WorldWideScience

Sample records for aisi m2 obtido

  1. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  2. Carbides crystalline structure of AISI M2 high-speed steel

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  3. Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool

    Sonowal, Dharindom; Sarma, Dhrupad; Bakul Barua, Parimal; Nath, Thuleswar

    2017-08-01

    In this paper the effect of three cutting parameters viz. Spindle speed, Feed and Depth of Cut on surface roughness of AISI 1020 mild steel bar in turning was investigated and optimized to obtain minimum surface roughness. All the experiments are conducted on HMT LB25 lathe machine using M2 HSS cutting tool. Ranges of parameters of interest have been decided through some preliminary experimentation (One Factor At a Time experiments). Finally a combined experiment has been carried out using Taguchi’s L27 Orthogonal Array (OA) to study the main effect and interaction effect of the all three parameters. The experimental results were analyzed with raw data ANOVA (Analysis of Variance) and S/N data (Signal to Noise ratio) ANOVA. Results show that Spindle speed, Feed and Depth of Cut have significant effects on both mean and variation of surface roughness in turning AISI 1020 mild steel. Mild two factors interactions are observed among the aforesaid factors with significant effects only on the mean of the output variable. From the Taguchi parameter optimization the optimum factor combination is found to be 630 rpm spindle speed, 0.05 mm/rev feed and 1.25 mm depth of cut with estimated surface roughness 2.358 ± 0.970 µm. A confirmatory experiment was conducted with the optimum factor combination to verify the results. In the confirmatory experiment the average value of surface roughness is found to be 2.408 µm which is well within the range (0.418 µm to 4.299 µm) predicted for confirmatory experiment.

  4. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    Jesus, Edilson Rosa Barbosa de.

    2004-01-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  5. Refining the microstructure of an AISI M2 tool steel by high-energy milling

    Postiglioni, R.V.; Alamino, A.E; Vurobi Junior, S.

    2009-01-01

    Samples of AISI M2 steel were produced by high-energy milling from chips of machining in Spex high energy mill, compaction and sintering of the powder obtained. The powder was analyzed by X-ray diffraction, and then compressed in discs of 8mm in diameter. The specimens have sintering at 1200 deg C for 1 hour under vacuum atmosphere, followed by annealing, quenching and tempering for 1 hour at 315 deg C and 540°C. Along with each disc, a sample of as-received steel was subjected to the same heat treatments to compare the final microstructure. After standard metallographic preparation, samples were etched with Beraha's reagent, characterized by optical microscopy, quantitative metallography, scanning electron microscopy with micro analysis and mapping by EDS, besides Vickers hardness. The steel produced by high-energy milling presented more refined carbide and better distribution in the microstructure. There was also reduction in the size of prior austenitic grains. (author)

  6. Growth kinetics of boride coatings formed at the surface AISI M2 during dehydrated paste pack boriding

    Doñu Ruiz, M.A., E-mail: mdonur0800@alumno.ipn.mx [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); López Perrusquia, N.; Sánchez Huerta, D. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Torres San Miguel, C.R.; Urriolagoitia Calderón, G.M. [Instituto Politécnico Nacional, SEPI-ESIME, Unidad Profesional Adolfo López Mateos Zacatenco, Edificio 5, 2do. Piso, Col. Lindavista, CP 07738 México, D.F. (Mexico); Cerillo Moreno, E.A. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Cortes Suarez, J.V. [Univerisdad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo 180 Azcapotzalco 02200, Área de Ciencia de los Materiales, México, D.F. (Mexico)

    2015-12-01

    The growth kinetics of the boride coatings (FeB and Fe{sub 2}B) at the surface of AISI M2 high speed steels were studied in this work. Boriding thermochemical treatment was carried out by dehydrated paste pack at three different temperatures 1173, 1223, and 1273 K and four exposure times 1, 3, 5, and 7 h, respectively. The presence of FeB and Fe{sub 2}B phases was identified by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction method. In order to obtain the boron diffusion coefficients at the FeB/Fe{sub 2}B boride coatings, a mathematical model based on the mass balance at the growing interfaces was proposed under certain assumptions. Likewise the parabolic growth constants and the boride incubation time were established as a function of the parameters η (T) and ε (T). The activation energy values estimated for the FeB and Fe{sub 2}B layers were 233.42 and 211.89 kJ mol{sup −1} respectively. A good agreement was obtained between the simulated values of boride layer thicknesses and the experimental results. Finally, empirical relationships of boride coating thickness as a function of boriding temperature and time are presented. - Highlights: • Formed boride coatings at the surface of AISI M2 high speed steels by new process dehydrated paste pack boriding. • The model was based on the mass balance equation at the FeB/Fe{sub 2}B and Fe{sub 2}B/Fe interfaces by considering the boride incubation time. • A good agreement was obtained between the simulated values of boride layers coatings and the experimental results.

  7. Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings on AISI M2 steel and WC-Co substrates

    Avelar-Batista, J.C.; Spain, E.; Housden, J.; Fuentes, G.G.; Rebole, R.; Rodriguez, R.; Montala, F.; Carreras, L.J.; Tate, T.J.

    2005-01-01

    This paper is focussed on the characterisation of electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings deposited on AISI M2 steel and hardmetal (K10) substrates in two different conditions: Pristine (i.e., coated) and Recoated (i.e., stripped and recoated). Analytical methods, including X-ray diffraction (XRD), scanning electron microscopy, scratch adhesion and pin-on-disc tests were used to evaluate several coating properties. XRD analyses indicated that both Pristine and Recoated coatings consisted of a mixture of hexagonal Cr 2 N and cubic CrN, regardless of substrate type. For the M2 steel substrate, only small differences were found in terms of coating phases, microstructure, adhesion, friction and wear coefficients between Pristine and Recoated. Recoated on WC-Co (K10) exhibited a less dense microstructure and significant inferior adhesion compared to Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those exhibited by all other specimens. The results obtained confirm that the stripping process did not adversely affect the Cr-N properties when this coating was deposited onto M2 steel substrates, but it is clear from the unsatisfactory tribological performance of Recoated on WC-Co that the stripping process is unsuitable for hardmetal substrates

  8. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)

    2016-11-15

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.

  9. The M2 Channel

    Santner, Paul

    Drug resistance of Influenza A against antivirals is an increasing problem. No effective Influenza A drugs targeting the crucial viral protein, the proton transporter M2 are available anymore due to widespread resistance. Thanks to research efforts elucidating M2 protein structure, function and i...... resistance escape routes from drug inhibition. We thereby were hopefully able to provide a platform for the large-scale evaluation of M2 channel activity, inhibitors and resistance....

  10. Heterotic M2-branes

    Neil Lambert

    2015-10-01

    Full Text Available We construct the action for N M2-branes on S1/Z2. The resulting theory has a gauge anomaly but this can be cancelled if the two fixed point planes each support 8 chiral Fermions in the fundamental of U(N. Taking the low energy limit leads to the worldsheet theory of N free heterotic strings whose quantization induces an E8 spacetime gauge symmetry on each fixed point plane. Thus this paper presents a non-abelian worldvolume analogue of the classic Hořava–Witten analysis.

  11. Homogeneous M2 duals

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  12. Homogeneous M2 duals

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  13. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441; Oxidacao ciclica dos acos inoxidaveis ferriticos AISI 409, AISI 439 e AISI 441

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de, E-mail: fatima.salgado@pq.cnpq.br [Universidade Estadual do Maranhao (CESC/UEMA), Caxias, MA (Brazil). Centro de Estudos Superiores; Rodrigues, Samara Clotildes Saraiva; Brandim, Ayrton de Sa [Instituto Federal do Piaui (PPGEM/IFPI), PI (Brazil); Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (IFMG), MG (Brazil)

    2014-07-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr{sub 2}O{sub 3}. (author)

  14. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de; Lins, Vanessa de Freitas Cunha

    2014-01-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr_2O_3. (author)

  15. Influence of quenching parameters in the carbides presence in the AISI M2 high speed steel

    Magalhaes, A.S.; Maria, G.G.B; Martins, S.C.S.; Lopes, W.; Correa, E.C.S.; Bezerra, A.C.S.

    2014-01-01

    The main characteristic of high speed steels, besides maintaining high hardness at room temperature, is the ability of retain hardness when subjected to high temperatures and high cutting speeds. The high percentage of alloying elements in these steels allows the development of complex carbides, acquiring a high hardness by heat treatment. The aim of this study is to evaluate the effects of quenching parameters in the volumetric fraction of carbides by semi-quantitative metallography and of retained austenite by X-ray diffraction. It has been observed that, in general, the increase in the soaking time and in the austenitizing temperature resulted in the reduction of the amount of carbides and in an increase in the amount of retained austenite in the martensitic matrix. (author)

  16. Study of the solidification of M2 high speed steel Laser Cladding coatings

    Candel, J. J.

    2013-10-01

    Full Text Available High speed steel laser cladding coatings are complex because cracks appear and the hardness is lower than expected. In this paper AISI M2 tool steel coatings on medium carbon AISI 1045 steel substrate have been manufactured and after Laser Cladding (LC processing it has been applied a tempering heat treatment to reduce the amount of retained austenite and to precipitate secondary carbides. The study of metallurgical transformations by Scanning Electron Microscopy (SEM and Electron Back Scattered Diffraction (EBSD shows that the microstructure is extremely fine and complex, with eutectic transformations and MC, M2C and M6C precipitation. Therefore, after the laser coating is necessary to use post-weld heat treatments.Los recubrimientos de acero rápido por Laser Cladding (LC son complejos porque aparecen fisuras y la dureza es menor a la esperada. En este trabajo se han fabricado recubrimientos de acero AISI M2 sobre acero al carbono AISI 1045 y tras el procesado por láser, se han revenido para reducir la cantidad de austenita retenida y precipitar carburos secundarios. El estudio de las transformaciones metalúrgicas con Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (EBSD muestra que la microestructura es extremadamente fina y compleja, presenta transformaciones eutécticas y precipitación de carburos MC, M2C y M6C. Por tanto, tras el recubrimiento por láser es necesario recurrir a tratamientos térmicos post-soldeo.

  17. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  18. M2 to D2

    Mukhi, Sunil; Papageorgakis, Constantinos

    2008-01-01

    We examine the recently proposed ''3-algebra'' field theory for multiple M2-branes and show that when a scalar field valued in the 3-algebra develops a vacuum expectation value, the resulting Higgs mechanism has the novel effect of promoting topological (Chern-Simons) to dynamical (Yang-Mills) gauge fields. This leads to a precise derivation of the maximally supersymmetric Yang-Mills theory on multiple D2-branes and thereby provides a relationship between 3-algebras and Yang-Mills theories. We discuss the physical interpretation of this result.

  19. Surface modifications induced by hydrogen in AISI 304 stainless steel

    Evangelista, G.E.; Miranda, P.E.V. de

    1983-01-01

    Hydrogen induced surface modifications of type AISI 304 SS were studied by charging the samples in a 1N a 1N H 2 SO 4 electrolyte at room temperature. Current densities were varied from 500 to 4000 A/m 2 and charging times from 2 to 50 hours. Charged specimens were analysed using optical and electron scanning microscopy. Vickers microhardness tests with small load was also performed. Metallographic etching metodologies were developed (in black and white and colored photographies) which permited identification of all phases present. It was shown that delayed cracks appear somewhat curved on austenite and perfectly strainght on martensite, following the intersections of a phase platlets. These are the regions where α' martensite is located. The habit plane of these cracks might belong to (100) sub(γ) or (221) sub(γ) plane families. A new phenomenon termed hydrogen induced softening was observed on type AISI 304 SS at elevated current densities and/or charging times. (Author) [pt

  20. Mechanical properties of martensitic alloy AISI 422

    Huang, F.H.; Hu, W.L.; Hamilton, M.L.

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs

  1. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  2. Physical characterization of austenitic stainless steels AISI 304 and AISI 348 L*

    Teodoro, Celso Antonio; Silva, Jose Eduardo Rosa da

    2009-01-01

    The study of radiation damages in metals and metallic alloys used as structural materials in nuclear reactors has a strategic meaning to the nuclear technology because it treats of performance of these materials in conditions that simulate the conditions of work in power reactors. Then it becomes necessary to know the essential physical properties of these materials, properties that are sensitive to the microstructural changes that occurred during the irradiation. The purpose of this work is to characterize, initially, some pre-irradiation properties of the stainless steels AISI 304 and AISI 348 L * , such as mechanical (stress-strain and microhardness) and electrical (resistivity). The AISI 348 L * has been studied for use as fuel cladding material. Both materials will be tested after irradiation in the IEA-R1 core and their properties will be compared with those in the pre-irradiated condition. The morphology of the fractured zones after tensile tests was observed using SEM (scanning electron microscopy). (author)

  3. Characterization of AISI 4140 borided steels

    Campos-Silva, I.; Ortiz-Dominguez, M.; Lopez-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martinez-Trinidad, J.

    2010-01-01

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2 B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2 B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form K C (π/2) > K C > K C (0) for the different applied loads and experimental parameters of the boriding process.

  4. Characterization of AISI 4140 borided steels

    Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.

    2010-02-01

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.

  5. Characterization of AISI 4140 borided steels

    Campos-Silva, I., E-mail: icampos@ipn.mx [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico); Ortiz-Dominguez, M.; Lopez-Perrusquia, N.; Meneses-Amador, A. [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Martinez-Trinidad, J. [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico)

    2010-02-01

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe{sub 2}B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe{sub 2}B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 {mu}m from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form K{sub C}({pi}/2) > K{sub C} > K{sub C}(0) for the different applied loads and experimental parameters of the boriding process.

  6. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  7. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  8. Modification of AISI M2 high speed tool steels after laser surface melting under different operation conditions; Modificacion de los aceros rapidos de herramientas AISI M2 por fusion superficial con laser bajo diferentes condiciones de operacion

    Arias, J.; Cabeza, M.; Castro, G.; Feijoo, I.; Merino, P.; Pena, G.

    2010-07-01

    We applied a laser surface melting treatment to AISIM2 high-speed steel hardened and tempered- and studied the resulting surface characteristics (microstructure) and mechanical behavior (hardness and wear performance). The steel was treated using a Nd:YAG continuous-wave laser with different operation conditions. The influence of the laser processing parameters on the single tracks and on melted surface layer obtained by multipass system with 50% overlap were studied. The microstructure for all conditions is formed by MC- and M{sub 2}C-type carbides, martensite and retained austenite; the quantities of this phase depends on the operations conditions. It has been determined that low levels of power density and high speed scanning of the beam leads to greater homogeneity in the microstructure with high hardness values and wear resistance. (Author) 26 refs.

  9. Marine Shaft Steels (AISI 4140 and AISI 5120 Predicted Fracture Toughness by FE Simulation

    Goran VUKELIC

    2017-02-01

    Full Text Available Optimal selection of material can be considered as one of the most critical steps in engineering design process. That is especially emphasized when dealing with constructions that operate in marine environment; high stresses and harsh operating conditions assert the importance of proper material characterization before its selection. This paper presents comparison of two types of steel usually used in marine shaft manufacturing, chromium-molybdenum steel AISI 4140 and chromium low-alloy steel AISI 5120. Comparison was made using numerically determined J-integral, an important fracture mechanics parameter. J-integral values are determined numerically using finite element (FE stress analysis results of compact tensile (CT and single-edge notched bend (SENB type specimens usually used in standardized J-integral experimental procedures. Obtained J values are plotted versus specimen crack growth values (Δa for different specimen geometries (a/W. Higher resulting values of J-integral for AISI 5120 than AISI 4140 can be noticed. Also, higher a/W ratios correspond to lower J-integral values of materials and vice versa. In addition to that, J-integral values obtained by using FE model of CT specimen give somewhat conservative results when compared with ones obtained by FE model of SENB specimen. Although this procedure differs from experimental analysis, results can be used a suitable fracture parameter value in fracture toughness assessment.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13823

  10. Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion

    Sarsilmaz, Furkan [Firat Univ., Elazig (Turkey). Dept. of Mechatronics Engineering; Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi [Firat Univ., Elazig (Turkey)

    2018-03-01

    The aim of the present study is to investigate the effect of welding parameters both on the electrochemical corrosion behavior and tensile strength of pre- and post-electrochemical corrosion of friction welded dissimilar steels. The microstructural changes of AISI 1040/AISI 304L friction welded couples and also parent materials were analyzed by using scanning electron microscopy. The electrochemical behaviors of AISI1040/AISI304L joints were comparatively investigated by potentiodynamic polarization curve test and by electrochemical impedance spectra. Moreover, tensile strength experiments were carried out determining the behavior of friction welded joints of pre- and post-electrochemical corrosion and results indicated that the maximum tensile test value of the dissimilar welded pre-electrochemical corrosion was higher than those of post-electrochemical corrosion and was also very close to AISI 1040 parent material value.

  11. A proposal for M2-brane-anti-M2-brane action

    Garousi, Mohammad R.

    2010-01-01

    We propose a manifestly SO(8) invariant BF type Lagrangian for describing the dynamics of M2-brane-anti-M2-brane system in flat spacetime. When one of the scalars which satisfies a free-scalar equation takes a large expectation value, the M2-brane-anti-M2-brane action reduces to the tachyon DBI action of D2-brane-anti-D2-brane system in flat spacetime.

  12. Corrosion behaviour of AISI 204Cu and AISI 304 stainless steels in simulated pore solution

    Kocijan, Aleksandra [Institute of Metals and Technology, Ljubljana (Slovenia)

    2013-10-15

    The evolution of the passive films on AISI 204Cu and AISI 304 stainless steels in simulated pore solution for steel reinforcements in concrete, and with and without the addition of chloride, was studied using cyclic voltammetry and potentiodynamic measurements. The passive layers were studied at open-circuit potential by means of X-ray photoelectron spectroscopy. The passive films on both materials predominantly contained Cr-oxides, whereas the Fe-species were markedly depleted. Mn-enrichment was also observed. The addition of chloride ions did not have a significant influence on the composition of the passive layers. The surface morphology of the products formed on the surface of both investigated materials at open-circuit potential and at high over-potentials in the presence of chloride was studied using scanning electron microscopy. (orig.)

  13. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  14. Anti-influenza M2e antibody

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  15. Reassessment of the swelling behavior of AISI 304 stainless steel

    Garner, F.A.; Porter, D.L.

    1982-03-01

    Published swelling data derived from EBR-II irradiations of AISI 304 and 304L have been reanalyzed in light of insights gained from irradiation of AISI 316 and Fe-15Cr-25Ni. The primary influence of temperature, displacement rate and compositional variations in the 300 series stainless steels lies in the duration of the transient regime of swelling and not in the steady-state or constant swelling rate regime

  16. Swelling behavior of manganese-bearing AISI 216 steel

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy

  17. Swelling behavior of titanium-modified AISI 316 alloys

    Garner, F.A.; Brager, H.R.; Puigh, R.J.

    1984-01-01

    It appears that titanium additions to stainless steels covering a wide compositional range around the specifications of AISI 316 result only in an increased delay period before neutron-induced void swelling proceeds. Once swelling is initiated the post transient behavior of both annealed and cold-worked titanium-modified steels is quite consistent with that of AISI 316, approaching a relatively temperature-independent swelling rate of approx. 1% per dpa

  18. Casting AISI 316 steel by gel cast

    Ozols, A; Thern, G; Rozenberg, S; Barreiro, M; Marajofsky, A

    2004-01-01

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160 o C to 1300 o C under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  19. M2 qualify laser beam propagation

    Abdelhalim, Bencheikh; Mohamed, Bouafia

    2010-01-01

    One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. Laser beam diameter and quality factor M 2 are significant parameters in a wide range of laser applications. This is because the spatial beam quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization of any kind of beam

  20. Investigation of residual stress in laser welding between carbon steel AISI 1010 and stainless AISI 304

    Mirim, Denilson de Camargo

    2011-01-01

    The dissimilar materials union has the residual stress formation as one of the most critical problems, which occurs mainly because these materials have both different thermal expansion coefficients and thermal conductivities. In this study, it was investigated the laser welding technique between steels, AISI 1010 and AISI 304. The materials were joined by butt autogenous welding with a continuous Nd:YAG laser. The main objective was to identify the welding parameters influence by the residual stresses analysis in the heat affected zone (HAZ). It was executed a factorial design with three-factor at two levels with a replica, which were varied power, welding speed and focal position of the laser beam. Residual stress measurements by the diffraction of X-rays were performed on the sample surface, to study their variation as a function of the parameters investigated. The blind hole method was also used to evaluate the residual stress along the samples depth, up to depth of 1mm. Besides residual stress measurement, weld seams were evaluated by optical and scanned electron microscopy, which were aimed to determine the weld geometry and changes in the microstructure. It was also made Vickers hardness measurements to evaluate the extent of HAZ. To evaluate the mechanical properties of the union were performed tensile and fatigue test. The MINITAB 15 software was used to analyze the residual stresses obtained by the blind hole method at different depths of the HAZ. It was also used statistical regression based on both the influences different and the combination of this input factors, in the residual stress of union. The results indicate that the models can satisfactorily predict the responses and provide users a guide to better define the welding parameters. (author)

  1. Aspects of plasma cutting in AISI 321 stainless steel

    Souza Barros, I. de; Cardoso, P.E.

    1985-10-01

    The utilization of plasma cutting process in AISI 321 stainless steel heavy plates for fabricating nozzles for nuclear reactors was evaluated. The effect of current, electric potential and cutting speed are studied. The superficial irregularity and the microstructure of the zone affected by the cut were analyzed by measurements of roughness, optical metallography and microhardness. (E.G.) [pt

  2. Comparing creep in two stainless steels AISI 316

    Silveira, T.L. da; Monteiro, S.N.

    1976-07-01

    Two AISI 316 stainless steels, one of Brazilian fabrication (Villares), the other of foreign fabrication (Uddeholm) were submitted to creep tests with temperature ranging from 600 to 800 0 C. Some important differences in the mechanical behaviour of the two steels are pointed out. These differences are due to the particular thermomechanical history of the materials under consideration. (Author) [pt

  3. Investigation of the influential parameters of machining of AISI 304 ...

    application of cutting fluid results in longer tool life and better surface finish. ... parameters for turning of AISI 304 stainless steel by considering the process ... In the design of experiments (DOE) the full factorial method was used in .... Esme U 2009 Application of Taguchi method for the optimization of resistance spot welding.

  4. Estimation of embrittlement during aging of AISI 316 stainless steel ...

    Unknown

    rical relation connecting the aging temperature, aging time and nitrogen ... strength, high tensile strength, are easy to fabricate and ... However, the ferrite is a metastable phase which ... 2. Experimental. 2.1 Materials. Nuclear grade AISI 316 stainless steel plates ( .... fore, it is desirable to develop empirical relations con-.

  5. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  6. M2M Optimizations in Public Mobile Networks

    Norp, A.H.J.; Landais, B.

    2012-01-01

    Many M2M applications use public telecommunications networks to transfer data from M2M devices to an M2M server. These telecommunications networks will have to be adapted to cope with the traffic generated by the projected growth of M2M applications. In the near future, many more devices will be

  7. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    Thanee Toomprasen

    2014-06-01

    Full Text Available This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grains. in the welded area. This is the result of friction pressure and upset pressure in the welding process. In addition, the observation result indicated some changes of Ferrite and Pearlite in welded zone. This phase change resulted in the increment of hardness in AISI 4140 at the contact area and adjacent. In part of AISI 1040, the portion of Pearlite and Ferrite are not significantly changed, therefore the value of hardness is almost constant.

  8. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  9. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  10. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  11. Weldability of AISI 304 to copper by friction welding

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  12. Metallographic observations of AISI 304 - copper dissimular joints

    Medeiros, R.C. de; Carvalho Perdigao, S. de

    1982-01-01

    The current work informs on the SMAW dissimilar joints embrittled by molten Copper. Bead on plate of that metal were deposited on four different base metals to evaluate the phenomena. Conventional and non conventional welding methods were employed to obtain dissimilar joints of AISI 304-Cu. The latter were observed metallographically. These results are to be complemented by mechanical testing actually being performed. (Author) [pt

  13. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    Perillo, P.M.; Duffo, G.S.

    1989-01-01

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author) [es

  14. Pitting Corrosion Susceptibility of AISI 301 Stainless Steel in ...

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride (NaCl) solutions - 0.1M, 0.2M, 0.3M, 0.5M and 0.7M and 1.0M. Tensile tests and microscopic examinations were performed on samples prepared from the steel after exposure in the various environments.

  15. Wear behavior of niobium carbide coated AISI 52100 steel

    Fernandes, Frederico Augusto Pires; Casteletti, Luiz Carlos; Oliveira, Carlos Kleber Nascimento de; Lombardi Neto, Amadeu; Totten, George Edward

    2010-01-01

    Bearing steels must have high hardness, good wear resistance and dimensional stability. The aim of this work was to study the effect of NbC coating, produced using the thermo-reactive deposition (TRD) process, on the wear resistance of the AISI 52100 steel. Untreated AISI 52100 samples were ground up to 600 mesh emery paper. The bath was composed of 5wt.% ferroniobium (65 wt.% Nb), 3wt.% aluminum and (Na2B4O7) to 100%. Samples were treated at 1000 deg C for 4h and quenched in oil directly from the bath. The resulting layer was characterized by X-ray diffraction, scanning electron microscopy and a micro-abrasive wear testing. The thermo-reactive deposition process in molten borax produced a hard and homogeneous layer composed by NbC, which was confirmed by X-ray diffraction. The NbC coating produced a great increase in the wear resistance of the AISI 52100 steel, decreasing the wear rate by an order of magnitude in relation to the substrate. For coated and uncoated samples the worn volume and wear rate increases with the load. (author)

  16. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    João Paulo Sampaio Eufrásio Machado

    2006-06-01

    Full Text Available This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration. In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (200, 300 and 400 °C. The procedure was done in conditions close to those in the distillation column. Heat was gradually increased from room temperature, and directly heated to working temperature. Each treatment took 4 hours to be completed. Scanning electronic microscopy (SEM and the analysis of X rays dispersive energy (EDX were used after the trials to characterize the samples. The results show that treatment temperature, as well as the type of heating, has distinct influences on each type of steel.

  17. The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/AISI 304 steel plate welds

    Kilic, Musa; Kirik, Ihsan; Orhan, Nuri [Firat Univ., Elazig (Turkey); Celik, Ferkan [Science Industry and Technology Ministry of Turkey (Turkey)

    2012-11-01

    In this study, 10 mm thick AISI 1040 and AISI 304 steel plates were welded in the butt position without pretreatment by plasma transferred arc (PTA) welding technique. Therefore, mechanical behaviour, microstructure, penetration depth and length were investigated. After welding, microstructural changes in the interface regions of the welded specimens were examined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Micro-hardness as well as V-notch Charpy tests were performed to determine the mechanical properties of the welds. The influence of the welding parameters on the dimension and shape of the joints has been found out. From the results, it was derived that with the parameters used, a partly keyhole weld bead formed with a penetration depth of 10 mm and a width of 11 mm in butt position. (orig.)

  18. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    Wagiyo, H.; Dani, Muhammad; Sulistioso, G.S.; Pardede, Elman; Handayani, Ari; Teguh, Yulius S.P.P.

    2001-01-01

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm 2 obtained at aging temperature of 210 o C for hours with homogenous dendritic microstructure

  19. 26 CFR 1.401(m)-2 - ACP test.

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-2 ACP test. (a) Actual contribution percentage (ACP) test—(1) In general—(i) ACP test formula. A plan satisfies the ACP test for a plan year only...

  20. Towards Horizontal Architecture for Autonomic M2M Service Networks

    Juhani Latvakoski

    2014-05-01

    Full Text Available Today, increasing number of industrial application cases rely on the Machine to Machine (M2M services exposed from physical devices. Such M2M services enable interaction of physical world with the core processes of company information systems. However, there are grand challenges related to complexity and “vertical silos” limiting the M2M market scale and interoperability. It is here expected that horizontal approach for the system architecture is required for solving these challenges. Therefore, a set of architectural principles and key enablers for the horizontal architecture have been specified in this work. A selected set of key enablers called as autonomic M2M manager, M2M service capabilities, M2M messaging system, M2M gateways towards energy constrained M2M asset devices and creation of trust to enable end-to-end security for M2M applications have been developed. The developed key enablers have been evaluated separately in different scenarios dealing with smart metering, car sharing and electric bike experiments. The evaluation results shows that the provided architectural principles, and developed key enablers establish a solid ground for future research and seem to enable communication between objects and applications, which are not initially been designed to communicate together. The aim as the next step in this research is to create a combined experimental system to evaluate the system interoperability and performance in a more detailed manner.

