WorldWideScience

Sample records for aisi m2 obtido

  1. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  2. Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Analytic Hierarchy Process

    OpenAIRE

    Rajkamal Singh Banga; Mukesh Verma

    2014-01-01

    WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. AISI M2 and AISI H13 materials are taken for studyand molybdenum wire electrode diameter (0.18mm); experiment is conducted according to Taguchi‟s L16 OA, with input parameters as Peak current, Pulse on, Pulse off their respons...

  3. Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Rajkamal Singh Banga

    2014-10-01

    Full Text Available WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. AISI M2 and AISI H13 materials are taken for studyand molybdenum wire electrode diameter (0.18mm; experiment is conducted according to Taguchi‟s L16 OA, with input parameters as Peak current, Pulse on, Pulse off their response on MRR, Surface Roughness, Kerf width & Spark Gap is analysed to check the significance of each using ANOVA. Process parameter optimization is done by Analytic Hierarchy Process with the criteria Maximum MRR, minimum kerf and surface roughness. It is observed that for material AISI M2 at low value of peak current (1 A, pulse off (20µs and pulse on (30µs we can minimize surface roughness (3.30µm, kerf width (0.195 mm and maximize MRR (0.022 g/min,from the selected levels whereas for material AISI H13 Peak current (1A, Pulse On (40µs and high Pulse Off (30µs we get better Surface roughness (3.71 µm, kerf width (0.196mm and maximum MRR (0.020g/min, from the selected levels.

  4. The influence of microstruture on fracture toughness of vacuum heat treated HSS AISI M2

    OpenAIRE

    Leskovšek, Vojteh; Ule, Boris; Liščić, Božidar

    2015-01-01

    The microstructure of AISI M2 high-speed can be substantially modified by vacuum heat treatment in order to optimize the ratio between hardness and fracture toughness, which is, however, significantly affected by the volume fractions of retained austenite and undissolved eutectic carbides, as well as the mean distance between these carbides. Calculated fracture toughness values, which were obtained using a newly developed semi-empirical equation, based on the stress-modified critical strain c...

  5. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  6. Solidification Microstructure of AISI M2 High Speed Steel Manufactured by the Horizontal Continuous Casting Process

    Science.gov (United States)

    Zhou, X. F.; Fang, F.; Jiang, J. Q.

    2011-01-01

    In the present work, AISI M2 high speed steel is produced by the horizontal continuous casting process. The difference of solidification microstructure in ingots by mould casting and continuous casting has been examined by means of scanning electron microscope (SEM), electron back-scatter diffraction (EBSD), transmission electron microscope (TEM) and high resolution electron microscope (HREM). The results show that the as-cast structure consists of iron matrix and networks of M2C eutectic carbides, which are greatly refined in the continuous casting ingot compared to the case of ingot by mould casting. Meanwhile, the morphology of M2C eutectic carbides changes from the plate-like shape into the fibrous one. Micro-twining and stacking faults are observed in the plate-like M2C, whereas they are rarely identified in the fibrous M2C. Based on the characteristic of morphology and microstructure, it is expected that the plate-like M2C is a faceted phase while the fibrous M2C is a non-faceted phase.

  7. Microstructural characterization of laser surface melted AISI M2 tool steel.

    Science.gov (United States)

    Arias, J; Cabeza, M; Castro, G; Feijoo, I; Merino, P; Pena, G

    2010-09-01

    We describe the microstructure of Nd:YAG continuous wave laser surface melted high-speed steel, namely AISI M2, treated with different laser scanning speeds and beam diameters on its surface. Microstructural characterization of the remelted surface layer was performed using light optical and scanning electron microscopy and X-ray diffraction. The combination of the three techniques provided new insights into the substantial changes induced by laser surface melting of the steel surface layer. The advantage of the method is that it avoids the difficult and tedious work of preparing samples of this hard material for transmission electron microscopy, which is the technique normally used to study these fine microstructures. A melted zone with a dendritic structure and a partially melted zone with a heterogeneous cellular structure were observed. M(2)C carbides with different morphologies were identified in the resolidified surface layer after laser melting. PMID:20701656

  8. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  9. Physicochemical and tribological characterization of titanium or titanium plus carbon implanted AISI M2 steel

    International Nuclear Information System (INIS)

