as a transient source is detected in the IR images, larger telescope are promptly alerted to perform early spectroscopy of the afterglow. All the above operations are performed in a fully automatic way and without any human supervision. We present the results of on-site tests that have been done to characterize the REMIR camera and the performances of the dedicated reduction pipeline AQuA (Automatic Quick Analysis), suited for fast transients detection

  4. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    CERN Document Server

    Cardenas, M C; Lenzen, R; Sanchez-Blanco, E

    2008-01-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 micron pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the...

  5. Infrared Camera System for Visualization of IR-Absorbing Gas Leaks

    Science.gov (United States)

    Youngquist, Robert; Immer, Christopher; Cox, Robert

    2010-01-01

    Leak detection and location remain a common problem in NASA and industry, where gas leaks can create hazardous conditions if not quickly detected and corrected. In order to help rectify this problem, this design equips an infrared (IR) camera with the means to make gas leaks of IR-absorbing gases more visible for leak detection and location. By comparing the output of two IR cameras (or two pictures from the same camera under essentially identical conditions and very closely spaced in time) on a pixel-by-pixel basis, one can cancel out all but the desired variations that correspond to the IR absorption of the gas of interest. This can be simply done by absorbing the IR lines that correspond to the gas of interest from the radiation received by one of the cameras by the intervention of a filter that removes the particular wavelength of interest from the "reference" picture. This can be done most sensitively with a gas filter (filled with the gas of interest) placed in front of the IR detector array, or (less sensitively) by use of a suitable line filter in the same location. This arrangement would then be balanced against the unfiltered "measurement" picture, which will have variations from IR absorption from the gas of interest. By suitable processing of the signals from each pixel in the two IR pictures, the user can display only the differences in the signals. Either a difference or a ratio output of the two signals is feasible. From a gas concentration viewpoint, the ratio could be processed to show the column depth of the gas leak. If a variation in the background IR light intensity is present in the field of view, then large changes in the difference signal will occur for the same gas column concentration between the background and the camera. By ratioing the outputs, the same signal ratio is obtained for both high- and low-background signals, even though the low-signal areas may have greater noise content due to their smaller signal strength. Thus, one

  6. Infrared pushbroom camera breadboard using off-the-shelf 2D array of detector

    Science.gov (United States)

    Bernier, Joel; Plainchamp, Patrick; Bardon, Dominique

    1994-09-01

    Performances for nowadays optronic systems require focal plane arrays (FPA) with an increasing number of detectors. The `push- broom' technic is well adapted to earth observation in the visible range with the availability of long linear CCD'S offering thousands of pixels. In the infrared, line scan systems are preferred at the present time because technological difficulties have to be overcome in order to get long linear arrays. Among the most important, are: (1) Difficulties to have a large cold focal plane with a temperature uniformity of a few degrees. (2) Difficulties to get good detection material over large surface. Mechanical or optical butting technology can be used there but with dead pixels and/or side effects. (3) Very low cold shield efficiency due to the geometry of the long linear array. (4) Very high development costs. MATRA DEFENSE UAO has made the design of a new infrared FPA concept which has the advantage to overcome all drawbacks listed previously (patented design). The idea consists to transform the pixel arrangement geometry of a 2D array which is available off the shelf into a long linear FPA using a coherent infrared fiber optic reformatter. In order to demonstrate the feasibility of this new FPA concept, a camera breadboard has been built. This task has been supported by the French MOD (STTE). This paper describes this breadboard and gives main technical performances.

  7. The temperature fields measurement of air in the car cabin by infrared camera

    Science.gov (United States)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  8. The temperature fields measurement of air in the car cabin by infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek M.

    2013-04-01

    Full Text Available The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  9. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    Science.gov (United States)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  10. Taking on the Heat—a Narrative Account of How Infrared Cameras Invite Instant Inquiry

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Schönborn, Konrad J.

    2015-06-01

    Integration of technology, social learning and scientific models offers pedagogical opportunities for science education. A particularly interesting area is thermal science, where students often struggle with abstract concepts, such as heat. In taking on this conceptual obstacle, we explore how hand-held infrared (IR) visualization technology can strengthen students' understanding of thermal phenomena. Grounded in the Swedish physics curriculum and part of a broader research programme on educational uses of IR cameras, we have developed laboratory exercises around a thermal storyline, in conjunction with the teaching of a heat-flow model. We report a narrative analysis of how a group of five fourth-graders, facilitated by a researcher, predicts, observes and explains (POE) how the temperatures change when they pour hot water into a ceramic coffee mug and a thin plastic cup. Four chronological episodes are described and analysed as group interaction unfolded. Results revealed that the students engaged cognitively and emotionally with the POE task and, in particular, held a sustained focus on making observations and offering explanations for the scenarios. A compelling finding was the group's spontaneous generation of multiple "what-ifs" in relation to thermal phenomena, such as blowing on the water surface, or submerging a pencil into the hot water. This was followed by immediate interrogation with the IR camera, a learning event we label instant inquiry. The students' expressions largely reflected adoption of the heat-flow model. In conclusion, IR cameras could serve as an access point for even very young students to develop complex thermal concepts.

  11. NIRCam: Development and Testing of the JWST Near-Infrared Camera

    Science.gov (United States)

    Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.

    2011-01-01

    The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).

  12. TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Doyon, R; Nadeau, D; Racine, R; Riopel, M; Vallee, P; Lafreniere, D

    2005-04-08

    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024 x 1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 {micro}m, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronoagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, {nu}-And and {chi}-And. TRIDENT can detect (6{sigma}) a methanated companion with {Delta}H = 9.5 at 0.5'' separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.

  13. The infrared camera prototype characterization for the JEM-EUSO space mission

    Energy Technology Data Exchange (ETDEWEB)

    Morales de los Ríos, J.A., E-mail: josealberto.morales@uah.es [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Ebisuzaki Computational Astrophysics Laboratory, RIKEN (Japan); Joven, E. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Peral, L. del [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Leonard E. Parker Center for Gravitation, Cosmology and Astrophysics, University of Wisconsin-Milwaukee (United States); Reyes, M. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Licandro, J. [Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, Tenerife (Spain); Rodríguez Frías, M.D. [SPace and AStroparticle (SPAS) Group, UAH, Madrid (Spain); Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain)

    2014-06-01

    JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) is an advanced observatory that will be on-board the International Space Station (ISS) and use the Earth's atmosphere as a huge calorimeter detector. However, the atmospheric clouds introduce uncertainties in the signals measured by JEM-EUSO. Therefore, it is extremely important to know the atmospheric conditions and properties of the clouds in the Field of View (FoV) of the telescope. The Atmospheric Monitoring System (AMS) of JEM-EUSO includes a lidar and an infrared imaging system, IR-Camera, aimed to detect the presence of clouds and to obtain the cloud coverage and cloud top altitude during the observations of the JEM-EUSO main telescope. To define the road-map for the design of the electronics, the detector has been tested extensively with a first prototype. The actual design of the IR-Camera, the test of the prototype, and the outcome of this characterization are presented in this paper.

  14. A method for the temperature calibration of an infrared camera using water as a radiative source

    International Nuclear Information System (INIS)

    Presented here is an effective low-cost method for the temperature calibration of infrared cameras, for applications in the 0-100 deg. C range. The calibration of image gray level intensity to temperature is achieved by imaging an upwelling flow of water, the temperature of which is measured with a thermistor probe. The upwelling flow is created by a diffuser located below the water surface of a constant temperature water bath. The thermistor probe is kept immediately below the surface, and the distance from the diffuser outlet to the surface is adjusted so that the deformation of the water surface on account of the flow is small, yet the difference between the surface temperature seen by the camera and the bulk temperature measured by the thermistor is also small. The benefit of this method compared to typical calibration procedures is that, without sacrificing the quality of the calibration, relatively expensive commercial blackbodies are replaced by water as the radiative source (ε≅0.98 for the wavelengths considered here). A heat transfer analysis is provided, which improves the accuracy of the calibration method and also provides the user with guidance to further increases in accuracy of the method.

  15. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  16. On-orbit performance of the Compact Infrared Camera (CIRC) onboard ALOS-2

    Science.gov (United States)

    Sakai, Michito; Katayama, Haruyoshi; Kato, Eri; Nakajima, Yasuhiro; Kimura, Toshiyoshi; Nakau, Koji

    2015-10-01

    Compact Infrared Camera (CIRC) is a technology demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler and are suitable for resource-limited sensor systems. Another characteristic of the CIRC is its use of an athermal optical system and a shutterless system. The CIRC is small in size (approximately 200 mm), is light weight (approximately 3 kg), and has low electrical power consumption (verification phase (July 4-14, 2014), the CIRC has demonstrated functions according to its intended design. We also confirmed that the noise equivalent differential temperature of the CIRC observation data is less than 0.2 K, the temperature accuracy is within ±4 K, and the spatial resolution is less than 210 m in the calibration validation phase after the initial functional verification phase. The CIRC also detects wildfires in various areas and observes volcano activities and urban heat islands in the operational phase. The other CIRC will be launched in 2015 onboard the CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) of the International Space Station. Installation of the CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase the observation frequency. In this study, we present the on-orbit performance including observational results of the CIRC onboard the ALOS-2 and the current status of the CIRC onboard the JEM/CALET.

  17. Calibration of HIFU intensity fields measured using an infra-red camera

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, A [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Khokhlova, V; Bobkova, S [Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991 (Russian Federation); Gavrilov, L [N.N. Andreev Acoustics Institute, 117036 Moscow (Russian Federation); Hand, J, E-mail: vera@acs366.phys.msu.ru [Imaging Sciences Department, Imperial College London (Hammersmith Hospital Campus), London W12 0NN (United Kingdom)

    2011-02-01

    A trend in HIFU technologies is to use 2D phased arrays that offer electronic steering of a single focus and formation of patterns of multiple foci. Conventional methods to characterize array fields using scanned hydrophone would be prohibitively slow given the potentially large number of focusing conditions. An alternative technique for rapid qualitative assessment of intensity distributions was recently developed. The method is based on infrared camera measurements of the temperature rises induced by low amplitude short ultrasonic bursts in a thin absorber. Here, the method is extended to estimate the absolute values of intensity in a field of a 2D 1-MHz randomized phased array. Two approaches were implemented. In the first approach it was assumed that the measured temperature rise at the surface of the absorber is proportional to the free field intensity. The second approach correlated the temperature rise measured in an absorber and calculated from the modelled acoustic field and the heat transfer equation. Corresponding correction factors between the free field intensity and temperature was obtained and introduced in the conversion of temperature images to intensity. Free field distributions in water and focusing through ribs were recorded and simulated. Good correlation between the measured and modeled results in both spatial distributions and the absolute values of intensity was demonstrated.

  18. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    CERN Document Server

    Esplin, T L

    2015-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 $\\mu$m bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7$^{\\rm th}$ and 8$^{\\rm th}$ order distortion corrections for the 3.6 and 4.5 $\\mu$m arrays of IRAC, ...

  19. Using infrared cameras, fuzzy logic and acoustic temperature measurement to improve combustion in MWCs

    Energy Technology Data Exchange (ETDEWEB)

    Daimer, P.; Schaefers, W.; Hartenstein, H.U.; Licata, A.

    1998-07-01

    A significant step for the improvement of firing rate and combustion control is the use of infrared thermography. Such a system has been successfully applied by L. and C. Steinmuller GmbH (Steinmuller) a long period of time at the Stapelfele municipal waste combustor (MWC) located in Germany. A camera installed on the boiler top casing supplies instantaneous information on the combustion conditions on the grate. In the event of undesired changes in firing position or firing length, countermeasures may be instituted immediately. A control system based on fuzzy logic, divided into several stage each of which includes a short-term and a long-term strategy, has been developed for this purpose. This system reduces fluctuations during combustion to an unavoidable minimum. The acoustic temperature measurement system installed in the first pass of the boiler provides valuable information about the temperature distribution in the zone. This allows the control room operator to adjust the distribution of secondary air to the front and rear row of nozzles so that uniform temperature and flow distribution are maintained at all times. Both installations allow the firing system to operate at more optimized conditions which results in such positive effects as reduced emissions and increased steam production.

  20. The Future of Flats Onboard JWST with the Near Infrared Camera

    Science.gov (United States)

    Brooks, Brian H.; NIRCam Team

    2016-01-01

    The Near Infrared Camera (NIRCam) onboard the James Webb Space Telescope (JWST) is the primary imager of JWST with observing wavelengths covering 0.6 to 5.0 μm. A dichroic beam splitter reflects short wavelengths (0.6-2.3 μm) into one channel and transmits long wavelengths (2.4-5.0 μm) into another. A selection of wide, medium and narrowband filters are available. Obtaining in-orbit flats with NIRCam will be a challenge since NIRCam will not have on-board illumination lamps. Instead, we will utilize the external zodiacal light, preferentially observing along the longitudinal ecliptic plane for maximum brightness. Sky flats will allow us to verify the accuracy and stability of our ground flat fields, and they also allow us to monitor flat field properties with time. Due to the faintness of the sky, however, high signal-to-noise ratios can only be obtained within a reasonable integration time through the broad and a few of the medium-band filters. We have obtained flat-field exposures in ground testing through all filters, including narrow-band filters. Here we analyze the similarity of flats through narrow-band and medium-band filters lying within the wavelength range of broad-band filters. Proving that these flats are indistinguishable with respect to the broad-band filter will allow easier calibration and monitoring once NIRCam is in orbit.

  1. Calibration of HIFU intensity fields measured using an infra-red camera

    International Nuclear Information System (INIS)

    A trend in HIFU technologies is to use 2D phased arrays that offer electronic steering of a single focus and formation of patterns of multiple foci. Conventional methods to characterize array fields using scanned hydrophone would be prohibitively slow given the potentially large number of focusing conditions. An alternative technique for rapid qualitative assessment of intensity distributions was recently developed. The method is based on infrared camera measurements of the temperature rises induced by low amplitude short ultrasonic bursts in a thin absorber. Here, the method is extended to estimate the absolute values of intensity in a field of a 2D 1-MHz randomized phased array. Two approaches were implemented. In the first approach it was assumed that the measured temperature rise at the surface of the absorber is proportional to the free field intensity. The second approach correlated the temperature rise measured in an absorber and calculated from the modelled acoustic field and the heat transfer equation. Corresponding correction factors between the free field intensity and temperature was obtained and introduced in the conversion of temperature images to intensity. Free field distributions in water and focusing through ribs were recorded and simulated. Good correlation between the measured and modeled results in both spatial distributions and the absolute values of intensity was demonstrated.

  2. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    CERN Document Server

    Gomez, Laura; Schuller, Frederic; Menten, Karl; Ballesteros-Paredes, Javier

    2013-01-01

    We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition me...

  3. A Wide-Field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    CERN Document Server

    Findlay, Joseph R; Weger, James S; Bucher, Gerald A; Perry, Marvin C; Myers, Adam D; Pierce, Michael J; Vogel, Conrad

    2016-01-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully-remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit/s 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several real-time video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. Construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40' field-of-view with a new 4096x4096 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20'' rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical ...

  4. Pupil and Glint Detection Using Wearable Camera Sensor and Near-Infrared LED Array

    Directory of Open Access Journals (Sweden)

    Jianzhong Wang

    2015-12-01

    Full Text Available This paper proposes a novel pupil and glint detection method for gaze tracking system using a wearable camera sensor and near-infrared LED array. A novel circular ring rays location (CRRL method is proposed for pupil boundary points detection. Firstly, improved Otsu optimal threshold binarization, opening-and-closing operation and projection of 3D gray-level histogram are utilized to estimate rough pupil center and radius. Secondly, a circular ring area including pupil edge inside is determined according to rough pupil center and radius. Thirdly, a series of rays are shot from inner to outer ring to collect pupil boundary points. Interference points are eliminated by calculating gradient amplitude. At last, an improved total least squares is proposed to fit collected pupil boundary points. In addition, the improved total least squares developed is utilized for the solution of Gaussian function deformation to calculate glint center. The experimental results show that the proposed method is more robust and accurate than conventional detection methods. When interference factors such as glints and natural light reflection are located on pupil contour, pupil boundary points and center can be detected accurately. The proposed method contributes to enhance stability, accuracy and real-time quality of gaze tracking system.

  5. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    CERN Document Server

    Greene, Thomas P; Egami, Eiichi; Hodapp, Klaus W; Kelly, Douglas M; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-01-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.'2 $\\times$ 2.'2 fields of view that are capable of either imaging or spectroscopic observations. Either of two $R \\sim 1500$ grisms with orthogonal dispersion directions can be used for slitless spectroscopy over $\\lambda = 2.4 - 5.0$ $\\mu$m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 -- 2.3 $\\mu$m) imaging observations of the 2.4 -- 5.0 $\\mu$m spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 -- 2.0 $\\mu$m spectroscopy (simultaneously with 2.4 -- 5.0 $\\mu$m) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, wea...

  6. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  7. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  8. A depth camera for natural human-computer interaction based on near-infrared imaging and structured light

    Science.gov (United States)

    Liu, Yue; Wang, Liqiang; Yuan, Bo; Liu, Hao

    2015-08-01

    Designing of a novel depth camera is presented, which targets close-range (20-60cm) natural human-computer interaction especially for mobile terminals. In order to achieve high precision through the working range, a two-stepping method is employed to match the near infrared intensity image to absolute depth in real-time. First, we use structured light achieved by an 808nm laser diode and a Dammann grating to coarsely quantize the output space of depth values into discrete bins. Then use a learning-based classification forest algorithm to predict the depth distribution over these bins for each pixel in the image. The quantitative experimental results show that this depth camera has 1% precision over range of 20-60cm, which show that the camera suit resource-limited and low-cost application.

  9. Measured performance of a low-cost thermal infrared pushbroom camera based on uncooled microbolometer FPA for space applications

    Science.gov (United States)

    Geoffray, Herve; Guerin, Francois

    2001-12-01

    The FUEGO system is a remote sensing satellite constellation aimed at providing early fire alarms throughout the forest fire risk area of Europe and other temperate areas. An excellent revisit time (<16 min.) can be achieved from a low earth orbit constellation of 12 mini-satellites. Each mini-satellite carries infrared sensors in MIR, TIR, and VIS/NIR bands operating in push-broom mode and a depointing mirror to cover a large swath. This can ensure early detection of fire outbreaks with a 2500 km swath. This paper presents the thermal infrared (TIR) camera characteristics. The main purposes of the TIR channels are the discrimination of clouds and detection of forest fire false alarms during low light or night operation. The main requirements for the TIR camera are: spectral range 8 - 12 micrometers ; FOV equals +/- 7.2 degree(s) (177 km on ground); ground resolution 369 m; NETD < 0.4 K 300 K (blackbody temperature); large dynamic range of radiance (equivalent blackbody temperature 240 K to 380 K). The TIR pushbroom camera is built around an off-the- shelf SOFRADIR microbolometer FPA of 320 X 240 elements with a pitch of 45 micrometers . The focal plane is uncooled and operates at T equals 303 K. The paper details the tests performed on the engineering model of the camera. More particularly, radiometric characterization and MTF measurement are described. The demonstrated camera performance together with the low cost and complexity of the camera offer a large field of opportunities for future space applications.

  10. Calibration of microbolometer infrared cameras for measuring volcanic ash mass loading

    Science.gov (United States)

    Carroll, Russell C.

    Small spacecraft with thermal infrared (TIR) imaging capabilities are needed to detect dangerous levels of volcanic ash that can severely damage jet aircraft engines and must be avoided. Grounding aircraft after a volcanic eruption may cost the airlines millions of dollars per day, while accurate knowledge of volcanic ash density might allow for safely routing aircraft around dangerous levels of volcanic ash. There are currently limited numbers of satellites with TIR imaging capabilities so the elapsed time between revisits can be large, and these instruments can only resolve total mass loading along the line-of-sight. Multiple small satellites could allow for decreased revisit times as well as multiple viewing angles to reveal the three-dimensional structure of the ash cloud through stereoscopic techniques. This paper presents the design and laboratory evaluation of a TIR imaging system that is designed to fit within the resource constraints of a multi-unit CubeSat to detect volcanic ash mass loading. The laboratory prototype of this TIR imaging system uses a commercial off-the shelf (COTS) camera with an uncooled microbolometer sensor, two narrowband filters, a black body source and a custom filter wheel. The infrared imaging system detects the difference in attenuation of volcanic ash at 11 mum and 12 mum by measuring the brightness temperature at each band. The brightness temperature difference method is used to measure the column mass loading. Multi-aspect images and stereoscopic techniques are needed to estimate the mass density from the mass loading, which is the measured mass per unit area. Laboratory measurements are used to characterize the noise level and thermal stability of the sensor. A calibration technique is developed to compensate for sensor temperature drift. The detection threshold of volcanic ash density of this TIR imaging system is found to be from 0.35 mg/m3 to 26 mg/m3 for ash clouds that have thickness of 1 km, while ash cloud densities

  11. J and H-band Imaging of AKARI North Ecliptic Pole Survey Field

    CERN Document Server

    Jeon, Yiseul; Kang, Eugene; Lee, Hyung Mok; Matsuhara, Hideo

    2015-01-01

    We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14" and 0.17" for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.