  1. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    Paula Fernanda da Silva Farina

    2012-06-01

    Full Text Available The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i time at cryogenic temperatures (3, 10 and 30 hours; ii cryogenic temperatures (–80°C and –196°C; iii stress relief heat treatment (130°C before cryogenic treatments; iv effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.

  2. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2011-01-01

    Research highlights: → Beneficial effects of FRW, GTAW and EBW joints of dissimilar AISI 304 and AISI 4140 materials. → Comparative study of FRW, GTAW and EBW joints on mechanical properties. → SEM/EDAX, XRD analysis on dissimilar AISI 304 and AISI 4140 materials. -- Abstract: This paper presents the investigations carried out to study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW) and Friction Welding (FRW). For each of the weldments, detailed analysis was conducted on the phase composition, microstructure characteristics and mechanical properties. The results of the analysis shows that the joint made by EBW has the highest tensile strength (681 MPa) than the joint made by GTAW (635 Mpa) and FRW (494 Mpa). From the fractographs, it could be observed that the ductility of the EBW and GTA weldment were higher with an elongation of 32% and 25% respectively when compared with friction weldment (19%). Moreover, the impact strength of weldment made by GTAW is higher compared to EBW and FRW.

  3. A Survey on M2M Service Networks

    Juhani Latvakoski

    2014-11-01

    Full Text Available The number of industrial applications relying on the Machine to Machine (M2M services exposed from physical world has been increasing in recent years. Such M2M services enable communication of devices with the core processes of companies. However, there is a big challenge related to complexity and to application-specific M2M systems called “vertical silos”. This paper focuses on reviewing the technologies of M2M service networks and discussing approaches from the perspectives of M2M information and services, M2M communication and M2M security. Finally, a discussion on technologies and approaches potentially enabling future autonomic M2M service networks are provided. According to our conclusions, it is seen that clear definition of the architectural principles is needed to solve the “vertical silo” problem and then, proceeding towards enabling autonomic capabilities for solving complexity problem appears feasible. Several areas of future research have been identified, e.g., autonomic information based services, optimization of communications with limited capability devices, real-time messaging, creation of trust and end to end security, adaptability, reliability, performance, interoperability, and maintenance.

  4. High-temperature strength of AISI 316 steel

    Antunes, A.E.B.; Monteiro, S.N.

    1975-01-01

    The mechanical properties, especially elastic limit and strain hardening of AISI-316 austenitic stainless steel were investigated within the temperature range 150-800 0 C for two strain rates. The results showed anomalous behaviour between 200 and 650 0 C, over which range there was an increase in maximum strenght and hardening, with a tendency to show peaks. These apparentley three in number, may be connected with the effects of interaction between point defects and dislocations leading to dinamic aging phenomena. The mechanisms responsible for this anomalous behaviour produce a negative dependence on strain rate [pt

  5. Erosion of heat-treated AISI 4140 steel

    Goretta, K.C. (Materials and Components Tech. Div., Argonne National Lab., IL (United States)); Thompson, A.C. (Materials and Components Tech. Div., Argonne National Lab., IL (United States)); Routbort, J.L. (Materials Science Div., Argonne National Lab., IL (United States))

    1993-03-15

    Solid-particle erosion was studied on AISI 4140 steel heat treated to have a Vickers hardness (Hv) of 288-650 kg mm[sup -2]. The experiments were conducted in vacuum with 143 [mu]m Al[sub 2]O[sub 3] abrasive impacting at 50-100 m s[sup -1] at an angle of 30 or 90 . Erosion rates were nearly independent of hardness for Hv[<=]365 kg mm[sup -2], but increased with hardness for Hv>365 kg mm[sup -2]. The improved erosion resistances of the softer alloys were attributed to increased ductilities. (orig.). Letter-to-the-editor

  6. M2 polarization enhances silica nanoparticle uptake by macrophages

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  7. Aluminum coating by fluidized bed chemical vapor deposition on austenitic stainless steels AISI 304 and AISI 316

    Jose Luddey Marulanda-Arevalo

    2015-01-01

    Full Text Available Los revestimientos de aluminio f ueron depositados sobre aceros inoxidables AISI 304 y AISI 316 en el rango de temperatura de 5 60 a 600 °C por deposición química de vapor en lecho fluidizado(CVD – FBR. Se utilizó un lecho que consistía en 10 % de aluminio en polvo y 90 % de lecho inerte (alúmina, el cual fue fluidizado con Ar y como ga ses activadores se utilizó una mezcla de ácido clorhídrico con hidrógeno (HCl/H 2 . En el recubrimiento si n tratamiento térmico están las siguiente s especies: Al 13 Fe 4 , Fe 2 Al 5 , FeAl 2 y Al 5 FeNi, las cuales están presentes para ambos aceros. Además, el tratamiento térmico provoca la difusa de alu minio hacia el sustrato y la difusa de hierro del sustrato haci a la superficie del recubrimiento, haciendo la trans formación de los compuestos ant eriores a FeAl, Fe 2 Al 5 , FeAl 2 , Al 0.99 Fe 0.99 Ni 0.02 , AlNi y el Fe 2 AlCr. Se realizó la simulación termodinámica con el s oftware Thermo Calc para obt ener información de la posible composición y la cantidad de mat erial depositado, para condiciones seleccionadas. Las muestras recubi ertas y sin recubrir, se expus ieron a 750 ºC en una atmósfera d onde el vapor agua se transporta a las muestras usando un flujo de N 2 de 40 ml/min, más 100 % vapor de agua (H 2 O. Los dos sustratos sin revestir se comportaron de manera diferente, ya que el acero AISI 304 soportó bien el a taque y ganó poco peso (0.49 mg/cm 2 , en comparación con el acero AISI 316 que perdió mucho peso (25.4 mg/cm 2 . Los aceros recubiertos ganaron poco de peso durante las mil horas de exposición (0.26 mg/cm 2 y soportaron muy bien el ataque corrosivo en c omparación con sustratos sin r ecubrimiento.

  8. Magnetic Barkhausen emission for characterizing AISI 1045 steel plastically deformed

    Gelaysi Moreno-Vega

    2018-04-01

    Full Text Available The aim of this work was to correlate parameters of the metallurgical structure such as size and reorganizing the grains, as well as the hardening capacity and the samples distortion of AISI 1045 steel plastically deformed by roll and then fractioned, with average values root means square RMS of a Barkhausen Emission. The analyzed samples were deformed by using forces of 500, 1500 and 2500 N, angular speed of 27, 54, and 110 r.p.m and tool advance of 0,075; 0,125 and 0,25 mm / rev. Then, they underwent a traction process using a CRITM DNS 200 machine, with a load of 200 kN. It was observed that the EMB signal presented an increasing performance in correspondence with the deformation decline and the increasing in tension and the hardness degree. The study of commercial steel AISI 1045 plastically deformed with roller and then pulled with EMB technique, allowed corroborating the potential of this technique as a non-destructive testing.

  9. In pile AISI 316L. Low cycle fatigue. Final report

    Van Nieuwenhove, R.; Moons, F.

    1994-12-01

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  10. Atomic diffusion in laser surface modified AISI H13 steel

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  11. Tensile properties of irradiated and fatigue exposed stainless steel DIN X 6 CrNi 1811 (similar to AISI type 304) plate and welded joints

    Vries, M.I. de; Schaaf, B. van der; Elen, J.D.

    1979-10-01

    Test specimens of plate metal and welded joints of stainless steel DIN 1.4948, which is similar to AISI type 304, have been irradiated at 723 K and 823 K up to fluences of 1.10 23 n.m -2 and 5.10 24 n.m -2 (E > 0.1 MeV). These are representative conditions for the SNR-300 reactor vessel and inner components after 16 years of operation. High-rate (depsilon/dt = 1 s -1 ) tensile tests were performed after fatigue exposure up to various fractions of fatigue life (D) ranging from 5% to 95% at the same temperatures as the nominal temperatures of the irradiation series

  12. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  13. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  14. Theoretical Assessment of 178m2Hf De-Excitation

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  15. A distributed approach for secure M2M communications

    BEN SAIED , Yosra; OLIVEREAU , Alexis; LAURENT , Maryline

    2012-01-01

    International audience; A key establishment solution for heterogeneous Machine to Machine (M2M) communications is proposed. Decentralization in M2M environment leads to situations where highly resource-constrained nodes have to establish end-to-end secured contexts with powerful remote servers, which would normally be impossible because of the technological gap between these classes of devices. This paper proposes a novel collaborative session key exchange method, wherein a highly resource-co...

  16. LEU WWR-M2 fuel assemblies burnable test

    Kirsanov, G.A.; Konoplev, K.A.; Pikulik, R.G.; Sajkov, Yu. P.; Tchmshkyan, D.V.; Tedoradze, L.V.; Zakharov, A.S.

    2000-01-01

    The results of in-pile irradiation tests of LEU WWR-M2 fuel assemblies with reduced enrichment of fuel are submitted in the report. The tests are made according to the Russian Program on Reduced Enrichment for Research and Test Reactors (RERTR). United States Department of Energy and the Ministry of Atomic Energy of Russian Federation jointly fund this Program. The irradiation tests of 5 WWR-M2 experimental assemblies are carried out at WWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI). The information on assembly design and technique of irradiation tests is presented. In the irradiation tests the integrity of fuel assemblies is periodically measured. The report presents the data for the integrity maintained during the burnup of 5 fuel assemblies up to 45%. These results demonstrate the high reliability of the experimental fuel assemblies within the guaranteed burnup limits specified by the manufacturer. The tests are still in progress; it is planned to test and analyze the change in integrity for burnup of up to 70% - 75% or more. LEU WWR-M2 fuel assemblies are to be offered for export by their Novosibirsk manufacturer. Currently, HEU WWR-M2 fuel assemblies are used in Hungary, Ukraine and Vietnam. LEU WWR-M2 fuel assemblies were designed as a possible replacement for the HEU WWR-M2 fuel assemblies in those countries, but their use can be extended to other research reactors. (author)

  17. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  18. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy

    Hamad Al-Khalid

    2011-12-01

    Full Text Available Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction.

  19. Study of Surface Wear and Damage Induced by Dry Sliding of Tempered AISI 4140 Steel against Hardened AISI 1055 Steel

    A. Elhadi

    2016-12-01

    Full Text Available In industry, the sliding mechanical systems are subject to friction and wear phenomena. These phenomena can be the origin of a reduction of the efficiency of the mechanical system even to be responsible for its incapacity. Generally, the materials of the parts which are moving relative (tribological couple of these systems are low alloy steels and carbon steels, thanks to their good mechanical and tribological properties. The present work aimed to study, the surface wear and damage induced by dry sliding of hard carbon steel AISI 1055 (disc against tempered low alloy steel AISI 4140 (pin with different hardness and applied loads was investigated. The results revealed that the interaction between the applied load and pin hardness result in complex thermo-mechanical behaviour of the worn surfaces. When a lower hardness pin is used, the main wear mechanisms observed on the discs were abrasion, adhesion, and oxidation. When a higher hardness pin is used, the wear of the discs is governed by delamination, oxidation, and plastic deformation. In particular, third-body wear occurs at high applied load resulting in higher wear rate of high hardness pins compared to low hardness pins.

  20. The influence of plasma nitriding on the fatigue behavior of austenitic stainless steel types AISI 316 and AISI 304

    Varavallo, Rogerio; Manfrinato, Marcos Dorigao; Rossino, Luciana Sgarbi; Spinelli, Dirceu; Riofano, Rosamel Melita Munoz

    2010-01-01

    The plasma nitriding process has been used as an efficient method to optimize the surface properties of steel and alloy in order to increase their wear, fatigue and corrosion resistance. This paper reports on a study of the composition and influence of the nitrided layer on the high-cycle fatigue properties of the AISI 316 and 304 type austenitic stainless steels. Test specimens of AISI 316 and 304 steel were nitrided at 400 deg C for 6 hours under a pressure of 4.5 mbar, using a gas mixture of 80% volume of H 2 and 20% volume of N 2 . The rotary fatigue limit of both nitrided and non-nitrided steels was determined, and the effect of the treatment on the fatigue limit of the two steels was evaluated. The mechanical properties of the materials were evaluated based on tensile tests, and the nitrided layer was characterized by microhardness tests, scanning electron microscopy and X-ray diffraction. The resulting nitride layer showed high hardness and mechanical strength, increasing the fatigue limit of the nitrided material in comparison with the non-nitrided one. The fatigue limit of the 316 steel increased from 400 MPa to 510 MPa in response to nitriding, while that of the 304 steel increased from 380 MPa to 560 MPa. One of the contributing factors of this increase was the introduction of residual compressive stresses during the surface hardening process, which reduce the onset of crack formation underneath the nitride layer. (author)

  1. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  2. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    2013-05-01

    H.K.D.H. Bhadeshia, A Model for the Microstruc- ture of Some Advanced Bainitic Steels , Mater. Trans., 1991, 32, p 689–696 19. G.J. Davies and J.G. Garland...REPORT Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding 14. ABSTRACT 16. SECURITY...Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding Report Title ABSTRACT A fully coupled (two-way

  3. Experimental study on joining of AA6063 and AISI 1040 steel

    Hynes, N. Rajesh Jesudoss; Raja, S.

    2018-05-01

    Feasibility of joining of dissimilar metals with different physical, chemical and thermal properties such as AA6063 alloy and AISI 1040 steel is worthwhile study, since it has tremendous applications in all most of all engineering domains. The mechanism of bonding is studied using scanning electron microscopy. Impact strength of AA2024/AISI joints, axial shortening distance, micro hardness distribution and joint strength are determined. Micro hardness profile shows increased hardness value at the joint interface, due to grain refinement.

  4. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  5. Main: 1M2Q [RPSD[Archive

    Full Text Available 1M2Q トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...cule: Casein Kinase Ii, Alpha Chain; Chain: A; Fragment: Catlytic Subunit; Synonym: Ckii; Engineered: Yes Tr...ansferase 2.7.1.37 (Casein Kinase Ii, Alpha Chain) E.De Moliner, S.Sarno, S.Moro, G.Zagotto, G.Zanotti, L.A....=2-326.|PDB; 1M2Q; X-ray; A=2-328.|PDB; 1M2R; X-ray; A=2-328.|PDB; 1OM1; X-ray; A=1-332.|Mai

  6. Corrosion of AISI 304 stainless steel in polluted seawater

    Brankevich, G.; Guiamet, P.; Videla, H.A.

    1987-01-01

    The sequence of microbiofouling settlement on AISI 304 stain steel samples exposed to polluted harbor sea water of a power cooling water intake is studied. The firts sates of bacterial colonization are followed by means of scanning electron microscopy during two weeks of exposure. The relation between microbiofouling and corrosion is also followed by scanning electron microscopy and evaluated through electrochemical polarization experiments. The results obtained show that microbial colonization and extracellular polimeric substances forming the biofilms have a marked influence on the electrochemical behaviour of stainless steel in sea water. Laboratory experiments using inorganic chloride solutions or artificial sea water show a considerably lesser attack of the metal than those performed 'in situ' with natural sea water. Passivity breadown is highly facilitated when complex biological and inorganic deposits (fouling) have settled on the metal surface. (Author) [pt

  7. Static strain aging type AISI-304 austenitic stainless steel

    Trindade, M.B.

    1981-03-01

    Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt

  8. Study of discordancy mobility in the AISI 304 steel

    Lima, L.F.C.P. de; Miranda, P.E.V. de; Monteiro, S.N.

    1987-01-01

    Internal Friction (IF), measurements were carried out in a type AISI 304 austenitic stainless steels at approximately 1HZ of frequency in the temperature interval from 120 to 573K. The IF spectra and the vibration frequency were obtained in samples were submitted to specific heat treatments. The results showed IF spectra with a well defined peak at 260K. The intensity dependes on the amount of plastic deformation previously introduced in the sample. Another broad peak was detected between 300 and 400K. Both peaks could only be detected after plastic deformation in uniaxial tension or torsion. In torsionably deformed samples at liquid nitrogen temperature, 77 K, the IF spectrum is observed only after linear annealing at 400K. This apparently results from a high damping due to a possible phase transformation which occurs around room temperature. The broad peak at higher temperature is sensitive to recovery induced by linear annealings. (Author) [pt

  9. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  10. Polarized M2 macrophages in dogs with visceral leishmaniasis.

    Moreira, Pamela Rodrigues Reina; Fernando, Filipe Santos; Montassier, Hélio José; André, Marcos Rogério; de Oliveira Vasconcelos, Rosemeri

    2016-08-15

    The objective of the present study was to analyze the skin (nasal surface and ear regions), lymph nodes (popliteal and pre-scapular), spleen and liver of dogs with visceral leishmaniasis (VL), in order to investigate the relationship between the parasite load measured as DNA copy number of Alpha gene of DNA polymerase of Leishmania infantum by quantitative PCR and the number of M2 macrophages by immunohistochemistry. A set of 29 naturally infected dogs from an endemic area for VL were sampled and another set of six dogs negative for VL and from a non-endemic area were analyzed as the control group (C). The spleen presented the highest number of Leishmania DNA copies, with significant differences between the groups G1 and G2 (with and without skin lesions, respectively). The M2 phenotype immunostaining predominated among the macrophages in granulomas and inflammatory infiltrates of samples from the skin, lymph nodes and spleens examined. The presence of M2 macrophages in dogs from infected group differed significantly from the control group, in all organs analyzed, excepted liver. The highest proportion of M2 macrophages coincided with the highest parasitism loads found in more susceptible organs of VL dogs, even in the skin, considered a more resistant organ, while the liver showed low parasitism load and low immunostaining for M2 macrophages with no significant differences between infected and negative groups. It was concluded that the predominance of M2 phenotype in VL dogs favored the multiplication of Leishmania infantum in organs of dogs that are more susceptible to Leishmania infection, as skin, lymph nodes and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Characteristics and potential role of M2 macrophages in COPD

    He S

    2017-10-01

    Full Text Available Shengyang He, Lihua Xie, Junjuan Lu, Shenghua SunDepartment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China Background: COPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role.Materials and methods: COPD models were built in the C57BL/6 mouse by cigarette smoke (CS exposure combined with intraperitoneal injection of cigarette smoke extract (CSE. The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-βRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR. The expression levels of TGF-β/Smad pathway-related makers (TGF-βRII, p-Smad2, p-Smad3, Smad7 and TGF-β in alveolar M2 macrophages were detected by two consecutive paraffin section IHS.Results: The COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05. The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-βRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05 in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-β/Smad pathway-related markers are

  12. Study of residual stresses generated in machining of AISI 4340 steel; Estudo das tensoes residuais geradas na usinagem de aco AISI 4340

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen{sup 2} {psi} method, using Cr{kappa}{beta} radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  13. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    A. Ruiz

    2016-06-01

    Full Text Available This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  14. A nonperturbative test of M2-brane theory

    Hosomichi, Kazuo; Lee, Ki-Myeong; Lee, Sungjay; Yi, Piljin; Lee, Sangmin; Park, Jaemo

    2008-01-01

    We discuss non-perturbative effects in the ABJM model due to monopole instantons. We begin by constructing the instanton solutions in the U(2) x U(2) model, explicitly, and computing the Euclidean action. The Wick-rotated Lagrangian is complex and its BPS monopole instantons are found to be a delicate version of the usual 't Hooft-Polyakov monopole solutions. They are generically 1/3 BPS but become 1/2 BPS at special locus in the moduli space of two M2-branes, yet each instanton carries eight fermionic zero modes, regardless of the vacuum choice. The low energy effective action induced by monopole instantons are quartic order in derivatives. The resulting vertices are nonperturbative in 1/k, as expected, but are rational functions of the vacuum moduli. We also analyze the system of two M2-branes in the supergravity framework and compute the higher order interactions via 11-dimensional supergraviton exchange. The comparison of the two shows that the instanton vertices are precisely reproduced by this M2-brane picture, supporting the proposal that the ABJM model describes multiple M2-branes.

  15. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  16. Multiple M2-branes and the embedding tensor

    Bergshoeff, Eric A.; de Roo, Mees; Hohm, Olaf

    2008-01-01

    We show that the Bagger-Lambert theory of multiple M2-branes fits into the general construction of maximally supersymmetric gauge theories using the embedding tensor technique. We apply the embedding tensor technique in order to systematically obtain the consistent gaugings of N = 8 superconformal

  17. An N=1 superfield action for M2 branes

    Mauri, Andrea; Petkou, Anastasios C.

    2008-01-01

    We present an octonionic N=1 superfield action that reproduces in components the action of Bagger and Lambert for M2 branes. By giving an expectation value to one of the scalars we obtain the maximally supersymmetric superfield action for D2 branes

  18. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction

    Burnett, A. K.; Russell, N. H.; Hills, R. K.

    2015-01-01

    Modifying induction therapy in acute myeloid leukemia (AML) may improve the remission rate and reduce the risk of relapse, thereby improving survival. Escalation of the daunorubicin dose to 90 mg/m(2) has shown benefit for some patient subgroups when compared with a dose of 45 mg/m(2), and has been...... = .15). In an exploratory subgroup analysis, there was no subgroup that showed significant benefit, although there was a significant interaction by FLT3 ITD mutation. This trial is registered at http://www.isrctn.com as #ISRCTN55675535....

  19. Radiation induced genetic variability studies in M2 and F2M2 generation in chilli (Capsicum annum L.)

    Rangaiah, S.; Manjunath, A.; Naik, Puttarama; Gangappa, E.

    2002-01-01

    Chilli (Capsicum annum L.) is an important commercial crop in India. Mutation breeding is one of the effective tool to create new variability. Since, yield and its component characters show polygenic inheritance, information on amount of heritable portion of variability created through mutation for these characters is needed to use the induced variability for crop improvement. To harness more variability mutation has been superimposed on hybridization in several crops. The present study is undertaken to estimate the genetic variability induced through gamma irradiation for the polygenically inherited productive traits of chilli in M 2 and F 2 M 2 generation

  20. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Rangaswamy, Udaya S; O'Flaherty, Brigid M; Speck, Samuel H

    2014-01-01

    A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68) infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  1. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Udaya S Rangaswamy

    Full Text Available A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68 infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  2. On relating multiple M2 and D2-branes

    Gran, U.; Nilsson, B.E.W; Petersson, C.

    2008-01-01

    Due to the difficulties of finding superconformal Lagrangian theories for multiple M2-branes, we will in this paper instead focus on the field equations. By relaxing the requirement of a Lagrangian formulation we can explore the possibility of having structure constants f ABC D satisfying the fundamental identity but which are not totally antisymmetric. We exemplify this discussion by making use of an explicit choice of a non-antisymmetric f ABC D constructed from the Lie algebra structure constants f ab c of an arbitrary gauge group. Although this choice of f ABC D does not admit an obvious Lagrangian description, it does reproduce the correct SYM theory for a stack of N D2-branes to leading order in g YM -1 upon reduction and, moreover, it sheds new light on the centre of mass coordinates for multiple M2-branes.

  3. Analysis of AISI 304 Tensile Strength as an Anchor Chain of Mooring System

    Hamidah, I.; Wati, R.; Hamdani, R. A.

    2018-05-01

    The background of this research is the use of mild steel (i.e., St37) as anchor chain that works on the corrosive environment of seawater which is possible to decrease its tensile strength. The longer soaked in seawater, the more significant the lowering of its tensile strength. Anchor chain needs to be designed by considering its tensile strength and corrosion resistance, so it’s able to support mooring system well. The primary purpose of this research is obtaining the decreasing of stainless steel 304 (AISI 304) tensile strength which is corroded by seawater as anchor chain of the mooring system. It is also essential to obtain the lifetime of AISI304 and St37 as anchor chain with the same load, the corrosion rate of AISI 304, and St 37 in seawater. The method which was employed in this research is an experiment with four pieces of stainless steel AISI 304, and of St 37 corrosion testing samples, six pieces of stainless steel 304, and six pieces of St 37 for tensile testing samples. The result of this research shows that seawater caused stainless steel AISI 304 as anchor chain has decreased of tensile strength about 1.68 % during four weeks. Also, it indicates that AISI 304 as anchor chain has a lifetime about 130 times longer than St 37. Further, we found that the corrosion rate of stainless steel 304 in seawater is 0.2042 mpy in outstanding category, while the St 37 samples reached up to 27.0247 mpy ranked as fair category. This result recommends that AISI 304 more excellence than St 37 as anchor chain of the mooring system.

  4. Highly retarded M2 transition in 90Nb

    Sergeev, V.O.

    2006-01-01

    One studied properties of 2.3 keV transition between 124.67 (4 - ) and 122.37 keV (6 + ) in 90 Nb. The mentioned M2-transition is shown to be retarded by approximately 10 4 times and provided explanations of the mentioned extraordinary high factor of deceleration. One evaluated impurity of E3 possible multipolarity constituent in the mentioned transition (δ 2 [ru

  5. Solar thermal barometer. 12 million M2 installed in europe

    Anon.

    2002-01-01

    European thermal solar has once again reached its zenith. The difficult times of 1985-1995 are now a thing of the past. The best proof is the very good results of 2001 that show figures in significant progression with respect to those of the year 2000. 1480 320 m 2 . This is now the new record to beat in terms of the annual volume of thermal solar collector installation in the European Union. (author)

  6. State-of-the-art Model M-2 Maintenance System

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-04-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system. 5 references, 8 figures

  7. Penrose limits, pp waves, and deformed M2-branes

    Cvetic, M.; Lue, H.; Pope, C.N.

    2004-01-01

    Motivated by the recent discussions of the Penrose limit of AdS 5 xS 5 , we examine a more general class of supersymmetric pp-wave solutions of the type IIB theory, with a larger number of nonvanishing structures in the self-dual 5-form. One of the pp-wave solutions can be obtained as a Penrose limit of a D3-D3 intersection. In addition to 16 standard supersymmetries these backgrounds always allow for supernumerary supersymmetries. The latter are in one-to-one correspondence with the linearly realized world-sheet supersymmetries of the corresponding exactly solvable type IIB string action. The pp-waves provide new examples where supersymmetries will survive in a T-duality transformation on the x + coordinate. The T-dual solutions can be lifted to give supersymmetric deformed M2-branes in D=11. The deformed M2-brane is dual to a three-dimensional field theory whose renormalization group flow runs from the conformal fixed point in the infrared regime to a nonconformal theory as the energy increases. At a certain intermediate energy scale there is a phase transition associated with a naked singularity of the M2-brane. In the ultraviolet limit the theory is related by T duality to an exactly solvable massive type IIB string theory

  8. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  9. Study on tempering behaviour of AISI 410 stainless steel

    Chakraborty, Gopa; Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V.; Panneerselvam, G.; Dasgupta, Arup

    2015-01-01

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M 23 C 6 ) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe 2 C and M 23 C 6 types of carbides coexisting in the material. The nucleation of Fe 2 C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M 23 C 6 carbides, instead of Fe 2 C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with

  10. Study on tempering behaviour of AISI 410 stainless steel

    Chakraborty, Gopa, E-mail: gopa_mjs@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V. [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Panneerselvam, G. [Chemistry Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Dasgupta, Arup [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of

  11. The surface fatigue life of contour induction hardened AISI 1552 gears

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-07-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  12. Response to annealing and reirradiation of AISI 304L stainless steel following initial high-dose neutron irradiation in EBR-II

    Porter, D.L.; McVay, G.L.; Walters, L.C.

    1980-01-01

    The object of this study was to measure the stability of irradiation-induced microstructure upon annealing and, by selectively annealing out some of these features and reirradiating the material, it was expected that information could be gained concerning the role of microstructural changes in the void swelling process. Transmission electron microscopic examinations of isochronally annealed (200 to 1050 0 C) AISI 304L stainless steel, which had been irradiated at approximately 415 0 C to a fast (E > 0.1 MeV) neutron fluence of approximately 5.1 x 10 26 n/m 2 , verified that the two-stage hardness recovery with temperatures was related to a low temperature annealing of dislocation structures and a higher temperature annealing of voids and solute redistribution

  13. Qualification criteria verification for aisi-4340 steel suspension lug

    Riaz, M.A.; Alam, M.