    AISI M2 steel samples were implanted with 110 keV titanium ions at fluences ranging from 5x1016 to 4x1017Ti cm-2. Titanium plus carbon dual implantation was also studied. Titanium distribution profiles were determined using the 48Ti(p,γ)49V resonant nuclear reaction. The incorporation of carbon and oxygen from residual gases was studied as a function of titanium fluence and residual pressure using nuclear backscattering spectrometry at 5.7 and 7.5 MeV He+ ion energies respectively. A competition phenomenon between carbon and oxygen incorporation is pointed out. Analysis of the phases formed was performed using conversion electron Moessbauer spectroscopy. Fe(Ti) solid solution, a-FexTi100-x and superficial a-Fe-Ti-C amorphous phases were identified. Tribological tests involving a ball (Al2O3 or 52100) and disc contact were performed to characterize the friction behaviour of the implanted surface. It is shown that titanium plus carbon implantation leads to a reduction in the friction coefficient. The wear tracks and debris were examined using scanning electron microscopy and electron microprobe cartography. For the two types of balls a reduction in the wear track width was observed together with oxidation of the wear debris. The tribological improvement observed depends not only on the presence of the superficial a-Fe-Ti-C amorphous layer but also on the surface chemical reaction during the wear process. (orig.)

  10. Microstructural changes due to laser ablation of oxidized surfaces on an AISI M2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.S.F.; Vieira, N.D.; Morato, S.P.; Vencovsky, P

    2003-03-15

    Surface modifications due to high intensity laser interaction on oxidized M2 steels were studied by optical and electron microscopy, and X-ray diffraction. First, it was shown that surface ablation of the oxide layer was possible when the laser fluency was above 0.4 J cm{sup -2}. Above this threshold, the surface presented craters due to the spread of the liquid metal. Second, it was demonstrated that the region near to the surface was partly transformed. The prior carbides were dissolved in the liquid metal and the martensite was decomposed during heating. During the rapid cooling, part of the austenite was retained and the remelted zone showed lower hardness than the matrix. A chemical homogeneous layer at surface balanced this hardness decrease.

  11. Study of high-fluence titanium implantation into AISI M2 steel by 48Ti isotopic tracing

    International Nuclear Information System (INIS)

    AISI M2 steel was implanted with titanium ions of 110 keV incident energy at room temperature. Fluences were varied from 1 to 4x1017 Ti cm-2. The 48Ti(p, γ)49V resonant nuclear reaction at 1362 keV was used to determine selectively the 48Ti distribution profiles. The γ-rays of 7.936 MeV energy and the related escape peaks were identified and used to quantify the 1362 keV resonance yield. In order to understand the mechanisms taking place during titanium implantation, a high Ti fluence was implanted in several steps made up of, first, a 101748Ti cm-2 dose, followed by several successive 101746Ti cm-2 doses. Thus the evolution of the initially implanted 48Ti distribution was followed as the 46Ti dose increased. On the basis of the experimental results, a primary recoil mixing based model is proposed. The agreement obtained between experimental and theoretical mixing rates suggests that the primary recoil mixing process and the sputtering effect are the most important physical mechanisms during high-fluence Ti implantation into steels. (orig.)

  12. The influence of microstruture on fracture toughness of vacuum heat treated HSS AISI M2: Vpliv mikrostrukture na lomno žilavost vakuumsko toplotno obdelanega hitroreznega jekla M2:

    OpenAIRE

    Leskovšek, Vojteh; Liščić, Božidar; Ule, Boris

    2001-01-01

    The microstructure of AISI M2 high-speed can be substantially modified by vacuum heat treatment in order to optimize the ratio between hardness and fracture toughness, which is, however, significantly affected by the volume fractions of retained austenite and undissolved eutectic carbides, as well as the mean distance between these carbides. Calculated fracture toughness values, which were obtained using a newly developed semi-empirical equation, based on the stress-modified critical strain c...

  13. Ion-nitriding of the AISI M2 high speed tool steel and comparison of its mechanical properties with nitrided steels

    Energy Technology Data Exchange (ETDEWEB)

    Cimen, O.; Alnipak, B. [Univ. of Istanbul, Avcilar, Istanbul (Turkey)

    1995-12-31

    In the past it was shown that plasma diffusion treatment of steels has several advantages over conventional processes such as gas or salt bath nitriding and nitrocarburizing. Plasma diffusion treatment allows close control of the process so that surface layers with defined microstructures and properties can be obtained. The amount of {gamma}{prime} and {epsilon} phase present can be easily controlled. In this paper, variation of surfaces hardness properties of AISI M2 high speed tool speed after ion nitriding treatments were investigated. The mechanical and electro-chemical advantages of the ion nitrided structures were compared with the other methods.