  12. Infrared camera/foil bolometer measurements of power deposition on the vacuum vessel wall in Doublet III

    International Nuclear Information System (INIS)

    Power loading to the limiter and nearby wall areas impose an important constraint on designs of limiters for future generation tokamaks. By using an infra-red camera to simultaneously observe both the Doublet III limiter and thin metal foils (''foil bolometers'') attached to the nearby walls, the authors find that the heat flux to this portion of the wall is 5 to 6 times higher than the heat flux measured by a 21 channel bolometer located toroidally opposite the limiter. This toroidal asymmetry in wall loading must be considered in future designs. The infra-red camera used in this work is sensitive to 3-5 μm radiation. The field of view of the camera includes both the TiC-coated limiter blade, and a portion of the vacuum vessel wall on each side of the limiter. Attached to the walls near the limiter is an array of 18 stainless steel foils; fifteen are 0.005 cm thick, the remainder are 0.002 cm thick. Measurements of the foil temperature rise can be used to infer the heat flux to the wall. Although the thinner foils are more sensitive to changes in heat flux, the thicker foils are less susceptible to saturation of signal from the camera during high power, neutral beam-heated discharges. Calibration of the foil emissivity was done in the laboratory prior to installation. Owing to the simplicity of this technique and the ease of remote observation of infra-red radiation, the authors believe that these foil bolometers are a very useful diagnostic for studying toroidal asymmetries in heat flux

  13. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators

    Science.gov (United States)

    Müller, Johannes; Hartmann, Josefin; Bert, Christoph

    2016-04-01

    The purpose of this work was to provide a feasible and easy to apply phantom-based quality assurance (QA) procedure for superficial hyperthermia (SHT) applicators by means of infrared (IR) thermography. The VarioCAM hr head (InfraTec, Dresden, Germany) was used to investigate the SA-812, the SA-510 and the SA-308 applicators (all: Pyrexar Medical, Salt Lake City, UT, USA). Probe referencing and thermal equilibrium procedures were applied to determine the emissivity of the muscle-equivalent agar phantom. Firstly, the disturbing potential of thermal conduction on the temperature distribution inside the phantom was analyzed through measurements after various heating times (5-50 min). Next, the influence of the temperature of the water bolus between the SA-812 applicator and the phantom’s surface was evaluated by varying its temperature. The results are presented in terms of characteristic values (extremal temperatures, percentiles and effective field sizes (EFS)) and temperature-area-histograms (TAH). Lastly, spiral antenna applicators were compared by the introduced characteristics. The emissivity of the used phantom was found to be ɛ  =  0.91  ±  0.03, the results of both methods coincided. The influence of thermal conduction with regard to heating time was smaller than expected; the EFS of the SA-812 applicator had a size of (68.6  ±  6.7) cm2, averaged group variances were  ±3.0 cm2. The TAHs show that the influence of the water bolus is mostly limited to depths of  <3 cm, yet it can greatly enhance or reduce heat generation in this regime: at a depth of 1 cm, measured maximal temperature rises were 14.5 °C for T Bolus  =  30 °C and 8.6 °C for T Bolus  =  21 °C, respectively. The EFS was increased, too. The three spiral antenna applicators generated similar heat distributions. Generally, the procedure proved to yield informative insights into applicator characteristics, thus making the application

  14. Star forming galaxies in the AKARI Deep Field South: identifications and SEDs

    CERN Document Server

    Pollo, A; Bienias, P; Shirahata, M; Matsuura, S; Kawada, M

    2009-01-01

    To investigate the nature and properties of far-infrared (FIR) sources from the AKARI Deep Field South (ADF-S), we performed an extensive search for the counterparts of 1000 ADF-S objects brighter than 0.0301 Jy in the WIDE-S (90 $\\mu$m) AKARI band in the public databases (NED and SIMBAD). We analyzed the properties of the resulting sample: statistic of the identified objects, number counts, redshift distribution and morphological types. We also made a crude analysis of the clustering properties of the sources and constructed spectral energy distributions (SEDs) of 47 selected objects with the best photometry. Among 1000 investigated ADF-S sources, 545 were identified at other wavelengths. From them, 518 are known galaxies, and 343 of them were not known previously as infra-red sources. We found redshifts of 48 extragalactic objects and morphological types of 77 galaxies. We conclude that the bright FIR point sources observed in the ADF-S are mostly nearby galaxies.Their properties are very similar to propert...

  15. In vitro near-infrared imaging of occlusal dental caries using a germanium-enhanced CMOS camera

    Science.gov (United States)

    Lee, Chulsung; Darling, Cynthia L.; Fried, Daniel

    2010-02-01

    The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.

  16. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  17. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    International Nuclear Information System (INIS)

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  18. Analysis on nondestructive temperature distribution of tire tread part in a running using infrared thermal vision camera

    International Nuclear Information System (INIS)

    The experimental method which investigates validity of numerical simulation for wheeling tires has not developed until now. Separation of belt caused by sudden temperature increase is the most serious problem with wheeling tires. Actually, separation of belt is closely related with the life cycle and design of tires. It is important to investigate the temperature history of tires because sudden temperature increase on belt accelerates the thermal fatigue and then causes the destruction of bending area in the radial direction. Therefore, in the present study, finite element method (FEM) was used to obtain the accurate temperature distribution of tire. Its results were compared with experimental data acquired by infrared thermal camera.

  19. Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis

    Science.gov (United States)

    Gordo, Paulo; Amorim, Antonio; Abreu, Jorge; Eisenhauer, Frank; Anugu, Narsireddy; Garcia, Paulo; Pfuhl, Oliver; Haug, Marcus; Sturm, Eckhard; Wieprecht, Ekkehard; Perrin, Guy; Brandner, Wolfgang; Straubmeier, Christian; Perraut, Karine; Naia, M. Duarte; Guimarães, M.

    2014-07-01

    The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.

  20. Search for Water in Outer Main Belt Based on AKARI Asteroid Catalog

    Science.gov (United States)

    Usui, Fumihiko

    2012-06-01

    We propose a program to search water ice on the surface of asteroids in the outer main belt regions, which have high albedo measured with AKARI. The distribution of water in the main belt provides important information to understanding of the formation and evolution of the solar system, because water is a good indicator of temperature in the early solar nebula. The existence of water ice is a hot topic in the solar system studies today. Water ice is recently found in the outer region of the main asteroid belt and some of them are linked to the main belt comets. Brand-new albedo data brought by AKARI opens the possibility of detection of water ice on the C-type asteroids. Here we propose to make the spectroscopic observations with the Subaru telescope in the near-infrared wavelengths to detect water ice on these high-albedo C-type asteroids. Thanks to a large aperture of Subaru telescope and a high altitude of Mauna Kea, it can be only possible to observe a weak signal of the existence of water on the surface of asteroids with a certain S/N. In addition, using the imaging data taken prior to IRCS spectroscopic mode, we intend to seek any comet-like activities by investigating diffuseness of the asteroids, which can be detected by comparing the observed point-spread functions with those of field stars.

  1. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  2. First Science Observations with SOFIA/FORCAST: The FORCAST Mid-infrared Camera

    CERN Document Server

    Herter, T L; De Buizer, J M; Gull, G E; Schoenwald, J; Henderson, C P; Keller, L D; Nikola, T; Stacey, G; Vacca, W D

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed thirteen science flights on SOFIA. In this paper we describe the design, operation and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near diffraction-limited images for lambda > 30 microns allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.

  3. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA

    Energy Technology Data Exchange (ETDEWEB)

    Herter, T. L.; Adams, J. D.; Gull, G. E.; Schoenwald, J.; Henderson, C. P.; Nikola, T.; Stacey, G. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); De Buizer, J. M.; Vacca, W. D. [Universities Space Research Association, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035 (United States); Keller, L. D. [Department of Physics, Ithaca College, Ithaca, NY 14850 (United States)

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed 13 science flights on SOFIA. In this Letter, we describe the design, operation, and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near-diffraction-limited images for {lambda} > 30 {mu}m allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.

  4. Detection of parent H2O and CO2 molecules in the 2.5--5 micron spectrum of comet C/2007 N3 (Lulin) observed with AKARI

    CERN Document Server

    Ootsubo, Takafumi; Kawakita, Hideyo; Ishiguro, Masateru; Furusho, Reiko; Hasegawa, Sunao; Ueno, Munetaka; Watanabe, Jun-ichi; Sekiguchi, Tomohiko; Wada, Takehiko; Ohyama, Youichi; Oyabu, Shinki; Matsuhara, Hideo; Onaka, Takashi; Nakagawa, Takao; Murakami, Hiroshi

    2010-01-01

    Comet C/2007 N3 (Lulin) was observed with the Japanese infrared satellite AKARI in the near-infrared at a post-perihelion heliocentric distance of 1.7 AU. Observations were performed with the spectroscopic (2.5--5.0 micron) and imaging (2.4, 3.2, and 4.1 micron) modes on 2009 March 30 and 31 UT, respectively. AKARI images of the comet exhibit a sunward crescent-like shape coma and a dust tail extended toward the anti-solar direction. The 4.1 micron image (CO/CO2 and dust grains) shows a distribution different from the 2.4 and 3.2 micron images (H2O and dust grains). The observed spectrum shows distinct bands at 2.66 and 4.26 micron, attributed to H2O and CO2, respectively. This is the fifth comet in which CO2 has been directly detected in the near-infrared spectrum. In addition, CO at 4.67 micron and a broad 3.2--3.6 micron emission band from C-H bearing molecules were detected in the AKARI spectrum. The relative abundance ratios CO2/H2O and CO/H2O derived from the molecular production rates are \\sim 4%--5% a...

  5. On-board Data Processing to Lower Bandwidth Requirements on an Infrared Astronomy Satellite: Case of Herschel-PACS Camera

    Directory of Open Access Journals (Sweden)

    Christian Reimers

    2005-09-01

    Full Text Available This paper presents a new data compression concept, “on-board processing,” for infrared astronomy, where space observatories have limited processing resources. The proposed approach has been developed and tested for the PACS camera from the European Space Agency (ESA mission, Herschel. Using lossy and lossless compression, the presented method offers high compression ratio with a minimal loss of potentially useful scientific data. It also provides higher signal-to-noise ratio than that for standard compression techniques. Furthermore, the proposed approach presents low algorithmic complexity such that it is implementable on the resource-limited hardware. The various modules of the data compression concept are discussed in detail.

  6. Infrared camera assessment of skin surface temperature--effect of emissivity.

    Science.gov (United States)

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. PMID:23084004

  7. AKARI/AcuA PHYSICAL STUDIES OF THE CYBELE ASTEROID FAMILY

    International Nuclear Information System (INIS)

    We present a study of 107 Cybele asteroids based on the archival database 'Asteroid Catalog Using AKARI (AcuA)' taken by the Infrared Astronomical Satellite. The database provides diameters D > 10 km, geometric albedos, and taxonomic information (75%) of the Cybeles. We find taxonomic diversity (mainly C-, D-, and P-type) in the population of 78 small Cybeles with diameters 10 km 80 km are mostly classified as C- or P-types (90%), with a power-law index of 2.39 ± 0.18. The total mass of Cybele asteroids is estimated to be ∼10–5 MEarth. We also discuss the origin and formation process of the Cybele asteroid family.

  8. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

  9. RATIR: Reionization and Transients Infra-Red Camera. A New Instrument to Identify High Red-Shift GRBs

    Science.gov (United States)

    Rapchun, David A.

    2011-01-01

    We are currently constructing the cryogenic infrared portion of the RATIR instrument at NASA's Goddard Space Flight Center (GSFC) in collaboration with University of California, Berkeley (UCB) and The University of Mexico (UNAM). The infrared instrument will consist of two 2048x2048 Hawaii 2RG detectors, one on axis and one off axis using diachronic. The detectors will be operated using state-of-the-art Teledyne SIDECAR (System Image, Digitizing, Enhancing, Controlling, And Retrieving) ASICs (Application- Specific Integrated Circuits) similar to NIRSpec on JWST. The visible portion of the instrument is currently being developed at UCB consisting of two CCD imagining cameras. Once completed, the two sections will be integrated into the RATIR instrument. Mounted on a dedicated, fully-automated 1.5-m telescope, the instrument will provide rapid (UNAM), located on the Sierra de San Pedro Martir in Baja California, Mexico, provides great seeing (-1 aresec), good weather, dark skies, and significant sky coverage so that RATIR will detect a significant number of Swift afterglows. While not all GRBs will be at high red shifts, the resulting light curves, combined with X-ray/UV observations, will address several open questions, including the nature of both "dark GRBs" and the GRB emission mechanism.

  10. Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX

    International Nuclear Information System (INIS)

    Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.

  11. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    Science.gov (United States)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  12. Design and development of wafer-level near-infrared micro-camera

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2015-08-01

    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  13. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view. PMID:26573644

  14. Extra-thin infrared camera for low-cost surveillance applications.

    Science.gov (United States)

    Grulois, Tatiana; Druart, Guillaume; Guérineau, Nicolas; Crastes, Arnaud; Sauer, Hervé; Chavel, Pierre

    2014-06-01

    We designed a cheap broadband uncooled microimager operating in the long-wavelength infrared range using only one lens at a minimal cost for the manufacturing process. The approach is based on thin optics where the device volume is small and therefore inexpensive materials can be used because some absorption can be tolerated. We have used a Fresnel lens on a thin silicon substrate. Up to now, Fresnel lenses have not been used for broadband imaging because of their chromatic properties. However, working in a relatively high diffraction order can significantly reduce chromatism. A prototype has been made for short range or indoor low-cost surveillance applications like people counting, and experimental images are presented. PMID:24876004

  15. Advances in shutter drive technology to enhance man-portable infrared cameras

    Science.gov (United States)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  16. Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2014-02-01

    Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm) imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz) ground-based uncooled thermal imager (Cyclops), operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7-14 μm), has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT) of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4-0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

  17. Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2014-09-01

    Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm) imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz) ground-based uncooled thermal imager (Cyclops), operating with four spectral channels at central wavelengths of 8.6, 10, 11 and 12 μm and one broadband channel (7-14 μm) has been tested at several volcanoes and at an industrial site, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The noise-equivalent temperature difference (NEΔT) of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4 and 0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and the atmosphere.

  18. Difference in the spatial distribution between H_2O and CO_2 ices in M82 found with AKARI

    CERN Document Server

    Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki; Minh, Young Chol

    2013-01-01

    With AKARI, we obtain the spatially-resolved near-infrared (2.5 - 5.0 um) spectra for the nearby starburst galaxy M82. These spectra clearly show the absorption features due to interstellar ices. Based on the spectra, we created the column density maps of H_2O and CO_2 ices. As a result, we find that the spatial distribution of H_2O ice is significantly different from that of CO_2 ice; H_2O ice is widely distributed, while CO_2 ice is concentrated near the galactic center. Our result for the first time reveals variations in CO_2/H_2O ice abundance ratio on a galactic scale, suggesting that the ice-forming interstellar environment changes within a galaxy. We discuss the cause of the spatial variations in the ice abundance ratio, utilizing spectral information on the hydrogen recombination Br{\\alpha} and Br{\\beta} lines and the polycyclic aromatic hydrocarbon 3.3 um emission appearing in the AKARI near-infrared spectra.

  19. AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field South: source catalogue and number counts

    CERN Document Server

    Hatsukade, B; Aretxaga, I; Austermann, J E; Ezawa, H; Hughes, D H; Ikarashi, S; Iono, D; Kawabe, R; Khan, S; Matsuo, H; Matsuura, S; Nakanishi, K; Oshima, T; Perera, T; Scott, K S; Shirahata, M; Takeuchi, T T; Tamura, Y; Tanaka, K; Tosaki, T; Wilson, G W; Yun, M S

    2010-01-01

    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1...

  20. Near-Infrared Photon-Counting Camera for High-Sensitivity Observations

    Science.gov (United States)

    Jurkovic, Michael

    2012-01-01

    The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.

  1. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ∼1 mag, indicating an interstellar extinction AKs = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 Msun, integrated down to 1 Msun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  2. Rice Crop Field Monitoring System with Radio Controlled Helicopter Based Near Infrared Cameras Through Nitrogen Content Estimation and Its Distribution Monitoring

    OpenAIRE

    Kohei Arai; Yuko Miura; Osamu Shigetomi; Hideaki Munemoto

    2013-01-01

    Rice crop field monitoring system with radio controlled helicopter based near infrared cameras is proposed together with nitrogen content estimation method for monitoring its distribution in the field in concern. Through experiments at the Saga Prefectural Agricultural Research Institute: SPARI, it is found that the proposed system works well for monitoring nitrogen content in the rice crop which indicates quality of the rice crop and its distribution in the field in concern. Therefore, it be...

  3. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  4. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  5. Akari Observations of Brown Dwarfs. II CO2 as Probe of Carbon and Oxygen Abundances in Brown Dwarfs

    CERN Document Server

    Tsuji, Takashi; Sorahana, Satoko

    2011-01-01

    Recent observations with the infrared astronomical satellite AKARI have shown that the CO2 bands at 4.2 micron in three brown dwarfs are much stronger than expected from the unified cloudy model (UCM) based on recent solar C & O abundances. This result has been a puzzle, but we now find that this is simply an abundance effect: We show that these strong CO2 bands can be explained with the UCMs based on the classical C & O abundances (log Ac and log Ao), which are about 0.2 dex larger compared to the recent values. Since three other brown dwarfs could be well interpreted with the recent solar C & O abundances, we require at least two model sequences based on the different chemical compositions to interpret all the AKARI spectra. The reason for this is that the CO2 band is especially sensitive to C & O abundances, since the CO2 abundance depends approximately on AcAo^2 --- the cube of C & O abundances. For this reason, even low resolution spectra of very cool dwarfs, especially of CO2 cannot ...

  6. Design and calibration of a two-camera (visible to near-infrared and short-wave infrared) hyperspectral acquisition system for the characterization of metallic alloys from the recycling industry

    Science.gov (United States)

    Barnabé, Pierre; Dislaire, Godefroid; Leroy, Sophie; Pirard, Eric

    2015-11-01

    The conception of a prototype combining two hyperspectral cameras, one ranging from visible to near-infrared and the other covering short-wave infrared, is presented. The prototype aims at the characterization of millimeter-sized metallic alloys particles, originating from end-of-life vehicles and waste electrical and electronic equipment recycling. This paper is meant to serve as a support for a similar project by presenting difficulties encountered and available solutions. The calibration steps necessary to obtain quality reflectance data are also described. Classification results obtained on 100 metallic fragments dataset are finally presented.

  7. A Precise Determination of the Mid-infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    Science.gov (United States)

    Xue, Mengyao; Jiang, B. W.; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-06-01

    A precise measure of the mid-infrared interstellar extinction law is crucial for investigating the properties of interstellar dust, especially larger-sized grains. Based on the stellar parameters derived from the SDSS-III/Apache Point Observatory Galaxy Evolution Experiment (APOGEE) spectroscopic survey, we select a large sample of G-type and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinctions (relative to {A}{{{K}}{{S}}}, the K S-band extinction at wavelength λ = 2.16 μm) for the four Wide-field Infrared Survey Explorer (WISE) bands at 3.4, 4.6, 12, and 22 μm, the four Spitzer/Infrared Array Camera bands at 3.6, 4.5, 5.8, and 8 μm, the Spitzer/MIPS24 band at 23.7 μm, and, for the first time, the AKARI/S9W band at 8.23 μm. Our results agree with previous works in that the extinction curve is flat in the ∼3–8 μm wavelength range and is generally consistent with the {R}V = 5.5 model curve, except our determination exceeds the model prediction in the WISE/W4 band. Although some previous works found that the mid-IR extinction law appears to vary with the extinction depth {A}{{{K}}{{S}}}, no noticeable variation has been found in this work. The uncertainties are analyzed in terms of the bootstrap resampling method and Monte-Carlo simulation and are found to be rather small.