    2005-01-01

    All external loads carried underneath an aircraft are mounted onto it through mechanism generally known as suspension system. The externally mounted attachments like bombs, missiles and fuel tanks etc. experience enormous aerodynamic and inertial forces in the flights. These forces are transferred to the interface point of suspension system, known as 'Suspension Lug'. Thus lugs are considered critical component and have extremely stringent qualification criteria standards used in the aviation industry in USA, Europe, Russia, etc. Different standards prevail in different parts of the world about qualification and testing of these lugs. As Pakistan is entering into aviation industry, therefore there is a need to fulfill the requirements of these standards, to suit Pakistani environment. The suspension lug under study is 2000 Ibs. load class made from AISI-4340 Steel having good mechanical properties as per required standard. The manufacturing processes included forging, machining and vacuum heat treatment. The prototypes of suspension lugs were manufactured in the local industry and subjected to the required mechanical tests such as tensile testing at 5 to 35 degree angles. Impact testing at cryogenic temperatures of -50 to -70 degree C, and breaking load testing were performed. The acceptable results were obtained and mechanical testing for qualification of lugs was finalized and standardized. The options were compared with practical viability, utilization of product and cost effectiveness. (author)

  14. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  15. Deformation induced martensite in AISI 316 stainless steel

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  16. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  17. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  18. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  19. The Forming of AISI 409 sheets for fan blade manufacturing

    Foroni, F. D.; Menezes, M. A.; Moreira Filho, L. A.

    2007-01-01

    The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concern referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good to temperatures of gas exhaust from tunnels in fire situation. The innovation is centered in the process of a deep drawing of metallic sheets in order to keep the ideal aerodynamic superficies for the fan ideal performance. Through the impression of circles on the sheet plane it is shown, experimentally, that, during the pressing process, the more deformed regions on the sheet plane of the blade can not reach the deformation limits of the utilized sheet material

  20. Development of AISI 316L stainless steel coronary stent

    García-López, Erika; Siller, Héctor R.; Rodríguez, Ciro A.

    2018-02-01

    Coronary stents are manufactured through a sequence of processes and each step demands the process control to assure surface quality. This study is focused on the influence of laser cutting parameters and electropolishing on average surface roughness and back wall dross percentage for fiber laser cutting of AISI 316L coronary struts. A preliminary test and a design of experiments (DOE) were implemented to determine the limiting cutting conditions and the effect of these parameters on quality indicators. Preliminary results identify four cutting zones from a non-cut zone to a burned zone, in a frequency range between 1000 and 1500 Hz and a peak power between 160 to 180 W for clean cuts. From the DOE results, several interactions between factors were observed; however, a laser frequency of 1000 to 1500 Hz and a cutting speed of 250 mm/min minimize the backwall dross percentage and the surface roughness to values less than 2% and 0.9 μm, respectively. After the laser conditions selection, coronary stents were manufactured and electropolished to reduce the surface roughness on the strut edge. Electropolishing results indicate a surface roughness reduction from 0.9 μm to 0.3 μm after 300 s of electropolishing time.

  1. M2-Branes in N = 3 Harmonic Superspace

    E. Ivanov

    2010-01-01

    Full Text Available We give a brief account of the recently proposed N = 3 superfield formulation of the N = 6, 3D superconformal theory of Aharony et al (ABJM describing a low-energy limit of the system of multiple M2-branes on the AdS4×S7/Zk background. This formulation is given in harmonic N = 3 superspace and reveals a number of surprising new features. In particular, the sextic scalar potential of ABJM arises at the on-shell component level as the result of eliminating appropriate auxiliary fields, while there is no explicit superpotential at the off-shell superfield level.

  2. SLiM 2: Flexible, Interactive Forward Genetic Simulations.

    Haller, Benjamin C; Messer, Philipp W

    2017-01-01

    Modern population genomic datasets hold immense promise for revealing the evolutionary processes operating in natural populations, but a crucial prerequisite for this goal is the ability to model realistic evolutionary scenarios and predict their expected patterns in genomic data. To that end, we present SLiM 2: an evolutionary simulation framework that combines a powerful, fast engine for forward population genetic simulations with the capability of modeling a wide variety of complex evolutionary scenarios. SLiM achieves this flexibility through scriptability, which provides control over most aspects of the simulated evolutionary scenarios with a simple R-like scripting language called Eidos. An example SLiM simulation is presented to illustrate the power of this approach. SLiM 2 also includes a graphical user interface for simulation construction, interactive runtime control, and dynamic visualization of simulation output, facilitating easy and fast model development with quick prototyping and visual debugging. We conclude with a performance comparison between SLiM and two other popular forward genetic simulation packages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  4. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  5. Evaluation of AISI 316L stainless steel welded plates in heavy petroleum environment

    Carvalho Silva, Cleiton; Pereira Farias, Jesualdo; Batista de Sant'Ana, Hosiberto

    2009-01-01

    This work presents the study done on the effect of welding heating cycle on AISI 316L austenitic stainless steel corrosion resistance in a medium containing Brazilian heavy petroleum. AISI 316L stainless steel plates were welded using three levels of welding heat input. Thermal treatments were carried out at two levels of temperatures (200 and 300 deg. C). The period of treatment in all the trials was 30 h. Scanning electronic microscopy (SEM) and analysis of X-rays dispersive energy (EDX) were used to characterize the samples. Weight loss was evaluated to determine the corrosion rate. The results show that welding heating cycle is sufficient to cause susceptibility to corrosion caused by heavy petroleum to the heat affected zone (HAZ) of the AISI 316L austenitic stainless steel

  6. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M.

    2002-01-01

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s

  7. The Effects of Shallow Cryogenic Process On The Mechanical Properties of AISI 4140 Steel

    Eşref KIZILKAYA

    2018-03-01

    Full Text Available In this study, shallow cryogenic treatments were carried out for various holding time to AISI 4140 steel and the effects of heat treatment parameters on wear behavior, impact strength and tensile strength were investigated. Three different holding times were used for cryogenic heat treatments. After the cryogenic process, single tempering was applied. In addition, the abrasion tests were carried out at three different forces (5N, 10N and 15N at a constant slip speed (3.16 m / s and at three different slip distances (95 m, 190 m, 285 m. It has been determined that the shallow cryogenic process parameters significantly influence the mechanical properties of the AISI 4140 steel as a result of experimental studies., Low heat treatment times in cryogenic heat treatment have been found to have a positive effect on many mechanical properties, especially wear. The mechanical properties of the AISI 4140 steel can be optimized by controlling the shallow cryogenic heat treatment parameters.

  8. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M

    2002-02-15

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s.

  9. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F.

    2003-01-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J IC ) to ambient temperature for the base metal of 528 KJ/m 2 , which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  10. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  11. Residual stress stability and alternating bending strength of AISI 4140 after shot peening and successive annealing

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde I, Univ. of Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and finest carbides. It will be shown that by short-time annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effect of static strain aging, while minimizing the detrimental effect of thermal residual stress relaxation, which was measured by X-ray diffraction method. Static strain aging effects were also found to be responsible for an increase of the quasi static and cyclic surface yield strengths. (orig.)

  12. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  13. Study of residual stresses generated in machining of AISI 4340 steel

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C.

    2010-01-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen 2 ψ method, using Crκβ radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  14. Swelling of AISI 304L in response to simultaneous variations in stress and displacement rate

    Porter, D.L.; Garner, F.A.

    1984-01-01

    The duration of the transient regime of neutron-induced swelling in annealed AISI 304L at 400 0 C is sensitive to both stress and displacement rate variations. The simultaneous application of both variables exerts a synergistic effect on the transient regime. The duration of this regime cannot be reduced below a required intrinsic exposure of approx. 10 dpa, however, which has been found to be characteristic of all Fe-Ni-Cr austenitic alloys. This is four times larger than that currently assumed in the stress-affected swelling equation for 20% cold-worked AISI 316

  15. Supersymmetric states in M5/M2 CFTs

    Bhattacharyya, Sayantani; Minwalla, Shiraz

    2007-01-01

    We propose an exact, finite N formula for the partition function over 1/4 th BPS states in the conformal field theory on the world volume of N coincident M5 branes, and 1/8 th BPS states in the theory of N conincident M2 branes. We obtain our partition function by performing the radial quantization of the Coulomb Branches of these theories and rederive the same formula from the quantization of supersymmetric giant and dual giant gravitons in AdS 7 x S 4 and AdS 4 x S 7 . Our partition function is qualitatively similar to the analogous quantity in N = 4 Yang Mills. It reduces to the sum over supersymmetric multi gravitons at low energies, but deviates from this supergravity formula at energies that scale like a positive power of N

  16. TREAT experiment M2 post-test examination

    Holland, J.W.; Teske, G.M.; Florek, J.C.

    1986-01-01

    Transient Reactor Test (TREAT) Facility experiment M2 was performed to evaluate the transient behavior of metal-alloy fuel under accident conditions to investigate the inherent safety features of the fuel in integral fast reactor (IFR) system designs. Objectives were to obtain early information on the key fuel behavior characteristics at transient overpower (TOP) conditions in metal-fueled fast reactors; namely, margin to cladding breach and extent of axial self-extrusion of fuel within intact cladding. The onset of cladding breaching depends on fuel/cladding eutectic formation, as well as cladding pressurization and melting. Driving forces for fuel extrusion are fission gas, liquid sodium, and volatile fission products trapped within the fuel matrix. The post-test examination provided data essential for correctly modeling fuel behavior in accident codes

  17. Deformation induced martensite in AISI 316 stainless steel

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  18. Study of radiation damages in AISI 316 and 347 steels

    Santos, G.R. dos.

    1993-03-01

    The CV-28 cyclotron at IEN (Nuclear Engineering Institute) has been used to simulated, in a short time scale, uniform He concentrations produced during neutron irradiation of metals by (n, α) reactions. Helium was implanted at concentrations of 1 to 300 ppm in 100 μm thick sheet samples of AISI 316 and 347 S S by degrading a 28 MeV alpha particle beam with a rotating energy degrader. The effects of He on the mechanical properties of the steels were studied by both non-destructive (positron annihilation) and destructive tests (tensile, creep, TEM and SEM). The positron lifetime measurements of irradiated and annealed samples were used as the base to discuss the He diffusion mechanism. Activation energies of 0.34±0.04 eV for 316 S S and 0.57±0.06 eV for 347 S S, characterized a dissociative process above 650 0 C. TEM analyses have suggested the Ostwald ripening process for bubble growth over the full range of He concentrations studied. It was shown, in agreement with theoretical calculations that, by themselves the displacements produced during the helium implantation, at rate of 1.8 x 10 -3 d pa/ppm, were not sufficient to cause significant changes in ductility. However, a strong ductility loss with increasing He concentration was observed for both types of steel for tensile tests at 25 0 C, as well as in creep at 750 0 C over the range of strain (100 to 200 MPa). Finally, it was shown that charged particle simulation associated with positron annihilation techniques provides a fast, relatively low cost, and useful method to study different kinds of neutron damage in materials. (author)

  19. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C.; Centro Federal de Educacao Tecnologica do Piaui; Universidade Federal do Rio Grande do Norte

    2010-01-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  20. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-01-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  1. Comparative evaluation of laser-assisted micro-milling for AISI 316, AISI 422, TI-6AL-4V and Inconel 718 in a side-cutting configuration

    Shelton, Jonathan A; Shin, Yung C

    2010-01-01

    This paper is focused on numerical modeling and experimental evaluation of laser-assisted micro-milling (LAMM). An experimental setup consisting of a 25 W CO 2 laser, three-axis CNC linear stages and a high-speed spindle was used to implement the LAMM process. Micro-endmills between 100 and 300 µm in diameter were used to perform side-cutting operations with and without laser preheat on four materials: AISI 316, AISI 422, Ti-6Al-4V and Inconel 718. A three-dimensional transient finite-volume-based thermal model was used to analytically predict appropriate process parameters on the basis of material-removal temperatures. The effects of LAMM on the machined surface finish, edge burrs, tool wear and workpiece microstructure were evaluated experimentally.

  2. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma; Estructura y propiedades del acero inoxidable AISI 316 nitrurado con plasmas de microondas

    Becerril R, F

    1999-07-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as {gamma}N which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  3. Evaluation of the TIG welding mechanical behavior in AISI 316 tubes for fuel rods

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1985-10-01

    The effect of service temperature, the mechanical resistance and the creep behaviour of a steel which is intendend to be used as fuel rods in Nuclear Reactors was investigated. The tests were performed in seamless tubes of austenitic stainless steel, AISI 316, 20% cold worked, TIG welded. (Author) [pt

  4. Mechanical behaviour of AISI 304/307 weldments creep tested at 7000C

    Pope, A.M.; Monteiro, S.N.; Silveira, T.L.

    Preliminary observations on the mechanical behavior of AISI 304/347 weldments creep tested at 700 0 C are presented. The results are compared with those of similar welded joints isothermally treated at the same temperature for different times. The peculiar aspects in the mechanical behavior are discussed based on precipitation reactions which occur in the joint materials [pt

  5. A comprehensive review on cold work of AISI D2 tool steel

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  6. Treatment of nitridation by microwave post discharge plasma in an AISI 4140 steel

    Medina F, A.; Rodriguez L, V.; Zamora R, L.; Oseguera P, J.

    1998-01-01

    The objective of this work is to determine through X-ray diffraction, microhardness measurement and scanning electron microscopy those main operation parameters of the microwave post discharge treatment (temperature of treatment, gas mixture and permanence time) nitriding an AISI 4140 steel and to characterize the compact layer of nitrides formed during the treatment. (Author)

  7. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  8. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  9. Wear resistance of DLC coating deposited on pretreated AISI 4140 steel

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Centre of Tribology and Technical Diagnostics; Ronkainen, H.; Holmberg, K. [VTT Manufacturing Technology (Finland). Operational Reliability

    2000-07-01

    In the last few years, the application of nitrided steels as substrates for hard coatings has been increasingly reported. Diamond-like carbon (DLC) coatings, in particular, have attracted significant attention owing to their desirable tribological properties. The aim of the present study was to investigate the possibilities of using hard DLC coatings on softer substrates, such as AISI 4140 steel. (orig.)

  10. Novel water-air circulation quenching process for AISI 4140 steel

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  11. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    Kumar, A

    2010-01-01

    Full Text Available The present study concerns an in depth investigation of the influence of laser surface melting of AISI 316L stainless steel using Ar and N2 as shrouding atmosphere. Laser surface melting has been carried out using a 5 kW continuous wave (CW) fibre...

  12. Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN

    Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar

    2013-05-01

    Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.

  13. Resistência à corrosão de junta dissimilar soldada pelo processo TIG composta pelos aços inoxidáveis AISI 316L e AISI 444

    Luis Henrique Guilherme

    2014-03-01

    Full Text Available O aço inoxidável AISI 444 tornou-se uma opção para substituir a liga AISI 316L devido ao seu menor custo e satisfatória resistência à corrosão. Entretanto, o uso da liga AISI 444 no feixe tubular de trocadores de calor acarreta na soldagem de uma junta dissimilar. O presente estudo teve por objetivo avaliar a resistência à corrosão da junta tubo-espelho soldada pelo processo TIG composta pelas ligas AISI 316L e AISI 444. A manufatura das amostras consistiu em replicar o projeto da junta tubo-espelho de trocadores de calor. Realizou-se em juntas soldadas ensaios de sensitização, perda de massa por imersão desde a temperatura ambiente até 90 ºC, e ensaios eletroquímicos de polarização potenciodinâmica nos eletrólitos 0,5 mol/L de HCl e 0,5 mol/L de H2SO4. Os resultados mostraram que a junta dissimilar sofreu corrosão galvânica com maior degradação na zona afetada pelo calor (ZAC do tubo AISI 444. Porém, os mecanismos de corrosão localizada (pite e intergranular demonstraram ser mais ativos para a liga AISI 316L. Conclui-se que a junta dissimilar apresentou melhor resistência à corrosão do que a junta soldada composta unicamente pela liga AISI 316L em temperaturas de até 70 ºC, conforme as condições observadas neste trabalho.

  14. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Dundeková, S.; Nový, F.; Fintová, Stanislava

    2014-01-01

    Roč. 21, č. 4 (2014), s. 172-177 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L * Structural sensitization * Rotating bending fatigue test Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Effects of a laser surface processing induced heat-affected zone on the fatigue behavior of AISI 4340 steel

    McDaniels, R.L.; White, S.A.; Liaw, K.; Chen, L.; McCay, M.H.; Liaw, P.K.

    2008-01-01

    The effects of the heat-affected zone (HAZ) in AISI 4340 steel created by laser-surface alloying (LSA) on high-cycle fatigue behavior have been investigated. This research was performed by producing several lots of laser-processed AISI 4340 steel using different laser processing parameters, and then subjecting the samples to high-cycle fatigue and Knoop microindentation hardness studies. Samples of tested material from each lot were examined using scanning-electron microscopy (SEM) in order to establish the effects of laser processing on the microstructure of the fatigue-tested AISI 4340 steel. When these three techniques, microindentation hardness testing, high-cycle fatigue testing, and SEM, are combined, a mechanistic understanding of the effect of the HAZ on the fatigue behavior of this alloy might be gained. It was found that the HAZ did not appear to have an adverse effect on the high-cycle fatigue behavior of LSA-processed AISI 4340 steel

  16. Report ETSI M2M-14bis JTC March 2011 meeting

    Keesmaat, N.W.

    2011-01-01

    The ETSI Technical Committee (TC) M2M focuses on the development of a generic M2M architecture and underlying protocols suitable for a wide range of M2M environments. Whereas in the past effort has been put in the development of several use cases, the focus of this M2M 14bis meeting – held in Sophia

  17. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  18. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  19. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  20. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    Garner, F.A.; Brager, H.R.

    1980-01-01

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 10 22 n/cm 2 (E > 0.1 MeV at temperatures ranging from 400 0 C to 600 0 C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  1. Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior

    Aksenov, Sergey A.; Puzino, Yuriy A.; Bober, Stanislav A.; Kliber, Jiri

    2015-01-01

    The paper is oriented toward the determination of constitutive equation constants by the inverse analysis of plane strain compression test results. The interpretation of such results is complicated by the inhomogeneity of strain rate distribution in the specimen caused by rigid ends, the lateral spreading of a specimen friction and the variation of temperature during the test. The results of plane strain compression tests of AISI-304 stainless steel are presented and significant deviations of temperature are observed at higher strain rates. Finite element simulation was performed to estimate the inhomogeneity of strain rate within the specimen and evaluate the effect of friction on the test results. Constitutive equations of the material were obtained by inverse analysis minimizing the deviations between the measured load values and the ones predicted by numerical simulation. Keywords: PSCT, AISI-304, Gleeble, constitutive equations, hot forming, FEM, inverse analysis.

  2. Microhardness measurement in AISI 321 stainless steel with niobium additions before and after fast neutron irradiation

    Galli, V.L.; Lucki, G.

    1980-01-01

    Data about influence of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05 and 0.1wt.% Nb additions are presented. The microhardness measurements were made in the range of 300 to 650 0 C, before and after fast neutron irradiation with fluences about 10 17 n/cm 2 . Our results indicate that radiation damage peaks occur around 480 0 C for the stainless steel of type AISI 321 without Nb addition, around 500 0 C for the composition with 0.05 wt.% Nb addition and around 570 0 C for the composition with 0.1 wt.% Nb addition. Microhardness data are in agreement with those obtained by means of electrical resistivity measurements, performed at the same conditions. (Author) [pt

  3. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  4. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    Wan Emri Wan Abdul Rahaman

    2007-01-01

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  5. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  6. On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment

    Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip

    2012-06-01

    The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.

  7. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  8. Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing

    Marcos Antônio Barcelos

    Full Text Available Abstract Despite the AISI 304 stainless steel has high corrosion/oxidation resistance, its tribological properties are poor, being one of the barriers for use in severe wear applications. Thus, there is a wide field for studying technologies that aim to increase the surface hardness and wear resistance of this material. In this work, hardness and wear resistance for AISI 304 stainless steel submitted to the thermochemical treatment by low temperature plasma carburizing (LTPC in a fixed gas mixture composition of 93% H2 and 7% CH4 are presented. Through the evaluation of the carburizing layers, it was possible to observe a substantial improvement in tribological properties after all temperature and time of treatment. This improvement is directly related to the increase of the process variables; among them temperature has a stronger influence on the wear resistance obtained using LTPC process.

  9. Effect of the oxygen partial pressure on ferritic stainless steel AISI 441 at high temperatures

    Salgado, M.F.; Carvalho, I.S.; Santos, R.S.; Correa, O.V.; Ramanathan, L.V.

    2014-01-01

    Stainless steels can be exposed to aggressive gases at high temperatures. To understand the behavior of oxidation of the steel AISI 441 was made oxidation at temperatures between 850 ° C and 950 ° C, at two different atmospheres: synthetic air, using tubular furnace and Argon, containing 1ppm O_2, in thermobalance. The kinetics of oxidation of the films was established by measuring the mass gain per unit of area as a function of the oxidation time. The microstructure and chemical composition of the oxides were analyzed by SEM, EDS and XRD. Chemical analysis showed that films formed on steel AISI 441 had mostly chromium oxide and the following elements: Cr, Mn, Fe, Ti and Si. Regarding the kinetics of oxidation, it was observed that in synthetic air, the steel oxidation increased gradually with the temperature, but in argon, it showed the highest oxidation at 900 ° C and the lowest oxidation at 950 ° C. (author)

  10. Corrosion resistance of the welded AISI 316L after various surface treatments

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  11. Partial substitution of vanadium by niobium in AISI H13 steel

    Itman Filho, A.; Balancin, O.

    1987-01-01

    The aim of this work was to study the tempering resistence in conditions of use of the AISI H13 steel, after partial substitution of vanadium by niobium. Four alloys of this steel were elaborated and in three of them the niobim was added in the contents of 0,2; 0,5 and 1,0%. Metallographic techniques were performed to compare qualitatively the niobium effect in several processing and thermal analisys of the steels. Grain size measurements were made after austenitization of the steels, hardness measurements in prepared samples were made after quenching and tempering, tensile testing at elevated temperature was investigated and yield strength, reduction of area after steel breaking and elongation were calculated. After these studies it was possible to certify that the partial substitution of vanadium by niobium did not alter significantly the basic mechanical properties of the AISI H13. (Author) [pt

  12. Effect of temperature changes on swelling and creep of AISI 316

    Garner, F.A.; Gilbert, E.R.; Gelles, D.S.; Foster, J.P.

    1980-04-01

    A number of previous publications have shown that the swelling of cold-worked AISI 316 is quite sensitive to changes in temperature which occur during irradiation. In this report those data are expanded and reanalyzed to show that the concurrent irradiation creep is also quite sensitive to changes in irradiation temperature. An explanation is advanced to explain this behavior in terms of the sensitivity to temperture history of the radiation-induced microchemical evolution of this steel. In particular, the sensitivity to temperature history of the radiation-stabilized gamma prime phase is invoked to explain the enhanced creep and swelling behavior of AISI 316 components which experienced either gradual or abrupt decreases in temperature. The phase development observed in this steel in response to temperature changes during irradiation is also compared to the similar behavior found in aged specimens subjected to isothermal irradiation

  13. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  14. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  15. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  16. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  17. Some mechanical properties of borided AISI H13 and 304 steels

    Taktak, Sukru

    2007-01-01

    In the present study, mechanical properties of borides formed on AISI H13 hot work tool and AISI 304 stainless steels have been investigated. Both steels have high chromium content and have a widespread use in the engineering application. Boriding treatment was carried out in slurry salt bath consisting of borax, boric acid, and ferrosilicon at temperature range of 800-950 deg. C for 3, 5, and 7 h. X-ray diffraction analysis of boride layers on the surface of steels revealed various peaks of FeB, Fe 2 B, CrB, and Ni 3 B. Metallographic studies showed that the boride layer has a flat and smooth morphology in the 304 steel while H13 steel was a ragged morphology. The characterization of the boride layer is also carried out by means of the micro-hardness, surface roughness, adhesion, and fracture toughness studies

  18. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  19. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  20. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  1. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  2. Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds

    Pouraliakbar,Hesam; Hamedi,Mohsen; Kokabi,Amir Hossein; Nazari,Ali

    2014-01-01

    Gas tungsten arc welding of CK45 and AISI304 stainless steel was performed through preparation of different types of samples using ER308L and ERNi-1 wires. Welded samples were studied by different techniques including optical metallography, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, hardness measurements and impact test. It was observed that in the buttered specimen, the structure of the weld metal was completely austenitic wh...

  3. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  4. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    Marques, Rogerio Albuquerque

    2014-01-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  5. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    Becerril R, F.

    1999-01-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  6. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53 ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  7. Micromechanical of fracture initiation for an AISI 4140 loaded in the I mode at low temperature

    Darwish, F.A.I.

    1984-01-01

    The variation of fracture morphology with the notch sharpness for an AISI 4140 steel tested at liquid nitrogen temperature in different micro-structural states is presented. The appearance in some cases of a shear lip along the root of rounded notches is presented and discussed in terms of the sequence of local events leading to microcrack formation. The dependence of the steel toughness on the fracture morphology is also presented and discussed. (Author) [pt

  8. Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy

    Fernandez, B.J.; Lopez, V.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Madrid (Spain); Martinez, D. [Plataforma Solar de Almeria, Tabernas Almeria (Spain)

    1998-05-12

    The present work deals with Ni alloy cladding on AISI 4140 steel samples made with high power density concentrated solar beams. The quality of the cladding is high concerning the adherence, low dilution and high hardness of the coating. Some considerations are presented concerning the future of high power density beams related to SUrface Modification of Metallic mAterials with SOLar Energy (SUMMA cum SOLE)

  9. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying

    2010-01-01

    Abstract: The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The ...

  10. Kajian Aus Pahat pada pembubutan Baja Aisi 4340 Menggunakan Pahat Karbida PVD Berlapis

    Carnegie, Dale

    2017-01-01

    120401084 Pada industri pemotongan logam, cairan pendingin banyak digunakan untuk memperoleh umur pahat yang lebih lama, tetapi cairan pendingin yang digunakan pada proses pemotongan logam mempunyai beberapa dampak negatif bagi kesehatan dan lingkungan. Oleh karena itu dilakukan permesinan kering pada penelitian ini untuk membuat proses pemotongan logam yang bersih dan aman terhadap lingkungan. Proses pembubutan dilakukan juga dengan permesinan keras untuk membubut material baja AISI 4340 ...

  11. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  12. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  13. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  14. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  15. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  16. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  17. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Li Yang [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Wang Liang, E-mail: wlimt@yahoo.com [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China); Zhang Dandan; Shen Lie [Department of Materials Science and Engineering, Dalian Maritime University, Institute of Metals and Technology, 1 Linghai Street, Dalian 116026 (China)

    2010-11-15

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH{sub 3} gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 {mu}m thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  18. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Li Yang; Wang Liang; Zhang Dandan; Shen Lie

    2010-01-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 deg. C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 deg. C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 deg. C within the same time.

  19. Wear and friction behaviour of duplex-treated AISI 4140 steel

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Centre of Tribology and Technical Diagnostics; Waenstrand, O.; Larsson, M.; Hogmark, S. [The Aangstroem Laboratory, Uppsala University, Box 534, SE-75121, Uppsala (Sweden)

    1999-11-01

    In this study samples of AISI 4140 steel were pretreated by plasma nitriding and coated with two different physical vapour deposited coatings (TiN and TiAlN). A hardened AISI 4140 sample and a coated sample were also included in the investigation. To examine the influence of the nitrided zone on the performance of the coating-substrate composite, two different nitriding conditions - a conventional 25% N{sub 2} and an N{sub 2}-poor gas mixture - were used. The specimens were investigated with respect to their microhardness, surface roughness, scratch adhesion and dry sliding wear resistance. Wear tests in which the duplex-treated pins were mated to hardened ball bearing steel discs were performed in a pin-on-disc machine under dry sliding conditions. Metallography, scanning electron microscopy and profilometry were used to analyse the worn surfaces in order to determine the dominant friction and wear characteristics of the samples investigated. The results show improved wear properties of the plasma-nitrided hard-coated specimens compared with uncoated and pre-hardened ones. Although previous investigations showed a negative effect of the compound layer, it was found that a precisely controlled plasma nitriding process can lead to a dense, uniform and highly adherent compound layer with a positive effect on the wear properties of pre-nitrided and hard-coated AISI 4140 steel. (orig.)

  20. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel

    Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie

    2010-11-01

    A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.

  1. Influence of the ion nitriding temperature in the wear resistance of AISI H13 tool steel

    Heck, Stenio Cristaldo; Fernandes, Frederico Augusto Pires; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Totten, George Edward

    2010-01-01

    The AISI H13 tool steel for hot work is the most used in its category. This steel was developed for injection molds and extrusion of hot metals as well as for conformation in hot presses and hammers. Plasma nitriding can improve significantly the surface properties of these steels, but the treatments conditions, such as temperature, must be optimized. In this work the influence of nitriding treatment temperature on the wear behavior of this steel is investigated. Samples of AISI H13 steel were quenched and tempered and then ion nitrided in the temperatures of 450, 550 and 650 deg C, at 4mbar pressure, during 5 hours. Samples of the treated material were characterized by optical microscopy, Vickers microhardness, x-ray analysis and wear tests. Plasma nitriding formed hard diffusion zones in all the treated samples. White layers were formed in samples treated at 550 deg C and 650 deg C. The treatment temperature of 450 deg C produced the highest hardness. Treatment temperature showed great influence in the diffusion layer thickness. X-ray analysis indicated the formation of the Fe_3N, Fe_4N and CrN phases for all temperatures, but with different concentrations. Nitriding increased significantly the AISI H13 wear resistance. (author)

  2. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  3. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints

    Hynes, N. Rajesh Jesudoss; Nagaraj, P.; Sujana, J. Angela Jennifa

    2014-01-01

    Highlights: • Friction stud welding of AA 6063 and AISI 1030 was done successfully. • Ultrasonic evaluation of interfacial properties. • EDX analysis confirms intermetallic compound (FeAl) in the interfacial region. - Abstract: Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the

  4. Dual role of YM1+ M2 macrophages in allergic lung inflammation

    Draijer, Christina; Robbe, Patricia; Boorsma, Carian E; Hylkema, Machteld N; Melgert, Barbro N

    2018-01-01

    Alternatively activated (M2 or YM1+) macrophages have been associated with the development of asthma but their contribution to disease initiation and progression remains unclear. To assess the therapeutic potential of modulating these M2 macrophages, we have studied inhibition of M2 polarisation

  5. Machine-to-Machine networks: integration of M2M networks into companies' administrative networks

    Pointereau, Romain

    2013-01-01

    This analysis will address the technical, economic and regulatory aspects and will identify the position taken by the various market actors. Integration of M2M Networks into Companies' Administrative Networks. Integración de redes M2M en redes administrativas de las empresas. Integració de xarxes M2M en xarxes administratives de les empreses.

  6. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein

    Andersson, Anne-Marie Carola; Håkansson, Kjell Ove; Jensen, Benjamin Anderschou Holbech

    2012-01-01

    by diverse influenza A viruses, a vaccine (M2e-NSP4) was constructed linking M2e (in its consensus sequence) to the rotavirus fragment NSP4(98-135); due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2...

  7. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis

    Shoichi Fukui

    2018-01-01

    Full Text Available ObjectivesWe investigated the relationships among M1 monocytes, M2 monocytes, osteoclast (OC differentiation ability, and clinical characteristics in patients with rheumatoid arthritis (RA.MethodsPeripheral blood mononuclear cells (PBMCs were isolated from RA patients and healthy donors, and we then investigated the number of M1 monocytes or M2 monocytes by fluorescence-activated cell sorting. We also obtained and cultured CD14-positive cells from PBMCs from RA patients and healthy donors to investigate OC differentiation in vitro.ResultsForty RA patients and 20 healthy donors were included. Twenty-two patients (55% were anticitrullinated protein antibody (ACPA positive. The median M1/M2 ratio was 0.59 (0.31–1.11, interquartile range. There were no significant differences between the RA patients and healthy donors. There was a positive correlation between the M1/M2 ratio and the differentiated OC number in vitro in RA patients (ρ = 0.81, p < 0.001. The ACPA-positive patients had significantly higher M1/M2 ratios in vivo (p = 0.028 and significantly greater numbers of OCs in vitro (p = 0.005 than the ACPA-negative patients. Multivariable regression analysis revealed that the M1/M2 ratio was the sole significant contribution factor to in vitro osteoclastogenesis. RA patients with M1/M2 ratios >1 (having relatively more M1 monocytes had higher C-reactive protein and erythrocyte sedimentation rates than RA patients with M1/M2 ratios ≤1. M1-dominant monocytes in vitro produced higher concentrations of interleukin-6 upon stimulation with lipopolysaccharide than M2 monocytes.ConclusionM1/M2 monocytes imbalance strongly contributes to osteoclastogenesis of RA patients. Our findings cast M1 and M2 monocyte subsets in a new light as a new target of treatments for RA to prevent progression of osteoclastic bone destruction.

  8. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  9. Reexamination of M2,3 atomic level widths and L1M2,3 transition energies of elements 69≤Z≤95

    Fennane, K.; Berset, M.; Dousse, J.-Cl.; Hoszowska, J.; Raboud, P.-A.; Campbell, J. L.

    2013-11-01

    We report on high-resolution measurements of the photoinduced L1M2 and L1M3 x-ray emission lines of 69Tm, 70Yb, 71Lu, 73Ta, 74W, 75Re, 77Ir, 81Tl, 83Bi, and 95Am. From the linewidths of the measured transitions an accurate set of M2 and M3 level widths is determined assuming for the L1 level widths the values reported by Raboud [P.-A. Raboud et al., Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.65.022512 65, 022512 (2002)]. Furthermore, the present experimental M2,3 data set is extended to 80Hg, 90Th, and 92U, using former L1M2,3 high-resolution x-ray emission spectroscopy measurements performed by our group. A detailed comparison of the M2 and M3 level widths determined in the present work with those recommended by Campbell and Papp [J. L. Campbell and T. Papp, At. Data Nucl. Data TablesADNDAT0092-640X10.1006/adnd.2000.0848 77, 1 (2001)] and other available experimental data as well as theoretical predictions is done. The observed abrupt changes of the M2,3 level widths versus atomic number Z can be explained satisfactorily by the cutoffs and onsets of the M2M4N1, respectively M3M4N3,4,5 and M3M5N2,3 Coster-Kronig transitions deduced from the semiempirical (Z+1) approximation. As a spin-off result of this study, precise L1M2 and L1M3 transition energies are obtained for the investigated elements. A very good agreement with transition energies calculated within the many-body perturbation theory is found.

  10. Evaluation of performance of AISI 444 steel for application in distillation towers; Avaliacao do desempenho do aco AISI 444 para aplicacao como 'lining' em torres de destilacao

    Guimaraes, R.F.; Miranda, H.C. de; Farias, J.P. [Universidade Federal do Ceara (DEMM/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Caracterizacao de Materiais], e-mail: rf.guimaraes@yahoo.com.br

    2008-07-01

    In this work, the behavior of the AISI 444 ferritic stainless steel submitted to thermal fatigue test and their corrosion resistance in heavy crude oil was evaluated. The AWS E309MoL-16 and E316L-17 weld metal was employed as filler metal. Plates of the AISI 444 were welded on ASTM A-516 Gr. 60 plates and submitted to fatigue thermal cycle. Samples were extracted from plates welded and heat treated immersed in heavy crude oil at 300 deg C. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive of X-ray analysis (EDX) were used to characterize the microstructure and the corroded surface. The results show that the AISI 444 stainless steels did not present cracks after the thermal fatigue cycle and the heat treated immerse in heavy crude oil. The electrode AWS E309MoL-16 show better corrosion resistance than the AWS E316L-17. (author)

  11. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  12. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  13. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  14. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  15. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein.

    Anne-Marie Carola Andersson

    Full Text Available The ectodomain of the matrix 2 protein (M2e of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4 was constructed linking M2e (in its consensus sequence to the rotavirus fragment NSP4(98-135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.

  16. Modification and characterization of the AISI 410 martensitic stainless steels surface; Modificacao e caracterizacao da superficie do aco inoxidavel martensitico AISI 410

    Bincoleto, A.V.L. [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Nascente, P.A.P. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  17. β-adrenergic-stimulated macrophages: Comprehensive localization in the M1–M2 spectrum

    Lamkin, Donald M.; Ho, Hsin-Yun; Ong, Tiffany H.; Kawanishi, Carly K.; Stoffers, Victoria L.; Ahlawat, Nivedita; Ma, Jeffrey C.Y.; Arevalo, Jesusa M. G.; Cole, Steve W.; Sloan, Erica K.

    2016-01-01

    β-adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1–M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one predefined category of the M1–M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1–M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1–M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1–M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  18. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  19. Effect of temperature and pressure on wear properties of ion nitrided AISI 316 and 409 stainless steels

    Fernandes, Frederico Augusto Pires; Heck, Stenio Cristaldo; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Nascente, Pedro Augusto de Paula

    2010-01-01

    Stainless steels are widely used in chemical and other industries due to their corrosion resistance property. However, because of their low hardness and wear properties, their applications are limited. Many attempts have been made to increase the surface hardness of these materials by using plasma techniques. Plasma nitriding is distinguished by its effectiveness, and for presenting a relatively low cost and being a clean process, producing hard surface layers on stainless steels. Aiming to verify the influence of the temperature and pressure on the modified resultant layers, samples of AISI 316 and 409 stainless steels were plasma nitrided in two different temperatures (450 and 500°C) and pressures of 400, 500, and 600Pa for 5h. After the nitriding treatment, the layers were analyzed by means of optical microscopy and wear tests. Wear tests were conducted in a fixed-ball micro-wear machine without lubrication. After the plasma nitriding treatment on AISI 316 and 409 samples, homogeneous and continuous layers were produced and their thicknesses increased as the temperature increased, and as the pressure decreased. The nitriding treatment on the AISI 316 steel sample resulted on the formation of expanded austenite layers at 450°C, and chromium nitrides (CrN and Cr_2N) phases at 500°C. The nitriding treatment on AISI 409 sample yielded the formation of similar layers for both treatment temperatures; these layers constituted mainly by chromium (Cr_2N) and iron (Fe_2N, Fe3_N, and Fe_4N) nitrides. After the nitriding treatment, the AISI 316 steel sample presented higher wear resistance for lower temperature and pressure values. The increase on layer fragility, for higher temperature and pressure values can be responsible for this inverse tendency. The wear resistance of the nitrided AISI 409 sample followed a logic tendency: the harder the layer the better the performance, i.e. the performance was improved with the increase in both the temperature and pressure

  20. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Aadhavan, R.; Suresh Babu, K.

    2017-01-01

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10"−"3 kg"2 m"−"4 s"−"1 while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  1. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  2. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Aadhavan, R.; Suresh Babu, K., E-mail: sureshbabu.nst@pondiuni.edu.in

    2017-07-31

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10{sup −3} kg{sup 2} m{sup −4} s{sup −1} while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  3. The Effects of The Industrial Cryogenic Process on The Wear Behaviours of AISI D2 Cold Work Tool Steels

    Ersöz, Enes; Ovalı, İsmail

    2018-01-01

    In this study, industrial cryogenic process afterconventional heat treatment process for various holding time was applied toAISI D2 (DIN 1.2379) cold work tool steel. The effects of the industrialcryogenic process on the wear behavior was investigated. In the wear test 5,10and 15 N forces were carried out to all group specimens at a constant shearrate (3,16 m/s) and three different wear distances. Experimental results showthat cryogenic processing of AISI D2 cold work tool steels have a signi...

  4. Behaviour of AISI-SAE 8615 steel in ferritic nitrocarburizing using urea-metanol

    Barrena, M.I.; Castro, A.

    1998-01-01

    The present work shows the behaviour of low carbon alloyed steels as AISI-SAE 8615, after a ferritic nitrocarburizing process. Nitrocarburizing takes place at 570 degree centigree for 3 h in an atmosphere by combustion of methanol and urea under different flow rates. Metallographic studies were performed by optical microscopy. Harness profiles were measured and carbon percentages were also analyzed by emission spectrometry in order to determine the extension of the nitrocarburizing process. Optimal flow conditions have been found. The influence of the flow rate on the nitrocarburizing layer thickness has been also studied. (Author) 12 refs

  5. Corrosion Behavior of Heat Affected Zone of AISI 321 stainless steel

    Ahn, Yong Sik; Park, Hwa Soon; Kim, Yeong Hwan; Won, Tae Yeon; Lee, Sang Lae

    1994-01-01

    Intergranular corrosion behavior of heat affected zone(HAZ) has been investigated for Ti-stabilized austenitic stainless steel AISI 321. It was observed that grain boundaries at HAZ of the steel with Ti/C ratio of 6.2 were corroded significantly after sensitization heat treatment. The increase of the Ti/C ratio up to 9.6 results in the evident decrease of intergranular corrosion. Weld simulation and intergranular corrosion test in 65% HNO 3 was performed. Influence of various thermal cycles on the intergranular corrosion was investigated. These results are discussed in terms of the behavior of TiC and Cr 23 C 6 precipitates

  6. Behaviour under fatigue of AISI 304-L stainless steel welded joints

    Scal, M.W.; Joia, C.J.B.M.; Sousa e Silva, A.S. de

    1979-01-01

    The fatigue behaviour at room temperature of AISI-304-L stainless steel welded joints obtained by two distinct welding methods was studied. The results obtained were compared to those characteristic of the base metal. The welded joint fatigue samples were rectified in order to eliminate the effect of the welded seam geometry. It was concluded that the mechanisms of fatigue crack start in this case is commanded by the austenitic matrix, there being no influence of the delta ferrite rate and distribution present at the melted zone. (Author) [pt

  7. Service experience with AISI type 316 steel components in CEGB Midlands Region power plant

    Plastow, B.; Bagnall, B.I.; Yeldham, D.E.

    1979-01-01

    The service performance of AISI Type 316 steel components in sections up to 100 mm thick in Power Plant of the Midlands Region of the C.E.G.B. is reviewed. A comparison is drawn between the satisfactory performance of components whose dimensional stability is not critical and the difficulties experienced when rapid rates of change of temperature cause distortion in thick section components. Weldment manufacture and performance are reviewed and both are considered to be satisfactory. In general the material has performed well and the difficulties due to distortion have been overcome by imposing operating regimes which limit rates of temperature change. (author)

  8. Comparative study of the microbiological corrosion among an AISI 304L and an API X65

    Diaz S, A.; Arganis J, C.; Luna C, P.; Carapia M, L.; Gonzalez F, E.

    2004-01-01

    Metallic samples of AISI 304L sensitized and API X65, were subjected to the action of an inoculated media with reductive sulphate microorganisms (SBR), carrying out electrochemical evaluations by means of the techniques of Polarization Resistance (RP), Tafel extrapolation (ET) and Electrochemical Noise (RE). The generated information was complemented with the analysis and diagnostic of the present damage in the surfaces exposed in both metals. The used electrochemical techniques allow to determine the corrosion velocities associated to each system, establishing that the uniform corrosion is not affected by the effect of the microorganisms; however, electrochemical noise, evidenced the formation of stings associated to the presence of bacteria. (Author)

  9. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  10. The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid

    Barbosa, M.A.

    1983-01-01

    The pitting resistance of AISI 316 stainless steel after passivation in diluted nitric acid was studied in comparison with that of non-passivated specimens. The passivation treatment increased the pitting potential but decreased the resistance to crevice corrosion under open circuit conditions in aerated sea water. Immersion in the nitric acid solution was found to remove the sulphide inclusions from the metal surface, thus eliminating the most susceptible sites for attack. In the absence of sulphide particles pitting nucleated at aluminium-rich oxides. (author)

  11. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  12. The effect of some heat treatment parameters on the dimensional stability of AISI D2

    Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus

    2008-01-01

    The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.

  13. Pre- and postirradiation properties of brazed joints of AISI 316L stainless steel

    Brossa, M.; Franconi, E.; Guerreschi, U.; Pierazzi, L.; Poggi, P.; Rustia, V.

    1994-01-01

    An extensive test campaign has been performed to verify the reliability and the endurance of brazed joints between AISI 316L parts for structural applications in the nuclear field. The tests, conducted for comparison with three different high melting temperature alloys, included tensile tests (normal and shear), fatigue tests (fatigue crack propagation, low cycle fatigue, 4-point bending fatigue) and impact tests; besides, tensile tests have been performed with both unirradiated and irradiated specimens. Generally, the tests demonstrated satisfactory mechanical properties of the joints and revealed occasionally strong differences in the behaviour of the different brazing alloys, thus providing important design indications. ((orig.))

  14. Microstructural origins of yield-strength changes in AISI 316 during fission or fusion irradiation

    Garner, F.A.; Hamilton, M.L.; Panayotou, N.F.; Johnson, G.D.

    1981-08-01

    The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength

  15. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  16. The structural characterization of some biomaterials, type AISI 310, used in medicine

    Minciuna, M. G.; Vizureanu, P.; Hanganu, C.; Achitei, D. C.; Popescu, D. C.; Focsaneanu, S. C.

    2016-06-01

    Orthopedics biomaterials are intended for implantation in the human body and substituted or help to repair of bones, cartilage or organ transplant, and tendons. At the end of the 20th century, the availability of materials for the manufacture implants used in medicine has been the same as for other industrial applications. The most used metals for manufacturing the orthopedics implants are: stainless steels, cobalt-chrome-molybdenum alloys, titanium and his alloys. The structural researches which are made in this paper, offer a complete analysis of AISI310 stainless steels, using: optical spectrometry, X-ray diffraction and scanning electronic microscopy.

  17. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  18. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  19. Fatigue of welded joint in a stainless steel AISI 304 L

    Kuromoto, N.K.; Guimaraes, A.S.; Miranda, P.E.V. de

    1986-01-01

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author) [pt

  20. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    Basso, Rodrigo L.O.; Pastore, Heloise O.; Schmidt, Vanessa; Baumvol, Israel J.R.; Abarca, Silvia A.C.; Souza, Fernando S. de; Spinelli, Almir; Figueroa, Carlos A.; Giacomelli, Cristiano

    2010-01-01

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (E pit ) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 o C and 520 o C. Under such experimental conditions the E pit -values shifted up to 1.25 V in the positive direction.

  1. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    Sebrao, M.Z.

    1982-01-01

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na 2 SO 4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  2. Creep tests of AISI 316 stainless steel irradiated by alpha particles of 28 MeV

    Segura, E.; Lucki, G.

    1986-01-01

    He-embrittlement effect in AISI 316 SS type throught creep tests performed with annealed and cold worked thin specimens is analized. Measurements were carried out at 700 and 750 0 C, stress of 100 MPa in vacuum better than 10 -5 torr. The He-implantations were made with the cyclotron CV-28 IPEN-CNEN/SP. Using an alpha-particle beam of 28 MeV, with concentration of 26 appm. From the valves of rupture deformation, epsilon sub(R), and rupture time, t sub(R), it was verified that he had a great effect on the operational life and ductility of this material. (Author) [pt

  3. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  4. Aspects of plasma arc cutting process in the AISI 321 type stainless steel

    Souza Barros, I. de.

    1985-01-01

    Some aspects of plasma arc cutting process in the AISI321 stainless steel, used in nuclear industry, are analysed. The maximum values of the velocity of cutting and, the minimum quantity of energy per unit of length necesary for the plasma were determined. The localization of irregularities in the cut surface in function of the velocity of cutting was investigated. The cut surfaces were evaluated by surface roughness, using as measurement parameter, the distance between the sharpest salience and the deepest reentrance of the sample profile. The width of layer from thermal action of the plasma was influenced by the velocity of cutting. (Author) [pt

  5. Analisa pertumbuhan keausan pahat karbida coated dan uncoated pada alloy steel AISI 4340

    Sobron Lubis

    2017-03-01

    Full Text Available Abstrak: Keausan pahat merupakan data yang sangat penting dalam perencanaan pemesinan. Penelitian ini menjelaskan tentangpercobaan pertumbuhan keausan pahat pada karbida coated dan uncoated dalam pembubutan bahan alloy steel AISI 4340.Penelitian dilakukan dengan memperhatikan pertumbuhan keausan pada menit 12, 24, 36, 48, 60 sampai didapat VB sebesar0.3 mm untuk kedua mata pahat, sedangkan kondisi pemotongan lain seperti gerak makan, kedalaman potong, kecepatanpotong konstan. Tujuan penelitian ini adalah untuk mengkaji secara ilmiah pertumbuhan keausan yang terjadi pada mata pahatkarbida coated dan uncoated pada proses pemotongan alloy steel AISI 4340. Metode grafik digunakan untuk analisispercobaan, untuk melihat perbandingan pertumbuhan keausan mata pahat karbida coated dan uncoated serta mekanismekeausan yang terjadi, serta korelasi pertumbuhan keausan dengan kekasaran permukaan benda kerja. Hasil penelitianmendapatkan keausan pahat karbida coated pada menit 60 dengan VB sebesar 0.366 mm, sedangkan pada karbida uncoatedpada menit 36 sebesar 0.45 mm. Mekanisme keausan yang terjadi adalah keausan adhesi.Kata Kunci: Pahat potong karbida, baja paduan, keausan pahat, keausan tepi. Abstract: A tool life is an important data in planning a machining process. In this research, an experiment describe about growth of toolwear on carbide coated and uncoated cutting tools used in turning process of an alloy steel of AISI 4340. The experiment wasconducted by observing the growth of tool wear on minutes 12, 24, 36, 48, 60 until get VB 0.3 mm for both of cutting tools, whilethe other cutting conditions such a feed rate, depth of cut, cutting speed constant. The purpose of this experiment is to examinescientifically the growth of tool wear on carbide coated and uncoated in turning process of and alloy steel of AISI 4340. Graphicalmethod used for analisis of the experiment, to compare the growth of tool wear on cutting tool carbide coated and uncoated, andthe

  6. Distributed Energy-Efficient Topology Control Algorithm in Home M2M Networks

    Lee, Chao-Yang; Yang, Chu-Sing

    2012-01-01

    Because machine-to-machine (M2M) technology enables machines to communicate with each other without human intervention, it could play a big role in sensor network systems. Through wireless sensor network (WSN) gateways, various information can be collected by sensors for M2M systems. For home M2M networks, this study proposes a distributed energy-efficient topology control algorithm for both topology construction and topology maintenance. Topology control is an effective method of enhancing e...

  7. Reliable Reporting for Massive M2M Communications with Periodic Resource Pooling

    Madueño, Germán Corrales; Stefanovic, Cedomir; Popovski, Petar

    2014-01-01

    This letter considers a wireless M2M communication scenario with a massive number of M2M devices. Each device needs to send its reports within a given deadline and with certain reliability, e.g., 99.99%. A pool of resources available to all M2M devices is periodically available for transmission...... to guarantee the desired reliability of the report delivery within the deadline. The fact that the pool of resources is used by a massive number of devices allows to base the dimensioning on the central limit theorem. The results are interpreted in the context of LTE, but they are applicable to any M2M...

  8. Treatment of nitridation by microwave post discharge plasma in an AISI 4140 steel; Tratamiento de nitruracion por plasma post-descarga micro-ondas en un acero AISI 4140

    Medina F, A. [Instituto Tecnologico de Morelia, Morelia e Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rodriguez L, V.; Zamora R, L. [ININ, Mexico D.F. (Mexico); Oseguera P, J

    1998-07-01

    The objective of this work is to determine through X-ray diffraction, microhardness measurement and scanning electron microscopy those main operation parameters of the microwave post discharge treatment (temperature of treatment, gas mixture and permanence time) nitriding an AISI 4140 steel and to characterize the compact layer of nitrides formed during the treatment. (Author)

  9. Properties of M1-M2-Si-Al-O-N glasses (M1 = La or Nd, M2 = Y or Er)

    Pomeroy, M.J.; Nestor, E.; Hampshire, S. [Limerick Univ. (Ireland). Materials and Surface Science Inst.; Ramesh, R. [Littelfuse Ireland, Dundalk, Co. Louth (Ireland)

    2002-07-01

    Mixed lanthanide cation oxynitride glasses have been prepared in the M1 - M2 - Si-Al-O-N systems where M1 = La or Nd and M2 = Y or Er. The densities ({rho}), Young's moduli (E), microhardnesses (H{sub v}), glass transition temperatures (T{sub g}), dilatometric softening temperatures (T{sub dil}) and coefficients of thermal expansion (CTE) of 13 glasses were determined. The molar volume values (MV) calculated from density data, E, H{sub v}, T{sub g}, T{sub dil} and CTE values were all found to vary linearly with the effective cation field strength arising from the M1 and M2 modifier cations. Least squares intercept and slope values are presented which correlate each property to effective cation field strength together with error values which arise from glass and specimen preparation and measurement inconsistencies. These linear correlations clearly indicate that the overall glass structure remains the same for each of the thirteen glasses with only the modifier cation(s) having any influence. This influence appears to be a cross-linking effect, the strength of which increases as the effective cation field strength of the M1, M2 modifiers increases. (orig.)

  10. Models for financial crisis detection in Indonesia based on M1, M2 per foreign exchange reverse, and M2 multiplier indicators

    Sugiyanto; Zukhronah, Etik; Pratiwi, Esteti Sophia

    2017-12-01

    Indonesia has been hit by financial crisis in the middle of 1997. The financial crisis that has occurred gives a severe impact to the economy of Indonesia resulting the needs for a detection system of financial crisis. Crisis can be detected based on several indicators such as M1, M2 per foreign exchange reserves, and M2 multiplier. These three indicators can affect the exchange rate stability and may further affect the financial stability so that it can be one of the causes of the financial crisis. This research aims to determine the appropriate model that can detect the financial crisis in Indonesia. Markov switching is an alternative model that can be approach and used often for detecting financial crisis. We can determine the combination of volatility and Markov switching model with AR and volatility model are determined first. The results of this research are that M1 can be modelled by SWARCH (3, 1) while M2 per foreign research exchange reserves and M2 multiplier can be modelled by SWARCH(3,2).

  11. 12 CFR Appendix M2 to Part 226 - Actual Repayment Disclosures

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Actual Repayment Disclosures M2 Appendix M2 to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... nearest whole year if the estimate contains a fractional year less than 0.5, and rounded up to the nearest...

  12. Establishing a Research Center: The Minority Male Community College Collaborative (M2C3)

    Wood, J. Luke; Urias, Marissa Vasquez; Harris, Frank, III

    2016-01-01

    This chapter describes the establishment of the Minority Male Community College Collaborative (M2C3), a research and practice center at San Diego State University. M2C3 partners with community colleges across the United States to enhance access, achievement, and success among men of color. This chapter begins with a description of the national…

  13. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  14. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  15. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  16. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  17. Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel

    Kim, Bum-Joon; Cho, Nam-Hyuck; Kim, Moon-K; Lim, Byeong-Soo

    2011-01-01

    Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as Si 3 N 4 and Al 2 O 3 . The optimal range of the friction coefficient is 0.4⁓0.5 at 650°C for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.

  18. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  19. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  20. Sintering, microstructure and properties of WC-AISI304 powder composites

    Marques, B.J.; Fernandes, C.M.; Senos, A.M.R.