  8. DETECTION OF PARENT H2O AND CO2 MOLECULES IN THE 2.5-5 μm SPECTRUM OF COMET C/2007 N3 (LULIN) OBSERVED WITH AKARI

    International Nuclear Information System (INIS)

    Comet C/2007 N3 (Lulin) was observed with the Japanese infrared satellite AKARI in the near-infrared at a post-perihelion heliocentric distance of 1.7 AU. Observations were performed with the spectroscopic (2.5-5.0 μm) and imaging (2.4, 3.2, and 4.1 μm) modes on 2009 March 30 and 31 UT, respectively. AKARI images of the comet exhibit a sunward crescent-like shape coma and a dust tail extended toward the anti-solar direction. The 4.1 μm image (CO/CO2 and dust grains) shows a distribution different from the 2.4 and 3.2 μm images (H2O and dust grains). The observed spectrum shows distinct bands at 2.66 and 4.26 μm, attributed to H2O and CO2, respectively. This is the fifth comet in which CO2 has been directly detected in the near-infrared spectrum. In addition, CO at 4.67 μm and a broad 3.2-3.6 μm emission band from C-H bearing molecules were detected in the AKARI spectrum. The relative abundance ratios CO2/H2O and CO/H2O derived from the molecular production rates are ∼4%-5% and 2 among all observed comets.

  9. Commissioning ShARCS: the Shane Adaptive optics infraRed Camera-Spectrograph for the Lick Observatory 3-m telescope

    CERN Document Server

    McGurk, Rosalie; Gavel, Donald; Kupke, Renate; Peck, Michael; Pfister, Terry; Ward, Jim; Deich, William; Gates, John; Gates, Elinor; Alcott, Barry; Cowley, David; Dillon, Daren; Lanclos, Kyle; Sandford, Dale; Saylor, Mike; Srinath, Srikar; Weiss, Jason; Norton, Andrew

    2014-01-01

    We describe the design and first-light early science performance of the Shane Adaptive optics infraRed Camera-Spectrograph (ShARCS) on Lick Observatory's 3-m Shane telescope. Designed to work with the new ShaneAO adaptive optics system, ShARCS is capable of high-efficiency, diffraction-limited imaging and low-dispersion grism spectroscopy in J, H, and K-bands. ShARCS uses a HAWAII-2RG infrared detector, giving high quantum efficiency (>80%) and Nyquist sampling the diffraction limit in all three wavelength bands. The ShARCS instrument is also equipped for linear polarimetry and is sensitive down to 650 nm to support future visible-light adaptive optics capability. We report on the early science data taken during commissioning.

  10. Clustering of the AKARI NEP Deep Field 24 $\\mu$m selected galaxies

    CERN Document Server

    Solarz, A; Takeuchi, T T; Małek, K; Matsuhara, H; White, G J; Pȩpiak, A; Goto, T; Wada, T; Oyabu, S; Takagi, T; Ohyama, Y; Pearson, C P; Hanami, H; Ishigaki, T; Malkan, M

    2015-01-01

    We present a method of selection of 24~$\\mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 \\mbox{ }\\mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $\\mu$m selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80\\%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter ($r_{0}$) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. We observe two differe...

  11. Spectral energy distributions of an AKARI-SDSS-GALEX sample of galaxies

    CERN Document Server

    Buat, V; Takeuchi, T T; Heinis, S; Yuan, F T; Burgarella, D; Noll, S; Iglesias-Paramo, J

    2011-01-01

    The nearby universe remains the best laboratory to understand physical properties of galaxies and is a reference for any comparison with high redshift observations. The all sky (or very large) surveys performed from the ultraviolet (UV) to the far-infrared (far-IR) gives us large datasets with a very large wavelength coverage to perform a reference study. We want to investigate dust attenuation characteristics as well as star formation rate (SFR) calibrations on a sample of nearby galaxies observed over 13 bands from 0.15 to 160 microns. A sample of 363 galaxies is built from the AKARI /FIS all sky survey cross-correlated with SDSS and GALEX surveys. Broad band spectral energy distributions are fitted with the CIGALE code optimized to analyze variations in dust attenuation curves and SFR measurements and based on an energetic budget between the stellar and dust emission. Our galaxy sample is primarily selected in far-IR and mostly constituted of massive, actively star forming galaxies. There is some evidence ...

  12. A Novel Approach to Synchronous Image Acquisition from Near Infrared Camera in Optical-Surgery Navigation System

    Directory of Open Access Journals (Sweden)

    Rongqian Yang

    2015-10-01

    Full Text Available The positional accuracy of an optical-surgery navigation system is significantly affected by two factors. One is the acquisition synchronism of the two cameras in the system, and the other is the phase difference in image transmission acquired by these cameras. To further enhance image-acquisition synchronism, a field programmable gate array (FPGA- based synchronous-acquisition method is introduced in this paper. The FPGA control circuit board is independently designed to equalize the length of all data lines, thereby reducing differences in image transmission. Two Complementary Metal Oxide Semiconductors (CMOS image sensor chips of MT9V032 are also adopted to enable synchronous acquisition in passive acquisition mode. Moreover, the control of exposure time and frame number of MT9V032 under the passive acquisition mode is discussed. Finally, the proposed method is validated and the experimental results the two cameras show h

  13. Design of the Front End Electronics for the Infrared Camera of JEM-EUSO, and manufacturing and verification of the prototype model

    CERN Document Server

    Maroto, Oscar; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven, Enrique; Martín, Yolanda; Ríos, J A Morales de los; Del Peral, Luis; Frías, M D Rodríguez

    2015-01-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above $10^{19}$ eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an unco...

  14. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    Directory of Open Access Journals (Sweden)

    Sáez-Cano G.

    2015-01-01

    Full Text Available The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS and its aim is to detect Ultra High Energy Cosmic Rays (UHECR and Extremely High Energy Cosmic Rays (EHECR by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS. This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  15. The AKARI Deep Field South: Pushing to High Redshift

    CERN Document Server

    Clements, David L

    2016-01-01

    The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/submm images, including studies of cold dust in nearby galaxies, the identification of strongly lensed distant galaxies, and the use of colour selection to find candidate very high redshift sources. I conclude that the potential for significant new results from the ADF-S is very great. The addition of new wavelength bands in the future, eg. from Euclid, SKA, ALMA and elsewhere, will boost the importance of this field still further.

  16. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  17. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489

  18. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study

    Science.gov (United States)

    Lee, Byoung-Hee

    2016-01-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489

  19. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  20. Masterpieces unmasked: New high-resolution infrared cameras produce rich, detailed images of artwork, and create new controversies

    CERN Multimedia

    Marshall, J

    2002-01-01

    Luca Pezzati is a physicist who heads a group called Art Diagnostics, which is a part of the Opificio delle Pietre Dure, an institute devoted to the research and conservation of artworks in Italy. Pezzati and his group use high-resolution infrared scanning device to produce colour images of what lies below the surface of paintings. Their scanner is able to produce the best-known quality of images without harming the painting under examination (1 page).

  1. Design of the front end electronics for the infrared camera of JEM-EUSO, and manufacturing and verification of the prototype model

    Science.gov (United States)

    Maroto, Oscar; Diez-Merino, Laura; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven-Alvarez, Enrique; Martín, Yolanda; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.

    2014-07-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 1019 eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μV from 1Hz to 10MHz, temperature control of the microbolometer, from 10°C to 40°C with stability better than 10mK over 4.8hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction. It also shows the modifications implemented in the FEE prototype design to perform a trade-off of different technologies, such as the convenience of using linear or switched regulation for the temperature control, the possibility to check the camera performances when both microbolometer and analog electronics are moved further away from the power and digital electronics, and

  2. Planetcam: A Visible And Near Infrared Lucky-imaging Camera To Study Planetary Atmospheres And Solar System Objects

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; de Bilbao, L.; Murga, G.; Ariño, J.; Mendikoa, I.

    2012-10-01

    PlanetCam is a two-channel fast-acquisition and low-noise camera designed for a multispectral study of the atmospheres of the planets (Venus, Mars, Jupiter, Saturn, Uranus and Neptune) and the satellite Titan at high temporal and spatial resolutions simultaneously invisible (0.4-1 μm) and NIR (1-2.5 μm) channels. This is accomplished by means of a dichroic beam splitter that separates both beams directing them into two different detectors. Each detector has filter wheels corresponding to the characteristic absorption bands of each planetary atmosphere. Images are acquired and processed using the “lucky imaging” technique in which several thousand images of the same object are obtained in a short time interval, coregistered and ordered in terms of image quality to reconstruct a high-resolution ideally diffraction limited image of the object. Those images will be also calibrated in terms of intensity and absolute reflectivity. The camera will be tested at the 50.2 cm telescope of the Aula EspaZio Gela (Bilbao) and then commissioned at the 1.05 m at Pic-duMidi Observatory (Franca) and at the 1.23 m telescope at Calar Alto Observatory in Spain. Among the initially planned research targets are: (1) The vertical structure of the clouds and hazes in the planets and their scales of variability; (2) The meteorology, dynamics and global winds and their scales of variability in the planets. PlanetCam is also expected to perform studies of other Solar System and astrophysical objects. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  3. Near infrared thermography by CCD cameras and application to first wall components of Tore Supra tokamak; Thermographie proche infrarouge par cameras CCD et application aux composants de premiere paroi du tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, F.

    1996-06-07

    In the Tokamak TORE-SUPRA, the plasma facing components absorbs and evacuate (active cooling) high power fluxes (up to 10 MW/m{sup 2}). Their thermal behavior study is essential for the success of controlled thermonuclear fusion line. The first part is devoted to the study of power deposition on the TORE-SUPRA actively cooled limiters. A model of power deposition on one of the limiters is developed. It takes into account the magnetic topology and a description of the plasma edge. The model is validated with experimental calorimetric data obtained during a series of shots. This will allow to compare the surface temperature measurements with the predicted ones. The main purpose of this thesis was to evaluate and develop a new temperature measurement system. It works in the near infrared range (890 nm) and is designed to complete the existing thermographic diagnostic of TORE-SUPRA. By using the radiation laws (for a blackbody and the plasma) and the laboratory calibration one can estimate the surface temperature of the observed object. We evaluate the performances and limits of such a device in the harsh conditions encountered in a Tokamak environment. On the one hand, in a quasi ideal situation, this analysis shows that the range of measurements is 600 deg. C to 2500 deg. C. On the other hand, when one takes into account of the plasma radiation (with an averaged central plasma density of 6.10{sup 19} m{sup -3}), we find that the minimum surface temperature rise to 900 deg. C instead of 700 deg. C. In the near future, according to the development of IR-CCD cameras working in the near infrared range up to 2 micrometers, we will be able to keep the good spatial resolution with an improved lower limit for the temperature down to 150 deg. C. The last section deals with a number of computer tools to process the images obtained from experiments on TORE-SUPRA. A pattern recognition application was developed to detect a complex plasma iso-intensity structure. 87 refs.

  4. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas...... detection, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  5. THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808

    International Nuclear Information System (INIS)

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ∼65% and ∼35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin.

  6. The infrared eye of the Wide-Field Camera 3 on the Hubble Space Telescope reveals multiple main sequences of very low-mass stars in NGC 2808

    CERN Document Server

    Milone, A P; Cassisi, S; Piotto, G; Bedin, L R; Anderson, J; Allard, F; Aparicio, A; Bellini, A; Buonanno, R; Monelli, M; Pietrinferni, A

    2012-01-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope (HST) to study the multiple main sequences (MSs) of NGC 2808. Below the turn off, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ~65% and ~35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD), and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abund...

  7. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    CERN Document Server

    Sáez-Cano, G; del Peral, L; Neronov, A; Wada, S; Frías, M D Rodríguez

    2015-01-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the ret...

  8. Hubble Space Telescope hot Jupiter Transmission Spectral Survey: detection of water in HAT-P-1b from Wide Field Camera 3 near-infrared spatial scan observations

    CERN Document Server

    Wakeford, H R; Deming, D; Gibson, N P; Fortney, J J; Burrows, A S; Ballester, G; Nikolov, N; Aigrain, S; Henry, G; Knutson, H; Etangs, A Lecavelier des; Pont, F; Showman, A P; Vidal-Madjar, A; Zahnle, K

    2013-01-01

    We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {\\mu}m. These time series observations were taken with the newly available spatial scan mode that increases the duty cycle by nearly a factor of two, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R*=0.11709+/-0.00038 in the white light curve with the centre of transit occurring at 2456114.345+/-0.000133 (JD). We achieve S/N levels per exposure of 1840 (0.061%) at a resolution of {\\Delta\\lambda}=19.2nm (R~70) in the 1.1173 - 1.6549{\\mu}m spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultan...

  9. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  10. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  11. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  12. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  13. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  14. Bringing the infrared to light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Infrared imaging is usually done by use of infrared cameras. We present an effective alternative approach where infrared light is converted to near visible light in a non-linear process, and then detected by low cost, high performance camera. The approach is generic and can be applied towards many...

  15. Scintillation camera and positron camera

    International Nuclear Information System (INIS)

    A short description is given of earlier forms of the gamma-ray camera. The principle of operation of the scintillation camera is reviewed. Here the locations of scintillations occurring in a flat thallium-activated sodium iodide crystal are determined from the amount of light picked up by a number of phototubes simultaneously viewing the crystal. The signals from the phototubes are fed to a deflection computor circuit which reproduces the scintillations on a cathode-ray tube screen. There they are photographed by a conventional scope camera. Examples are shown of the resolution now obtained as shown by test phantoms. A discussion is presented of the camera's use in visualizing the thyroid in clinical practice. (author)

  16. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    CERN Document Server

    Ishihara, Daisuke; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2016-01-01

    Context: Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 AU. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods : We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 micron detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks<4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H...

  17. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  18. A SURVEY OF H{sub 2}O, CO{sub 2}, AND CO ICE FEATURES TOWARD BACKGROUND STARS AND LOW-MASS YOUNG STELLAR OBJECTS USING AKARI

    Energy Technology Data Exchange (ETDEWEB)

    Noble, J. A. [Aix-Marseille Université, PIIM UMR 7345, F-13397 Marseille (France); Fraser, H. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Aikawa, Y. [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Pontoppidan, K. M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sakon, I., E-mail: helen.fraser@open.ac.uk [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0003 (Japan)

    2013-10-01

    We present near-infrared spectroscopic observations of 19 molecular clouds made using the AKARI satellite, and the data reduction pipeline written to analyze those observations. The 2.5-5 μm spectra of 30 objects—22 field stars behind quiescent molecular clouds and 8 low-mass young stellar objects in cores—were successfully extracted using the pipeline. Those spectra are further analyzed to calculate the column densities of key solid phase molecular species, including H{sub 2}O, CO{sub 2}, CO, and OCN{sup –}. The profile of the H{sub 2}O ice band is seen to vary across the objects observed and we suggest that the extended red wing may be an evolutionary indicator of both dust and ice mantle properties. The observation of 22 spectra with fluxes as low as < 5 mJy toward background stars, including 15 where the column densities of H{sub 2}O, CO, and CO{sub 2} were calculated, provides valuable data that could help to benchmark the initial conditions in star-forming regions prior to the onset of star formation.

  19. A low-noise readout circuit in 0.35-μm CMOS for low-cost uncooled FPA infrared network camera

    Science.gov (United States)

    Mesgarzadeh, Behzad; Sadeghifar, M. Reza; Fredriksson, Per; Jansson, Christer; Niklaus, Frank; Alvandpour, Atila

    2009-05-01

    This paper describes a differential readout circuit technique for uncooled Infrared Focal Plane Arrays (IRFPA) sensors. The differential operation allows an efficient rejection of the common-mode noise during the biasing and readout of the detectors. This has been enabled by utilizing a number of blind and thermally-isolated IR bolometers as reference detectors. In addition, a pixel-wise detector calibration capability has been provided in order to allow efficient error corrections using digital signal processing techniques. The readout circuit for a 64×64 test bolometer-array has been designed in a standard 0.35-μm CMOS process. Circuit simulations show that the analog readout at 60 frames/s consumes 30 mW from a 3.3-V supply and results in a noise equivalent temperature difference (NETD) of 125 mK for infrared optics.

  20. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Sullivan, I. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Cooray, A.; Mitchell-Wynne, K.; Smidt, J. [Center for Cosmology, University of California, Irvine, CA 92697 (United States); Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Institute of Astronomy and Astrophysics, Academia Sinica, National Taiwan University, Taipei 10617, Taiwan (China); Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Suzuki, K. [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan); and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  1. 利用红外相机研究神农架自然保护区野生动物分布规律%Distribution of Wildlife Surveyed with Infra-Red Cameras in the Shennongjia National Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    李广良; 李迪强; 薛亚东; 王秀磊; 杨敬元; 余辉亮

    2014-01-01

    利用红外相机对神农架自然保护区的野生动物分布范围和活动规律进行调查。于2010年8-9月和2011年3-9月,在95个位点放置红外相机,每台相机在每个位点放置时间为1~2个月。共获得野生动物照片9665张,其中有效照片536张;有效照片中兽类占82%,鸟类占18%,经鉴定,兽类有19种,鸟类有9种。在海拔2219~2597 m的区域和寒温性针阔混交林中拍摄的动物种数和拍摄率均最高,说明这些区域的野生动物数量和种类最多。同种动物在不同的植被型下拍摄率不同,说明该种动物对各植被型的偏好程度不同。对6种最常见兽类和2种雉类的研究表明:在寒温性和温性针阔混交林中拍摄率最高的是斑羚、红腹角雉,在温性针阔混交林拍摄率最高的是毛冠鹿,在寒温性针阔混交林中拍摄率最高的是野猪、梅花鹿、红腹锦鸡,在针叶林中拍摄率最高的是鬣羚。%To investigate diversity and relative abundance of the wildlife in Hubei Shennongjia National Nature Reserve, infra-red cameras were installed in 95 sites,with each site maintained for one to two months and monitored the movement of the animals from August to September,2010,and from March to September,2011. The cameras totally took 9 665 photos with identified animals,and of them there are 536 effective photos,among which 82% were mammals,18% were birds. The total 19 species of mammals and 9 species of birds were identified. At different elevations and in different vegetation types the photographic rates ( PR ) of infra-red cameras were varied. The PR was significantly higher at elevation of 2 219 -2 597 m; PR of infra-red cameras in cold temperate mixed coniferous and broadleaved forest was the highest,indicating that diversity and abundance of mammals and birds in these places were more than other regions. For the same specie of animal in different vegetation the PR was different

  2. The AKARI Deep Fields: Early Results from Multi-wavelength Follow-up Campaigns

    CERN Document Server

    Sedgwick, Chris; Sirothia, Sandeep; Pal, Sabyasachi; Pearson, Chris; White, Glenn; Matsuhara, Hideo; Matsuura, Shuji; Shirahata, Mai; Khan, Sophia

    2010-01-01

    We present early results from our multi-wavelength follow-up campaigns of the AKARI Deep Fields at the North and South Ecliptic Poles. We summarize our campaigns in this poster paper, and present three early outcomes. (a) Our AAOmega optical spectroscopy of the Deep Field South at the AAT has observed over 550 different targets, and our preliminary local luminosity function at 90 microns from the first four hours of data is in good agreement with the predictions from Serjeant & Harrison 2005. (b) Our GMRT 610 MHz imaging in the Deep Field North has reached ~30 microJy RMS, making this among the deepest images at this frequency. Our 610 MHz source counts at >200 microJy are the deepest ever derived at this frequency. (c) Comparing our GMRT data with our 1.4 GHz WSRT data, we have found two examples of radio-loud AGN that may have more than one epoch of activity.

  3. ESA joins forces with Japan on new infrared sky surveyor

    Science.gov (United States)

    2006-02-01

    Prof. David Southwood, ESA’s Director of Science, said: “The successful launch of ASTRO-F(Akari) is a big step. A decade ago, our Infrared Space Observatory (ISO) opened up this field of astronomy, and the Japanese took part then. It is wonderful to be cooperating again with Japan in this discipline.” “Our involvement with the Japanese in this programme responds to our long-term commitment in infrared astronomy, whose potential for discovery is huge. We are now off and rolling with ASTRO-F/Akari, but we are also working extremely hard towards the launch of the next-generation infrared telescope, ESA’s Herschel spacecraft, which will go up in the next two years”, he continued. “This will still not be the end of the story. Infrared astronomy is also a fundamental part of the future vision for ESA’s space research, as outlined in the ‘Cosmic Vision 2015-2025’ programme. The truth is, subjects such as the formation of stars and exoplanets, or the evolution of the early universe, are themes at the very core of our programme.” The mission : On 21 February, at 22:28 Central European Time, (22 February, 06:28 local time), a Japanese M-V rocket blasted off from the Uchinoura Space Centre, in the Kagoshima district of Japan, carrying the new infrared satellite into space. In about two weeks' time, ASTRO-F will be in polar orbit around the Earth at an altitude of 745 kilometres. From there, after two months of system check-outs and performance verification, it will survey the whole sky in about half a year, with much better sensitivity, spatial resolution and wider wavelength coverage than its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite (1983). The all-sky survey will be followed by a ten-month phase during which thousands of selected astronomical targets will be observed in detail. This will enable scientists to look at these individual objects for a longer time, and thus with increased sensitivity, to conduct their spectral

  4. Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope

    CERN Document Server

    Ehrenreich, David; Lovis, Christophe; Delfosse, Xavier; Forveille, Thierry; Mayor, Michel; Neves, Vasco; Santos, Nuno C; Udry, Stéphane; Ségransan, Damien

    2014-01-01

    The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the t...