    2013-01-01

    Highlights: ► Total replacement of Co binder by stainless steel AISI 304 in WC based composites. ► Processing conditions for WC–stainless steel composites. ► Mechanical behavior and oxidation resistance of WC–stainless steel composites. -- Abstract: Tungsten carbide–stainless steel (AISI 304) based composites were successfully prepared by powder metallurgy routes using vacuum sintering at a maximum temperature of 1500 °C. The effects of the binder amount (between 6 and 15 wt.%) on the phase composition, microstructure and mechanical properties, namely hardness and fracture toughness, were investigated. Appreciable amount of (M,W) 6 C up to 12 wt.% was detected, especially for the higher SS contents. However, a good compromise between toughness and hardness was observed. Besides that, improved oxidation resistance was noticed in WC–SS based composites compared with WC–Co composites. The results are discussed having in mind the correlation between chemical composition, phase composition, microstructure and mechanical behavior

  1. Tribological behavior of an austenitic stainless steel AISI 316L nitrurated by DC-pulsed plasma

    De Las Heras, E; Walther, F; Corengia, P.A; Quinteiro, M.O; Cabo, A; Bruhl, S; Sommadossi, S

    2004-01-01

    Austenitic stainless steels are widely used in different applications because they withstands corrosion. Ionic nitruration has proven to be an adequate technique for modifying this type of steel, in order to improve its resistance to wear without diminishing its resistance to corrosion. While many publications have reported improvements in the tribological properties of the nitrurated AISI 316, systematic studies that evaluate this behavior using industrial equipment for its thermochemical treatment are of interest. This work studied the tribological behavior of an AISI 316L steel nitrurated by DC pulsed plasma in an industrial machine in an atmosphere of 25% N 2 and 75% H 2 for 20 h at 400 o C by means of abrasion tests under different conditions in an A 135 Amsler-disk machine. In order to characterize the abraded samples microhardness, optic and scanning electron microscopy profiles to determine the abrasion mechanisms were performed. The results showed substantial improvement in the abrasion resistance of the nitrurated samples compared to the non nitrurated ones and the different abrasion mechanisms are discussed to explain the test results (CW)

  2. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  3. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  4. Interactions Between Fibroblast Cells and Laser Beam Welded AISI 2205 Duplex Stainless Steel

    Ceyhun KÖSE

    2018-05-01

    Full Text Available Because of their high mechanical strength, excellent corrosion resistance and good weldability, duplex stainless steels are mostly used in industries such as oil, chemistry, petrochemistry, food and occasionally used in medical industry. These properties have enabled us to use duplex stainless steels in biomedical applications recently. Accordingly, duplex stainless steel material can be highly important to examine the toxic effect on the cells. In this study, the effect of the AISI 2205 duplex stainless steels which are joined by CO2 laser beam welding on viability of L929 fibroblast cells has been studied in vitro for the first time. For this aim, the cells were kept in DMEM/F-12 (Thermofisher Scientific 31331-028 medium for 7 days. The viability study was experimentally studied using the MTT (Thiazolyl Blue Tetrazolium Bromide method for 7 days. The cell viability of the laser beam welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. According to the obtained results, it was revealed that laser beam welded and base metal AISI 2205 duplex stainless steel has been found suitable to study for biomedical applications. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.18006

  5. The influence of delta ferrite in the AISI 416 stainless steel hot workability

    Cardoso, P.H.S.; Kwietniewski, C.; Porto, J.P.; Reguly, A.; Strohaecker, T.R.

    2003-01-01

    Delta ferrite in martensitic stainless steels may have an adverse effect on the mechanical properties of these materials at high temperature. The occurrence of such phase is determined by the material chemical composition (mainly Cr and C), as-received microstructure condition and hot working temperature. The aim of this investigation is to assess the influence of delta ferrite on the hot workability of the martensitic AISI 416 stainless steel. Hence, different heats of this material (differing in chemical composition and as-received microstructure) were submitted to heating tests in order to observe the microstructural transformations that take place at high temperature and then examine the influence of these transformations on the mechanical behaviour. Phase characterisation and quantification were carried out using scanning electron microscopy/energy-dispersive X-ray microanalysis and image analysis. The heating tests were performed in the temperature range of 1100-1350 deg. C and hot workability in two heats with different delta ferrite content was assessed by hot torsion tests in the temperature range of 1000-1250 deg. C. The results have indicated that chemical composition and as-received microstructure strongly affect delta ferrite formation, which in turn deteriorates hot workability of the martensitic AISI 416 stainless steel

  6. Effects of heat treatment conditions on microstructure and mechanical properties of AISI 420 steel

    Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida por Plasma e Metalurgia do Po

    2014-07-01

    The cycle control of heat treatments, on the quenching and tempering operation of AISI 420 stainless steel, is essential for improved material performance. The adequate choice of heat treatment parameters, can lead an optimization on its mechanical properties and corrosion resistance. Thus, this paper aims to investigate the effects of quenchants medium, and austenitizing and tempering temperatures, on the microstructure and mechanical properties of AISI 420 steel. Different heat treatments cycles were studied: 1) samples were austenitized at 1050°C and water, oil and air quenched; 2) samples were austenitized at range temperatures of 950-1050°C and oil quenched; and 3) as-quenched samples were tempering at range temperatures of 400-500°C. Treated samples were characterized by optical microscopy, X-ray diffractometry and hardness measurements. The samples hardness increases with increasing cooling rate (water > oil > air quenched). Water quenched samples presented crack after cooling to room temperature. Samples hardness also increases with austenitizing temperature increasing, and decreases with increasing tempering temperature. (author)

  7. Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate

    Matteazzi, S.; Paitti, G.; Boerman, D.

    1982-01-01

    The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)

  8. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  9. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  10. Effect of mechanical activation on jell boronizing treatment of the AISI 4140

    Yılmaz, S.O.; Karataş, S.

    2013-01-01

    The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO 2 –Na 2 O) powders for 873–1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe 2 B sublayers as function of treatment time and temperature in the range of 873–1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000–2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe 2 B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.

  11. Effect of mechanical activation on jell boronizing treatment of the AISI 4140

    Yılmaz, S. O.; Karataş, S.

    2013-06-01

    The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO2-Na2O) powders for 873-1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as function of treatment time and temperature in the range of 873-1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000-2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe2B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.

  12. Effect of mechanical activation on jell boronizing treatment of the AISI 4140

    Yılmaz, S.O., E-mail: osyilmaz@firat.edu.tr [F.U. Engineering Faculty, Metallurgical and Material Science, 23119 Elazığ (Turkey); Karataş, S. [F.U. Engineering Faculty, Metallurgical and Material Science, 23119 Elazığ (Turkey)

    2013-06-15

    The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO{sub 2}–Na{sub 2}O) powders for 873–1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe{sub 2}B sublayers as function of treatment time and temperature in the range of 873–1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000–2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe{sub 2}B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.

  13. Factors Affecting Optimal Surface Roughness of AISI 4140 Steel in Turning Operation Using Taguchi Experiment

    Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.

    2018-02-01

    This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.

  14. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  15. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  16. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  17. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-01-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  18. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  19. Transport and calorimetric properties of AISI 321 by pulse thermal diffusivity and calorimetric techniques

    Perovic, N.L.; Maglic, K.D.; Stanimirovic, A.M.; Vukovic, G.S.

    1995-01-01

    The study of the thermophysical properties of AISI 321 stainless steel was the last part of work within the IAEA-coordinated Research Programme for the Establishment of a Database of Thermophysical Properties of LW and HW Reactor Materials (IAEA CRP) effected at the Institute of Nuclear Sciences Vinca (NIV). The AISI 321 stainless steel belongs to the group of construction materials whose thermophysical and calorimetric properties have significance for the IAEA CRP. Because there have been few investigations of the thermal properties of this material, the CRP foresaw the need for new measurements, which are reported in this paper. Experimental research performed at NIV consisted of the investigation of thermal diffusivity, electric resistivity, and specific heat capacity of this austenitic stainless steel. The thermal diffusivity was measured by the laser pulse technique, and the elastic resistivity and specific heat capacity were determined by use of millisecond-resolution pulse calorimetry. All measurements were performed from ambient temperature to above 1000 o C, within which temperature range the material maintains its structure and stable thermophysical properties. Values for the thermal conductivity were computed from data on the thermal diffusivity, specific heat capacity, and the room-temperature density. (author)

  20. Relationship between phase development and swelling of AISI 316 during temperature changes

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  1. Low-temperature dependence of yielding in AISI 316 stainless steels

    Tobler, R.L.; Reed, R.P.

    1981-01-01

    Tensile tests at temperatures between 323 and 4 K were performed on one heat of AISI 316 austenitic stainless steel having the composition Fe-17.34Cr-12.17Ni-1.55Mn-2.16Mo-0.051C. The temperature dependences of the yield and flow strengths at plastic strain increments from 0.2 to 3.65% are analyzed. At the yield strain (0.2%), no body-centered cubic (bcc) martensite phase transformation is detected. At higher strains (approx.3.2 +- 0.6%), bcc martensite forms from the parent austenite phase at test temperatures below 190 K, but there are no discontinuities in the temperature dependence of flow strength. A review of data available for three heats of AISI 316 at temperatures between 973 and 4 K reveals that deviations from thermally activated plastic flow theory occur at temperatures below 175 K, apparently depending on heat-to-heat compositional variations. Grain size and magnetic transition effects on the yield strength are discussed

  2. M2- and M5-branes in E11 current algebra formulation of M-theory

    Shiba, Shotaro; Sugawara, Hirotaka

    2018-03-01

    Equations of motion for M2- and M5-branes are written down in the E11 current algebra formulation of M-theory. These branes correspond to currents of the second and the fifth rank antisymmetric tensors in the E11 representation, whereas the electric and magnetic fields (coupled to M2- and M5-branes) correspond to currents of the third and the sixth rank antisymmetric tensors, respectively. We show that these equations of motion have solutions in terms of the coordinates on M2- and M5-branes. We also discuss the geometric equations, and show that there are static solutions when M2- or M5-brane exists alone and also when M5-brane wraps around M2-brane. This situation is realized because our Einstein-like equation contains an extra term which can be interpreted as gravitational energy contributing to the curvature, thus avoiding the usual intersection rule.

  3. Reliable Radio Access for Massive Machine-to-Machine (M2M) Communication

    Madueño, Germán Corrales

    the service requirements can range from massive number of devices to ultra-reliable. This PhD thesis focuses on novel mechanisms to meet these requirements in a variety of wireless systems, from well-established technologies such as cellular networks, to emerging technologies like IEEE 802.11ah. Today...... an overwhelming 89% of the deployed M2M modules are GPRS-based. This motivates us to investigate the potential of GPRS as a dedicated M2M network. We show that by introducing minimal modifications to GPRS operation, a large number of devices can be reliably supported. Surprisingly, even though LTE is seen...... as the preferable solution for M2M, no mechanisms are in place to guarantee reliable M2M access. Contrary to mainstream solutions that focus on preventing overload, we introduce mechanisms to provide reliable M2M service. We also investigate what cellular networks can do about upcoming smart metering traffic...

  4. Evaluation of secure capability-based access control in the M2M local cloud platform

    Anggorojati, Bayu; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    delegation. Recently, the capability based access control has been considered as method to manage access in the Internet of Things (IoT) or M2M domain. In this paper, the implementation and evaluation of a proposed secure capability based access control in the M2M local cloud platform is presented......Managing access to and protecting resources is one of the important aspect in managing security, especially in a distributed computing system such as Machine-to-Machine (M2M). One such platform known as the M2M local cloud platform, referring to BETaaS architecture [1], which conceptually consists...... of multiple distributed M2M gateways, creating new challenges in the access control. Some existing access control systems lack in scalability and flexibility to manage access from users or entity that belong to different authorization domains, or fails to provide fine grained and flexible access right...

  5. ESTUDO COMPARATIVO ENTRE OS ÍNDICES NDVI OBTIDOS A PARTIR DOS SENSORES LANDSAT 5 - TM E RESOURCESAT - LISS III

    Cesar Vinícius Mendes Nery

    2013-07-01

    Full Text Available A importância das imagens de sensoriamento remoto para o monitoramento da cobertura vegetal é algo inegável. Por mais de três décadas a série Landsat tem fornecido imagens da terra, porém a partir de novembro de 2011 o satélite interrompeu a disponibilização de suas imagens para o monitoramento ambiental. Uma das alternativas de imagens ao Landsat têm sido as imagens do sensor LISS III a bordo do satélite indiano Resourcesat 1. O presente trabalho tem como área de estudo o município de Janaúba, por estar em uma área de transição de dois biomas, e o mesmo tem por objetivo comparar os dois sensores, o sensor TM que se encontra a bordo do satélite Landsat 5 e o sensor LISS III a bordo do satélite Resourcesat 1. Para esse estudo comparativo as imagens foram adquiridas do site do Instituto Nacional de Pesquisas Espaciais (INPE e seus valores de níveis digitais (ND foram convertidos em reflectância com correção atmosférica utilizando o método de correção DOS. Amostras de pixels das imagens índice foram coletadas para o estudo de correlação e ajuste de uma equação linear por meio da técnica de regressão. Utilizando a equação ajustada foram gerados dois mapas temáticos de ambos os sensores, sendo os mesmos comparados pelo teste estatístico Kappa. Os resultados mostraram uma forte correlação entre os valores de NDVI (0,81, sendo possível o ajuste de uma equação linear que expresse a forma dessa relação. O sensor TM, superestimou os valores de NDVI em relação ao sensor LISS III (Inclinação de 1,1035. O valor de Kappa para os mapas temáticos obtidos foi de 0,5894 e o índice de acerto foi de 98,81%, o que mostra uma boa similaridade entre eles. O sensor LISS III pode ser perfeitamente utilizado como alternativa ao Landsat 5.

  6. X-Ray diffraction application in studying the nitrogen fixing and aging in stainless steel AISI 304

    Ramos, L.F.V.

    1973-01-01

    Solid solutions of N in AISI-304 stainless steels were aged to different degrees. The aging was monitored through X-Ray difraction measurement of the lattice parameter 'a'. The increases in 'a', due to the increase of N in solid solution were determined experimentally

  7. Study of the M23C6 precipitation in AISI 304 stainless steel by small angle neutron scattering

    Boeuf, A.; Caciuffo, R.G.M.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Melone, S.; Puliti, P.; Rustichelli, F.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Coppola, R.

    1985-01-01

    The results of some small-angle neutron scattering (SANS) experiments on M 23 C 6 (M=Fe, Cr) carbide precipitation in AISI 304 stainless steel, aged at different temperatures during different times, are presented. The total volume fraction, the total surface of precipitates per unit sample volume and the size distribution functions of the M 23 C 6 carbides were determined. (orig.)

  8. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry

    Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.

    1988-12-01

    The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.

  9. Laser surface cladding of Ti-6Al-4V on AISI 316L stainless steel for bio-implant application

    Kumar, A

    2014-01-01

    Full Text Available The present study concerns an in-depth investigation of the influence of laser surface cladding of Ti-6Al-4V on the microstructure (both the top surface, cross-section and interface), wear resistance, corrosion resistance and bio-activity of AISI...

  10. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...

  11. Differences between in vitro and in vivo obtained schistosomules Diferenças entre esquistossômulos obtidos in vitro e in vivo

    Alan L. Melo

    1990-04-01

    Full Text Available The injection of cercariae of Schistosoma mansoni into the peritoneal cavity of naive mice induces cell adhesion to these larvae, and this adherence sharply decreases when the infecting larva changes to schistosomule. This procedure was used to detect differences between schistosomules obtained in vivo and in vitro. Reinoculation of schistosomules obtained in vivo into the peritoneal cavity of mice did not trigger cell adhesion. In contrast, adherent cells were found in 4 and 24-hour-in vitro schistosomules. Our data on schistosomules obtained in vitro indicate that more than 24 hours are needed for complete remotion of molecules involved in the phenomenon of cell adhesion.Injeção de cercárias de Schistosoma mansoni na cavidade peritoneal de camundongos normais induz adesão celular a estas larvas. Esta aderência diminui acentuadamente quando as larvas infectantes se transformam em esquistossômulos. Este procedimento foi usado para detectar diferenças entre esquistossômulos obtidos in vivo e in vitro. A reinoculação de esquistossômulos obtidos in vivo na cavidade peritoneal de camundongos não acarreta adesão celular. Por outro lado, células aderentes foram encontradas em esquistossômulos obtidos in vitro (4 e 24 horas, respectivamente. Nossos dados referentes a esquistossômulos obtidos in vitro indicam que mais de 24 horas são necessárias para a completa remoção de moléculas envolvidas no fenômeno de adesão celular.

  12. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    Reimers, Kerstin [Klinik fuer Plastische, Hand-und Wiederherstellungschirurgie, Podbielskistrasse 380, D-30659 Hannover (Germany); Buchholz, Katja [Institut fuer Medizinische Mikrobiologie, Otto-von-Guericke-Universitaet Magdeburg, Leipzigerstrasse 44, D-39120 Magdeburg (Germany); Werchau, Hermann [Institut fuer Medizinische Mikrobiologie, Otto-von-Guericke-Universitaet Magdeburg, Leipzigerstrasse 44, D-39120 Magdeburg (Germany)

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cells revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.

  13. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  14. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  15. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis.

    Cai, Hui; Zhang, Yu; Lu, Mijia; Liang, Xueya; Jennings, Ryan; Niewiesk, Stefan; Li, Jianrong

    2016-08-15

    Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus

  16. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice.

    Benes, Jan; Novakova, Martina; Rotkova, Jana; Farar, Vladimir; Kvetnansky, Richard; Riljak, Vladimir; Myslivecek, Jaromir

    2012-07-01

    We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.

  17. Comparison of 14 MeV isomer production of 178m2Hf and 179m2Hf using Feshbach-Kerman-Koonin and exciton preequilibrium models

    Chadwick, M.B.; Young, P.G.

    1993-01-01

    The 178m2 Hf(16+) isomeric state has a 31-yr half life and could pose serious radioactive problems in nuclear fusion reactors if its production in 14 MeV neutron-induced reactions is significant. We present statistical/preequilibrium model calculations for the production of this isomer in the 179 Hf(n, 2n) 178m2 Hf reaction, as well as the 25-days 12.5 - isomer in the 179 Hf(n,n') 179m2 Hf reaction, using two different preequilibrium models: the exciton model and the Feshbach-Kerman-Koonin (FKK) theory. Our calculations which use the exciton model agree well with measurements, but those with the FKK theory underestimate measurements. Our calculations axe the first to probe angular momentum transfer effects in the FKK theory and suggest that, as it is presently applied, high spin-transfer reactions are underestimated. We suggest modifications to the FKK statistical averaging procedure which may result in an improved agreement with experiment

  18. Ab initio study of M2AlN (M = Ti,V,Cr)

    Sun, Zhimei; Music, Denis; Ahuja, Rajeev; Schneider, Jochen M

    2005-01-01

    We have studied M 2 AlN phases, where M = Ti, V, and Cr, by means of ab initio total energy calculations. The bulk modulus of M 2 AlN increases as Ti is replaced with V and Cr by 19.0% and 26.5%, respectively, which can be understood on the basis of the increased number of valence electrons filling the p-d hybridized bonding states. The bulk modulus of M 2 AlN is generally higher than that of the corresponding M 2 AlC phase, which may be explained by an extra electron in the former phases contributing to stronger chemical bonding. This work is important for fundamental understanding of elastic properties of these ternary nitrides and may inspire future experimental research. (letter to the editor)

  19. HF183/BFDrev and HumM2 qPCR data

    U.S. Environmental Protection Agency — Concentration estimates for HF183/BFDrev and HumM2 qPCR genetic markers in raw sewage collected from 54 geographic locations across the United States. This dataset...

  20. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor.

    Yuan, Meng; McNae, Iain W; Chen, Yiyuan; Blackburn, Elizabeth A; Wear, Martin A; Michels, Paul A M; Fothergill-Gilmore, Linda A; Hupp, Ted; Walkinshaw, Malcolm D

    2018-05-10

    We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation K d is estimated to be ~0.9 µM with a slow dissociation rate (t 1/2 ~ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R-states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate. ©2018 The Author(s).

  1. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  2. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  4. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  5. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, Padopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Detailed profile of m=2 islands with TVTS on JFT-2M

    Yamauchi, T.; Grek, B.; Hoshino, K.; Le Blanc, B.; Johnson, D.; Felt, J.; Shiina, T.; Kurita, G.; Ishige, Y.; Kozawa, H.

    1996-01-01

    The detailed electron temperature profile (spatial resolution: 0.86 cm) of a low density JFT-2M plasma is measured with the TV Thomson scattering system (TVTS). Flat profiles showing the electron temperature shapes of m=2/n=1 islands are presented, which are in contrast to that without islands. On the other hand, the m=2/n=1 islands are effectively suppressed with local ECRH heating. (orig.)

  7. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  9. Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyección térmica por arco eléctrico

    López-Covaleda, E. A.

    2013-10-01

    Full Text Available The commercial materials 140MXC (with iron, tungsten, chrome, niobium, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1 homogeneous coatings and (2 coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser confocal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW. We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation.Mediante proyección térmica de arco eléctrico fueron depositados tres materiales comercialmente conocidos como: 140MXC (a base de hierro, wolframio, cromo y niobio, 530AS (acero AISI 1020 y 560AS (acero AISI 420, sobre acero AISI 4340. Con el objetivo de evaluar la mejor estrategia para incrementar la resistencia al desgaste abrasivo, los recubrimientos fueron depositados de dos formas: (1 monocapas homogéneas de cada material y (2 recubrimientos depositando con alambres disimiles de 140MXC + 530AS y 140MXC + 560AS. Los recubrimientos fueron caracterizados microestructuralmente mediante Difracción de rayos X, Microscopía óptica, Microscopía láser confocal y Microscopía electrónica de barrido. La evaluación de la resistencia al desgaste abrasivo se realizó mediante ensayo con arena seca y rueda de caucho (DSRW. Se encontró que la resistencia al desgaste depende entre otras de las

  10. Topological characterization of static strain aging of type AISI 304 austenitic stainless steel

    Monteiro, S.N.; Miranda, P.E.V. de

    1981-01-01

    Static strain aging of type AISI 304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant. The aging times varied between 10s and 100h, using a plastic pre-deformation of 9%. The static strain aging of 304 steel furnished an activation energy of 23.800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snock type mechanisms are responsible for the aging in such conditions. (Author) [pt

  11. Carburizing plasma in a low temperature austenitic stainless steel AISI 304

    Mota, W.T.; Ramos, F.D.; Rocha, R.C.; Barcelos, M.V.; Barcelos, M.A.

    2014-01-01

    The industrial use of thermochemical treatment assisted by the cold plasma has been widely employed in recent years, mainly oriented to the excellent results obtained in the surface modification of engineering materials, when compared to more traditional methods. In this work, we studied the plasma carburizing low temperature steel AISI 304 mechanical parts used in construction. The thermochemical treatment was performed at a fixed gas atmosphere 7% CH 4 (g) and 93 % H 2 (g), 350 ° C and times of 1, 3 and 5 hours. Samples being tested for Vickers hardness, abrasive microwear, microstructure evaluation by optical microscopy and SEM and X-ray diffraction. The results show significant improvement in surface hardness, wear resistance and good formation of expanded austenite layer and no identifiers peaks of carbides. The results achieved are due to diffusion/adsorption of carbon present in the gaseous atmosphere to the evaluated samples. (author)

  12. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  13. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  14. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  15. Corrosion Resistance Evaluation of Welded AISI 316 Stainless Steel by Electrochemical Method

    Baik, Shin Young; Kim, Kwan Hyu

    1990-01-01

    Electrochemical potentiokinetic polarization technique is known as quantitative, non-destructive and a rapid method for detecting sensitization and is essentially suitable for use in industrial fields and as laboratory research tools. In this study, electrochemical method was tested as a convenient means of the corrosion resistance evaluation for AISI 316L and 316 stainless steel(SS) and their welded sections. The sections were welded by TIG, MIG, CO 2 and ARC in 0.5N HCl as well as 1N H 2 SO 4 electrolyte with or without 0.01N KSCN. The results confirmed that electrochemical method could be used conveniently for corrosion resistance evaluation except reactivation aspect

  16. High-performance circular sawing of AISI 1045 steel with cermet and tungsten carbide inserts

    Abrao, A. M.; Rubio, J. C. Campos; Moreira, C.; Faria, P. E.

    2014-01-01

    This work investigated the influence of cutting speed and feed rate on cutting forces, surface roughness, and slot width circular sawing of AISI 1045 steel. The effects of tool material (cermet and tungsten carbide) and geometry (chip breaker flute and pre-cutting/postcutting teeth) were also investigated. Thrust and radial forces generally tended to decrease as the cutting speed increased and tended to increase with the feed rate. The lowest values of thrust and radial forces were obtained using a tungsten carbide saw ground with precutting and post-cutting teeth. With regard to the quality of the machined wall, the lowest surface roughness was obtained by applying the highest cutting speed and lowest feed rate and employing a cermet brazed saw. Under this condition, roughness values comparable to face turning and parting off operations were obtained. The cermet brazed saw was responsible for producing the narrowest slot widths.

  17. Applications of the essay at slow deformation velocity in pipes of stainless steel AISI-304

    Zamora R, L.; Mora R, T. De la

    2004-01-01

    Nowadays is carried out research related with the degradation mechanisms of structures, systems and/or components in the nuclear power plants, since many of the involved processes are those responsible for the dependability of these, of the integrity of the components and of the aspects of safety. The purpose of this work, was to determine the grade of susceptibility to the corrosion of a pipe of Austenitic stainless steel AISI 304, in a solution of Na CI (3.5%) to the temperatures of 60 and 90 C, in two different thermal treatments - 1. - Sensitive 650 C by 4 hours and cooled in water. 2. Solubilized to 1050 C by 1 hour and cooled in water

  18. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    Budzynski, P., E-mail: p.budzynski@pollub.pl

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 10{sup 17} ion/cm{sup 2}, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  19. A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel

    Briki, Jalel; Ben Slima, Souad

    2008-12-01

    The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.

  20. Study of the AISI 347 austenitic stainless steel sensitization through the potentiokinetic reactivation method

    Teodoro, Celso Antonio; Wolynec, Stephan

    1996-01-01

    The sensitization kinetics of AISI 347 austenitic stainless steel samples, removed from a forged bar, was investigated with an electrochemical potentiokinetic reactivation method. After the solution anneal at 1140 deg C, the steel was submitted to sensitization treatments at 550 deg C, 670 deg C, 790 deg C and 910 deg C during times that varied from 1 h to 62 h. It was found that samples treated at 550 deg C, 670 deg C and 790 deg C become sensitized. The activation energy was found to be 124 kJ/mol. The observed behaviour was discussed in terms of both carbon retention in solution after the solution anneal and kinetics of carbon combination with chromium and niobium. (author)

  1. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  2. Influence of ferritic phase on the localized corrosion in the AISI 304 type austenitic stainless steel

    Lombardi, C.C.M.; Ramanathan, L.V.

    1994-01-01

    The influence of adding up to 4.7 wt% Si to AISI 304 on the pitting corrosion resistance and intergranular corrosion resistance has been studied. The alloys were prepared by melting in a vacuum induction furnace and annealed at 1200 0 C for 1 hour followed by quenching. Prolonged immersion tests in Fe C L 3 and anodic polarization measurements in 3.5% NaCl revealed that with increasing Si the tendency of the alloy to pit decreased and the pitting potential increased. The susceptibility to intergranular corrosion as determined through Huey tests also decreased with Si content. The overall influence of Si in the alloy on the corrosion behaviour is considered to be due to incorporation of Si in the surface film and consequent improvement in adhesion as well as reduction in detects within the film. (author). 7 refs, 4 figs, 6 tabs

  3. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    Kocsisová Edina

    2014-12-01

    Full Text Available Intergranular corrosion (IGC is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB. Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS. Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM was used for identification of secondary phases. Electron backscattered diffraction (EBSD was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  4. Correlation of yield strength with irradiation-induced microstructure in AISI 316 stainless steel

    Simons, R.L.; Hulbert, L.A.

    1985-10-01

    Improvements in the correlation of radiation-induced change in yield strength in AISI 316 stainless steel with microstructure were made by re-examining the role of short-range obstacles. Effects due to the size of the obstacles relative to their spacing and shape of the obstacles were applied. The concept of shearing the precipitates instead of bowing around them was used to explain the effects of precipitate hardening. It is concluded that large changes in yield strength may be produced in high swelling materials. Voids will dominate the hardening at high dpa. The increase in hardening will depend on the diameter of the voids even though the swelling in the material is the same. Precipitate hardening at high fluence (>15 dpa) make a significant contribution for irradiation temperatures above 500 0 C

  5. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  6. Processing of an AISI D2 tool steel by high-energy milling

    Spagnol, N.J.R.; Araujo, G.F.; Vurobi Junior, S.; Cintho, O.M.

    2009-01-01

    Full text: Chips of machining of AISI D2 steel were processed in Spex high-energy mill. The powder obtained was analyzed by x-ray diffraction, and then compressed in the form of discs of 8mm in diameter. The samples were treated at 1200 deg C for 1 hour under vacuum atmosphere for sintering. Then specimens were subjected to annealing, quenching and tempering at 400°C and 525 deg C. Along with each disc, a sample of as-received steel was subjected to the same heat treatment to evaluate the final microstructures. After metallographic preparation, samples were etched with Berah's reagent, characterized by optical microscopy, Vickers hardness, quantitative metallography and scanning electron microscopy with micro analysis and mapping by EDS. Specimens from high energy milling had reduction in prior austenitic grain size and more refined carbides and better distributed in the microstructure of steel. (author)

  7. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  8. ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

    X. M. ANTHONY

    2015-03-01

    Full Text Available In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA was conducted to understand the influence of all cutting parameters and tool geometry on cutting force.