  5. Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

    CERN Document Server

    Karouzos, Marios; Trichas, Markos

    2013-01-01

    We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.

  6. Radio-AGN in the AKARI-NEP field and their role in the evolution of galaxies

    OpenAIRE

    Karouzos, Marios; Im, Myungshin; team, the AKARI-NEP

    2013-01-01

    Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relative...

  7. Radio-AGN in the AKARI-NEP field and their role in the evolution of galaxies

    CERN Document Server

    Karouzos, Marios; 10.5303/PKAS.2012.27.4.287

    2013-01-01

    Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relatively old stellar populations.

  8. AKARI OBSERVATIONS OF BROWN DWARFS. III. CO, CO2, AND CH4 FUNDAMENTAL BANDS AND PHYSICAL PARAMETERS

    International Nuclear Information System (INIS)

    We investigate variations in the strengths of three molecular bands, CH4 at 3.3 μm, CO at 4.6 μm, and CO2 at 4.2 μm, in 16 brown dwarf spectra obtained by AKARI. Spectral features are examined along the sequence of source classes from L1 to T8. We find that the CH4 3.3 μm band is present in the spectra of brown dwarfs later than L5, and the CO 4.6 μm band appears in all spectral types. The CO2 absorption band at 4.2 μm is detected in late-L and T-type dwarfs. To better understand brown dwarf atmospheres, we analyze the observed spectra using the Unified Cloudy Model. The physical parameters of the AKARI sample, i.e., atmospheric effective temperature T eff, surface gravity log g, and critical temperature T cr, are derived. We also model IRTF/SpeX and UKIRT/CGS4 spectra in addition to the AKARI data in order to derive the most probable physical parameters. Correlations between the spectral type and the modeled parameters are examined. We confirm that the spectral-type sequence of late-L dwarfs is not related to T eff, but instead originates as a result of the effect of dust.

  9. Short on camera geometry and camera calibration

    OpenAIRE

    Magnusson, Maria

    2010-01-01

    We will present the basic theory for the camera geometry. Our goal is camera calibration and the tools necessary for this. We start with homogeneous matrices that can be used to describe geometric transformations in a simple manner. Then we consider the pinhole camera model, the simplified camera model that we will show how to calibrate. A camera matrix describes the mapping from the 3D world to a camera image. The camera matrix can be determined through a number of corresponding points measu...

  10. ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION

    International Nuclear Information System (INIS)

    We study the Spitzer Infrared Array Camera (IRAC) mid-infrared (rest-frame optical) fluxes of 14 newly WFC3/IR-detected z ∼ 7 z 850-dropout galaxies and 5z ∼ 8 Y 105-dropout galaxies. The WFC3/IR depth and spatial resolution allow accurate removal of contaminating foreground light, enabling reliable flux measurements at 3.6 μm and 4.5 μm. None of the galaxies are detected to [3.6] ∼ 26.9 (AB, 2σ), but a stacking analysis reveals a robust detection for the z 850-dropouts and an upper limit for the Y 105-dropouts. We construct average broadband spectral energy distributions using the stacked Advanced Camera for Surveys (ACS), WFC3, and IRAC fluxes and fit stellar population synthesis models to derive mean redshifts, stellar masses, and ages. For the z 850-dropouts, we find z = 6.9+0.1-0.1, (U - V)rest ∼ 0.4, reddening AV = 0, stellar mass (M*) = 1.2+0.3-0.6 x 109 M sun (Salpeter initial mass function). The best-fit ages ∼300 Myr, M/LV ∼ 0.2, and SSFR ∼1.7 Gyr-1 are similar to values reported for luminous z ∼ 7 galaxies, indicating the galaxies are smaller but not much younger. The sub-L* galaxies observed here contribute significantly to the stellar mass density and under favorable conditions may have provided enough photons for sustained reionization at 7 +0.1-0.2 Y 105-dropouts have stellar masses that are uncertain by 1.5 dex due to the near-complete reliance on far-UV data. Adopting the 2σ upper limit on the M/L(z = 8), the stellar mass density to M UV,AB +1.4-1.8 x 106 M sun Mpc-3 to ρ*(z = 8) 5 M sun Mpc-3, following ∝(1 + z)-6 over 3 < z < 8. Lower masses at z = 8 would signify more dramatic evolution, which can be established with deeper IRAC observations, long before the arrival of the James Webb Space Telescope.

  11. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (first report): trial products of beans-size Fourier-spectroscopic line-imager and feasibility experimental results of middle-infrared spectroscopic imaging

    Science.gov (United States)

    Ishimaru, Ichiro; Kawashima, Natsumi; Hosono, Satsuki

    2016-05-01

    We had already proposed and reported the little-finger size hyperspectral-camera that was able to be applied to visible and infrared lights. The proposed method has been expected to be mounted on smartphones for healthcare sensors, and unmanned air vehicles such as drones for antiterrorism measures or environmental measurements. In this report, we will mention the trial product of the thumb size apparatus whose lens diameter was 5[mm]. The proposed Fourier spectroscopic imager is a kind of wavefront-division and common-path phase-shift interferometers. We installed the relative inclined phase-shifter onto optical Fourier transform plane of infinity corrected optical systems. The infinity corrected optical systems was configured with an objective lens and a cylindrical imaging lens. The relative inclined phase-shifter, what was made from a thin glass less than 0.3[mm] thick, had the wedge-prism and cuboid-glass region, because half surface of a thin glass was polished at an oblique angle of around 1[deg.]. The collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams are interfered each other and form the infererogram as spatial fringe patterns. In this case, the horizontal axis on 2-dimensional light receiving device is assigned to the amount of phase-shift. And also the vertical axis is assigned to the imaging coordinates on a line view field. Thus, by installing thin phase-shifter onto optical Fourier transform plane, the line spectroscopic imager, what obtains 1 dimensional spectral character distributions, were able to be realized.

  12. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McCullough, Peter; Crouzet, Nicolas [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric; Dobbs-Dixon, Ian [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Desert, Jean-Michel; Knutson, Heather A.; Line, Michael [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Haynes, Korey [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Magic, Zazralt [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Mandell, Avi M.; Clampin, Mark [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Seager, Sara, E-mail: ddeming@astro.umd.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2013-09-10

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  13. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ∼ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g–1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component

  14. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    Science.gov (United States)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  15. Timeline analysis and wavelet multiscale analysis of the AKARI All-Sky Survey at 90 micron

    CERN Document Server

    Wang, Lingyu; Yamamura, Issei; Shibai, Hiroshi; Savage, Rich; Oliver, Seb; Thomson, Matthew; Rahman, Nurur; Clements, Dave; Figueredo, Elysandra; Goto, Tomotsugu; Hasegawa, Sunao; Jeong, Woong-Seob; Matsuura, Shuji; Muller, Thomas G; Nakagawa, Takao; Pearson, Chris P; Serjeant, Stephen; Shirahata, Mai; White, Glenn J

    2008-01-01

    We present a careful analysis of the point source detection limit of the AKARI All-Sky Survey in the WIDE-S 90 $\\mu$m band near the North Ecliptic Pole (NEP). Timeline Analysis is used to detect IRAS sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90 $\\mu$m flux of a source. Combined with a robust noise measurement, the point source flux detection limit at S/N $>5$ for a single detector row is $1.1\\pm0.1$ Jy which corresponds to a point source detection limit of the survey of $\\sim$0.4 Jy. Wavelet transform offers a multiscale representation of the Time Series Data (TSD). We calculate the continuous wavelet transform of the TSD and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above $4\\sigma$ can be identified as the only real sources at the Point Sourc...

  16. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  17. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ≤ z ≤ 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    International Nuclear Information System (INIS)

    Spectroscopic observations of Hα and Hβ emission lines of 128 star-forming galaxies in the redshift range 0.75 ≤ z ≤ 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (Hα/Hβ). We present dust extinction as a function of Hα luminosity (down to 3 × 1041 erg s–1), galaxy stellar mass (reaching 4 × 108 M ☉), and rest-frame Hα equivalent width. The faintest galaxies are two times fainter in Hα luminosity than galaxies previously studied at z ∼ 1.5. An evolution is observed where galaxies of the same Hα luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower Hα luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] λ5007/Hα flux ratio as a function of luminosity where galaxies with L Hα 41 erg s–1 are brighter in [O III] λ5007 than Hα. This trend is evident even after extinction correction, suggesting that the increased [O III] λ5007/Hα ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  18. 机载光电/惯性组合着舰导引算法的地面验证%Field verification of aircraft carrier landing algorithm based on integrated airborne infrared camera/inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    王丹; 王玮; 冯培德

    2012-01-01

    A new algorithm of aircraft carrier landing was studied utilizing airborne infrared camera/inertial integrated system, aiming to provide the guidance information and accomplish aircrafts semi-auto or auto landing. The mathematic relationship between guidance parameters and imaging information was modeled, and the relative position and attitude information between the carrier and the aircraft were estimated through least square method. Then the pitch, roll and heave movement of the carrier were compensated, so the touchdown point could be predicted in order to guide aircraft landing. Based on the theoretical research, the field verification tests were carried out, which adopted the minification scheme to simulate the process of aircraft carrier landing. In the experiments, the runway simulator simulated the motion of the carrier deck and the land vehicle was used as the aircraft. The results verify that the landing guidance system scheme is feasible and effective, and lays the technical foundation for the flight test and improves its safety.%研究了机载光电/惯性组合着舰导引新算法,综合光电探测系统获得的跑道成像信息和机载惯性导航信息,建立导引参数与成像信息之间的数学模型,利用最小二乘法估计舰/机相对位姿,补偿舰船纵摇、横摇及沉浮运动并预测舰载机着舰位置,以实现近程导引舰载机半自动或自动安全着舰.在算法研究的基础上,进行了地面车载验证实验.实验采用缩比方案,以着降跑道模拟器模拟运动中的着降跑道.试验车模拟舰载机,通过相对位姿关系的一致性模拟着舰过程.试验结果验证了着舰导引系统方案的可行性和有效性,为飞行实验奠定技术基础,有利于提高其安全性.

  19. Camera Systems Rapidly Scan Large Structures

    Science.gov (United States)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  20. Deep 15um AKARI observations in the CDFS: estimating dust luminosities for a MIR-selected sample and for Lyman Break Galaxies and the evolution of L(dust)/L(UV) with the redshift

    CERN Document Server

    Burgarella, Denis; Takeuchi, Tsutomu T; Wada, Takehiko; Pearson, Chris

    2008-01-01

    Deep observations of the CDFS have been secured at 15um with AKARI/IRC infrared space telescope (ESA open time). From these observations, we define a sample of MIR-selected galaxies at 15um and we also obtain 15um flux densities for a sample of LBGs at z=1 already observed at 24um with Spitzer/MIPS. Number counts for the MIR-selected sample show a bump around a 15um flux density of 0.2mJy that can be attributed to galaxies at z>0.4 and at z>0.8 for the fainter part of the bump. This bump seems to be shifted as compared to other works and a possible origin can be the Cosmic variance. Thanks to this dataset, we have tested, on the two above samples at z=1, the validity of the conversions from monochromatic luminosities nu.f(nu) at a rest-frame wavelength of 8um by a comparison with total dust luminosities estimated from Spitzer rest-frame 12um data that we use as a reference. We find that the 8um dust luminosities are not all consistent and that some of them are better when compared to L(dust) evaluated from lo...

  1. Deep 15μm AKARI Observations in the CDFS: Estimating Dust Luminosities for a MIR-Selected Sample and for Lyman Break Galaxies and the Evolution of Ldust/LUV with the Redshift

    Science.gov (United States)

    Burgarella, Denis; Buat, Véronique; Takeuchi, Tsutomu T.; Wada, Takehiko; Pearson, Chris

    2009-02-01

    Deep observations of the Chandra Deep Field South have been secured at 15μm with AKARI/IRC infrared space telescope. From these observations, we define a sample of mid infrared-selected galaxies at 15μm and we also obtain 15μm flux densities for a sample of Lyman Break Galaxies at z ˜ 1 already observed at 24μm with Spitzer/MIPS. Number counts for the mid infrared-selected sample show a bump around a 15μm flux density of 0.2mJy that can be attributed to galaxies at z > 0.4 and at z > 0.8 for the fainter part of the bump. This bump seems to be shifted as compared to other works and a possible origin can be the Cosmic variance. On the two above samples at z ˜ 1 we have tested the validity of the conversions from luminosities ν.fν at 8νm to total dust luminosities by comparing with luminosities estimated from 12νm data used as a reference. Some calibrations seem better when compared to evaluated from longer wavelength luminosities. We also find that the rest-frame 8μm luminosities provide good estimates of Ldust. By comparing our data to several libraries of spectral energy distributions, we find that models can explain the diversity of the observed f24/f15 ratio quite reasonably. However, when we analyse the luminosity dependence of this ratio, we find important discrepancies. Finally, we revisit the evolution of Ldust/LUV ratio with the redshift z by re-calibrating previous Ldust at z ˜ 2 based on our results and added new data points at higher redshifts. The decreasing trend is amplified as compared to the previous estimate.

  2. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  3. Cross-correlations between 21 cm,X-ray and infrared backgrounds

    Institute of Scientific and Technical Information of China (English)

    Huan-Yuan Shan; Bo Qin

    2009-01-01

    The history of the cosmological reionization is still unclear. Two ionizing sources, stars and QSOs, are believed to play important roles during this epoch. Besides the 21 cm signals, the infrared emission from Pop Ⅲ stars and X-ray photons from QSOs can be powerful probes of the reionization. Here we present a cross-correlation study of the 21 cm, infrared and X-ray backgrounds. The advantage of doing such cross-correlations is that we could highlight the correlated signals and eliminate irrelevant fore-grounds. We develop a shell model to describe the 21 cm signals and find that PopⅢ stars can provide higher 21 cm signals than QSOs. Using the ROSAT data for X-ray and AKARI data for infrared, we predict various cross power spectra analytically and dis-cuss prospects for detecting these cross-correlation signals in future low frequency radio surveys. We find that, although these cross-correlational signals have distinct features, so far, they have been difficult to detect due to the high noise of the soft X-ray and infrared backgrounds given by ROSAT and AKARI.

  4. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  5. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  6. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  7. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  8. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera. Fe

  9. A new photometric study of Herbig Ae/Be stars in the infrared

    Science.gov (United States)

    Chen, P. S.; Shan, H. G.; Zhang, P.

    2016-04-01

    In this paper we collected almost all HAeBe stars known so far (253 sources in total) to photometrically study their infrared properties. The 2MASS, WISE, IRAS and AKARI data are employed to make analyses. It is shown from several two-color diagrams that from 1 μm to 60 μm infrared radiations from circumstellar disks with the power law distribution play a very important role for infrared excesses which are much larger than that for ordinary Be stars. In the WISE two-color diagram, (W2-W3) vs. (W1-W2), some sources show thermal emissions probably due to dust surrounded and enhanced PAH features at 3.3 and 11.3 μm. In the wavelength longer than 60 μm infrared radiations are not so influenced by the circumstellar disk, but mainly from the ISM surrounded.

  10. Infrared fetoscopy in the sheep.

    Science.gov (United States)

    Luks, F I; Deprest, J A; Peers, K H; Desimpelaere, L; Vandenberghe, K

    1994-01-01

    The strong light sources used in fetoscopy and embryoscopy may cause eye injuries to the fetus. To circumvent this potential hazard, we have successfully used an infrared light source and infrared video camera to perform 'night vision' fetoscopy in a fetal lamb model. PMID:7818781

  11. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  12. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  13. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  14. Application of the Passive Infrared Sensor Camera Technology in Monitoring the Vertebrate Diversity--A Case Study of Anhui Jiulongfeng Provincial Nature Reserve%运用红外感应相机技术监测脊椎动物多样性--以安徽省九龙峰省级自然保护区为例

    Institute of Scientific and Technical Information of China (English)

    汪长根; 曹新华; 曹清平; 晏龙; 吴孝兵

    2015-01-01

    Infrared sensor cameras were applied for long-term monitoring of the birds and mammals difficult to observe in Anhui Jiulongfeng Provincial Nature Reserve. In the monitoring periods photos were taken of the first-class national protected animals Muntiacus crinifrons and Syrmaticus ellioti, and second -class national protected animals Capricornis sumatraenis, Macaca thibetane, Martes flavigula, Lophura nycthemera and Pucrasia macrolopha. The monitoring results showed that there is high diversity of wild vertebrate species in the reserve, and infrared sensor cameras have more advantages and feasibility in the wildlife survey compared with traditional survey methods.%使用红外相机对安徽省九龙峰自然保护区内较难观察统计到的鸟类、兽类进行长期监测。监测期间拍摄到国家一级保护动物黑麂、白颈长尾雉,二级保护动物鬣羚、短尾猴、青鼬、白鹇、勺鸡等。监测结果表明,九龙峰自然保护区内野生脊椎动物物种多样性较高;红外相机在野生动物的调查中较传统的调查方法具有更多的优势和可行性。

  15. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  16. Massive-Star Forming Infrared Loop around the Crab-like Supernova Remnant G54.1+0.3: Post Main-Sequence Triggered Star Formation?

    OpenAIRE

    Koo, Bon-Chul; McKee, Christopher F.; Lee, Jae-Joon; Lee, Ho-Gyu; Lee, Jeong-Eun; Moon, Dae-Sik; Hong, Seung Soo; Kaneda, Hidehiro; Onaka, Takashi

    2007-01-01

    We report the discovery of a star-forming loop around the young, Crab-like supernova remnant (SNR) G54.1+0.3 using the AKARI infrared satellite. The loop consists of at least eleven young stellar objects (YSOs) embedded in a ring-like diffuse emission of radius ~1'. The YSOs are bright in the mid-infrared and are also visible in the Spitzer Space Telescope Galactic plane survey images. Their Spitzer colors are similar to those of class II YSOs in [3.6]-[5.8] but significantly redder in [8]-[2...

  17. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  18. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  19. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    OpenAIRE

    Chenghai Yang; Westbrook, John K.; Charles P.-C. Suh; Martin, Daniel E.; W. Clint Hoffmann; Yubin Lan; Bradley K. Fritz; John A. Goolsby

    2014-01-01

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR) images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control ...

  20. The near-to-mid infrared spectrum of quasars

    Science.gov (United States)

    Hernán-Caballero, Antonio; Hatziminaoglou, Evanthia; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-08-01

    We analyse a sample of 85 luminous (log (νLν(3µm)/erg s-1)>45.5) quasars with restframe ˜2-11 µm spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10 µm spectral energy distributions (SEDs). Excess emission at 1-2 µm over the best-fitting model suggests that hotter dust is necessary in addition to the ˜1200 K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. We generate a new quasar template that covers the restframe range 0.1-11 µm, and separate templates for the disk and dust components. Comparison with other infrared quasar composites suggests that previous ones are less reliable in the 2-4 µm range. Our template is the first one to provide a detailed view of the infrared emission on both sides of the 4 µm bump.

  1. An Atlas of Galaxy Spectral Energy Distributions from the Ultraviolet to the Mid-Infrared

    CERN Document Server

    Brown, Michael J I; Smith, J -D T; da Cunha, Elisabete; Jarrett, T H; Imanishi, Masatoshi; Armus, Lee; Brandl, Bernhard R; Peek, J E G

    2013-01-01

    We present an atlas of 129 spectral energy distributions for nearby galaxies, with wavelength coverage spanning from the UV to the mid-infrared. Our atlas spans a broad range of galaxy types, including ellipticals, spirals, merging galaxies, blue compact dwarfs and luminous infrared galaxies. We have combined ground-based optical drift-scan spectrophotometry with infrared spectroscopy from Spitzer and Akari, with gaps in spectral coverage being filled using MAGPHYS spectral energy distribution models. The spectroscopy and models were normalized, constrained and verified with matched-aperture photometry measured from Swift, GALEX, SDSS, 2MASS, Spitzer and WISE images. The availability of 26 photometric bands allowed us to identify and mitigate systematic errors present in the data. Comparison of our spectral energy distributions with other template libraries and the observed colors of galaxies indicates that we have smaller systematic errors than existing atlases, while spanning a broader range of galaxy types...

  2. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  3. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  4. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  5. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  6. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  7. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  8. Gamma ray camera

    International Nuclear Information System (INIS)

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  9. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  10. TOUCHSCREEN USING WEB CAMERA

    Directory of Open Access Journals (Sweden)

    Kuntal B. Adak

    2015-10-01

    Full Text Available In this paper we present a web camera based touchscreen system which uses a simple technique to detect and locate finger. We have used a camera and regular screen to achieve our goal. By capturing the video and calculating position of finger on the screen, we can determine the touch position and do some function on that location. Our method is very easy and simple to implement. Even our system requirement is less expensive compare to other techniques.