  9. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  10. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  11. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  12. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  13. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  14. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    Silva, T.C.V.

    1984-08-01

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H 2 S O 4 solution containing As 2 O 3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  15. Quantifying Cutting and Wearing Behaviors of TiN- and CrNCoated AISI 1070 Steel

    Ahmet Cakan

    2008-11-01

    Full Text Available Hard coatings such as titanium nitride (TiN and chromium nitride (CrN are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM, line scan analyses and X-ray diffraction (XRD. The wear properties of TiN- and CrNcoated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples.

  16. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  17. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    Aubert, Isabelle; Olive, Jean-Marc; Saintier, Nicolas

    2010-01-01

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  18. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  19. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  20. Investigations on the creep-rupture behaviour of the austenitic stainless steel AISI 316 NET

    Schirra, M.; Ritter, B.

    1988-12-01

    The report describes the creep-rupture tests carried out with a 17/13/2 CrNiMo-steel in the frame of the German-Spanish collaboration (KfK-CIEMAT). The material studied is the austenitic steel AISI 316(L) selected as potential first-wall material for NET (Next European Torus). The test programme on base material with a NET specified batch encompasses until now in the temperature range 500-750 0 C the rupture-time-range till 20 000 h. The results permit statements to the creep- and creep-rupture behaviour and ductility. Metallography examinations give information about fracture behaviour and demonstrate the complex precipitation happening. The results are compared with the literature and own test results from two batches of the Fast-Breeder-Program. (orig.) [de

  1. EBSD characterization of the effect of welding parameters on HAZ of AISI409

    Ranjbarnodeha E.

    2012-01-01

    Full Text Available One of the main problems during the welding of ferritic stainless steels is severe grain growth in the heat affected zone (HAZ. In the present study, microstructural characteristics of tungsten inert gas (TIG welded AISI409 ferritic stainless steel were investigated. The effect of the welding parameters on grain size٫ local misorientation and low angle grain boundaries was studied. It was found that the base metal was partly in recrystallization state. Complete recrystallization followed by severe grain growth occurs after joining process due to welding heating cycle. A decrease in the number of low angle grain boundaries in HAZ was observed. Nevertheless, the welding plastic strain increases the density of local misorientation and low angle grain boundaries. This investigation shows that the final state of strain is the result of the competition between welding plastic strains and stress relieving from recrystallization but the decisive factor in determining the grain size in HAZ is heat input.

  2. Rainbow fringes around crevice corrosion formed on stainless steel AISI 316 after ennoblement in seawater

    Wang, W.; Zhang, X. [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao (China); Wang, J. [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao (China); State Key Laboratory for Corrosion and Protection, Shenyang (China)

    2009-10-15

    The crevice corrosion occurrence probability of stainless steel (SS) AISI 316 was increased under ennoblement condition due to chemically added H{sub 2}O{sub 2} into seawater. The H{sub 2}O{sub 2} was used to simulate the important factor causing ennoblement in natural marine biofilm. Morphology of the crevice corrosion was observed using an incident-light source microscopy. Some interesting ''rainbow'' fringes were observed around micro-crevices. The mechanism was discussed from the ions diffusion and potential distribution during the crevice formation. This result shows that under ennoblement condition the colored fringe is a distinct characteristic of the morphology of localized corrosion for stainless steel. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  4. Modification and characterization of the AISI 410 martensitic stainless steels surface

    Bincoleto, A.V.L.; Nascente, P.A.P.

    2010-01-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  5. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  6. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  7. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel

    Prieto, G.; Tuckart, W. R.

    2017-11-01

    The objective of the present work is to characterize the wear behavior of a cryogenically treated low-carbon AISI 420 martensitic stainless steel, by means of ball-on-disk tribological tests. Wear tests were performed under a range of applied normal loads and in two different environments, namely a petrolatum bath and an argon atmosphere. Wear tracks were analyzed by both optical and scanning electron microscopy and Raman spectroscopy to evaluate wear volume, track geometry, surface features and the tribolayers generated after testing. This paper is an extension of the work originally reported in the VIII Iberian Conference of Tribology (Prieto and Tuckart, in: Ballest Jiménez, Rodríguez Espinosa, Serrano Saurín, Pardilla Arias, Olivares Bermúdez (eds) VIII Iberian conference of tribology, Cartagena, 2015). In this study, it has been experimentally demonstrated that cryogenically treated specimens showed a wear resistance improvement ranging from 35 to 90% compared to conventionally treated ones.

  8. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  9. Fatigue assessment by energy approach during tensile tests on AISI 304 steel

    A. Risitano

    2017-01-01

    Full Text Available Estimation of the fatigue limit for steel ductile materials using non-destructive methods is a topic of great interest to researchers today. In recent years, the method adopted has implemented infrared sensors to detect the surface temperature and correlate it with the fatigue limit. In previous paper, a new energy approach was proposed to investigate the fatigue limit during tensile test. The numerical procedure proposed by Chrysochoos is adopted to clean infrared images and applied to analyse the surface heat sources during tensile test. AISI 304 specimens with rectangular cross-sections are tested. Moreover fatigue tests at increasing loads were carried out on steel by a stepwise succession, applied to the same specimen, for applying the thermographic method. The predictions of the fatigue limit, obtained by the analysis of the energy evolution during the static tests, were compared with the predictions obtained applying the thermographic method during fatigue tests.

  10. Improvement of the fatigue strength of AISI 4140 steel by an ion nitriding process

    Celik, A. [Atatuerk Univ., Erzurum (Turkey). Dept. of Mech. Eng.; Karadeniz, S. [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Mech. Eng.

    1995-06-01

    The influence of plasma nitriding on the fatigue behaviour of AISI 4140 low-alloy steel was investigated under varying process conditions of temperature (500-600 C), time (1-12 h), heat treatment before ion nitriding (quenched and tempered, normalized) and gas mixture (50% H{sub 2}-50% N{sub 2}). A rotating bending fatigue machine was used to determine the fatigue strength. It was found that the plasma nitriding improves the fatigue strength and increases the fatigue limit depending on the surface hardness of the case depth. The microstructure of surface and diffusion layers was examined by optical microscopy. The fracture surface of specimens and the origin of fatigue cracks were observed by scanning electron microscopy.

  11. Characterization of friction welding for IN713LC and AISI 4140 steel

    Yeom, J.T.; Park, N.K.; Park, J.H.; Lee, J.W.

    2004-01-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  12. Characterization of friction welding for IN713LC and AISI 4140 steel

    Yeom, J.T.; Park, N.K. [Dept. of Materials Processing, Korea Inst. of Machinery and Materials, Kyungnam (Korea); Park, J.H.; Lee, J.W. [ENPACO Co., Changwon (Korea)

    2004-07-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  13. Nitriding of AISI 4140 steel by a low energy broad ion source

    Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.

    2006-01-01

    A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by ε-Fe 2-3 N and γ-Fe 4 N phases and the diffusion zone is formed by fine precipitates, around big grains of the original martensitic phase, constituted principally by γ-Fe 4 N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases

  14. Ultrasonic and metallographic studies on AISI 4140 steel exposed to hydrogen at high pressure and temperature

    Oruganti, Malavika

    This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.

  15. Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel

    Karakan, Mehmet; Alsaran, Akguen; Celik, Ayhan

    2004-06-15

    AISI 4140 steel was plasma nitrocarburized at a gas mixture of 49%N{sub 2} + 49%H{sub 2} + 2%CO{sub 2}, for different process times (1, 2, 4, 8 and 12 h), at a temperature of 570 deg. C. The structural, mechanical and tribological properties of nitrocarburized steel were analyzed using a X-ray diffraction, microhardness tester, scanning electron microscopy, optical microscopy and pin-on-disk tribotester. The results have shown that the compound layer was composed of the {epsilon} and {gamma} iron carbonitrides. In addition, the compound layer included pores having a columnar structure. These pores are open to the surface. The nitrocarburizing process increases surface hardness, roughness and friction coefficient. The wear rate improves after plasma nitrocarburizing, and decreases with increasing surface hardness.

  16. Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel

    Karakan, Mehmet; Alsaran, Akguen; Celik, Ayhan

    2004-01-01

    AISI 4140 steel was plasma nitrocarburized at a gas mixture of 49%N 2 + 49%H 2 + 2%CO 2 , for different process times (1, 2, 4, 8 and 12 h), at a temperature of 570 deg. C. The structural, mechanical and tribological properties of nitrocarburized steel were analyzed using a X-ray diffraction, microhardness tester, scanning electron microscopy, optical microscopy and pin-on-disk tribotester. The results have shown that the compound layer was composed of the ε and γ iron carbonitrides. In addition, the compound layer included pores having a columnar structure. These pores are open to the surface. The nitrocarburizing process increases surface hardness, roughness and friction coefficient. The wear rate improves after plasma nitrocarburizing, and decreases with increasing surface hardness

  17. The relationship of cutting force with hole quality in drilling process of AISI H13 steel

    Tekaüt İsmail

    2017-01-01

    Full Text Available The harmony of the drilling machine-cutting tool-work piece is very important for producing the machine part with the ideal dimensions. For this purpose in this study, the effect of cutting forces on hole quality (surface roughness, diameter deviation and circular deviation was investigated by 14 mm diameter uncoated and (AlCrN monolayer coated carbide drills for drilling AISI H13 hot work tool steel on vertical machining center. Four different cutting speeds (60, 75, 90 and 108 m / min and three different feed rates (0.15, 0.20 and 0.25 mm / rev were used in the experiments. Cutting forces have been found to be effective in improving hole quality. Better hole quality has obtained with coated drills than uncoated drills in experiments. It has been observed that coated drills have the effect of improving the hole quality due to the operation with less cutting force and better chip evacuation.

  18. Optimization of process parameters of ECM by RSM on AISI 202 steel

    P. Alex John Britto

    2015-12-01

    Full Text Available The machining of complex shaped designs was difficult earlier, but with the advent of the newer machining processes incorporating in it electrical, chemical & mechanical processes, manufacturing has redefined itself. Especially, the Electrochemical Machining (ECM process is used to machine the hard to cut materials without producing heat and friction. Hence, in this work, the ECM process has been chosen to machine SS AISI 202 steel. This study establishes the effect of process parameters such as voltage, current and concentration of electrolyte on the responses on material removal rate (MRR. In this work, second-order quadratic models were developed for MRR, considering the electrolyte concentration, voltage and current as the machining parameters, using central composite design. The developed models were used for Response Surface Methodology (RSM optimization by desirability function approach to determine the optimum machining parameters.

  19. Effect of Nitridation Time on the Surface Hardness of Medium Carbon Steels (AISI 1045)

    Setyo Atmojo; Tjipto Sujitno; Sukidi

    2003-01-01

    It has been investigated the effect of nitridation time on the surface hardness of medium carbon steels (AISI 1045). Parameters determining to the results were flow rate of the nitrogen gas, temperature and time. In this experiments, sample having diameter of 15 mm, thick 2 mm placed in tube of glass with diameter 35 mm heated 550 o C, flow rate and temperature were kept constants, 100 cc/minutes and 550 o C respectively, while the time were varied from 5, 10, 20 and 30 hours. It was found, that for the nitridation time of 5, 10, 20, and 30 hours, the surface hardness increased from 145 VHN to, 23.7, 296.8, 382.4 and 426.1 VHN, respectively. (author)

  20. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  1. Welding with coated electrodes E 6010 and E 7018 in AISI 1025 steel

    Dennis Reyes-Carcasés

    2018-01-01

    Full Text Available The welding of steel of low carbon content is a common practice in the nickel industry, where components with steels of these characteristics are manufactured. The objective of the paper was to establish the microstructural behavior of the AISI 1025 steel when it was welded with two types of electrodes (E 6010 and E 7018, the first one deposited as a mattress, and the second one to guarantee mechanical resistance; they were made in a 240 x 240 x 10 mm plate with simple bevel preparation. The microstructures obtained with the electrode E 6010 are of the ferrite type Widmanstátten, columnar ferrite and intergranular pearlite, with a hardness of 345 HV, while with the electrode E 7018 the microstructures are ferrite Widmanstátten, austenite and martensite, with hardness of 332 HV . The decrease in hardness in the latter case is associated with the thermal treatment of multipass annealing.

  2. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Corrosion behaviour of electropolished AISI 316L austenitic biomaterial in physiological solution

    Zatkalíková, V.; Markovičová, L.; Škorvanová, M.

    2017-11-01

    Due to suitable mechanical properties, satisfactory corrosion resistance and relatively low cost, austenitic stainless steels are important biomaterials for manufacture of implants and various medical instruments and devices. Their corrosion properties and biocompatibility are significantly affected by protective passive surface film quality, which depends on used mechanical and chemical surface treatment. This article deals with corrosion resistance of AISI 316L stainless steel, which is the most widely used Cr-Ni-Mo austenitic biomaterial. Corrosion behaviour of five various surfaces (original, electropolished, three surfaces with combined treatment finished by electropolishing) is evaluated on the bases of cyclic potentiodynamic polarization tests performed in physiological solution at the temperature of 37± 0.5 °C.

  4. Local behavior of an AISI 304 stainless steel submitted to in situ biaxial loading in SEM

    Caër, C., E-mail: celia.caer@gmail.com; Pesci, R.

    2017-04-06

    The microstructural response of a coarse grained AISI 304 stainless steel submitted to biaxial tensile loading was investigated using SEM and X-ray diffraction. The specimen geometry was designed to allow for biaxial stress state and incipient crack in the center of the active part under biaxial tensile loading. This complex loading was performed step by step by a micromachine fitting into a SEM chamber. At each loading step FSD pictures and EBSD measurements were carried out to study the microstructural evolution of the alloy, namely grain rotations and misorientations, stress-induced martensite formation and crack propagation. According to their initial orientation, grains are found to behave differently under loading. Approximately 60% of grains are shown to reorient to the [110] Z orientation under biaxial tensile loading, whereas the 40% left undergo high plastic deformation. EBSD and XRD measurements respectively performed under loading and on the post mortem specimen highlighted the formation of about 4% of martensite.

  5. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  6. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  7. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Andrea M Siegel

    2008-04-01

    Full Text Available Murine gammaherpesvirus 68 (MHV68 establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV. EBV encodes an interleukin-10 (IL-10 homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25 and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis

  8. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Siegel, Andrea M; Herskowitz, Jeremy H; Speck, Samuel H

    2008-04-04

    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a

  9. Effect of Deep Cryogenic Treatment on Hardness and Wear Behavior of 5120 AISI Steel

    S. Torkian

    2016-12-01

    Full Text Available In this paper the effect of deep cryogenic treatment time on microstructure and tribological behavior of AISI 5120 case hardennig steel is studied. The disk shape samples were carburized at 920 ◦C for 6 hours and air cooled; after austenitizing, the samples were quenched in oil.Then immediately after quenching and sanding, the sample were kept in liquid nitrogen for 1, 24, 30 and 48 h and then tempered at 200 ◦C for 2 hours. The wear test was done by ball on disk method using of WC ball at 80 and 110 N load. For characterization of carbides, the etchant solution of CuCl2 (5 gr+HCl (100 mL + ethanol (100 mL was used. The hardness of samples before and after of tempering was measured by vicers method at 300 N load.. The amount of retained austenite was measured by X Ray Diffraction method. For 1DCT and 24DCT samples it was about 8% and 4%; in the other samples, the retained austenite peal was so decreased that it was not visible. The result showed that the hardness increases by deep cryogenic treatment in all speciments. While wear resistance increases in 1DCT and 24DCT samples, it decreases for 30DCT and 48DCT samples in compare with Conventional heat treatment (CHT sample in both applied loads, such that , 48DCT sample has the least wear resistance. The cause of increament of hardness is due to reduction in amount of retained austenite as a result of deep cryogenic treatment and decreasing in wear resistance after 24 hour, is due to carbide growth and nonhemogenuse distribution in microstructure and then weakening of matrix. So the 24 hour deep cryogenic treatment was the best optimal for AISI 5120 steel.

  10. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  11. Microstructure and Mechanical Properties of Thixowelded AISI D2 Tool Steel

    M. N. Mohammed

    2018-05-01

    Full Text Available Rigid perpetual joining of materials is one of the main demands in most of the manufacturing and assembling industries. AISI D2 cold work tool steels is commonly known as non-weldable metal that a high quality joint of this kind of material can be hardly achieved and almost impossible by conventional welding. In this study, a novel thixowelding technology was proposed for joining of AISI D2 tool steel. The effect of joining temperature, holding time and post-weld heat treatment on microstructural features and mechanical properties were also investigated. Acceptable joints without defect were achieved through the welding temperature of 1300 °C, while the welding at lower temperature resulted in a series of cracks across the entire joint that led to spontaneous fracture after joining. Tensile test results showed that maximum joint tensile strength of 271 MPa was achieved at 1300 °C and 10 min holding time, which was 35% of that of D2 base metal. Meanwhile, tensile strength of the joined parts after heat treatment showed a significant improvement over the non-heat treated condition with 560 MPa, i.e., about 70% of that of the strength value of the D2 base metal. This improvement in the tensile strength attributed to the dissolution of some amounts of eutectic chromium carbides and changes in the microstructure of the matrix. The joints are fractured at the diffusion zone, and the fracture exhibits a typical brittle characteristic. The present study successfully confirmed that by avoiding dendritic microstructure, as often resulted from the fusion welding, high joining quality components obtained in the semi-solid state. These results can be obtained without complex or additional apparatuses that are used in traditional joining process.

  12. Action of an aerobic hydrogenotroph bacteria isolated from ultrapure water systems on AISI 304 stainless steel

    Gales, Gregoire [DTN/SMTM/LMTE, CEA Cadarache, F-13108 Saint-Paul-lez-Durance (France)]|[DSV/DEVM/LEMIR, UMR 6191 CNRS-CEA-Universite Aix-Marseille II, CEA Cadarache, F- 13108 Saint-Paul-lez-Durance (France); Roy, Marc; Feron, Damien [DEN/DPC/SCCME/LECA, Bat 458, CEA Saclay F- 91191 Gif sur Yvette (France); Libert, Marie-Francoise; Sellier, Regine [DTN/SMTM/LMTE, CEA Cadarache, F-13108 Saint-Paul-lez-Durance (France); Cournac, Laurent [DSV/DEVM/LEP, UMR 6191 CNRS-CEA-Universite Aix-Marseille II, CEA Cadarache, F- 13108 Saint-Paul-lez-Durance (France); Heulin, Thierry [DSV/DEVM/LEMIR, UMR 6191 CNRS-CEA-Universite Aix-Marseille II, CEA Cadarache, F- 13108 Saint-Paul-lez-Durance (France)

    2004-07-01

    Several microbial studies have been recently performed in nuclear power stations. These studies concerned essentially the formation of bio-films on submerged metal coupons. Heterotrophic micro-organisms have been found in bulk water of nuclear fuel storage basins but the in situ nutrient sources for bacterial development in such highly oligo-trophic water was unknown. In nuclear environments, radiations lead to the production of molecular hydrogen, hydrogen peroxide and some radicals (OH, O{sub 2}{sup -}) by radiolysis of water or embedding matrices. Bacterial oxidation of molecular H{sub 2} commonly occurs in nature, as molecular hydrogen represents a high-energy reductant. We investigated the microbiology of a ultra-pure water basin containing irradiating waste. The initial aim of this study was to determine if autotrophic bacterial growth was possible in this basin. A major bacteria was isolated (Ralstonia sp. GGLH002) which was able to grow autotrophically with hydrogen as the electron donor and oxygen as the electron acceptor, and heterotrophically with organic nutrients. Its hydrogenase activity has been characterized. We focused then our study on the effects of this strain on 304L AISI stainless steel depending on the nutrient source used for bacterial development, e.g hydrogen or organics. In conclusion, the mechanism of passivation enhanced by Ralstonia sp. GGLH002 on AISI 304L SS still remains unknown. Several techniques could give substantial information, including XPS and polarization curves. It seems for the moment that the major bacteria inhabiting an oxic environment containing hydrogen due to radiolysis is not aggressive to stainless steel in conditions near from its environment. Further investigations are needed to test this hypothesis, including a study of the molecular diversity of the bacteria using culture-independent techniques, as cultivatable bacterial populations represent in general only a fraction of the total bacteria. (authors)

  13. Action of an aerobic hydrogenotroph bacteria isolated from ultrapure water systems on AISI 304 stainless steel

    Gales, Gregoire; Roy, Marc; Feron, Damien; Libert, Marie-Francoise; Sellier, Regine; Cournac, Laurent; Heulin, Thierry

    2004-01-01

    Several microbial studies have been recently performed in nuclear power stations. These studies concerned essentially the formation of bio-films on submerged metal coupons. Heterotrophic micro-organisms have been found in bulk water of nuclear fuel storage basins but the in situ nutrient sources for bacterial development in such highly oligo-trophic water was unknown. In nuclear environments, radiations lead to the production of molecular hydrogen, hydrogen peroxide and some radicals (OH, O 2 - ) by radiolysis of water or embedding matrices. Bacterial oxidation of molecular H 2 commonly occurs in nature, as molecular hydrogen represents a high-energy reductant. We investigated the microbiology of a ultra-pure water basin containing irradiating waste. The initial aim of this study was to determine if autotrophic bacterial growth was possible in this basin. A major bacteria was isolated (Ralstonia sp. GGLH002) which was able to grow autotrophically with hydrogen as the electron donor and oxygen as the electron acceptor, and heterotrophically with organic nutrients. Its hydrogenase activity has been characterized. We focused then our study on the effects of this strain on 304L AISI stainless steel depending on the nutrient source used for bacterial development, e.g hydrogen or organics. In conclusion, the mechanism of passivation enhanced by Ralstonia sp. GGLH002 on AISI 304L SS still remains unknown. Several techniques could give substantial information, including XPS and polarization curves. It seems for the moment that the major bacteria inhabiting an oxic environment containing hydrogen due to radiolysis is not aggressive to stainless steel in conditions near from its environment. Further investigations are needed to test this hypothesis, including a study of the molecular diversity of the bacteria using culture-independent techniques, as cultivatable bacterial populations represent in general only a fraction of the total bacteria. (authors)

  14. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    E. Marin

    2013-09-01

    Full Text Available Atomic Layer Deposition ( ALD is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations

  15. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  16. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  17. Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Center of Tribology and Tech. Diagnostics; Leskovsek, V. [Inst. of Metals and Technologies, Ljubljana (Slovenia)

    1998-10-10

    Plasma nitriding is usually used for ferrous materials to improve their surface properties. Knowledge of the properties of thin surface layers is essential for designing engineering components with optimal wear performance. In our study, we investigated the microstructural, mechanical and tribological properties of plasma- and pulse plasma-nitrided AISI 4140 steel in comparison to hardened steel. The influence of nitriding case depth as well as the presence of a compound layer on its tribological behaviour was also examined. Plasma and pulse plasma nitriding were carried out using commercial nitriding processes. Nitrided samples were fully characterised, using metallographic, SEM microscopic, microhardness and profilometric techniques, before and after wear testing. Wear tests were performed on a pin-on-disc wear testing machine in which nitrided pins were mated to hardened ball bearing steel discs. The wear tests were carried out under dry conditions where hardened samples were used as a reference. The resulting wear loss as well as the coefficient of friction was monitored as a function of load and test time. Several microscopic techniques were used to analyse the worn surfaces and wear debris in order to determine the dominant friction and wear characteristics. Results showed improved tribological properties of AISI 4140 steel after plasma and pulse plasma nitriding compared to hardening. However, the compound layer should be removed from the surface by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer followed by the formation of hard abrasive particles. (orig.) 10 refs.

  18. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  19. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo.

    Shweta Joshi

    Full Text Available Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.

  20. A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse

    Radulovic, Jelena

    2016-01-01

    Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation. We investigated the cellular connectivity in this RSC→M2 projection in the mouse using optogenetic photostimulation, retrograde labeling, and electrophysiology. Axons from RSC formed monosynaptic excitatory connections onto M2 pyramidal neurons across layers and projection classes, including corticocortical/intratelencephalic neurons (reciprocally and callosally projecting) in layers 2–6, pyramidal tract neurons (corticocollicular, corticopontine) in layer 5B, and, to a lesser extent, corticothalamic neurons in layer 6. In addition to these direct connections, disynaptic connections were made via posterior parietal cortex (RSC→PPC→M2) and anteromedial thalamus (RSC→AM→M2). In the reverse direction, axons from M2 monosynaptically excited M2-projecting corticocortical neurons in the RSC, especially in the superficial layers of the dysgranular region. These findings establish an excitatory RSC→M2 corticocortical circuit that engages diverse types of excitatory projection neurons in the downstream area, suggesting a basis for direct communication from dorsal hippocampal networks involved in spatial memory and navigation to neocortical networks involved in diverse aspects of sensorimotor integration and motor control. SIGNIFICANCE STATEMENT Corticocortical pathways interconnect cortical areas extensively, but the cellular connectivity in these pathways remains largely uncharacterized. Here, we

  1. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  2. The challenges of M2M massive access in wireless cellular networks

    Andrea Biral

    2015-02-01

    Full Text Available The next generation of communication systems, which is commonly referred to as 5G, is expected to support, besides the traditional voice and data services, new communication paradigms, such as Internet of Things (IoT and Machine-to-Machine (M2M services, which involve communication between Machine-Type Devices (MTDs in a fully automated fashion, thus, without or with minimal human intervention. Although the general requirements of 5G systems are progressively taking shape, the technological issues raised by such a vision are still partially unclear. Nonetheless, general consensus has been reached upon some specific challenges, such as the need for 5G wireless access networks to support massive access by MTDs, as a consequence of the proliferation of M2M services. In this paper, we describe the main challenges raised by the M2M vision, focusing in particular on the problems related to the support of massive MTD access in current cellular communication systems. Then we analyze the most common approaches proposed in the literature to enable the coexistence of conventional and M2M services in the current and next generation of cellular wireless systems. We finally conclude by pointing out the research challenges that require further investigation in order to provide full support to the M2M paradigm.

  3. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-01-01

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence 374KKKPPPS380 servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching 374KKKPPPS380 to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, 361VARKIVKMTKQPA373, which is normally masked in the presence of the downstream sequence 374KKKPPPS380. Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent. PMID:26094760

  4. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial; Estudo da resistencia a corrosao do aco inoxidavel ferritico AISI 444 para aplicacao como biomaterial

    Marques, Rogerio Albuquerque

    2014-09-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  5. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    Pavel Michel Almaguer‐Zaldivar

    2015-01-01

    Full Text Available Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con un coeficiente de asimetría de 0,1. Se obtuvo que la unión estudiada tiene un límite de resistencia a la fatiga de 178 MPa, a un punto de corte de 2 039 093 ciclos.Palabras claves: unión soldada, fatiga, curva S-N, AISI 1015, electrodo E6013._______________________________________________________________________________AbstractWelded joints are an important component in structures, by this reason is necessary to know the behaviour of these elements under cyclic loads. The objective of this work is to obtain the S-N curve of the butt welded joint of AISI 1015 steel and electrode E6013 as the contribution material. Fatiguetest was realized within the ASTM standard in the MTS810 testing machine. Rectangular cross section specimens was used. Cyclic loads was asymmetric tensile and the asymmetry ratio used was 0,1. In this study was obtained the fatigue limit equal to 178 MPa, at the cut point of 2 039 093 cycles.Key words: welded joint, fatigue, S-N curve, AISI 1015 steel, electrode E6013.