  11. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  12. A Signature of Chromospheric Activity in Brown Dwarfs Revealed by 2.5-5.0 Micron AKARI Spectra

    CERN Document Server

    Sorahana, Satoko; Yamamura, Issei

    2014-01-01

    We propose that the 2.7 micron H_2O, 3.3 micron CH_4 and 4.6 micron CO absorption bands can be good tracers of chromospheric activity in brown dwarfs. In our previous study, we found that there are difficulties in explaining entire spectra between 1.0 and 5.0 microns with the Unified Cloudy Model (UCM), a brown dwarf atmosphere model. Based on simple radiative equilibrium, temperature in a model atmosphere usually decreases monotonically with height. However, if a brown dwarf has a chromosphere, as inferred by some observations, the temperature in the upper atmosphere is higher. We construct a simple model that takes into account heating due to chromospheric activity by setting a temperature floor in an upper atmosphere, and find that the model spectra of 3 brown dwarfs with moderate H-alpha emission, an indicator of chromospheric activity, are considerably improved to match the AKARI spectra. Because of the higher temperatures in the upper atmospheres, the amount of CH_4 molecules is reduced and the absorpti...

  13. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  14. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  15. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  16. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  17. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    In this project, radiation tolerant camera which tolerates 106 - 108 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  18. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  19. Extrinsic recalibration in camera networks

    OpenAIRE

    Hermans, Chris; Dumont, Maarten; Bekaert, Philippe

    2007-01-01

    This work addresses the practical problem of keeping a camera network calibrated during a recording session. When dealing with real-time applications, a robust calibration of the camera network needs to be assured, without the burden of a full system recalibration at every (un)intended camera displacement. In this paper we present an efficient algorithm to detect when the extrinsic parameters of a camera are no longer valid, and reintegrate the displaced camera into the previously calibrated ...

  20. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  1. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  2. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  3. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  4. IRAS 15099-5856: Remarkable Mid-Infrared Source with Prominent Crystalline Silicate Emission Embedded in the Supernova Remnant MSH15-52

    OpenAIRE

    Koo, Bon-Chul; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S; Gaensler, B.M.; Kim, Hyun-Jeong; Lee, Jae-Joon; Jeong, Woong-Seob; Lee, Ho-Gyu; Im, Myungshin; Tatematsu, Kenichi

    2011-01-01

    We report new mid-infrared observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended (~4') arc-like filaments. The source is seen only at >= 10 um. The Spitzer MIR spectrum of IRS1 shows prominent emission features from Mg-r...

  5. Illuminant estimation and detection using near infrared

    OpenAIRE

    Fredembach, Clement; Süsstrunk, Sabine

    2009-01-01

    Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose ...

  6. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  7. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  8. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  9. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  10. The LSST Camera Overview

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O' Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  11. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  12. The near-to-mid infrared spectrum of quasars

    CERN Document Server

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-01-01

    We analyse a sample of 85 luminous L3um > 10^45.5 erg/s quasars with restframe ~2-11um spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10um spectral energy distributions (SEDs). Excess emission at 1-2um over the best-fitting model suggests that hotter dust is necessary in addition to the ~1200K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. The equivalent width of P...

  13. The infrared luminosities of ˜332 000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey

    Science.gov (United States)

    Ellison, Sara L.; Teimoorinia, Hossein; Rosario, David J.; Mendel, J. Trevor

    2016-01-01

    The total infrared (IR) luminosity (LIR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infrared Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of LIR measurements for galaxies in the nearby Universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent data sets (IRAS and AKARI) and demonstrated to predict the LIR with a scatter σ ˜ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalogue is presented with our LIR predictions which can be used to determine SFRs for 331 926 galaxies in the Sloan Digital Sky Survey (SDSS), including ˜129 000 SFRs for AGN-dominated galaxies for which SDSS SFRs have large uncertainties.

  14. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  15. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  16. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  17. 红外相机技术在我国野生动物监测中的应用:问题与限制%Infrared camera traps in wildlife research and monitoring in China: issues and insights

    Institute of Scientific and Technical Information of China (English)

    张履冰; 崔绍朋; 黄元骏; 陈代强; 乔慧捷; 李春旺; 蒋志刚

    2014-01-01

    红外相机(camera traps)作为对野生动物进行“非损伤”性采样的技术,已成为研究动物多样性、种群生态学及行为学的常用手段之一.其发展和普及为中国野生动物多样性和物种保育研究带来了诸多机会.如今,国内大多数自然保护区都在运用红外相机技术开展物种监测工作.本文结合20年来已发表的相关研究,从内容、实验设计以及发展趋势方面,总结了目前红外相机技术在应用过程中出现的共性问题;并就相机对动物的干扰性、影像识别、研究的适用范围及安全保障四个方面,对该项技术在实践中存在的限制进行了探讨.最后结合红外相机技术未来的发展方向,提出了建立技术规范、数据集成和共享、影像数据版权维护、提高监测效率等问题.

  18. Maser and Infrared Studies of Oxygen-Rich Late/Post-AGB Stars and Water Fountains: Development of a New Identification Method

    CERN Document Server

    Yung, Bosco; Henkel, Christian

    2014-01-01

    We explored an efficient method to identify evolved stars with oxygen-rich envelopes in the late AGB or post-AGB phase of stellar evolution, which include a rare class of objects - the "water fountains". Our method considers the OH and H2O maser spectra, the near infrared Q-parameters (these are colour indices accounting for the effect of extinction), and far-infrared AKARI colours. Here we first present the results of a new survey on OH and H2O masers. There were 108 colour-selected objects: 53 of them were observed in the three OH maser lines (1612, 1665, and 1667 MHz), with 24 detections (16 new for 1612 MHz); and 106 of them were observed in the H2O maser line (22 GHz) with 24 detections (12 new). We identify a new potential water fountain source, IRAS19356+0754, with large velocity coverages of both OH and H2O maser emission. In addition, several objects with high velocity OH maser emission are reported for the first time. The Q-parameters as well as the infrared [09]-[18] and [18]-[65] AKARI colours of ...

  19. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  20. VizieR Online Data Catalog: IR sources spectroscopy in the AKARI NEP (Shim+, 2013)

    Science.gov (United States)

    Shim, H.; Im, M.; Ko, J.; Jeon, Y.; Karouzos, M.; Kim, S. J.; Lee, H. M.; Papovich, C.; Willmer, C.; Weiner, B. J.

    2013-09-01

    Most of the targets for the spectroscopic observation were selected from the optical to mid-infrared band-merged photometry catalog over the NEP-Wide field (Kim et al. 2012, Cat. J/A+A/548/A29). The observations, with the MMT/Hectospec spectrograph, were executed in queue mode: a total of five configurations were observed between 2008 May and November, with each configuration covering an area within a 1deg diameter circle. The observations used the 270 line/mm grating covering ~3700Å to ~8500Å, with a spectral resolution of about 6.2Å. We obtained optical spectra using the Hydra multi-object spectrograph on WIYN, the 3.5m telescope at the Kitt Peak National Observatory, on the nights of 2008 June 27-30. The covered wavelength range is 4500-9000Å, yet the spectrum quality is very poor beyond 8000Å. We used 98 red fibers feeding the bench spectrograph with a 316 lines/mm grating, yielding a spectral resolution of 5.7Å. (2 data files).

  1. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Beato, Pablo; Pedersen, Christian

    2014-01-01

    upconversion unit consists of a PP:LN crystal situated as an intracavity component in a Nd:YVO 4 laser. Mixing incoming spectrally and spatially incoherent light from the test sample with the high power intracavity beam of the Nd:YVO 4 laser results in enhanced conversion efficiency. The upconverted light is...... spectrally located in the near infrared (NIR) wavelength region easily accessible for low noise Silicon CCD camera technology. Thus the room temperature upconversion unit and the Silicon CCD camera replaces noisy mid infrared detectors used in existing Fourier Transform Infrared Spectroscopy. We demonstrate...

  2. Gamma ray camera

    International Nuclear Information System (INIS)

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  3. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  4. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  5. The DRAGO gamma camera

    International Nuclear Information System (INIS)

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated 57Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  6. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  7. The DRAGO gamma camera

    Science.gov (United States)

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strüder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-01

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated C57o source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45° with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  8. Auto-converging stereo cameras for 3D robotic tele-operation

    Science.gov (United States)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  9. Continuous-wave near-photon counting spectral imaging detector in the mid-infrared by upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    high-end IR cameras have read noise of hundreds of electrons. The dark noise for infrared cameras based on semiconductor materials is also substantially higher than for silicon cameras, typical values being millions of electrons per pixel per second for cryogenically cooled cameras whereas peltier...

  10. BAE systems' SMART chip camera FPA development

    Science.gov (United States)

    Sengupta, Louise; Auroux, Pierre-Alain; McManus, Don; Harris, D. Ahmasi; Blackwell, Richard J.; Bryant, Jeffrey; Boal, Mihir; Binkerd, Evan

    2015-06-01

    BAE Systems' SMART (Stacked Modular Architecture High-Resolution Thermal) Chip Camera provides very compact long-wave infrared (LWIR) solutions by combining a 12 μm wafer-level packaged focal plane array (FPA) with multichip-stack, application-specific integrated circuit (ASIC) and wafer-level optics. The key innovations that enabled this include a single-layer 12 μm pixel bolometer design and robust fabrication process, as well as wafer-level lid packaging. We used advanced packaging techniques to achieve an extremely small-form-factor camera, with a complete volume of 2.9 cm3 and a thermal core weight of 5.1g. The SMART Chip Camera supports up to 60 Hz frame rates, and requires less than 500 mW of power. This work has been supported by the Defense Advanced Research Projects Agency's (DARPA) Low Cost Thermal Imager - Manufacturing (LCTI-M) program, and BAE Systems' internal research and development investment.

  11. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei; Ueda, Yoshihiro [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake cho, Kyoto 606-8502 (Japan); Terashima, Yuichi [Department of Physics, Faculty of Science, Ehime University, Matsuyama 790-8577 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Gandhi, Poshak; Nakagawa, Takao [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Matsuta, Keiko, E-mail: ichikawa@kusastro.kyoto-u.ac.jp [Department of Space and Astronautical Science, Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  12. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  13. Stereoscopic camera design

    Science.gov (United States)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  14. Precise measurement of temperature Distribution for LCD TV using IR camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Seok; Ko, Han Seo [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Chung, Du Hwan [Samsung Electronics Co.,Ltd, Suwon (Korea, Republic of)

    2004-11-15

    An Infra-Red camera has been used to reduce errors and to save time, cost and efforts for measurement of temperature distribution. Because allowable ranges of major factors that affect results of the measurement of the IR camera had not been established yet, this study has been performed to investigate the major factors and ranges for the effective measurement techniques. In this study, surface temperature, surrounding humidity, distance between the camera and the surface, incident angle, and emissivity of the surface have been considered as the major factors for the experimental setup. Especially, it has been observed that the results of the IR camera have been affected by the surface emissivity greatly.

  15. Performance of new handheld IR camera using uncooled bolometer FPA

    Science.gov (United States)

    Sone, Takanori; Ohkawa, Norio; Kawashima, Yasuo; Matsui, Yasuji; Sugiura, Yosuke; Araki, Tomiharu; Kamozawa, Makoto; Ueno, Masashi; Kaneda, Osamu; Ishikawa, Tomohiro; Hata, Hisatoshi; Hashima, Kazuo; Nakagi, Yoshiyuki; Yamada, Akira; Kimata, Masafumi

    1996-06-01

    A camera using an uncooled infrared image sensor has been developed. This image sensor is a bolometer focal plane array (FPA), of which the readout circuit is designed to minimize the temperature drift or the pattern noise caused by the changes of the ambient temperature. The circuit has a bolometer for the load resistor, which has the same temperature coefficient of resistance as that of the pixel bolometer. Therefore the signal change induced by the temperature change of the FPA substrate is reduced because the resistance change of the load bolometer compensates for that of the pixel bolometer. The effectiveness of the drift- compensating circuit has been confirmed with a prototype handheld camera.

  16. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Pedersen, Christian

    2015-01-01

    In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency...... conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared...... image. (C) 2015 Optical Society of America...

  17. The infra-red luminosities of ~332,000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey

    CERN Document Server

    Ellison, Sara L; Rosario, David J; Mendel, J Trevor

    2015-01-01

    The total infra-red (IR) luminosity (L_IR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infra-red Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of L_IR measurements for galaxies in the nearby universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent datasets (IRAS and AKARI) and demonstrated to predict the L_IR with a scatter sigma ~ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalog is presented wi...

  18. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    Science.gov (United States)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; Gonzlez-Hernandez, J. Jess; Lee, William H.; Loose, Markus; Lotkin, Gennadiy; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Romn-Zuniga, Carols; Samuel, Mathew V.; Sparr, Leroy M.; Watson, Alan M.

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  19. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  20. Neutron Imaging Camera

    Science.gov (United States)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  1. Focussed radiographic camera

    International Nuclear Information System (INIS)

    A radiographic camera of the form employing a scintillator for producing optical photons in response to incident gamma and x-radiation is described. A collimator is positioned between a subject emitting such radiation and the scintillator for guiding the radiation to the scintillator and a detector of optical photons for signaling the positions of points of impingement of quanta of the incident radiation upon the scintillator to produce an image of the subject. A Fresnel focussing means is located alongside the scintillator for directing the optical photons to the detector. The Fresnel focussing means takes the form of a segmented mirror at the front surface of the scintillator and a Fresnel lens at the back surface of the scintillator

  2. Getting NDVI spectral bands from a single standard RGB digital camera: a methodological approach

    OpenAIRE

    Rabatel, G.; Gorretta, N.; Labbé, S.

    2011-01-01

    Multispectral images including red and near-infrared bands have proved their efficiency for vegetation-soil discrimination and agricultural monitoring in remote sensing applications. But they remain rarely used in ground and UAV imagery, due to a limited availibility of adequate 2D imaging devices. In this paper, a generic methodology is proposed to obtain simultaneously the near-infrared and red bands from a standard RGB camera, after having removed the near-infrared blocking filter inside. ...

  3. The infrared signatures of very small grains in the Universe seen by JWST

    CERN Document Server

    Pilleri, Paolo; Joblin, Christine

    2015-01-01

    The near- and mid-IR spectrum of many astronomical objects is dominated by emission bands due to UV-excited polycyclic aromatic hydrocarbons (PAH) and evaporating very small grains (eVSG). Previous studies with the ISO, Spitzer and AKARI space telescopes have shown that the spectral variations of these features are directly related to the local physical conditions that induce a photo-chemical evolution of the band carriers. Because of the limited sensitivity and spatial resolution, these studies have focused mainly on galactic star-forming regions. We discuss how the advent of JWST will allow to extend these studies to previously unresolved sources such as near-by galaxies, and how the analysis of the infrared signatures of PAHs and eVSGs can be used to determine their physical conditions and chemical composition.

  4. NV-CMOS HD camera for day/night imaging

    Science.gov (United States)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  5. Infrared single-pixel imaging utilising microscanning

    OpenAIRE

    Sun, Ming-Jie; Edgar, Matthew P.; Phillips, David B.; Gibson, Graham M.; Padgett, Miles J.

    2015-01-01

    Since the invention of digital cameras there has been a concerted drive towards detector arrays with higher spatial resolution. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply the microscanning approach to an infrared single-pixel camera. For the same final resolution and measurement resource, we show tha...

  6. Near infrared testbed sensor

    Science.gov (United States)

    Sanderson, R. B.; McCalmont, J. F.; Montgomery, J. B.; Johnson, R. S.; McDermott, D. J.

    2007-04-01

    A new tactical airborne multicolor missile warning testbed was developed and fielded as part of an Air Force Research Laboratory (AFRL) initiative focusing on clutter and missile signature measurements for algorithm development. Multicolor discrimination is one of the most effective ways of improving the performance of infrared missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in multiple fielded sensors. Traditionally, multicolor discrimination has been performed in the mid-infrared, 3-5 μm band, where the molecular emission of CO and CO2 characteristic of a combustion process is readily distinguished from the continuum of a black body radiator. Current infrared warning sensor development is focused on near infrared (NIR) staring mosaic detector arrays that provide similar spectral discrimination in different bands to provide a cost effective and mechanically simpler system. This, in turn, has required that multicolor clutter data be collected for both analysis and algorithm development. The developed sensor test bed is a multi-camera system 1004x1004 FPA coupled with optimized filters integrated with the optics. The collection portion includes a ruggedized field-programmable gate array processor coupled with with an integrated controller/tracker and fast disk array capable of real-time processing and collection of up to 60 full frames per second. This configuration allowed the collection and real-time processing of temporally correlated, radiometrically calibrated data in multiple spectral bands that was then compared to background and target imagery taken previously

  7. Camera Mouse Including “Ctrl-Alt-Del” Key Operation Using Gaze, Blink, and Mouth Shape

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available This paper presents camera mouse system with additional feature: "CTRL - ALT - DEL" key. The previous gaze-based camera mouse systems are only considering how to obtain gaze and making selection. We proposed gaze-based camera mouse with "CTRL - ALT - DEL" key. Infrared camera is put on top of display while user looking ahead. User gaze is estimated based on eye gaze and head pose. Blinking and mouth detections are used to create "CTR - ALT - DEL" key. Pupil knowledge is used to improve robustness of eye gaze estimation against different users. Also, Gabor filter is used to extract face features. Skin color information and face features are used to estimate head pose. The experiments of each method have done and the results show that all methods work perfectly. By implemented this system, troubleshooting of camera mouse can be done by user itself and makes camera mouse be more sophisticated.

  8. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    OpenAIRE

    Warren, Clinton Gregory

    2010-01-01

    Thermal infrared detectors based on MEMS bimorph beams have the potential to exceed the performance of current uncooled thermal infrared cameras both in terms of sensitivity and cost. These cameras are part of a rapidly growing industry are used for a vast array of applications such as military and civilian night vision, industrial monitoring, and medical imaging. Many researchers have explored the use of metal-ceramic MEMS bimorphs for this application even though it has long been acknowle...

  9. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  10. Image upconversion, a low noise infrared sensor?

    DEFF Research Database (Denmark)

    Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. This feature effectively allows the use of silicon based cameras for...... detection of infrared images. Silicon cameras have much smaller intrinsic noise than their IR counter part- some models even offer near single photon detection capability. We demonstrate that an ordinary CCD camera combined with a low noise upconversion has superior noise characteristics when compared to...

  11. Image upconversion - a low noise infrared sensor?

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. This feature effectively allows the use of silicon based cameras for...... detection of infrared images. Silicon cameras have much smaller intrinsic noise than their IR counter part- some models even offer near single photon detection capability. We demonstrate that an ordinary CCD camera combined with a low noise upconversion has superior noise characteristics when compared to...

  12. Monitoring of degradation of photovoltaic panels using infrared method

    International Nuclear Information System (INIS)

    Monitoring of solar panels is important in order to ensure optimal performance of solar panels. Their properties are subject to change due to aging, weather effects and exposure to environment. Infrared camera provides monitoring of degradation of solar panels. Similarly, thermal camera can detect errors in panels, which occurred during production or assembly. (authors)

  13. Head and Hand Detection using Kinect Camera 360

    Directory of Open Access Journals (Sweden)

    Mostafa Karbasi

    2015-06-01

    Full Text Available Using head and hand blobs as an input to the computer are very crucial for human-computer interaction (HCI applications. These blobs play an important role in bridging the information gap between a human and computer. One of the famous technologies that play a crucial role as an advanced input device for HCI is the Kinect camera developed by Microsoft. Kinect camera (codenamed Project Nathal has a distinct advantage over other 3D cameras because it obtains more accurate depth information of a subject easily and very fast. By using Kinect, one can track up to six people concurrently and also obtain motion analysis with feature extraction. Being extremely useful in indoor HCI applications, it cannot be used in outdoor applications because its infrared depth sensor makes it extremely sensitive to sunlight.

  14. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  15. A new high-speed IR camera system

    Science.gov (United States)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  16. Mars Cameras Make Panoramic Photography a Snap

    Science.gov (United States)

    2008-01-01

    If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.

  17. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  18. A liquid xenon radioisotope camera.

    Science.gov (United States)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  19. Exposure interlock for oscilloscope cameras

    Science.gov (United States)

    Spitzer, C. R.; Stainback, J. D. (Inventor)

    1973-01-01

    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film.

  20. Infrared astronomy

    International Nuclear Information System (INIS)

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  1. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  2. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  3. Mid and Far Infrared Properties of a Complete Sample of Local AGNs

    CERN Document Server

    Ichikawa, Kohei; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Matsuta, Keiko; Nakagawa, Takao

    2012-01-01

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local Active Galactic Nuclei (AGNs) detected in the Swift/BAT all sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with IRAS and WISE. Out of 135 non-blazer AGNs in the Swift/BAT 9 month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 um band. We find good correlation between their hard X-ray and MIR luminosities over 3 orders of magnitude (42< log lambda L_{lambda}(9, 18 um)< 45), which is tighter than that with the FIR luminosities at 90 um. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 um in the averaged infrared spectral ...

  4. High Resolution Camera for Mapping Titan Surface

    Science.gov (United States)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  5. Wide Dynamic Range CCD Camera

    Science.gov (United States)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  6. Temperature of the Limiter Surface Measured by IR Camera in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    SHI Bo; LIN Hui; HUANG Juan; LUO Nanchang; GONG Xianzu; ZHANG Xiaodong; LUO Guangnan; YANG Zhongshi; LI Qiang

    2008-01-01

    Temperature measurement by IR (infrared) camera was performed on HT-7 tokamak, particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.

  7. Easy rectification for infrared images

    Science.gov (United States)

    Usamentiaga, R.

    2016-05-01

    Most applications using infrared thermography only take advantage of one feature in the images: the intensity of the objects in the infrared images, which is mainly a function of its temperature. Many different applications use this feature as an indicator of health, early signs of malfunction or signs of hidden conditions. However, infrared images also contain relevant geometric information that can be used to measure objects or to locate areas of thermal contrast in the scene. The problem is that the extraction of geometric information requires a complex camera calibration procedure that depends upon calibration plates which are difficult to build. In this work, an easy rectification procedure for infrared images is proposed without using calibration plates. The proposed method uses a camera projection model not considering distortions, which greatly simplifies the estimation of the projection parameters while producing very good accuracy. The method estimates the projection parameters iteratively based on features from objects in the image and the knowledge about its geometric properties. The result is a method that provides reliable geometric information about the objects in the scene with a single image. A series of experiments are performed to validate the proposed method. Results show excellent performance, with sub-pixel accuracy.

  8. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  9. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  10. Infrared Parallaxes for Methane T dwarfs

    CERN Document Server

    Tinney, C G; Kirkpatrick, J D; Burgasser, Adam J.

    2003-01-01

    We report final results from our 2.5 year infrared parallax program carried out with the European Southern Observatory 3.5m New Technology Telescope and the SOFI infrared camera. Our program targeted precision astrometric observations of ten T type brown dwarfs in the J band. Full astrometric solutions (including trigonometric parallaxes) for nine T dwarfs are provided along with proper motion solutions for a further object. We find that HgCdTe-based infrared cameras are capable of delivering precision differential astrometry. For T dwarfs, infrared observations are to be greatly preferred over the optical, both because they are so much brighter in the infrared, and because their prominent methane absorptions lead to similar effective wavelengths through the J-filter for both target and reference stars, which in turn results in a dramatic reduction in differential colour refraction effects. We describe a technique for robust bias estimation and linearity correction with the SOFI camera, along with an upper li...

  11. Terahertz and Mid Infrared

    CERN Document Server

    Shulika, Oleksiy; Detection of Explosives and CBRN (Using Terahertz)

    2014-01-01

    The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m).  Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications.  From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Det...

  12. UWISH2 -- The UKIRT Widefield Infrared Survey for H2

    CERN Document Server

    D.,; J., C; Davis,; G.,; Ioannidis,; M., T; Gledhill,; M.,; Takami,; A.,; Chrysostomou,; J.,; Drew,; J.,; Eislöffel,; A.,; Gosling,; R.,; Gredel,; J.,; Hatchell,; W., K; Hodapp,; N., M S; Kumar,; W., P; Lucas,; H.,; Matthews,; G., M; Rawlings,; D., M; Smith,; B.,; Stecklum,; P., W; Varricatt,; T., H; Lee,; S., P; Teixeira,; A., C; Aspin,; T.,; Khanzadyan,; J.,; Karr,; -J., H; Kim,; -C., B; Koo,; J., J; Lee,; -H., Y; Lee,; Y., T; Magakian,; A., T; Movsessian,; H., E; Nikogossian,; S., T; Pyo,; T.,; Stanke,

    2010-01-01

    We present the goals and preliminary results of an unbiased, near-infrared, narrow-band imaging survey of the First Galactic Quadrant (10degAKARI, Herschel Hi-GAL, etc.), though we probe a dynamically active component of star formation not covered by these broad-band surveys. Our narrow-band survey is currently more than 60% complete. The median seeing in our images is 0.73arcsec. The images have a 5sigma detection limit of point sources of K=18mag and the surface brightness limit is 10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows from bo...

  13. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  14. Cameras for semiconductor process control

    Science.gov (United States)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  15. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  16. Aerial camera auto focusing system

    Science.gov (United States)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  17. Imaging in the Infrared

    Science.gov (United States)

    Falco, Charles

    2010-03-01

    Many common pigments are partially transparent to near infrared (IR) light, making it possible to use IR-sensitive imaging sensors to capture information from surfaces covered by several tens of micrometers of such pigments. Because of this, ``IR reflectograms'' have been made of paintings since the late 1960s, revealing important aspects of many works of art that are not observable in the visible. However, although a number of paintings have been studied this way, the high cost and specialized nature of available IR cameras have limited such work to a small fraction of the two- and three-dimensional works of art that could be usefully studied in the IR. After a brief introduction to IR reflectography, I will describe the characteristics of a high resolution imaging system based on a modified Canon EOS digital camera that operates over the wavelength range 830--1100 nm [1]. This camera and autofocus Canon 20 mm f/2.8 lens make it possible to obtain IR reflectograms of works of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. After describing its relevant imaging properties of sensitivity, resolution, noise and contrast, I will illustrate its capabilities with IR and visible images of various types of art in museums on three continents. IR reflectograms of one painting, in particular, have revealed important new information about the working practices of the 16th century artist Lorenzo Lotto who our previous work has shown used projected images as aids for producing some of the features in this painting [2]. [4pt] [1] Charles M. Falco, Rev. Sci. Instrum. 80, 071301 (2009). [0pt] [2] see, for example, David Hockney and Charles M. Falco, Proc. of the SPIE 5666, 326 (2005).

  18. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  19. Infrared Time Lags for the Periodic Quasar PG 1302-102

    CERN Document Server

    Jun, Hyunsung D; Graham, Matthew J; Djorgovski, S G; Mainzer, Amy; Cutri, Roc M; Drake, Andrew J; Mahabal, Ashish A

    2015-01-01

    The optical light curve of the quasar PG 1302-102 at $z = 0.278$ shows a strong, smooth 5.2 yr periodic signal, detectable over a period of $\\sim 20$ yr. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within $\\sim 10^{5}$ yr due to gravitational wave emission alone. Here we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from {\\it WISE} and {\\it Akari}, we confirm that the periodic behavior reported in the optical light curve from Graham et al. (2015) is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and $4.6 \\mu$m time lags of $(2219 \\pm 153, 2408 \\pm 148)$ days for a near face-on orientation of the torus, or $(4103\\pm 153, 4292 \\pm 148)$ days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared ...

  20. Search for radiative decays of cosmic background neutrino using cosmic infrared background energy spectrum

    International Nuclear Information System (INIS)

    We propose to search for the neutrino radiative decay by fitting a photon energy spectrum of the cosmic infrared background to a sum of the photon energy spectrum from the neutrino radiative decay and a continuum. By comparing the present cosmic infrared background energy spectrum observed by AKARI and Spitzer to the photon energy spectrum expected from neutrino radiative decay with a maximum likelihood method, we obtained a lifetime lower limit of 3.1x1012 to 3.8x1012 years at 95% confidence level for the third generation neutrino v3 in the v3 mass range between 50 and 150 meV/c2 under the present constraints by the neutrino oscillation measurements. In the left-right symmetric model, the minimum lifetime of v3 is predicted to be 1.5x1017 years for m3 of 50 meV/c2. We studied the feasibility of the observation of the neutrino radiative decay with a lifetime of 1.5x1017 years, by measuring a continuous energy spectrum of the cosmic infrared background. (author)

  1. Comparison of Diffuse Infrared and Far-Ultraviolet emission in the Large Magellanic Cloud: The Data

    CERN Document Server

    Saikia, Gautam; Gogoi, Rupjyoti; Pathak, Amit

    2016-01-01

    Dust scattering is the main source of diffuse emission in the far-ultraviolet (FUV). For several locations in the Large Magellanic Cloud (LMC), Far Ultraviolet Spectroscopic Explorer (FUSE) satellite has observed diffuse radiation in the FUV with intensities ranging from 1000 - 3 X 10^5 photon units and diffuse fraction between 5% - 20% at 1100 {\\deg}A. Here, we compare the FUV diffuse emission with the mid-infrared (MIR) and far-infrared (FIR) diffuse emission observed by the Spitzer Space Telescope and the AKARI satellite for the same locations. The intensity ratios in the different MIR and FIR bands for each of the locations will enable us to determine the type of dust contributing to the diffuse emission as well as to derive a more accurate 3D distribution of stars and dust in the region, which in turn may be used to model the observed scattering in the FUV. In this work we present the infrared (IR) data for two different regions in LMC, namely N11 and 30 Doradus. We also present the FUV~IR correlation fo...

  2. Firefly: A HOT camera core for thermal imagers with enhanced functionality

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim

    2015-06-01

    Raising the operating temperature of mercury cadmium telluride infrared detectors from 80K to above 160K creates new applications for high performance infrared imagers by vastly reducing the size, weight and power consumption of the integrated cryogenic cooler. Realizing the benefits of Higher Operating Temperature (HOT) requires a new kind of infrared camera core with the flexibility to address emerging applications in handheld, weapon mounted and UAV markets. This paper discusses the Firefly core developed to address these needs by Selex ES in Southampton UK. Firefly represents a fundamental redesign of the infrared signal chain reducing power consumption and providing compatibility with low cost, low power Commercial Off-The-Shelf (COTS) computing technology. This paper describes key innovations in this signal chain: a ROIC purpose built to minimize power consumption in the proximity electronics, GPU based image processing of infrared video, and a software customisable infrared core which can communicate wirelessly with other Battlespace systems.

  3. Full Stokes polarization imaging camera

    Science.gov (United States)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  4. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  5. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    A gamma camera is described with a plurality of photodetectors arranged for locating flashes of light produced by a scintillator in response to incident radiation. Masking material is arranged in a radially symmetric pattern on the front face of the scintillator about the axis of each photodetector to reduce the amount of internal reflection of optical photons induced by gamma ray photons

  6. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  7. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective k...

  8. A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.

    2015-01-01

    We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity. 

  9. Replacing 16-mm film cameras with high-definition digital cameras

    Science.gov (United States)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  10. Early Science with SOFIA, the Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Young, E T; Marcum, P M; Roellig, T L; De Buizer, J M; Herter, T L; Güsten, R; Dunham, E W; Temi, P; Andersson, B -G; Backman, D; Burgdorf, M; Caroff, L J; Casey, S C; Davidson, J A; Erickson, E F; Gehrz, R D; Harper, D A; Harvey, P M; Helton, L A; Horner, S D; Howard, C D; Klein, R; Krabbe, A; McLean, I S; Meyer, A W; Miles, J W; Morris, M R; Reach, W T; Rho, J; Richter, M J; Roeser, H -P; Sandell, G; Sankrit, R; Savage, M L; Smith, E C; Shuping, R Y; Vacca, W D; Vaillancourt, J E; Wolf, J; Zinnecker, H; 10.1088/2041-8205/749/2/L17

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.

  11. A 5-18 micron array camera for high-background astronomical imaging

    Science.gov (United States)

    Gezari, Daniel Y.; Folz, Walter C.; Woods, Lawrence A.; Varosi, Frank

    1992-01-01

    A new infrared array camera system using a Hughes/SBRC 58 x 62 pixel hybrid Si:Ga array detector has been successfully applied to high-background 5-18-micron astronomical imaging observations. The off-axis reflective optical system minimizes thermal background loading and produces diffraction-limited images with negligible spatial distortion. The noise equivalent flux density (NEFD) of the camera at 10 microns on the 3.0-m NASA/Infrared Telescope Facility with broadband interference filters and 0.26 arcsec pixel is NEFD = 0.01 Jy/sq rt min per pixel (1sigma), and it operates at a frame rate of 30 Hz with no compromise in observational efficiency. The electronic and optical design of the camera, its photometric characteristics, examples of observational results, and techniques for successful array imaging in a high- background astronomical application are discussed.

  12. A study on thermo-camera using liquid crystal

    International Nuclear Information System (INIS)

    Some cholesteric liquid crystals change their color according to temperature and are used to show temperature distribution on a surface qualitatively. The present study developed a quantitative method by which temperature distribution can be displayed just like an infra-red thermo-camera. At first, the theoretical ground is presented. The spectral properties of liquid crystal and optical filters are determined. Calibration methods are described and the accuracy of this method is evaluated as 0.2 deg C, and the order of resolution is 0.01 deg C. For application, temperature distributions on heated surfaces attached by a cylinder are measured in detail. (author)

  13. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  14. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  15. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  16. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  17. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  18. Calibration and performance of the Viking lander cameras

    Science.gov (United States)

    Patterson, W. R., III; Huck, F. O.; Wall, S. D.; Wolf, M. R.

    1977-01-01

    The paper discusses Viking lander cameras which have an angular resolution of 0.12 deg, and (for broadband imaging) a resolution of 0.04 deg, used for the acquisition of data in six spectral bands for color and near-infrared imaging. Attention is given to photogrammetric calibration techniques used in the determination of spatial and spectral brightness variations from image data. The effects of sampling on the achievable photogrammetric precision are described along with techniques for preflight spectral calibrations and the corrections required for degradation in the infrared response of the detectors. The effects of the known internal reflections on the qualitative images (such as the appearance of artifact clouds) are presented, noting their effects on skyline radiometry. The qualitative and quantitative effects of the signal quantization are briefly reviewed.

  19. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  20. Securing Embedded Smart Cameras with Trusted Computing

    OpenAIRE

    Thomas Winkler; Bernhard Rinner

    2011-01-01

    Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only ...

  1. Filter characterization in digital cameras

    OpenAIRE

    Solli, Martin

    2004-01-01

    The use of spectrophotometers for color measurements on printed substrates is widely spread among paper producers as well as within the printing industry. Spectrophotometer measurements are precise, but time-consuming procedures and faster methods are desirable. Previously presented work on color calibration of flatbed scanners has shown that they can be used for fast color measurements with acceptable results. Furthermore, the rapid development of digital cameras has made it possible to tran...

  2. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  3. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  4. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  5. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  6. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  7. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  8. Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

    International Nuclear Information System (INIS)

    In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

  9. Low-cost near-infrared imaging device for inspection of historical manuscripts

    International Nuclear Information System (INIS)

    Near-infrared (NIR) or sometimes called black light is a waveform beyond visible light and it is not detectable by human eyes. However electronic sensors such as the type used in digital cameras are able to detect signals in the infrared band. To avoid distortion in the pictures obtained near-infrared is blocked by optical filters inserted in digital cameras. By carrying out minor modification allowing near-infrared signal to be imaged while blocking the visible signal, the camera is turned into a low-cost NIR imaging instrument. NIR imaging can be a useful tool in historical manuscript study or restoration. A few applications have been successfully demonstrated in laboratory experiment using the instrument available in MINT. However, due to unavailability of historical items, easily available texts and paintings are used in the demonstrations. This paper reports achievements of early work on the application of digital camera in the detection of damaged prints or writings. (Author)

  10. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  11. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  12. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...... be efficiently profiled in dissimilar clusters according to camera control as part of their game- play behaviour....

  13. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  14. Modeling the evolution of infrared galaxies: a parametric backward evolution model

    Science.gov (United States)

    Béthermin, M.; Dole, H.; Lagache, G.; Le Borgne, D.; Penin, A.

    2011-05-01

    Aims: We attempt to model the infrared galaxy evolution in as simple a way as possible and reproduce statistical properties such as the number counts between 15 μm and 1.1 mm, the luminosity functions, and the redshift distributions. We then use the fitted model to interpret observations from Spitzer, AKARI, BLAST, LABOCA, AzTEC, SPT, and Herschel, and make predictions for Planck and future experiments such as CCAT or SPICA. Methods: This model uses an evolution in density and luminosity of the luminosity function parametrized by broken power-laws with two breaks at redshift ~0.9 and 2, and contains the two populations of the Lagache model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. This effect is significant in the sub-mm and mm range near 50 mJy. It has 13 free parameters and eight additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel, and AzTEC measurements with a Monte Carlo Markov chain. Results: The model adjusted to deep counts at key wavelengths reproduces the counts from mid-infrared to millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to both the cosmic infrared background (CIB) and the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the discovery by the South Pole Telescope (SPT) of a very bright population lying at high redshift. We predict the contribution of the lensed sources to the Planck number counts, the confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons caused by the CIB. Material of the model (software, tables and predictions) is available online.

  15. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  16. Infrared emissivity measurements of building and civil engineering materials: a new device for measuring emissivity

    OpenAIRE

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-01-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such...

  17. Modeling the evolution of infrared galaxies: A Parametric backwards evolution model

    CERN Document Server

    Béthermin, Matthieu; Lagache, Guilaine; Borgne, Damien Le; Pénin, Aurélie

    2010-01-01

    We aim at modeling the infrared galaxy evolution in an as simple as possible way and reproduce statistical properties among which the number counts between 15 microns and 1.1 mm, the luminosity functions, and the redshift distributions. We then aim at using this model to interpret the recent observations (Spitzer, Akari, BLAST, LABOCA, AzTEC, SPT and Herschel), and make predictions for future experiments like CCAT or SPICA. This model uses an evolution in density and luminosity of the luminosity function with two breaks at redshift ~0.9 and 2 and contains the two populations of the Lagache et al. (2004) model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. It has 13 free parameters and 8 additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel and AzTEC measurements with a Monte-Carlo Markov chain. The model ajusted on deep counts at key wavelengths reproduces the counts from the mid-infrared to...

  18. Physical properties of asteroids in comet-like orbits in infrared asteroid survey catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoonyoung; Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-07-10

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have a size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.

  19. 3D camera tracking from disparity images

    Science.gov (United States)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  20. Characterization of the Series 1000 Camera System

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  1. Optical infrared sky survey instrumentation

    Science.gov (United States)

    Craine, E. R.

    1979-01-01

    An unusual, highly modified, Baker reflector-corrector class telescope has been adapted for wide field survey photography in the near infrared. This optical system uses a full field corrector plate and a field flattening lens to provide a flat field subtending about 4.5 deg on the sky. The small aperture telescope (20 inch primary) has been modified for use in the Newtonian focus configuration while preserving the optical elements of the Prime focus configuration. The telescope has been further modified to accept a very large format (146mm diameter photocathode) image intensifier camera to serve as a detector. The camera output is recorded photographically on film rather than glass plates. This unique instrument system is used in a program of sky survey photography in the optical infrared (8000-9000A bandpass) supplemented by visual bandpass photography. The photographs obtained with this system are of value not only for the extreme redness of the band but also because of their high resolution and their freedom from hydrogen emission.

  2. Video clustering using camera motion

    OpenAIRE

    Tort Alsina, Laura

    2012-01-01

    Com el moviment de càmera en un clip de vídeo pot ser útil per a la seva classificació en termes semàntics. [ANGLÈS] This document contains the work done in INP Grenoble during the second semester of the academic year 2011-2012, completed in Barcelona during the first months of the 2012-2013. The work presented consists in a camera motion study in different types of video in order to group fragments that have some similarity in the content. In the document it is explained how the data extr...

  3. Jacques : Your underwater camera companion

    OpenAIRE

    Edlund, Martin

    2014-01-01

    300 million pictures are uploaded everyday on Facebook alone. We live in a society where photography, filming and self-documentation are a natural part of our lives. But how does it inflict on our experiences when we always are considering camera angles, filters and compositions? We might very well ruin the experiences we so badly want to save. Scuba diving is a special experience. We enter a world with another space of movement, surroundings and animal life. An experience that can only be ex...

  4. Infrared imaging of WENSS radio sources

    OpenAIRE

    Villani, D.; Alighieri, S. di Serego

    1998-01-01

    We have performed deep imaging in the IR J- and K-bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift...

  5. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    CERN Document Server

    Xue, Mengyao; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-01-01

    A precise measure of the mid-infrared interstellar extinction law is crucial to the investigation of the properties of interstellar dust, especially of the grains in the large size end. Based on the stellar parameters derived from the SDSS-III/APOGEE spectroscopic survey, we select a large sample of G- and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinction (relative to the K$_{\\rm S}$ band at wavelength $\\lambda=2.16\\mu$m) for the four \\emph{WISE} bands at 3.4, 4.6, 12 and 22$\\mu$m, the four \\emph{Spitzer}/IRAC bands at 3.6, 4.5, 5.8 and 8$\\mu$m, the \\emph{Spitzer}/MIPS24 band at 23.7$\\mu$m and for the first time, the \\emph{AKARI}/S9W band at 8.23$\\mu$m. Our results agree with previous works in that the extinction curve is flat in the ~3--8$\\m...