  6. Determinación de tensiones por rayos x del acero AISI 1045 deformado por rodillo // Determination of stress for x‐ray of the steel AISI 1045 deformed for roller

    Tomás Fernández‐Columbié

    2012-01-01

    Full Text Available El objetivo del trabajo es realizar el análisis de las tensiones a muestras de acero AISI 1045 endurecidasen frío por rodillo. Con empleo del método de Willianson–Hall se determinó las macro ymicrodeformaciones; la deformación reticular del parámetro de red; el tamaño de las cristalitas; losesfuerzos en la red cristalina y la reducción del tamaño promedio de los granos, lo que permitió establecerlos mecanismos de endurecimiento del acero AISI 1045, deformado por rodadura. Fueron medidos yanalizados diferentes puntos teniendo en cuenta los índices de Miller para la fase ferrítica del acero. Losmodelos lineales obtenidos, son estadísticamente significativos, que muestran una tendencia creciente delas propiedades mecánicas y metalúrgicas, según se incrementan las variables independientes delproceso de experimentación.Palabras claves: rodillo, rodadura, deformación plástica.__________________________________________________________________AbstractThe objective of the paper is to carry out the analysis from the tensions to steel samples AISI 1045hardened cold for roller. With employment of the method of Willianson-Hall was determined the macro andmicro deformations; the reticular deformation of the net parameter; the size of the crystallites; the efforts inthe crystalline net and the reduction of the size average of the grains, what allowed to establish themechanisms of hardening of the steel AISI 1045, deformed by rolling. They were measured and analyzeddifferent points keeping in mind the indexes of Miller for the phase ferrite of the steel. The obtained linealmodels, they are statistically significant that they show a growing tendency of the mechanical estates andmetallurgical, as the independent variables of the experimentation process are increased.Key words: roller, rolling, plastic deformation.

  7. Propriedades físicas de lipídios estruturados obtidos de misturas de gordura do leite e óleo de milho

    Rodrigues Juliana Neves

    2003-01-01

    Full Text Available Através da mistura e interesterificação de óleos e gorduras podem ser obtidos lipídios estruturados, que são compostos que apresentam características físicas, químicas e nutricionais diferentes das dos lipídios que lhes deram origem. Esses novos compostos podem apresentar capacidade de reduzir o risco de doenças, sendo então chamados de "alimentos funcionais". O objetivo deste estudo foi avaliar as propriedades físicas de lipídios estruturados obtidos por interesterificação química a partir de misturas de gordura do leite e óleo de milho. Foram preparadas quatro misturas, nas proporções de 80:20, 60:40, 40:60 e 20:80 de gordura do leite e óleo de milho, respectivamente. As amostras foram submetidas à interesterificação química com catalisador metóxido de sódio. As misturas e os lipídios estruturados obtidos foram avaliados quanto à consistência, conteúdo de gordura sólida e composição em ácidos graxos. Foram obtidos lipídios estruturados contendo teores de até 22% de ácido linoléico pela adição de até 40% de óleo de milho à gordura do leite, que originalmente possuía apenas cerca de 2% deste ácido graxo. A consistência e o conteúdo de gordura sólida foram dependentes da gordura do leite e da interação desta com o óleo de milho. Os coeficientes relativos às interações entre os componentes das misturas foram negativos, demonstrando efeito antagônico, característico de interações eutéticas entre gorduras. Os resultados mostraram relação linear significativa entre o conteúdo de gordura sólida e a consistência das amostras.

  8. Aggregation and Trunking of M2M Traffic via D2D Connections

    Rigazzi, Giovanni; Kiilerich Pratas, Nuno; Popovski, Petar

    2015-01-01

    Machine-to-Machine (M2M) communications is one of the key enablers of the Internet of Things (IoT). Billions of devices are expected to be deployed in the near future for novel M2M applications demanding ubiquitous access and global connectivity. In order to cope with the massive number of machines......, there is a need for new techniques to coordinate the access and allocate the resources. Although the majority of the proposed solutions are focused on the adaptation of the traditional cellular networks to the M2M traffic patterns, novel approaches based on the direct communication among nearby devices may...... represent an effective way to avoid access congestion and cell overload. In this paper, we propose a new strategy inspired by the classical Trunked Radio Systems (TRS), exploiting the Device-to-Device (D2D) connectivity between cellular users and Machine-Type Devices (MTDs). The aggregation of the locally...

  9. M2-F1 in flight being towed by a C-47

    1964-01-01

    The M2-F1 Lifting Body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. In this rear view, the M2-F1 is flying above and to one side of the C-47. This was done to avoid wake turbulence from the towplane. Lacking wings, the M2-F1 used an unusual configuration for its control surfaces. It had two rudders on the fins, two elevons (called 'elephant ears') mounted on the outsides of the fins, and two body flaps on the upper rear fuselage. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and

  10. Holographic cosmology from a system of M2–M5 branes

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Ali, Ahmed Farag, E-mail: afali@fsu.edu [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt)

    2016-05-15

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  11. Holographic cosmology from a system of M2–M5 branes

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2016-01-01

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  12. Comments on the Bagger-Lambert theory and multiple M2-branes

    Raamsdonk, Mark Van

    2008-01-01

    We study the SO(8) superconformal theory proposed recently by Bagger and Lambert as a possible worldvolume theory for multiple M2-branes. For their explicit example with gauge group SO(4), we rewrite the theory (originally formulated in terms of a three-algebra) as an ordinary SU(2) x SU(2) gauge theory with bifundamental matter. In this description, the parity invariance of the theory, required for a proper description of M2-branes, is clarified. We describe the subspace of scalar field configurations on which the potential vanishes, correcting an earlier claim. Finally, we point out, for general three-algebras, a difficulty in constructing the required set of superconformal primary operators which should be present in the correct theory describing multiple M2-branes.

  13. M2 FILTER FOR SPECKLE NOISE SUPPRESSION IN BREAST ULTRASOUND IMAGES

    E.S. Samundeeswari

    2016-11-01

    Full Text Available Breast cancer, commonly found in women is a serious life threatening disease due to its invasive nature. Ultrasound (US imaging method plays an effective role in screening early detection and diagnosis of Breast cancer. Speckle noise generally affects medical ultrasound images and also causes a number of difficulties in identifying the Region of Interest. Suppressing speckle noise is a challenging task as it destroys fine edge details. No specific filter is designed yet to get a noise free BUS image that is contaminated by speckle noise. In this paper M2 filter, a novel hybrid of linear and nonlinear filter is proposed and compared to other spatial filters with 3×3 kernel size. The performance of the proposed M2 filter is measured by statistical quantity parameters like MSE, PSNR and SSI. The experimental analysis clearly shows that the proposed M2 filter outperforms better than other spatial filters by 2% high PSNR values with regards to speckle suppression.

  14. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  15. M2IRAGE: Management of measurements during radiological interventions geographically assisted in the environment

    Gerphagnon, O.; Roche, H.; Lelache, H.; Guelin, M.; Fauquant, J.M.; Kacenelen, Y.; Armand, Y.

    2010-01-01

    This report presents the M 2 IRAGE software, a data processing tool designed to share radioactivity measurements and to give a schematised view of a radiological situation and of its evolution, while respecting different legal frameworks, notably the obligation to produce a radiological measurement programme. After a simplified recall of the crisis management organisation, the authors describe the M 2 IRAGE software and hardware architecture, the functions of its main modules (presentation of radioprotection information during field intervention, field mission management, data browsing, and data transmission to field teams). While giving some display examples, the authors describe how an event is managed and processed by this tool: event creation, measurement acquisition, aid to decision, team management. They report and discuss the results of a national exercise which took place in September 2009 in Saclay with a prototype version of M 2 IRAGE

  16. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies

    Lu, J.Z.; Qi, H.; Luo, K.Y.; Luo, M.; Cheng, X.N.

    2014-01-01

    Highlights: •Laser shock peening caused an obvious increase of corrosion resistance of 304 steel. •Corrosion resistance of stainless steel increased with increasing pulse energy. •Mechanism of laser shock peening on corrosion behaviour was also entirely determined. -- Abstract: Effects of massive laser shock peening (LSP) impacts with different pulse energies on ultimate tensile strength (UTS), stress corrosion cracking (SCC) susceptibility, fracture appearance and electrochemical corrosion resistance of AISI 304 stainless steel were investigated by slow strain rate test, potentiodynamic polarisation test and scanning electron microscope observation. The influence mechanism of massive LSP impacts with different pulse energies on corrosion behaviour was also determined. Results showed that massive LSP impacts effectively caused a significant improvement on UTS, SCC resistance, and electrochemical corrosion resistance of AISI 304 stainless steel. Increased pulse energy can also gradually improve its corrosion resistance

  17. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    Souza, Juliana Sarango de [Universidade Federal de São Paulo (UNIFESP), Diadema, SP (Brazil). Departamento de Ciências Exatas e da Terra; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli, E-mail: renato.antunes@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas; Sayeg, Isaac Jamil [Universidade de São Paulo (USP), SP (Brazil). Instituto de Geociências

    2017-11-15

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  18. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    Souza, Juliana Sarango de; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli; Sayeg, Isaac Jamil

    2017-01-01

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  19. Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L

    Kumar, K. Gokul; Ramkumar, K. Devendranath; Arivazhagan, N. [VIT University, Vellore (India)

    2015-03-15

    This article investigated the weldability, metallurgical and mechanical properties of Inconel 625 and AISI 316L stainless steel weldments obtained by continuous current (CC) and pulsed current (PC) gas tungsten arc welding (GTAW) processes employing ERNiCr-3 and ER2209 fillers. Microstructure studies showed the migrated grain boundaries at the weld zone of ERNiCr-3 weldments and multidirectional grain growth for ER2209 weldments. It was inferred from the tension tests that the fracture occurred at the parent metal of AISI 316L in all the cases. Charpy V-notch impact tests accentuated that the CCGTA weldments employing ERNiCr-3 filler offered better impact toughness of 77 J at room temperature. Further a detailed study has been carried out to analyze the structure - property relationships of these weldments using the combined techniques of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis.

  20. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Sylvia Dundeková

    2014-11-01

    Full Text Available Mechanical and fatigue properties of material are dependent on its microstructure. The microstructure of AISI 316L stainless steel commonly used for the production of medical tools, equipment and implants can be easily influenced by its heat treatment. Microstructural changes and fatigue properties of AISI 316L stainless steel due to the heat treatment consisted of annealing at the temperature of 815°C with the dwell time of 500 hours were analyzed in the present paper. Precipitation of intermetallic phases and carbides was observed as a response of the material to the applied heat treatment. Small negative influence was observed in the case of fatigue region bellow 105 cycles; however the fatigue limit remains unchanged due to the structural sensitization.

  1. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.

  2. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    Hamidzadeh, Mohammad Ali; Meratian, Mahmood; Saatchi, Ahmad

    2013-01-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M 7 C 3 carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy

  3. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    Hamidzadeh, Mohammad Ali, E-mail: mahamidzadeh@yahoo.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Meratian, Mahmood; Saatchi, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-06-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M{sub 7}C{sub 3} carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy.

  4. Application of the EPR technique in welded couplings in 08X18H10T (AISI 321) stainless steel

    Fuentes, D.A.; Menendez, C.M.; Dominguez, H.; Sendoya, F.

    1993-01-01

    Stainless steel samples, one AISI 304 and the other 08X18H10T of Soviet origin (equivalent to AISI 320) were welded for the TIG method, submitted to a thermal treatment in order to its sensitization against the intergranular corrosion, then the samples were submitted to the EPR technique in order to establish the sensitization degree which is an indicative of susceptibility to intergranular corrosion. The result were corroborated by two different methodologies, the ASTM A262 standard and the soviet standard GOST 6032-89. The state of the tested surface was analyzed using optical microscopy in order to quantify the number of pricking since its presence disturbs the normalized charge, Pa. (Author)

  5. OPTIMIZATION OF SURFACE ROUGHNESS OF AISI 304 AUSTENITIC STAINLESS STEEL IN DRY TURNING OPERATION USING TAGUCHI DESIGN METHOD

    D. PHILIP SELVARAJ

    2010-09-01

    Full Text Available The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS. This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N ratio and the analysis of variance (ANOVA are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness.

  6. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  7. LaCrO3 composite coatings for AISI 444 stainless steel solid oxide fuel cell interconnects

    Wilson Acchar

    2012-12-01

    Full Text Available Doped lanthanum chromite-based ceramics are the most widely used interconnector material in solid fuel cells (SOFC since they exhibit significant electrical and thermal conductivity, substantial corrosion resistance and adequate mechanical strength at ambient and high temperatures. The disadvantage of this material is its high cost and poor ductility. The aim of this study is to determine the mechanical and oxidation behavior of a stainless steel (AISI 444 with a LaCrO3 deposition on its surface obtained through spray pyrolisis. Coated and pure AISI 444 materials were characterized by mechanical properties, oxidation behavior, X-ray diffraction and scanning electronic microscopy. Results indicated that the coated material displays better oxidation behavior in comparison to pure stainless steel, but no improvement in mechanical strength. Both materials indicate that deformation behavior depends on testing temperatures.

  8. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    Hoyeol Kim

    2017-11-01

    Full Text Available AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM and energy disperse X-ray spectrometry (EDS. Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  9. EFFECTS OF CARBURIZING AND NITRIDING PROCESSES ON THE COST AND QUALITY OF GEARS PRODUCED WITH AISI 4140 AND 8620 STEELS

    Claudio José Leitão

    2012-09-01

    Full Text Available This study compares the effects of nitriding and carburizing processes applied to gears subjected to contact stresses below 1300 MPa. The manufacturing cost, as well the depth of hardened layer and the distortion produced by two processes are analyzed. AISI 4140 gears quenched, tempered, liquid and gas nitriding and AISI 8620 gears after liquid carburizing, quenching and tempering are analyzed. The dimensional control of the gears was carried out before and after heat and thermochemical treatments. It is concluded that liquid or gas nitriding processes are about 30% more economical than liquid carburizing an also they reduce the dimensional changes. By the other hand liquid carburizing achieves greater case depth. Liquid nitriding process presents the lowest cost, dimensional changes and case depth.

  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  11. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    Singh, Gurpreet; Singh, Hazoor; Sidhu, Buta Singh

    2013-01-01

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO 2 ) coated AISI 304 substrates. In HA-SiO 2 coatings, 10 wt% SiO 2 and 20 wt% SiO 2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO 2 coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  12. Effect of friction time on the microstructure and mechanic properties of friction welded AISI 1040/Duplex stainless steel

    İhsan Kırık

    2000-06-01

    Full Text Available In this study, the effect on the characteristic microstructure and mechanic properties of friction time on the couple steels AISI 1040/AISI 2205 stainless steel joining with friction welding method was experimentally investigated. Friction welding experiment were carried out in privately prepared PLC controlled continuous friction welding machine by us. Joints were carried out under 1700 rpm rotation speed, with 30MPa process friction pressure, 60MPa forging pressure, 4 second forging pressure and under 3, 5, 7, 9 and 11 second friction time, respectively. After friction welding, the bonding interface microstructures of the specimens were examined by SEM microscopy and EDS analysis. After weld microhardness and tensile strength of specimens were carried out. The result of applied tests and observations pointed out that the properties of microstructure were changed with friction time increased. The excellent tensile strength of joint observed on 1700 rpm rotation speed and 3 second friction time sample.

  13. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  14. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  15. Control software architecture and operating modes of the Model M-2 maintenance system

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures.

  16. Modelling the enigmatic Late Pliocene Glacial Event - Marine Isotope Stage M2

    Dolan, Aisling M.; Haywood, Alan M.; Hunter, Stephen J.; Tindall, Julia C.; Dowsett, Harry J.; Hill, Daniel J.; Pickering, Steven J.

    2015-01-01

    The Pliocene Epoch (5.2 to 2.58 Ma) has often been targeted to investigate the nature of warm climates. However, climate records for the Pliocene exhibit significant variability and show intervals that apparently experienced a cooler than modern climate. Marine Isotope Stage (MIS) M2 (~ 3.3 Ma) is a globally recognisable cooling event that disturbs an otherwise relatively (compared to present-day) warm background climate state. It remains unclear whether this event corresponds to significant ice sheet build-up in the Northern and Southern Hemisphere. Estimates of sea level for this interval vary, and range from modern values to estimates of 65 m sea level fall with respect to present day. Here we implement plausible M2 ice sheet configurations into a coupled atmosphere–ocean climate model to test the hypothesis that larger-than-modern ice sheet configurations may have existed at M2. Climate model results are compared with proxy climate data available for M2 to assess the plausibility of each ice sheet configuration. Whilst the outcomes of our data/model comparisons are not in all cases straight forward to interpret, there is little indication that results from model simulations in which significant ice masses have been prescribed in the Northern Hemisphere are incompatible with proxy data from the North Atlantic, Northeast Arctic Russia, North Africa and the Southern Ocean. Therefore, our model results do not preclude the possibility of the existence of larger ice masses during M2 in the Northern or Southern Hemisphere. Specifically they are not able to discount the possibility of significant ice masses in the Northern Hemisphere during the M2 event, consistent with a global sea-level fall of between 40 m and 60 m. This study highlights the general need for more focused and coordinated data generation in the future to improve the coverage and consistency in proxy records for M2, which will allow these and future M2 sensitivity tests to be interrogated

  17. Complete Suppression of the m=2/n=1 NTM Using ECCD on DIII-D

    Petty, C.C.; La Haye, R.J.; Luce, T.C.; Humphreys, D.A.; Lohr, J.; Prater, R.; Austin, M.E.; Harvey, R.W.; Wade, M.R.

    2003-01-01

    Complete suppression of the m=2/n=1 neoclassical tearing mode (NTM) is reported for the first time using electron cyclotron current drive (ECCD) to noninductively generate current at the radius of the island O-point. Experiments on the DIII-D tokamak show that the maximum shrinkage of the m=2/n=1 island amplitude occurs when the ECCD location coincides with the q=2 surface. Estimates of the ECCD radial profile width from the island shrinkage are consistent with ray tracing calculations but may allow for a factor-of-1.5 broadening from electron radial transport

  18. Control software architecture and operating modes of the Model M-2 maintenance system

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures

  19. Modifications on the behaviour of AISI 304 stainless steel submitted to creep caused by intermediate treatment of annealing

    Barreto, L.F.P.; Monteiro, S.N.

    1982-01-01

    Type AISI 304 austenitic stainless steel samples which have been previously creep deformed at 750 0 C, were annealed at 1100 0 C. The effects of this heat treatment in the mechanical behavior of this material when retested in creep were investigated. The results were analysed by taking into account the structural modifications observed and the controlling mechanisms which operate during the deformation and fracture occurring in the creep process. (Author) [pt

  20. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  1. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  2. Effect of coatings obtanied by sputtering of chromium catode on the corrosion resistance of AISI H13 steel

    Sandoval, A; Peña, D; Piratoba, U

    2013-01-01

    Corrosion resistance of coatings obtained by sputtering a chromium target were evaluated. The films were deposited on substrates of disk-shaped AISI H13 steel. By means of potentiodynamic polarization curves were able to determine the current density vs. potential for the coated and uncoated substrate and the difference in the corrosion potential Ecorr. All samples with coating showed an increase in Ecorr respect to substrate. The electrochemical tests were conducted in an electrolytic solution of 3% NaCl

  3. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  4. Cyclic deformation behaviour of quenched and tempered AISI 4140 at two-step tensile-compressive-loading

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1997-08-30

    The cyclic deformation behaviour in stress-controlled two-step experiments with one or more changes between two blocks of certain lengths and amplitudes was investigated at the technically important steel AISI 4140 (German grade 42 CrMo 4). In all two-step experiments cyclic worksoftening behaviour is found. The degree of work softening is discussed in comparison to single-step experiments. In several cases effects of static strain-ageing can be found. (orig.) 10 refs.

  5. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  6. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying; Silva, Euclides Castorino da

    2012-01-01

    Abstract: The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materiais: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained...

  7. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  8. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    The-Vinh Do; Quang-Cherng Hsu

    2016-01-01

    As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....

  9. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  10. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    Cheng, F.T.; Lo, K.H.; Man, H.C.

    2004-01-01

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate

  11. Effects of Nitrogen on the DOS and the Passive Film Breakdown Potential of AISI 304 Stainless Steel

    Choe, Han Cheol; Kim, Kwan Hyu; Kim, Myung Soo; Lee, Ho Jong

    1992-01-01

    Effects of nitrogen on the degree of sensitization (DOS) and the passive film breakdown potential (Eb) of AISI 304 stainless steel were studied by potentiostat. AISI 304 stainless steel samples containing 0.02 ∼ 0.10wt% nitrogen were sensitized by heat treatment at 650 .deg. C. The DOS was measured using the double-loop reactivation method of the electrochemical potentiodynamic reactivation (EPR) test with the potential scan rate of 150 mV/min in the electrolyte of 0.5 M H 2 SO 4 + 0.01 M KSCN solution at 25 .deg. C. The passive film breakdown potential (Eb) and repassivation potential (Er) were detected by using the cyclic potentiodynamic polarization test (CPPT) in 0.5M HCI solution at 25 .deg. C. In addition, corrosion morphologies were observed by SEM and optical microscope. It was found that nitrogen additions up to 0.1wt% decreased DOS and increased Eb and Er of AISI 304 stainless steel, whereas the increasing sensitization time increased the DOS and decreased Eb and Er. The corrosion morphologies showed severe pits and intergranular attacks in the samples of low nitrogen content and high DOS

  12. Comparative tribological studies of duplex surface treated AISI 1045 steels fabricated by combinations of plasma nitriding and aluminizing

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2014-01-01

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Aluminizing of pre-nitrided specimen provides the highest surface hardness. • The lowest wear rate was obtained via aluminizing of pre-nitrided specimen. • Wear mechanism of the modified layer consists of oxidative and spallung wear. - Abstract: Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens

  13. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  14. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  15. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  16. Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels

    Silva, Paulo Maria de O.; Abreu, Hamilton Ferreira G. de; Albuquerque, Victor Hugo C. de; Neto, Pedro de Lima; Tavares, Joao Manuel R.S.

    2011-01-01

    As austenitic stainless steels have an adequate combination of mechanical resistance, conformability and resistance to corrosion they are used in a wide variety of industries, such as the food, transport, nuclear and petrochemical industries. Among these austenitic steels, the AISI 301LN and 316L steels have attracted prominent attention due to their excellent mechanical resistance. In this paper a microstructural characterization of AISI 301LN and 316L steels was made using various techniques such as metallography, optical microscopy, scanning electronic microscopy and atomic force microscopy, in order to analyze the cold deformation effect. Also, the microstructural changes were correlated with the alterations of mechanical properties of the materials under study. One of the numerous uses of AISI 301LN and 316L steels is in the structure of wagons for metropolitan surface trains. For this type of application it is imperative to know their microstructural behavior when subjected to cold deformation and correlate it with their mechanical properties and resistance to corrosion. Microstructural analysis showed that cold deformation causes significant microstructural modifications in these steels, mainly hardening. This modification increases the mechanical resistance of the materials appropriately for their foreseen application. Nonetheless, the materials become susceptible to pitting corrosion.

  17. M2-F1 in flight over lakebed on tow line

    1963-01-01

    After initial ground-tow flights of the M2-F1 using the Pontiac as a tow vehicle, the way was clear to make air tows behind a C-47. The first air tow took place on 16 August 1963. Pilot Milt Thompson found that the M2-F1 flew well, with good control. This first flight lasted less than two minutes from tow-line release to touchdown. The descent rate was 4,000 feet per minute. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got

  18. Investigation into adamantane-based M2 inhibitors with FB-QSAR.

    Wei, Hang; Wang, Cheng-Hua; Du, Qi-Shi; Meng, Jianzong; Chou, Kuo-Chen

    2009-07-01

    Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel. Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently, the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008, 451, 591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches. In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibitors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth analysis was performed with the newly developed fragment-based quantitative structure-activity relationship (FB-QSAR) algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing effective adamantane-based antiflu drugs.

  19. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Massive M2M Access with Reliability Guarantees in LTE Systems

    Madueño, Germán Corrales; Kiilerich Pratas, Nuno; Stefanovic, Cedomir

    2015-01-01

    Machine-to-Machine (M2M) communications are one of the major drivers of the cellular network evolution towards 5G systems. One of the key challenges is on how to provide reliability guarantees to each accessing device in a situation in which there is a massive number of almost-simultaneous arriva...

  1. Initial search for triggered gamma emission from Hf-178(m2) using the YSU miniball array

    Carroll, J. J.; Burnett, J.; Drummond, T.; Lepak, J.; Propri, R.; Smith, D.; Karamian, S. A.; Adam, Jindřich; Stedile, F.; Agee, FJ.

    2002-01-01

    Roč. 143, 1, 2, 3, 4 (2002), s. 37-54 ISSN 0304-3843 Institutional research plan: CEZ:AV0Z1048901 Keywords : triggered gamma emission * Hf-178(m2) * nuclear batteries Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.533, year: 2002

  2. Almost optimal distributed M2M multicasting in wireless mesh networks

    Xin, Qin; Manne, Fredrik; Zhang, Yan

    2012-01-01

    Wireless Mesh Networking (WMN) is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. In this paper, we study the problem of multipoint-to- multipoint (M2M) multicasting in a WMN which aims to use the minimum nu...

  3. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages

    Waqas, Syed F. Hassnain; Hoang, Anh Cuong; Ampem, Grace; Azegrouz, Hind; Balogh, Lajos; Thuróczy, Julianna; Gerling, Ivan C.; Nam, Sorim; Lim, Jong-Seok; Martinez-Ibañez, Juncal; Real, José T.; Paschke, Stephan; Quillet, Raphaëlle; Ayachi, Safia; Simonin, Frédéric; Schneider, E. Marion; Brinkman, Jacqueline A.; Seroogy, Christine M.

    2017-01-01

    The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet–fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage–associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs. PMID:28581443

  4. Formation of the high-spin Hf-179m2 isomer in reactor irradiations

    Karamian, S. A.; Carroll, J. J.; Adam, Jindřich; Kulagin, EN.; Shabalin, EP.

    2004-01-01

    Roč. 14, č. 4 (2004), s. 438-441 ISSN 1054-660X R&D Projects: GA MŠk(CZ) ME 134 Keywords : reactor irradiation * high-spin Hf-179m2 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.836, year: 2004

  5. Comparison of Plasma Tu-M2-PK and CA19-9 in Pancreatic Cancer

    Joergensen, Maiken Thyregod; Heegaard, Niels H H; Schaffalitzky de Muckadell, Ove B

    2009-01-01

    because of suspicion of pancreatic cancer. Of these, 51 patients had their conditions diagnosed as PDAC, whereas this diagnosis was ruled out in 52 after 12 months of follow-up. The performance of Tu-M2-PK was compared with that of CA19-9 using cutoff values 15 and 37 U/mL, respectively. RESULTS...

  6. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  7. A Survey on M2M Systems for mHealth: A Wireless Communications Perspective

    Elli Kartsakli

    2014-09-01

    Full Text Available In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review ofWireless Body Area Networks (WBANs, which constitute the enabling technology at the patient’s side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities.

  8. Growth and properties of M2-xCexCuO4+d single crystals

    Matacotta, F.C.; Morales de La Garza, L.; Nevriva, M.; Nardin, G.; Randaccio, L.; Zangrando, E.

    1989-10-01

    The M 2-x Ce x CuO 4+d crystals where M is a rare earth ion (like Nd, Pr etc.) were prepared by a modified flux method, their structure has been investigated by scanning electron microscopy and energy dispersive X-ray analysis and the electrical resistivity was measured on a number of crystals. 5 refs, 3 figs, 3 tabs

  9. Efficient LTE Access with Collision Resolution for Massive M2M Communications

    Madueño, Germán Corrales; Stefanovic, Cedomir; Popovski, Petar

    2014-01-01

    outage. In this work we propose a LTE RACH scheme tailored for delay-sensitive M2M services with synchronous traffic arrivals. The key idea is, upon detection of a RACH overload, to apply a collision resolution algorithm based on splitting trees. The solution is implemented on top of the existing LTE...

  10. Macrophages during the fibrotic process: M2 as friend and foe.

    Tarcio Teodoro Braga

    2015-11-01

    Full Text Available Macrophages play essential activities in homeostasis maintenance, tissue regeneration and wound healing. However, when the physiological process of wound healing is deregulated by persistent insults and chronic diseases, macrophages can participate actively in the development of fibrosis. In this regard, the exacerbation or resolution of fibrosis depends on the type of macrophages polarized and the severity and duration of the inflammatory insult. M1 macrophages use glycolytic metabolism to optimize oxygen consumption and activate myofibroblasts and fibrocytes. On the other hand, M2 macrophages, which use oxidative metabolism, have anti-inflammatory properties due to their capacity to produce and secrete IL-10, TGFβ and arginase that promotes tissue repair. However, when the primary insult is not controlled and there is a persistent M2 macrophage activity, these cells promote ECM deposition through the continuous production of TGFβ and growth factors. In this scenario, M2 macrophages act as a break point between normal wound healing and the pro-fibrotic process. Here, we review the aspects of tissue repair based on macrophage biology and we evidence scar formation is directly related to the degree of inflammation, but also with the appearance of M2 macrophages.