  6. Using the Standard Deviation of a Region of Interest in an Image to Estimate Camera to Emitter Distance

    OpenAIRE

    Felipe Espinoza; Yamilet Pompa-Chacón; Arturo Infante; Pedro Fernández; Angel E. Cano-García; José Luis Lázaro

    2012-01-01

    In this study, a camera to infrared diode (IRED) distance estimation problem was analyzed. The main objective was to define an alternative to measures depth only using the information extracted from pixel grey levels of the IRED image to estimate the distance between the camera and the IRED. In this paper, the standard deviation of the pixel grey level in the region of interest containing the IRED image is proposed as an empirical parameter to define a model for estimating camera to emitter d...

  7. Lens assemblies for multispectral camera

    Science.gov (United States)

    Lepretre, Francois

    1994-09-01

    In the framework of a contract with the Indian Space Research Organization (ISRO), MATRA DEFENSE - DOD/UAO have developed, produced and tested 36 types LISS 1 - LISS 2 lenses and 12 LISS 3 lenses equipped with their interferential filters. These lenses are intended to form the optical systems of multispectral imaging sensors aboard Indian earth observation satellites IRS 1A, 1B, 1C, and 1D. It should be noted that the multispectrum cameras of the IRS 1A - 1B satellite have been in operation for two years and have given very satisfactory results according to ISRO. Each of these multispectrum LISS 3 cameras consists of lenses, each working in a different spectral bandwidth (B2: 520 - 590 nm; B3: 620 - 680 nm; B4: 770 - 860 nm; B5: 1550 - 1700 nm). In order to superimpose the images of each spectral band without digital processing, the image formats (60 mm) of the lenses are registered better that 2 micrometers and remain as such throughout all the environmental tests. Similarly, due to the absence of precise thermal control aboard the satellite, the lenses are as athermal as possible.

  8. The Dark Energy Camera (DECam)

    CERN Document Server

    Honscheid, K; Abbott, T; Annis, J; Antonik, M; Barcel, M; Bernstein, R; Bigelow, B; Brooks, D; Buckley-Geer, E; Campa, J; Cardiel, L; Castander, F; Castilla, J; Cease, H; Chappa, S; Dede, E; Derylo, G; Diehl, T; Doel, P; De Vicente, J; Eiting, J; Estrada, J; Finley, D; Flaugher, B; Gaztañaga, E; Gerdes, D; Gladders, M; Guarino, V; Gutíerrez, G; Hamilton, J; Haney, M; Holland, S; Huffman, D; Karliner, I; Kau, D; Kent, S; Kozlovsky, M; Kubik, D; Kühn, K; Kuhlmann, S; Kuk, K; Leger, F; Lin, H; Martínez, G; Martínez, M; Merritt, W; Mohr, J; Moore, P; Moore, T; Nord, B; Ogando, R; Olsen, J; Onal, B; Peoples, J; Qian, T; Roe, N; Sánchez, E; Scarpine, V; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Selen, M; Shaw, T; Simaitis, V; Slaughter, J; Smith, C; Spinka, H; Stefanik, A; Stuermer, W; Talaga, R; Tarle, G; Thaler, J; Tucker, D; Walker, A; Worswick, S; Zhao, A

    2008-01-01

    In this paper we describe the Dark Energy Camera (DECam), which will be the primary instrument used in the Dark Energy Survey. DECam will be a 3 sq. deg. mosaic camera mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). It consists of a large mosaic CCD focal plane, a five element optical corrector, five filters (g,r,i,z,Y), a modern data acquisition and control system and the associated infrastructure for operation in the prime focus cage. The focal plane includes of 62 2K x 4K CCD modules (0.27"/pixel) arranged in a hexagon inscribed within the roughly 2.2 degree diameter field of view and 12 smaller 2K x 2K CCDs for guiding, focus and alignment. The CCDs will be 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). Production of the CCDs and fabrication of the optics, mechanical structure, mechanisms, and control system for DECam are underway; delivery of the instrument to CTIO is scheduled ...

  9. The Design of the Short Wavelength Camera for the CCAT Telescope

    Science.gov (United States)

    Stacey, Gordon J.; Parshley, S.; Nikola, T.; Dowell, C. D.; Adams, J. D.; Bertoldi, F.; Chapman, S.; Cortes, G.; Day, P.; Glenn, J.; Halpern, M.; Hollister, M.; Kovacs, A.; LeDuc, H.; McKenney, C.; Monroe, R.; Mroczkowski, T.; Nguyen, H. T.; Niemack, M.; Rajagopalan, G.; Radford, S. J.; Schaaf, R.; Scott, D.; Schoenwald, J.; Swenson, L.; Yoshida, H.; Zmuidzinas, J.

    2013-01-01

    We present the design for the Short Wavelength Camera (SWCam) that we are proposing for use on the 25 meter CCAT submillimeter telescope. SWCam utilizes the absorber-coupled MKID based detector arrays that are being developed at JPL, and will soon be tested in the MAKO camera on the CSO. The primary SWCam band is centered on the 350 um telluric window but we plan capabilities in the 450 and 200 um telluric windows as well. Due to the curvature of the CCAT focal plane, the camera is split into 7 sub-cameras - a central camera and six cameras in a closed-packed outer ring. Each silicon lens-based camera illuminates an array consisting of ~7750 pixels with a plate scale of 3”/pixel which corresponds to an image plane sampling of lambda/D per pixel at 350 um. The combined pixel count is ~ 54,000 and the effective instantaneous field of view is ~ 13’ in diameter. All the cameras are contained in a single closed-cycle cryostat simplifying the optical/cryo/mechanical systems. The system is expected to achieve a back-ground limited sensitivity ~20 to 30 mJy/sqrt(Hz) under good weather conditions 0.43 mm precipitatable water vapor burden), so that the SWCam on CCAT approaches (5 sigma) the expected confusion noise for distant infrared bright galaxies on CCAT (structure formation over cosmic time through large scale (10s of square degrees) surveys in the submm continuum bands. SWCam is a key part of a triad of instruments that enable this science, including a long wavelength camera (LWCam), and a broad-band direct detection spectrometer (X-Spec) - instruments also described within this session.

  10. Infrared imaging system using nanocarbon materials

    Science.gov (United States)

    Lai, King Wai Chiu; Xi, Ning; Chen, Hongzhi; Chen, Liangliang; Song, Bo

    2012-06-01

    Nanocarbon materials, such as carbon nanotubes and graphene, can potentially overcome the short comes in traditional infrared detector materials because of their excellent electrical and optical properties such as adjustable electrical band gap, low dark current, fast optical response time etc. This paper will present the development of an infrared imaging system that is capable of infrared imaging without cooling. The sensing elements of the system are carbon nanotubes and graphene. When they are illumined by an infrared light, the nano devices generate photocurrents, respectively. As a result, infrared images can be presented based on using compressive sensing after the collection of photocurrent from the nano devices. The development of this imaging system overcomes two major difficulties. First, the system uses singlepixel nano photodetector, so the pixel crosstalk phenomena of conventional sensor arrays can be eliminated. Second, the requirement of single-pixel unit reduces the manufacturing difficulties and costs. Under this compressive sensing camera configuration, 50 × 50 pixel infrared images can be reconstructed efficiently. The results demonstrated a possible solution to overcome the limitation of current infrared imaging.

  11. The two-electron attosecond streak camera for time-resolving intra-atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Emmanouilidou, A [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Staudte, A; Corkum, P B, E-mail: a.emmanouilidou@ucl.ac.u [Joint Laboratory for Attosecond Science, University of Ottawa and National Research Council, 100 Sussex Drive, Ottawa, ON, K1A 0R6 (Canada)

    2010-10-15

    We generalize the one-electron attosecond streak camera to time-resolve the correlated two-electron escape dynamics during a collision process involving a deep core electron. The collision process is triggered by an extreme ultraviolet (XUV) attosecond pulse (single-photon absorption) and probed by a weak infrared field. The principle of our two-electron streak camera is that by placing the maximum of the vector potential of the probing field at the time of collision, we get the maximum splitting of the inter-electronic angle of escape. We thereby determine the time of collision.

  12. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    Science.gov (United States)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  13. LLiST - a new star tracker camera for tip-tilt correction at IOTA

    OpenAIRE

    Schuller, P.A.; Lacasse, M. G.; Lydon, D.; McGonagle, W. H.; Pedretti, E; Reich, R. K.; Schloerb, F. P.; Traub, W. A.

    2004-01-01

    The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that ...

  14. LLiST - a new star tracker camera for tip-tilt correction at IOTA

    CERN Document Server

    Schuller, P A; Lydon, D; McGonagle, W H; Pedretti, E; Reich, R K; Schloerb, F P; Traub, W A

    2004-01-01

    The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the new system showed a higher system gain with a lower read-out noise electron level. Shorter read-out cycle times now allow to compensate tip-tilt fluctuations so that their error imposed on visibility measurements becomes comparable to, and even smaller than, that of higher-order aberrations.

  15. The method of infrared polariametric imaging

    Science.gov (United States)

    Zhou, Qiang; Feng, Hua-jun; Xu, Zhi-hai; Li, Qi; Chen, Yue-ting

    2013-09-01

    Due to the low contrast ,lack of details and difficulties to distinguish target from background in traditional infrared(IR) imaging systems, the detection and recognition probability of camouflage infrared target is relatively low. Compared with the traditional IR imaging systems, the method of polarimetric imaging uses polarization information, which can help detect and isolate manmade objects from the natural environment in complex. The method of infrared polarimetric imaging is proposed in this paper. The experiment builds the IR polarimetric imaging system. An IR polarizer made of BaF2 is assembled before the IR camera. By rotating the IR polarizer, twelve polarization images are obtained at every thirty degree. The gray levels of the images are calculated by program. Stokes polarization vector representation is introduced to calculate I of stokes vector and degree of linear polarization (DoLP) with polarization images. According to the character of parameter I of stokes vector and DoLP, we propose an IR polarization fusion method based on Shearlets using regional saliency analysis. This method can highlight the target area and have good performance in the fusion of IR radiation information and IR polarization characteristics. To test the effectiveness of this method, we use mid-wave infrared (MWIR) camera and long-wave infrared(LWIR) camera to get real images. Compared with original image, both the subjective and objective evaluation results indicate that the enhanced images obtained by our method have much more image details and polarization information, which is useful for target detection and recognition.

  16. Vegetation indices derived from a modified digital camera in combination with different blocking filters

    Science.gov (United States)

    Krainer, Karl; Hammerle, Albin; Wohlfahrt, Georg

    2015-04-01

    Remote and proximal sensing have become valuable and broadly used tools in ecosystem research. Radiation reflected and scattered at and from the vegetation is used to infer information about vegetation biomass, structure, vitality and functioning, just to name a few. To this end numerous vegetation indices have been established, which relate reflectance in different wavelengths to each other. While such indices are usually calculated from reflectance data measured by spectro-radiometers we did a study using a commercially available digital camera, from which the infrared (IR) band elimination filter was removed. By removing this filter, the camera sensor became sensitive for IR radiation besides the visible spectrum. Comparing measurements with this modified camera and a hyperspectral spectro-radiometer over different vegetation and surfaces we determined the potential of such a modified camera to measure different vegetation indices. To this end we compared 71 vegetation indices derived from spectro-radiometer data with 63 indices derived from the modified digital camera. We found that many of these different indices featured relatively high correlations. Especially the rgR (green/red ratio) and NDI (normalized difference vegetation index) calculated from data of the modified camera do correlate very well with vegetation indices that are known for representing the amount and vitality of green biomass, as these are the NIDI (normalized infrared vegetation index) and the LIC (curvature index). We thus conclude from this experiment, that given a proper inter-calibration, a commercially available digital camera can be modified and used as a reasonable alternative tool to determine vegetation biomass and/or vitality. In addition to these measurements currently different band elimination filters are used to improve the information content of the digital images.

  17. Laboratory calibration and characterization of video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Shortis, M. R.; Goad, W. K.

    1990-01-01

    Some techniques for laboratory calibration and characterization of video cameras used with frame grabber boards are presented. A laser-illuminated displaced reticle technique (with camera lens removed) is used to determine the camera/grabber effective horizontal and vertical pixel spacing as well as the angle of nonperpendicularity of the axes. The principal point of autocollimation and point of symmetry are found by illuminating the camera with an unexpanded laser beam, either aligned with the sensor or lens. Lens distortion and the principal distance are determined from images of a calibration plate suitably aligned with the camera. Calibration and characterization results for several video cameras are presented. Differences between these laboratory techniques and test range and plumb line calibration are noted.

  18. MAGIC-II Camera Slow Control Software

    CERN Document Server

    Steinke, B; Tridon, D Borla

    2009-01-01

    The Imaging Atmospheric Cherenkov Telescope MAGIC I has recently been extended to a stereoscopic system by adding a second 17 m telescope, MAGIC-II. One of the major improvements of the second telescope is an improved camera. The Camera Control Program is embedded in the telescope control software as an independent subsystem. The Camera Control Program is an effective software to monitor and control the camera values and their settings and is written in the visual programming language LabVIEW. The two main parts, the Central Variables File, which stores all information of the pixel and other camera parameters, and the Comm Control Routine, which controls changes in possible settings, provide a reliable operation. A safety routine protects the camera from misuse by accidental commands, from bad weather conditions and from hardware errors by automatic reactions.

  19. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  20. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  1. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  2. Omnidirectional Underwater Camera Design and Calibration

    OpenAIRE

    Josep Bosch; Nuno Gracias; Pere Ridao; David Ribas

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing i...

  3. Camera calibration from road lane markings

    OpenAIRE

    Fung, GSK; Yung, NHC; Pang, GKH

    2003-01-01

    Three-dimensional computer vision techniques have been actively studied for the purpose of visual traffic surveillance. To determine the 3-D environment, camera calibration is a crucial step to resolve the relationship between the 3-D world coordinates and their corresponding image coordinates. A novel camera calibration using the geometry properties of road lane markings is proposed. A set of equations that computes the camera parameters from the image coordinates of the road lane markings a...

  4. Camera calibration from surfaces of revolution

    OpenAIRE

    Wong, KYK; Mendonça, PRS; Cipolla, R.

    2003-01-01

    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. ...

  5. Increased Automation in Stereo Camera Calibration Techniques

    OpenAIRE

    Brandi House; Kevin Nickels

    2006-01-01

    Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This r...

  6. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  7. Advanced High-Definition Video Cameras

    Science.gov (United States)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  8. High-speed cameras at Los Alamos

    Science.gov (United States)

    Brixner, Berlyn

    1997-05-01

    In 1943, there was no camera with the microsecond resolution needed for research in Atomic Bomb development. We had the Mitchell camera (100 fps), the Fastax (10 000), the Marley (100 000), the drum streak (moving slit image) 10-5 s resolution, and electro-optical shutters for 10-6 s. Julian Mack invented a rotating-mirror camera for 10-7 s, which was in use by 1944. Small rotating mirror changes secured a resolution of 10-8 s. Photography of oscilloscope traces soon recorded 10-6 resolution, which was later improved to 10-8 s. Mack also invented two time resolving spectrographs for studying the radiation of the first atomic explosion. Much later, he made a large aperture spectrograph for shock wave spectra. An image dissecting drum camera running at 107 frames per second (fps) was used for studying high velocity jets. Brixner invented a simple streak camera which gave 10-8 s resolution. Using a moving film camera, an interferometer pressure gauge was developed for measuring shock-front pressures up to 100 000 psi. An existing Bowen 76-lens frame camera was speeded up by our turbine driven mirror to make 1 500 000 fps. Several streak cameras were made with writing arms from 4 1/2 to 40 in. and apertures from f/2.5 to f/20. We made framing cameras with top speeds of 50 000, 1 000 000, 3 500 000, and 14 000 000 fps.

  9. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  10. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  11. Explosive Transient Camera (ETC) Program

    Science.gov (United States)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  12. Framework for Evaluating Camera Opinions

    Directory of Open Access Journals (Sweden)

    K.M. Subramanian

    2015-03-01

    Full Text Available Opinion mining plays a most important role in text mining applications in brand and product positioning, customer relationship management, consumer attitude detection and market research. The applications lead to new generation of companies/products meant for online market perception, online content monitoring and reputation management. Expansion of the web inspires users to contribute/express opinions via blogs, videos and social networking sites. Such platforms provide valuable information for analysis of sentiment pertaining a product or service. This study investigates the performance of various feature extraction methods and classification algorithm for opinion mining. Opinions expressed in Amazon website for cameras are collected and used for evaluation. Features are extracted from the opinions using Term Document Frequency and Inverse Document Frequency (TDFIDF. Feature transformation is achieved through Principal Component Analysis (PCA and kernel PCA. Naïve Bayes, K Nearest Neighbor and Classification and Regression Trees (CART classification algorithms classify the features extracted.

  13. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  14. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  15. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  16. [Infrared erythema].

    Science.gov (United States)

    Schulze, H J; Schmidt, R; Mahrle, G

    1985-06-15

    This article deals with the immediate effect of infra-red (IR) irradiation on human skin. The cutaneous response to IR significantly differed from that to polychromatic UV rays. The IR erythema showed a reticular pattern and was monophasic. Minimal erythema (ME) appeared without latency and faded a few minutes later. Induction of IR-ME required a radiation doses about 15,000 times higher (187-295 J/m2) than was needed for UVB erythema. The maximum erythema also occurred immediately after exposure to IR and faded away within one to four hours. The response was biphasic in only one of 28 test persons. Histological studies revealed dilated vessels and perivascular accumulation of degranulated mast cells. PMID:4024676

  17. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  18. Fast infrared variability from a relativistic jet in GX 339−4

    NARCIS (Netherlands)

    P. Casella; T.J. Maccarone; K. O'Brien; R.P. Fender; D.M. Russell; M. van der Klis; A. Pe'er; D. Maitra; D. Altamirano; T. Belloni; G. Kanbach; M. Klein-Wolt; E. Mason; P. Soleri; A. Stefanescu; K. Wiersema; R. Wijnands

    2010-01-01

    We present the discovery of fast infrared/X-ray correlated variability in the black hole transient GX 339-4. The source was observed with subsecond time resolution simultaneously with Very Large Telescope/Infrared Spectrometer And Array Camera and Rossi X-ray Timing Explorer/Proportional Counter Arr

  19. NIR Capturing images with spectral information in the mid-infrared

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    We demonstrate a method to capture images containing spectral information in the infrared. The method is based on sum frequency mixing of light, which allows for transformation of mid-infrared radiation to near visible light, allowing for use of a regular silicon based camera for detection. Combi...

  20. Processing of polarimetric infrared images for landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.

    2003-01-01

    Infrared (IR) cameras are often used in a vehicle based multi-sensor platform for landmine detection. Additional to thermal contrasts, an IR polarimetric sensor also measures surface properties and therefore has the potential of increased detection performance. We have developed a polarimetric IR se

  1. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  2. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data was gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using AC and DC currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  3. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many ca

  4. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial relationsh

  5. Camera self-calibration from translation by referring to a known camera.

    Science.gov (United States)

    Zhao, Bin; Hu, Zhaozheng

    2015-09-01

    This paper presents a novel linear method for camera self-calibration by referring to a known (or calibrated) camera. The method requires at least three images, with two images generated by the uncalibrated camera from pure translation and one image generated by the known reference camera. We first propose a method to compute the infinite homography from scene depths. Based on this, we use two images generated by translating the uncalibrated camera to recover scene depths, which are further utilized to linearly compute the infinite homography between an arbitrary uncalibrated image, and the image from the known camera. With the known camera as reference, the computed infinite homography is readily decomposed for camera calibration. The proposed self-calibration method has been tested with simulation and real image data. Experimental results demonstrate that the method is practical and accurate. This paper proposes using a "known reference camera" for camera calibration. The pure translation, as required in the method, is much more maneuverable, compared with some strict motions in the literature, such as pure rotation. The proposed self-calibration method has good potential for solving online camera calibration problems, which has important applications, especially for multicamera and zooming camera systems. PMID:26368906

  6. Land-based infrared imagery for marine mammal detection

    Science.gov (United States)

    Graber, Joseph; Thomson, Jim; Polagye, Brian; Jessup, Andrew

    2011-09-01

    A land-based infrared (IR) camera is used to detect endangered Southern Resident killer whales in Puget Sound, Washington, USA. The observations are motivated by a proposed tidal energy pilot project, which will be required to monitor for environmental effects. Potential monitoring methods also include visual observation, passive acoustics, and active acoustics. The effectiveness of observations in the infrared spectrum is compared to observations in the visible spectrum to assess the viability of infrared imagery for cetacean detection and classification. Imagery was obtained at Lime Kiln Park, Washington from 7/6/10-7/9/10 using a FLIR Thermovision A40M infrared camera (7.5-14μm, 37°HFOV, 320x240 pixels) under ideal atmospheric conditions (clear skies, calm seas, and wind speed 0-4 m/s). Whales were detected during both day (9 detections) and night (75 detections) at distances ranging from 42 to 162 m. The temperature contrast between dorsal fins and the sea surface ranged from 0.5 to 4.6 °C. Differences in emissivity from sea surface to dorsal fin are shown to aid detection at high incidence angles (near grazing). A comparison to theory is presented, and observed deviations from theory are investigated. A guide for infrared camera selection based on site geometry and desired target size is presented, with specific considerations regarding marine mammal detection. Atmospheric conditions required to use visible and infrared cameras for marine mammal detection are established and compared with 2008 meteorological data for the proposed tidal energy site. Using conservative assumptions, infrared observations are predicted to provide a 74% increase in hours of possible detection, compared with visual observations.