  11. Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene

    Krejčí, Alena; Bruce, A. W.; Doležal, Vladimír; Tuček, Stanislav; Buckley, N. J.

    2004-01-01

    Roč. 91, č. 1 (2004), s. 88-98 ISSN 0022-3042 R&D Projects: GA AV ČR IAA5011306 Institutional research plan: CEZ:AV0Z5011922 Keywords : M2 muscarinic receptor * neuron-restrictive silence factor * promoter Subject RIV: ED - Physiology Impact factor: 4.824, year: 2004

  12. Kinetics of proton transport into influenza virions by the viral M2 channel.

    Tijana Ivanovic

    Full Text Available M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pK(m of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer.

  13. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  14. Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

    Jonghun Kim

    2017-09-01

    Full Text Available Cellular-based machine-to-machine (M2M communication is expected to facilitate services for the Internet of Things (IoT. However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR scheme to increase the capture probability (thereby increasing the RA success probability even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results.

  15. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile.

    María Carolina Ortiz

    Full Text Available Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ or alternative-M2 (M2-MФ activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1, widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies.

  16. Construction of Δm2--sin2 2θ plots

    Snyder, R.

    1991-01-01

    In the two-flavor approximation, the probability for a neutrino to oscillate from one flavor to the other is given by Ρ νa → νb = sin 2 2θ sin 2 (1.27 Δm 2 L/E ν ) where θ is the mixing angle, Δm 2 = |m νa 2 - m νb 2 | is measured in (eV/c 2 ) 2 , L, the distance from the source, is measured in km, and E, the beam energy, is measured in GeV. If either Δm 2 or sin 2 2Θ is zero, there is no oscillation. They might also have small, non-zero values, causing the oscillations to be so small as to be unobservable in a particular experiment. They may also have values which allow us to determine the probability of oscillation, but so far no compelling evidence for oscillation exists. The universal method of portraying what region of parameter space is explored by a neutrino oscillation experiment is to mark off an area on a Δm 2 vs. sin 2 2θ plot. Typically, a line is graphed, with the claim that if the experiment finds not evidence of oscillation, one can, for example, be 90% certain that Δm 2 and sin 2 2θ lie within the region below and to the left of the line. Since these plots are so widely used, it is useful to understand the process by which they are created

  17. M2-F1 in flight during low-speed car tow

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  18. Evaluación del coeficiente de endurecimiento del acero AISI 1045 deformado por rodillo

    D. Alcántara

    2011-12-01

    Full Text Available El objetivo del trabajo es determinar el comportamiento del coeficiente de endurecimiento n por la ecuación de Hollomon en muestras cilíndricas de acero AISI 1045, las cuales, después de ser deformadas, se sometieron a ensayos de tracción. Se utiliza un diseño de experimento donde se tienen en cuenta las variables número de revolución (n con 27, 54 y 110 rev/min, fuerza de compresión (P de 500, 1 500 y   2 500 N y avance (S de 0,075; 0,125 y 0,25 mm/rev. Finalmente, aplicando el método de regresión se obtuvo un coeficiente de endurecimiento, el cual se aproxima a la linealidad cuando restringimos el cálculo a rangos de deformación elevados. Este coeficiente de endurecimiento se aplica en la ecuación de Hollomon para determinar el nuevo valor de tensión de fluencia y aplicarlo para el cálculo del trabajo mínimo a realizar en un proceso de deformación en frío empleando rodillo simple.   Palabras clave: Deformación Plástica; tensión; deformación; endurecimiento.The objective of the work is to determine the behavior of the hardening coefficient n by the equation of Hollomon, in cylindrical samples of steel AISI 1045, those which, after the deformed, were subjected to traction rehearsals. He used an experiment design where are kept in mind the revolution number (n with 27, 54 and 110 rev/min, it compression forces (P of 500, 1 500 and 2 500 N and feed (S of 0.075; 0.125 and 0.25 mm/rev. Finally, applying the regression method a hardening coefficient was obtained, which approaches to the linearity when restrict the calculation to high ranges of deformation. This hardening coefficient is applied in the equation of Hollomon for determine the new value of flow tension and to apply in the calculation of the minimum work to carry out in a cold process of deformation using simple roller.   Keywords: Plastic deformation; stress; deformation; hardening.

  19. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Zhang, Zhe [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States); Yu, Ting [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States); School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Kovacevic, Radovan, E-mail: kovacevi@smu.edu [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States)

    2017-07-15

    Highlights: • The coatings of 420 stainless steel reinforced with VC were fabricated by high power direct diode laser. • The erosion resistance of the cladded layer was increased with the increase in the VC fraction. • No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. • The corrosion resistance of the cladded layer was decreased with the increase in the VC fraction. - Abstract: Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%–40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V{sub 8}C{sub 7}, M{sub 7}C{sub 3}, and M{sub 23}C{sub 6} were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content

  20. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  1. Endovascular thrombectomy for M2 occlusions: comparison between forced arterial suction thrombectomy and stent retriever thrombectomy.

    Kim, Yong-Won; Son, Seungnam; Kang, Dong-Hun; Hwang, Yang-Ha; Kim, Yong-Sun

    2017-07-01

    To date there has been no direct comparison of two frequently used endovascular thrombectomy (EVT) methods (forced arterial suction thrombectomy (FAST) and stent retriever thrombectomy) in M2 occlusions. We review our experiences with EVT performed using FAST and stent retriever thrombectomy in such cases. The subjects comprised 41 patients with an M2 occlusion who underwent EVT (25 with FAST, 16 with stent retriever thrombectomy). The patients' data were retrospectively analyzed to evaluate the technical characteristics and angiographic outcome of the two EVT techniques. Thrombolysis In Cerebral Infarction (TICI) grades 2b-3 using the first chosen technique did not differ significantly between the two techniques (FAST 64.0% vs stent retriever thrombectomy 81.2%, p=0.305). Time from groin puncture to reperfusion was significantly shorter for stent retriever thrombectomy (53.0 vs 38.5 min; p=0.045). Distal embolization occurred in three cases (12.0%) in the FAST group and in four (26.7%) in the stent retriever group (p=0.362). However, the two techniques did not differ significantly in the final TICI 2b-3 rate (72.0% vs 87.5%; p=0.441). A frequent angiographic finding regarding the failure of FAST was that the M2 occlusion was located immediately after severe acute angulation between M1 and M2. Stent retriever thrombectomy may provide faster reperfusion than FAST, while the FAST technique might be associated with lower distal embolization and a higher reperfusion rate for the first thrombectomy attempt, but without any significant difference in clinical outcome. When choosing the EVT method for M2 occlusions, consideration of the location of the occlusion and tortuosity between M1 and M2 might be helpful to achieve a better angiographic outcome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  3. The modulatory role of M2 muscarinic receptor on apomorphine-induced yawning and genital grooming.

    Gamberini, Maria Thereza; Bolognesi, Maria Laura; Nasello, Antonia Gladys

    2012-12-07

    The interaction between dopaminergic and cholinergic pathways in the induction of behavioral responses has been previously established. In the brain, M2 receptors are found predominantly in presynaptic cholinergic neurons as autoreceptors, and in dopaminergic neurons as heteroceptors, suggesting a control role of acetylcholine and dopamine release, respectively. Our aim was to investigate the role of M2 receptors on the yawning and genital grooming of rats induced by apomorphine, a dopaminergic receptor agonist, focusing on the interaction between cholinergic and dopaminergic pathways. Initially, the effect of atropine, a non-selective muscarinic antagonist, on yawning and genital grooming induced by apomorphine (100 μg/kg s.c.) was analyzed. Atropine doses of 0.5, 1 and 2 mg/kg i.p. were administered to Wistar rats 30 min before induction of the behavioral responses by apomorphine. Number of yawns and time spent genital grooming were quantified over a 60 min period. Apomorphine-induced yawning was increased by low dose (0.5 mg/kg i.p.) but not by high doses (1 and 2 mg/kg, i.p.) of atropine. Genital grooming was antagonized by 2 mg/kg i.p. of atropine and showed no changes at the other doses tested. Tripitramine, a selective M2 cholinergic antagonist, was used as a tool for distinguishing between M2 and all other muscarinic receptor subtypes in yawning and genital grooming. Tripitramine doses of 0.01, 0.02 and 0.04 μmol/kg i.p. were administered to Wistar rats 30 min before apomorphine (100 μg/kg s.c.). Number of yawns and time spent genital grooming were also quantified over a 60 min period. Tripitramine 0.01 μmol/kg increased all parameters. Higher doses, which possibly block all subtypes of muscarinic receptor, did not modify the response of apomorphine, suggesting a non-selective effect of tripitramine at these doses. Given that low doses of tripitramine increased the behavioral responses induced by apomorphine and that the main distribution of the M2

  4. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  5. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  6. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  7. M2-brane surface operators and gauge theory dualities in Toda

    Gomis, Jaume; Floch, Bruno Le

    2016-01-01

    We give a microscopic two dimensional N=(2,2) gauge theory description of arbitrary M2-branes ending on N _f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional N=2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation R of SU(N _f), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including N=(2,2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  8. Wilson loops on three-manifolds and their M2-brane duals

    Farquet, Daniel; Sparks, James

    2014-01-01

    We compute the large N limit of Wilson loop expectation values for a broad class of N=2 supersymmetric gauge theories defined on a general class of background three-manifolds M_3, diffeomorphic to S"3. We find a simple closed formula which depends on the background geometry only through a certain supersymmetric Killing vector field. The supergravity dual of such a Wilson loop is an M2-brane wrapping the M-theory circle, together with a complex curve Σ_2 in a self-dual Einstein manifold M_4, whose conformal boundary is M_3. We show that the regularized action of this M2-brane also depends only on the supersymmetric Killing vector, precisely reproducing the large N field theory computation.

  9. EcoM2 web portal: Collecting empirical data and supporting companies' ecodesign implementation and management

    Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.; Rozenfeld, Henrique

    2013-01-01

    to that a comprehensive framework has been developed, with the aim of ensuring systematic management, implementation and continuous improvement of the ecodesign process. The framework, called Ecodesign Maturity Model (EcoM2), enables the diagnosis of the company’s ecodesign maturity profile; the identification...... of strengths and limitations; and the establishment of strategic roadmaps for improved ecodesign implementation. This paper describes the development of the EcoM2 web portal, which will allow for the framework to be tested on greater numbers of companies and at the same time to provide a quick diagnosis......Despite the recognition of the potential benefits of ecodesign, a promising approach to integrate environmental concerns into the product development process, its application has failed to reach large numbers of companies and sectors worldwide due to managerial difficulties. In response...

  10. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  11. Access Control in IoT/M2M - Cloud Platform

    Anggorojati, Bayu

    Billions of devices are connected to the Internet nowadays, and the number will continue to grow in the future thanks to the advances in the electronics and telecommunication technology developments. Its application in broad aspects of human’s life brings a lot of benefits by improving productivity...... and quality of life. This paradigm, which is often called Internet of Things (IoT) or Machine-to-Machine (M2M), will provide an unprecedented opportunity to create applications and services that go far beyond the mere purpose of each participant. Many studies on the both technical and social aspects of Io......T have shown that the concern about the security and privacy play a huge role for the mass adoption of the IoT/M2M as cloud services. Among the important topics within the security and privacy, the access control is an important mechanism, which essentially manages how the important assets or resource...

  12. The new VLT-DSM M2 unit: construction and electromechanical testing

    Gallieni, Daniele; Biasi, Roberto

    2013-12-01

    We present the design, construction and validation of the new M2 unit of the VLT Deformable Secondary Mirror. In the framework of the Adaptive Optics Facility program, ADS and Microgate designed a new secondary unit which replaces the current Dornier one. The M2 is composed by the mechanical structure, a new hexapod positioner and the Deformable Secondary Mirror unit.The DSM is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been fully integrated and, before starting the optical calibration, has completed the electromechanical characterization, focused on the dynamic performance. With respect to the previous units we introduced several improvements, both in hardware and control architecture that allowed achieving a significant enhancement of the system dynamics and reduction of power consumption.

  13. Industry 4.0, M2m, Iot&S - All Equal?

    Dobrin, Carmen

    2014-11-01

    Similarity between Industry 4.0, M2M, IOT&S. Advantages and disadvantages obtained using this three important methods. Decreasing costs while components are getting smaller and smaller in a world with better networking. Influence of business management applications integrated in smart factory logistic. The most important impacts in merging virtual and real production world, with the improvement of best processes having the same goal: creating value by open innovation

  14. Giant graviton interactions and M2-branes ending on multiple M5-branes

    Hirano, Shinji; Sato, Yuki

    2018-05-01

    We study splitting and joining interactions of giant gravitons with angular momenta N 1/2 ≪ J ≪ N in the type IIB string theory on AdS 5 × S 5 by describing them as instantons in the tiny graviton matrix model introduced by Sheikh-Jabbari. At large J the instanton equation can be mapped to the four-dimensional Laplace equation and the Coulomb potential for m point charges in an n-sheeted Riemann space corresponds to the m-to- n interaction process of giant gravitons. These instantons provide the holographic dual of correlators of all semi-heavy operators and the instanton amplitudes exactly agree with the pp-wave limit of Schur polynomial correlators in N = 4 SYM computed by Corley, Jevicki and Ramgoolam. By making a slight change of variables the same instanton equation is mathematically transformed into the Basu-Harvey equation which describes the system of M2-branes ending on M5-branes. As it turns out, the solutions to the sourceless Laplace equation on an n-sheeted Riemann space correspond to n M5-branes connected by M2-branes and we find general solutions representing M2-branes ending on multiple M5-branes. Among other solutions, the n = 3 case describes an M2-branes junction ending on three M5-branes. The effective theory on the moduli space of our solutions might shed light on the low energy effective theory of multiple M5-branes.

  15. Genetic variability for different quantitative traits in M2 generations of opium poppy (Papaver somniferum L.)

    Chatterjee, A.; Shukla, S.; Singh, S.P.

    2004-01-01

    An experiment on induced mutation in two varieties of opium poppy was laid out to create new genetic variability for isolation of high yielding genotypes. Varieties NBRI-1 and NBRI-5 were subjected to irradiation for five doses of gamma rays and NBRI-5 was also treated with four doses of EMS and 20 mixed doses of EMS plus gamma rays. The data were recorded on 15 plants/treatment for 10 polygenic characters as pooled in M1 and M2 generations separately as well as in each dose-wise in M2 population. The results indicated that GCV, heritability and genetic advance were higher in M1 than M2 in both the varieties for all the traits except for opium and seed yield. The genetic advance was consistently high for opium yield, seed yield and capsule weight in all the doses for both the varieties with some exception. The dose level of kR10 and kR30 in NBRI-1 revealed high GCV, heritability and genetic advance for seed weight. These treatment levels also had high values of all these three genetic parameters for capsules per plant, capsule size and capsule weight. The values of these three parameters were also high for all the doses in M2 generations of both the varieties for opium yield, seed weight, capsule weight and capsule size in comparison to control. The GCV, heritability and genetic advance were consistently high for all the mixed doses in NBRI-5 for opium yield, seed weight and capsule weight, with some exception [it

  16. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    Selleri, Silvia; Bifsha, Panojot; Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Ren?e; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-...

  17. Power Aware Mobility Management of M2M for IoT Communications

    Awais Ahmad

    2015-01-01

    Full Text Available Machine-to-Machine (M2M communications framework is evolving to sustain faster networks with the potential to connect millions of devices in the following years. M2M is one of the essential competences for implementing Internet of Things (IoT. Therefore, various organizations are now focusing on enhancing improvements into their standards to support M2M communications. Thus, Heterogeneous Mobile Ad Hoc Network (HetMANET can normally be considered appropriate for M2M challenges. These challenges incorporated when a mobile node (MN selects a target network in an energy efficient scanning for efficient handover. Therefore, to cope with these constraints, we proposed a vertical handover scheme for handover triggering and selection of an appropriate network. The proposed scheme is composed of two phases. Firstly, the MNs perform handover triggering based on the optimization of the Receive Signal Strength (RSS from an access point/base station (AP/BS. Secondly, the network selection process is performed by considering the cost and energy consumption of a particular application during handover. Moreover, if there are more networks available, then the MN selects the one provided with the highest quality of service (QoS. The decision regarding the selection of available networks is made on three metrics, that is, cost, energy, and data rate. Furthermore, the selection of an AP/BS of the selected network is made on five parameters: delay, jitter, Bit Error Rate (BER, communication cost, and response time. The numerical and experimental results are compared in the context of energy consumption by an MN, traffic management on an AP/BS, and QoS of the available networks. The proposed scheme efficiently optimizes the handoff related parameters, and it shows significant improvement in the existing models used for similar purpose.

  18. Seasonal variability of the M2 tide in the seas adjacent to Korea

    Kang, Sok Kuh; Chung, Jong-yul; Lee, Sang-Ryong; Yum, Ki-Dat

    1995-08-01

    Seasonal variability of the M2 tidal harmonic constants is revealed through analyses of monthly tidal data at 12 representative tidal stations in the seas adjacent to the Korean peninsula. The variability remain systematic over the 9 years (1965-1973) of data analysis with a range comparable to that of the 18.6 year nodal modulation. Spatial inhomogeneity of the seasonal variability in the observed harmonic constants is found to exist. The largest seasonal variability in M2 appears in the stations located along the Korea Strait. This variability is not explained by the equilibrium theory of tides, and such a variability or irregularities in the harmonic constants are considered as either a noise as done by Cartwright and Amin (1986), Deutsch Hydrography Zeitschrift, 39, 235-253, or a manifestation of frictional interaction as done by Godin and Gutierrez (1986) Continental Shelf Research, 5, 379-402 for the Bay of Fundy. Considering the opposite relation between monthly mean sea level differences in Izuhara-Pusan section and tidal characteristics in the Korea Strait, it is hypothesized that the interaction between the predominant tidal currents and oceanic currents varying with the seasons might be the main cause of the observed temporal variability in the M2 tide. The nonlinear effect of the Kuroshio is investigated along the shelf break region through scale analyses, which show that the presence of a mean current increases the non-linear terms in the momentum balance by about one order of magnitude. The seasonally different damping effect of the Tsushima Current to the M2 tide is also discussed to explain the process of dominant seasonal variability along the Korea Strait based on the actual current data, but further thorough investigation, considering the advection effect of the mean current, is required to investigate the associated dynamics more completely.

  19. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Regional outbreak of CTX-M-2 β-lactamase-producing Proteus mirabilis in Japan.

    Nakano, Ryuichi; Nakano, Akiyo; Abe, Michiko; Inoue, Matsuhisa; Okamoto, Ryoichi

    2012-12-01

    Proteus mirabilis is a common cause of urinary tract infection. Wild-type P. mirabilis strains are usually susceptible to penicillins and cephalosporins, but occurrences of P. mirabilis producing extended-spectrum β-lactamases (ESBLs) have been recently reported. Here, we surveyed the prevalence of cefotaxime resistance among P. mirabilis strains at seven different hospitals in Kanagawa Prefecture, Japan, and investigated their molecular epidemiology to explain the mechanism of their spread. The prevalence of cefotaxime resistance among P. mirabilis increased annually, from 10.1 % in 1998 to 23.1 % in 2003, and increased drastically in 2004, exceeding 40 %. We collected 105 consecutive and non-duplicate cefotaxime-resistant P. mirabilis isolates (MIC 16 to >256 µg ml(-1)) from these hospitals from June 2004 to May 2005 and characterized their profile. PCR and sequence analysis revealed that all resistant strains produced exclusively CTX-M-2 β-lactamase. PFGE analysis identified 47 banding patterns with 83 % or greater similarity. These results indicated that a regional outbreak of P. mirabilis producing CTX-M-2 β-lactamase has occurred in Japan and suggest that the epidemic spread occurred within and across hospitals and communities by extended clonal strains. Plasmid analysis revealed that 44.8 % of plasmids harboured by bla(CTX-M-2) isolates had common profiles, encoding ISEcp1, IS26 and Int1, and belonged to incompatibility group T. Spread of the resistant isolates in Japan resulted from dissemination of narrow-host-range plasmids of the IncT group encoding bla(CTX-M-2). These findings indicate the rapidly developing problem of treating the species to prevent dissemination of ESBL producers.

  1. Resolving combinatorial ambiguities in dilepton t t¯ event topologies with constrained M2 variables

    Debnath, Dipsikha; Kim, Doojin; Kim, Jeong Han; Kong, Kyoungchul; Matchev, Konstantin T.

    2017-10-01

    We advocate the use of on-shell constrained M2 variables in order to mitigate the combinatorial problem in supersymmetry-like events with two invisible particles at the LHC. We show that in comparison to other approaches in the literature, the constrained M2 variables provide superior ansätze for the unmeasured invisible momenta and therefore can be usefully applied to discriminate combinatorial ambiguities. We illustrate our procedure with the example of dilepton t t ¯ events. We critically review the existing methods based on the Cambridge MT 2 variable and MAOS reconstruction of invisible momenta, and show that their algorithm can be simplified without loss of sensitivity, due to a perfect correlation between events with complex solutions for the invisible momenta and events exhibiting a kinematic endpoint violation. Then we demonstrate that the efficiency for selecting the correct partition is further improved by utilizing the M2 variables instead. Finally, we also consider the general case when the underlying mass spectrum is unknown, and no kinematic endpoint information is available.

  2. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    Bo Cheng

    2014-11-01

    Full Text Available In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST Machine-to-Machine (M2M gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.

  3. Moldeo por inyección del acero rápido M2

    Ruiz-Román, J. M.

    1996-12-01

    Full Text Available The purpose of this work is to study the feasibility of Powder Injection Molding in order to obtain M2 High Speed Steels with higher performances than those obtained by conventional P/M. With this object trials have been carried out in order to optimize all the process steps (mixing, injection, debinding and sintering, and to evaluate the mechanical properties (hardness and transverse tensile strengh of the manufactured M2 HSS sample.

    Se estudia la viabilidad de la tecnología de Moldeo por Inyección de Polvos (MIM en la fabricación con acero rápido M2 a fin de obtener componentes de este material de prestaciones superiores a las que se consiguen mediante métodos convencionales pulvimetalúrgicos. Los ensayos realizados se han dirigido a optimizar los parámetros de la eliminación del ligante y de la sinterización, con objeto de controlar el contenido de carbono y la densidad final de las piezas, así como evitar la aparición de los defectos típicos de esta tecnología.

  4. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  6. Seamless communication in supply chains based on M2M technology

    Walid Moneimne

    2016-12-01

    Full Text Available Background: Access to information is the key element in the successful and efficient organization of transport & logistic processes. The importance of real-time access to information is confirmed by a panel workshop carried out with support of design thinking methodology. There are two ways of gaining access to the right information - manual, where human agency is needed and fully automatic, where new M2M technology is implemented. Implementation of such technology improves seamless communication during transport execution and allows real-time access to needed information. The aim of the paper is to evaluate the influence of the effectiveness of using M2M technology and traditional way of communication as well as data gathering in order to ensure seamless communication in the supply chain. Methods: Survey, design thinking, desk research and real case study results were used in the paper. Results and conclusions: Seamless communication and implementation of M2M technology within the whole supply (including modes of transport and transport units chain is a backbone of the lean and reliable digital supply chain.

  7. Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders

    Hans O. Kalkman

    2017-12-01

    Full Text Available Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD. Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13, which stimulate microglia and macrophages to adopt a phenotype referred to as ‘alternative activation’ or ‘M2A’. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR, and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.

  8. Dynamic RACH Partition for Massive Access of Differentiated M2M Services

    Qinghe Du

    2016-03-01

    Full Text Available In machine-to-machine (M2M networks, a key challenge is to overcome the overload problem caused by random access requests from massive machine-type communication (MTC devices. When differentiated services coexist, such as delay-sensitive and delay-tolerant services, the problem becomes more complicated and challenging. This is because delay-sensitive services often use more aggressive policies, and thus, delay-tolerant services get much fewer chances to access the network. To conquer the problem, we propose an efficient mechanism for massive access control over differentiated M2M services, including delay-sensitive and delay-tolerant services. Specifically, based on the traffic loads of the two types of services, the proposed scheme dynamically partitions and allocates the random access channel (RACH resource to each type of services. The RACH partition strategy is thoroughly optimized to increase the access performances of M2M networks. Analyses and simulation demonstrate the effectiveness of our design. The proposed scheme can outperform the baseline access class barring (ACB scheme, which ignores service types in access control, in terms of access success probability and the average access delay.

  9. M2-9 - a planetary nebula with an eruptive nucleus?

    Balick, B.

    1989-01-01

    M2-9 is a striking bipolar, or butterfly, planetary nebula (PN) whose nuclear spectrum is uncharacteristic of PN nuclei. Narrow lines ranging in ionization from O I, Fe II, forbidden Fe II, and Si II through forbidden O III are observed in the stellar spectrum. The H-alpha emission line has wings extending nearly 11,000 km/s at the base, and there is a deep self-absorption feature near the H-alpha line peak at the same velocity as nebular gas observed in one of the two bipolar lobes. The spectrum of M2-9's nucleus is more similar to the slow nova RR Tel, some symbiotic stars, and Seyfert (type 1.9) galactic nuclei than the central stars of most other PNs. Although its morphology, size, and nebular spectrum share many similarities with other PNs, M2-9 may not share a common evolutionary history with that class of objects. 31 references

  10. Toward a proof of Montonen-Olive duality via multiple M2-branes

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-01-01

    We derive 4-dimensional N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N)) 2n . The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g 2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  11. Toward a proof of Montonen-Olive duality via multiple M2-branes

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  12. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8 –/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8 –/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  13. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    Ritva Tikkanen

    2013-04-01

    Full Text Available Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

  14. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    Yongzhao Du

    2016-11-01

    Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  15. M2 macrophages coexist with a Th1-driven profile in periapical cysts.

    Ribeiro, C M; de Carli, M L; Nonogaki, S; Nogueira, D A; Pereira, A A C; Sperandio, F F; Hanemann, J A C

    2018-02-01

    To evaluate the participation of both Th1 and Th2 responses in periapical cysts by assessing the presence of M2 macrophages, as well as acute IL-1 β, TNF-α and IL-6 cytokines. Twenty-four cases of periapical cysts were selected. Immuno-expressions of IL-1 β, IL-6, TNF-α and CD163 were analysed in the cystic capsules in both superficial and deeper regions. Data were analysed with paired Wilcoxon test and Spearman correlation coefficient (P ≤ 0.05). There was a higher expression of IL-1β, IL-6, TNF-α and M2 macrophages in the superficial region (P periapical cysts and correlated with the expression of certain acute Th1-related cytokines. This illustrates the coexistence of an acute and chronic Th2-driven immune response in these lesions. Although M2 macrophages favour the healing process, their presence is not sufficient for periapical cyst regression, once an acute active response has occurred due to an infectious stimuli. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  17. The state-of-the-art Model M-2 Maintenance System

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-01-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system

  18. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    P' ng, Danny [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States); Molian, Pal [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu

    2008-07-15

    Conventional fusion welding of stainless steel foils (<100 {mu}m thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 {mu}m thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of {delta}-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding.

  19. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  20. Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels

    Vashishtha, Himanshu; Taiwade, Ravindra V.; Sharma, Sumitra [Visvesvaraya National Institute of Technology (VNIT), Nagpur (India). Dept. of Metallurgical and Materials Engineering

    2017-05-15

    Austenitic stainless steels are often used to handle organic acids such as acetic acid (CH{sub 3}COOH), which are extensively used in food contact applications and chemical industries for manufacturing medicines, nutrition and various chemical amalgams. In the present investigation an attempt has been made to compare the corrosion behavior of Cr-Ni (AISI type 304), Cr-Mn-Ni (type 201) and Cr (type 430) stainless steel for economical replacement of higher cost Cr-Ni grade. Immersion testing was performed at room temperature and boiling temperature in acetic acid. Atomic absorption spectroscopy was carried out to evaluate metal ion concentration in the immersion solution. The surface morphology of pit formation was characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The effect of elemental leaching on electrical conductivity of the immersion solution was evaluated and correlated with pH measurements. A new mechanism has been proposed for the pit formation due to manganese sulfide inclusions. The replacement compatibility was further confirmed with anodic polarization testing and a successful replacement was established for room temperature applications.