  7. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, Bernd

    2011-09-15

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  8. Enhancing swimming pool safety by the use of range-imaging cameras

    Science.gov (United States)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  9. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  10. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    International Nuclear Information System (INIS)

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  11. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  12. Case Camera obscura 1995–2014

    OpenAIRE

    Inkinen, Ari

    2015-01-01

    Sininauhaliitossa kehitettiin vuonna 1995 elämyksellinen arvo- ja päihdekasvatusohjelma Camera obscura. Toimintamallin toimintakonsepti ja sen sisältö ovat ainutlaatuisia. Sosiaaliseen vahvistamiseen perustuva toimintamalli integroitiin osaksi koulun opetusohjelmaa ja toteutettiin yhteistyössä paikallisten nuorisoalan toimijoiden kanssa. Vuorovaikutukseen, kokemusoppimiseen ja nuoren kohtaamiseen perustuvaa toimintamallia on toteutettu ja kehitetty erilaisten hankkeiden avulla. Camera obscura...

  13. Creating and Using a Camera Obscura

    Science.gov (United States)

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  14. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  15. Matching image color from different cameras

    Science.gov (United States)

    Fairchild, Mark D.; Wyble, David R.; Johnson, Garrett M.

    2008-01-01

    Can images from professional digital SLR cameras be made equivalent in color using simple colorimetric characterization? Two cameras were characterized, these characterizations were implemented on a variety of images, and the results were evaluated both colorimetrically and psychophysically. A Nikon D2x and a Canon 5D were used. The colorimetric analyses indicated that accurate reproductions were obtained. The median CIELAB color differences between the measured ColorChecker SG and the reproduced image were 4.0 and 6.1 for the Canon (chart and spectral respectively) and 5.9 and 6.9 for the Nikon. The median differences between cameras were 2.8 and 3.4 for the chart and spectral characterizations, near the expected threshold for reliable image difference perception. Eight scenes were evaluated psychophysically in three forced-choice experiments in which a reference image from one of the cameras was shown to observers in comparison with a pair of images, one from each camera. The three experiments were (1) a comparison of the two cameras with the chart-based characterizations, (2) a comparison with the spectral characterizations, and (3) a comparison of chart vs. spectral characterization within and across cameras. The results for the three experiments are 64%, 64%, and 55% correct respectively. Careful and simple colorimetric characterization of digital SLR cameras can result in visually equivalent color reproduction.

  16. Fazendo 3d com uma camera so

    CERN Document Server

    Lunazzi, J J

    2010-01-01

    A simple system to make stereo photography or videos based in just two mirrors was made in 1989 and recently adapted to a digital camera setup. Um sistema simples para fazer fotografia ou videos em estereo baseado em dois espelhos que dividem o campo da imagem foi criado no ano 1989, e recentemente adaptado para camera digital.

  17. Thermal Cameras in School Laboratory Activities

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  18. CCD Color Camera Characterization for Image Measurements

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2007-01-01

    In this article, we will analyze a range of different types of cameras for its use in measurements. We verify a general model of a charged coupled device camera using experiments. This model includes gain and offset, additive and multiplicative noise, and gamma correction. It is shown that for sever

  19. AIM: Ames Imaging Module Spacecraft Camera

    Science.gov (United States)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.

  20. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  1. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  2. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose a...

  3. Infrared hyperspectral upconversion imaging using spatial object translation

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Sanders, Nicolai Højer; Tidemand-Lichtenberg, Peter;

    2015-01-01

    and an image is recorded for each position. A sequence of such images is post-processed into a series of monochromatic images in a wavelength range defined by the phasematch condition and numerical aperture of the upconversion system. A standard USAF resolution target and a polystyrene film are used......In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators...

  4. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Thomas

    2016-06-01

    Full Text Available Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields.

  5. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition.

    Science.gov (United States)

    Thomas, Jean-Baptiste; Lapray, Pierre-Jean; Gouton, Pierre; Clerc, Cédric

    2016-01-01

    Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields. PMID:27367690

  6. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    Science.gov (United States)

    Thomas, Jean-Baptiste; Lapray, Pierre-Jean; Gouton, Pierre; Clerc, Cédric

    2016-01-01

    Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields. PMID:27367690

  7. Flow visualization by mobile phone cameras

    Science.gov (United States)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  8. New two-dimensional photon camera

    Science.gov (United States)

    Papaliolios, C.; Mertz, L.

    1982-01-01

    A photon-sensitive camera, applicable to speckle imaging of astronomical sources, high-resolution spectroscopy of faint galaxies in a crossed-dispersion spectrograph, or narrow-band direct imaging of galaxies, is presented. The camera is shown to supply 8-bit by 8-bit photon positions (256 x 256 pixels) for as many as 10 to the 6th photons/sec with a maximum linear resolution of approximately 10 microns. The sequence of photon positions is recorded digitally with a VHS-format video tape recorder or formed into an immediate image via a microcomputer. The four basic elements of the camera are described in detail: a high-gain image intensifier with fast-decay output phosphor, a glass-prism optical-beam splitter, a set of Gray-coded masks, and a photomultiplier tube for each mask. The characteristics of the camera are compared to those of other photon cameras.

  9. Low cost infrared and near infrared sensors for UAVs

    Science.gov (United States)

    Aden, S. T.; Bialas, J. P.; Champion, Z.; Levin, E.; McCarty, J. L.

    2014-11-01

    Thermal remote sensing has a wide range of applications, though the extent of its use is inhibited by cost. Robotic and computer components are now widely available to consumers on a scale that makes thermal data a readily accessible resource. In this project, thermal imagery collected via a lightweight remote sensing Unmanned Aerial Vehicle (UAV) was used to create a surface temperature map for the purpose of providing wildland firefighting crews with a cost-effective and time-saving resource. The UAV system proved to be flexible, allowing for customized sensor packages to be designed that could include visible or infrared cameras, GPS, temperature sensors, and rangefinders, in addition to many data management options. Altogether, such a UAV system could be used to rapidly collect thermal and aerial data, with a geographic accuracy of less than one meter.

  10. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  11. Infrared Astronomy

    Science.gov (United States)

    Mampaso, A.; Prieto, M.; Sánchez, F.

    2004-01-01

    What do we understand of the birth and death of stars? What is the nature of the tiny dust grains that permeate our Galaxy and other galaxies? And how likely is the existence of brown dwarfs, extrasolar planets or other sub-stellar mass objects? These are just a few of the questions that can now be addressed in a new era of infrared observations. IR astronomy has been revolutionised over the past few years by the widespread availability of large, very sensitive IR arrays and the success of IR satellites (IRAS in particular). Several IR space missions due for launch over the next few years promise an exciting future too. For these reasons, the IV Canary Islands Winter School of Astrophysics was dedicated to this burgeoning field. Its primary goal was to introduce graduate students and researchers from other areas to the important new observations and physical ideas that are emerging in this wide-ranging field of research. Lectures from nine leading researchers, renowned for their teaching abilities, are gathered in this volume. These nine chapters provide an excellent introduction as well as a thorough and up-to-date review of developments - essential reading for graduate students entering IR astronomy, and professionals from other areas who realise the importance that IR astronomy may have on their research.

  12. True three-dimensional camera

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  13. Cloud Computing with Context Cameras

    Science.gov (United States)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  14. Portable, stand-off spectral imaging camera for detection of effluents and residues

    Science.gov (United States)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  15. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  16. Unveiling the Dynamic Infrared Sky with Gattini-IR

    CERN Document Server

    Moore, Anna M; Gelino, Christopher R; Jencson, Jacob E; Jones, Mike I; Kirkpatrick, J Davy; Lau, Ryan M; Ofek, Eran; Petrunin, Yuri; Smith, Roger; Terebizh, Valery; Steinbring, Eric; Yan, Lin

    2016-01-01

    While optical and radio transient surveys have enjoyed a renaissance over the past decade, the dynamic infrared sky remains virtually unexplored. The infrared is a powerful tool for probing transient events in dusty regions that have high optical extinction, and for detecting the coolest of stars that are bright only at these wavelengths. The fundamental roadblocks in studying the infrared time-domain have been the overwhelmingly bright sky background (250 times brighter than optical) and the narrow field-of-view of infrared cameras (largest is 0.6 sq deg). To begin to address these challenges and open a new observational window in the infrared, we present Palomar Gattini-IR: a 25 sq degree, 300mm aperture, infrared telescope at Palomar Observatory that surveys the entire accessible sky (20,000 sq deg) to a depth of 16.4 AB mag (J band, 1.25um) every night. Palomar Gattini-IR is wider in area than every existing infrared camera by more than a factor of 40 and is able to survey large areas of sky multiple time...

  17. Waveguide-integrated photonic crystal spectrometer with camera readout

    International Nuclear Information System (INIS)

    We demonstrate an infrared spectrometer based on waveguide-coupled nanocavity filters in a planar photonic crystal structure. The input light is coupled into the waveguide, from which spectral components are dropped into the cavities and radiated off-chip for detection on a commercial InGaAs camera. The spectrometer has a footprint of only 60 μm by 8 μm. The spectral resolution is about 1 nm in the operation bandwidth of 1522–1545 nm. By substituting the membrane material and structure parameters, this design can be easily extended into the visible regime and developed for a variety of highly efficient, miniature photonic applications

  18. Infrared astronomy - Pixels to spare

    International Nuclear Information System (INIS)

    An infrared CCD camera containing an array with 311,040 pixels arranged in 486 rows of 640 each is tested. The array is a chip of platinum silicide (PtSi), sensitive to photons with wavelengths between 1 and 6 microns. Observations of the Hubble Space Telescope, Mars, Pluto and moon are reported. It is noted that the satellite's twin solar-cell arrays, at an apparent separation of about 1 1/4 arc second, are well resolved. Some two dozen video frames were stacked to make each presented image of Mars at 1.6 microns; at this wavelength Mars appears much as it does in visible light. A stack of 11 images at a wavelength of 1.6 microns is used for an image of Jupiter with its Great Red Spot and moons Io and Europa

  19. Infrared astronomy - Pixels to spare

    Science.gov (United States)

    McCaughrean, Mark

    1991-07-01

    An infrared CCD camera containing an array with 311,040 pixels arranged in 486 rows of 640 each is tested. The array is a chip of platinum silicide (PtSi), sensitive to photons with wavelengths between 1 and 6 microns. Observations of the Hubble Space Telescope, Mars, Plato, and moon are reported. It is noted that the satellite's twin solar-cell arrays, at an apparent separation of about 1 1/4 arc second, are well resolved. Some two dozen video frames were stacked to make each presented image of Mars at 1.6 microns; at this wavelength Mars appears much as it does in visible light. A stack of 11 images at a wavelength of 1.6 microns is used for an image of Jupiter with its Great Red Spot and moons Io and Europa.

  20. Far-infrared and accretion luminosities of the present-day active galactic nuclei

    CERN Document Server

    Matsuoka, Kenta

    2015-01-01

    We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We adopt FIR luminosities at 90 and 100 um as SF luminosities, assuming the proposed linear proportionality of star formation rate with FIR luminosities. By estimating AGN luminosities from [OIII]5007 and [OI]6300 emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with the recent reports that low-luminosity AGNs show essentially no correlation between FIR and X-ray luminosities, while the discrepancy is likely due to the Malmquist and sample selection biases. By analyzing the spectral energy distribution, we find that pure-AGN candidates, of which FIR radiation is thought to be AGN-dominated, show significantly low-SF activities. These AGNs hosted by low-SF galaxies are...

  1. Unique scene description from radar and infrared images

    Science.gov (United States)

    Blanquart, Jacques G.; Orgiazzi, Philippe; Grenier, Gilles; Cothenet, A.

    1990-10-01

    Two different visual descriptions provided by two image sensors (radar and infrared camera) contain information of the same scene. We want to associate them, using different methods of fusion, in order to improve our knowledge of the scene. Two approaches are described in this paper: navigation and recognition. In the first approach, the radar is the predominant sensor and we use cartographic information of the area to guide the fusion process. In the second approach, we find regions of interest in the radar image that are used to extract features in the infrared image. To experiment our algorithm, we are using a PtSi infrared camera (3-5jtm) with a 512*5 12 matrix and a millimeterwave radar, that are looking at the same area from an airplane, to detect objects like buildings, roads, fields ... . It is the basis of further developments within an expert system including more complex notions of image processing objects.

  2. Use of VNIR Camera System to Estimate Lava Temperature

    Science.gov (United States)

    Vaughan, R.; Keszthelyi, L. P.

    2012-12-01

    We present initial results from using a visible and near infrared (VNIR) camera as an optical pyrometer at Kilauea Volcano, Hawai`i. The basic concept of pyrometry simply converts the color of incandescent material into a temperature and has been used on Kilauea since the earliest days of regular volcano monitoring. However, these temperatures have always been lower than expected, raising the concern that the emissivity of lava at these wavelengths was not close to a blackbody. We carefully calibrated a system that uses 3 digital cameras with wavelengths similar to the green, red, and near-infrared channels of the Landsat Enhanced Thematic Mapper plus (ETM+) and Advanced Spaceborne Thermal Emissions and Reflection Radiometer (ASTER) VNIR instruments by imaging a high-temperature blackbody. Following techniques used to estimate lava temperatures on Jupiter's moon, Io, we obtained relationships between band ratios and blackbody temperatures. The green/red ratio provides good temperature estimates for any reasonable temperature above 1000 °C, while the red/NIR is useful from about 700-1200 °C. We also observed the glow from the lava lake in Halema`uma`u as reflected and scattered from the steam plume above it. We found that the temperatures inferred from the glow are much too high (~1400 °C) from the red/NIR ratios and much too low (night for determining if a volcano is actively erupting mafic lava. We propose that further refinement of this methodology using ETM+, ASTER, and other instruments could provide a useful complement to other near-real-time thermal alert systems.

  3. Infrared Time Lags for the Periodic Quasar PG 1302-102

    Science.gov (United States)

    Jun, Hyunsung D.; Stern, Daniel; Graham, Matthew J.; Djorgovski, S. G.; Mainzer, Amy; Cutri, Roc M.; Drake, Andrew J.; Mahabal, Ashish A.

    2015-11-01

    The optical light curve of the quasar PG 1302-102 at z=0.278 shows a strong, smooth 5.2 year periodic signal, detectable over a period of ∼20 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within ∼ {10}5 years due to gravitational wave emission alone. Here, we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from WISE and Akari, we confirm that the periodic behavior reported in the optical light curve from Graham et al. is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and 4.6 μ {{m}} time lags of (2219 ± 153, 2408 ± 148) days for a near face-on orientation of the torus, or (4103 ± 153, 4292 ± 148) days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared light curves and the light-travel time of the accretion disk photons to reach the dust glowing regions support that a source within the accretion disk is responsible for the optical variability of PG 1302-102, echoed at the farther out dusty regions. The implied distance of this dusty, assumed toroidal region is ∼1.5 pc for a near face-on geometry or ∼1.1 pc for the relativistic Doppler-boosted case.

  4. Detection and tracking of drones using advanced acoustic cameras

    Science.gov (United States)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  5. New camera systems for fuel services

    International Nuclear Information System (INIS)

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  6. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  7. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (''bang-bang'') closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator ''seasickness'' caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator System SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system

  8. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-20 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  9. Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    CERN Document Server

    Wang, Shiang-Yu; Huang, Pin-Jie; Ling, Hung-Hsu; Karr, Jennifer; Chang, Yin-Chang; Hu, Yen-Shan; Hsu, Shu-Fu; Chen, Hsin-Yo; Gunn, James E; Reiley, Dan J; Tamura, Naoyuki; Takato, Naruhisa; Shimono, Atsushi

    2016-01-01

    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are ...

  10. Photorealistic image synthesis and camera validation from 2D images

    Science.gov (United States)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  11. A Benchmark for Virtual Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Automatically animating and placing the virtual camera in a dynamic environment is a challenging task. The camera is expected to maximise and maintain a set of properties — i.e. visual composition — while smoothly moving through the environment and avoiding obstacles. A large number of different...... this reason, in this paper, we propose a benchmark for the problem of virtual camera control and we analyse a number of different problems in different virtual environments. Each of these scenarios is described through a set of complexity measures and, as a result of this analysis, a subset of...

  12. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  13. Calibration of detector sensitivity in positron cameras

    International Nuclear Information System (INIS)

    An improved method for calibrating detector sensitivities in a positron camera has been developed. The calibration phantom is a cylinder of activity placed near the center of the camera and fully within the field of view. The calibration data is processed in such a manner that the following two important properties are achieved. The estimate of a detector sensitivity is unaffected by the sensitivities of the other detectors. The estimates are insensitive to displacements of the calibrating phantom from the camera center. Both of these properties produce a more accurate detector calibration

  14. Uncertainty of temperature measurement with thermal cameras

    Science.gov (United States)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  15. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  16. Close-range photogrammetry with video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  17. Neural network method for characterizing video cameras

    Science.gov (United States)

    Zhou, Shuangquan; Zhao, Dazun

    1998-08-01

    This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.

  18. Screen-Camera Calibration Using Gray Codes

    OpenAIRE

    FRANCKEN, Yannick; Hermans, Chris; Bekaert, Philippe

    2009-01-01

    In this paper we present a method for efficient calibration of a screen-camera setup, in which the camera is not directly facing the screen. A spherical mirror is used to make the screen visible to the camera. Using Gray code illumination patterns, we can uniquely identify the reflection of each screen pixel on the imaged spherical mirror. This allows us to compute a large set of 2D-3D correspondences, using only two sphere locations. Compared to previous work, this means we require less manu...

  19. On the use of non additive entropy to determine the presence of vibrations in the videos of jet cameras

    International Nuclear Information System (INIS)

    In many domains where images are produced and acquired, the field of view of cameras can be subject to oscillations and movements, which can induce errors in the interpretation of the frame contents and can even jeopardize the analysis of the videos. The problem is particularly severe in applications such as nuclear fusion, in which, typically, no stable and reliable reference points exist within the camera fields of view to register the frames. A non additive form of entropy Sq, which is more sensitive to long-range correlations than the Shannon entropy, has been applied to the problem of automatically detecting such camera movements in the videos of a JET wide-angle infrared camera. A systematic analysis of the results, covering more than 110 000 frames, has been undertaken, and the results obtained, reaching a total success rate of almost 97%, are more than satisfactory. (authors)

  20. A relation of the PAH 3.3 um feature with star-forming activity for galaxies with a wide range of infrared luminosity

    CERN Document Server

    Yamada, Rika; Kaneda, Hidehiro; Yamagishi, Mitsuyoshi; Ishihara, Daisuke; Kim, Ji Hoon; Im, Myungshin

    2013-01-01

    For star-forming galaxies, we investigate a global relation between polycyclic aromatic hydrocarbon (PAH) emission luminosity at 3.3 um, L_PAH3.3, and infrared (8-1000 um) luminosity, L_IR, to understand how the PAH 3.3 um feature relates to the star formation activity. With AKARI, we performed near-infrared (2.5-5 um) spectroscopy of 184 galaxies which have L_IR \\sim 10^8 - 10^13 L_sun. We classify the samples into infrared galaxies (IRGs; L_IR 10^12 L_sun). We exclude sources which are likely contaminated by AGN activity, based on the rest-frame equivalent width of the PAH emission feature ( 1; F_nu \\propto lambda^Gamma). Of these samples, 13 IRGs, 67 LIRGs and 20 ULIRGs show PAH emission feature at lambda_rest= 3.3 um in their spectra. We find that the L_PAH3.3/L_IR ratio considerably decreases toward the luminous end. Utilizing the mass and temperature of dust grains as well as the BrAlpha emission for the galaxies, we discuss the cause of the relative decrease in the PAH emission with L_IR.