  14. Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings on AISI M2 steel and WC-Co substrates

    International Nuclear Information System (INIS)

    This paper is focussed on the characterisation of electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings deposited on AISI M2 steel and hardmetal (K10) substrates in two different conditions: Pristine (i.e., coated) and Recoated (i.e., stripped and recoated). Analytical methods, including X-ray diffraction (XRD), scanning electron microscopy, scratch adhesion and pin-on-disc tests were used to evaluate several coating properties. XRD analyses indicated that both Pristine and Recoated coatings consisted of a mixture of hexagonal Cr2N and cubic CrN, regardless of substrate type. For the M2 steel substrate, only small differences were found in terms of coating phases, microstructure, adhesion, friction and wear coefficients between Pristine and Recoated. Recoated on WC-Co (K10) exhibited a less dense microstructure and significant inferior adhesion compared to Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those exhibited by all other specimens. The results obtained confirm that the stripping process did not adversely affect the Cr-N properties when this coating was deposited onto M2 steel substrates, but it is clear from the unsatisfactory tribological performance of Recoated on WC-Co that the stripping process is unsuitable for hardmetal substrates

  15. Modification of AISI M2 high speed tool steels after laser surface melting under different operation conditions

    International Nuclear Information System (INIS)

    We applied a laser surface melting treatment to AISIM2 high-speed steel hardened and tempered- and studied the resulting surface characteristics (microstructure) and mechanical behavior (hardness and wear performance). The steel was treated using a Nd:YAG continuous-wave laser with different operation conditions. The influence of the laser processing parameters on the single tracks and on melted surface layer obtained by multipass system with 50% overlap were studied. The microstructure for all conditions is formed by MC- and M2C-type carbides, martensite and retained austenite; the quantities of this phase depends on the operations conditions. It has been determined that low levels of power density and high speed scanning of the beam leads to greater homogeneity in the microstructure with high hardness values and wear resistance. (Author) 26 refs.

  16. Resistencia a la corrosión de recubrimientos de nitruros metálicos depositados sobre acero AISI M2

    Directory of Open Access Journals (Sweden)

    Jhon Jairo Olaya Florez

    2012-01-01

    Full Text Available En este trabajo se estudia el comportamiento frente a la corrosión de películas de nitruro de zirconio (ZrN, nitruro de titanio (TiN, nitruro de cromo (CrN, nitruro de niobio (NbN y nitruro de tantalio (TaN depositadas sobre acero para herramientas AISI M2 mediante la técnica de sputtering con magnetrón desbalanceado (UBM. La resistencia a la corrosión fue evaluada con ensayos de espectroscopía de impedancia electroquímica (EIS en una solución al 3% de NaCl variando el tiempo de ensayo desde 1 h hasta 7 d. En general, los mejores resultados de resistencia a la corrosión se presentaron en las películas de ZrN y NbN cuando son producidas en la configuración de menor bombardeo iónico en un sistema UBM. Los recubrimientos muestran degradación en el tiempo de ensayo debido a los defectos presentes en su microestructura, que se convierten en canales de difusión por los que la solución corrosiva llega a la superficie del sustrato. Los mecanismos de corrosión para los recubrimientos producidos son discutidos en esta investigación.

  17. Análise dos modelos utilizados para a previsão dos parâmetros microestruturais obtidos durante a solidificação direcional do aço inoxidável austenítico AISI 304

    OpenAIRE

    Mirian de Lourdes Noronha Motta Melo; Nilton Henrique Alves Pereira; Carlos Antônio de Lima Penhalber; Carmo Roberto Pelliciari de Lima; Carlos Alexandre dos Santos

    2007-01-01

    Os espaçamentos interdendríticos primário e secundário são parâmetros microestruturais que exercem significativa influência nas propriedades mecânicas de peças fundidas. Foram testados, através de simulação numérica, diferentes modelos fornecidos pela literatura para a previsão da redistribuição de soluto e dos parâmetros microestruturais em função dos parâmetros térmicos. Os resultados numéricos são confrontados com experimentais obtidos para o aço inoxidável austenítico AISI 304 solidificad...

  18. Análise dos modelos utilizados para a previsão dos parâmetros microestruturais obtidos durante a solidificação direcional do aço inoxidável austenítico AISI 304

    Directory of Open Access Journals (Sweden)

    Mirian de Lourdes Noronha Motta Melo

    2007-03-01

    Full Text Available Os espaçamentos interdendríticos primário e secundário são parâmetros microestruturais que exercem significativa influência nas propriedades mecânicas de peças fundidas. Foram testados, através de simulação numérica, diferentes modelos fornecidos pela literatura para a previsão da redistribuição de soluto e dos parâmetros microestruturais em função dos parâmetros térmicos. Os resultados numéricos são confrontados com experimentais obtidos para o aço inoxidável austenítico AISI 304 solidificado direcionalmente, permitindo a determinação dos modelos mais adequados para as condições empregadas. A solidificação direcional foi obtida através de uma coquilha de cobre refrigerada à água colocada na parte inferior de um dispositivo projetado e construído. Foram obtidos os perfis de temperatura, para várias posições a partir da interface metal/coquilha, através do emprego de termopares do tipo S e de um sistema de aquisição de dados computadorizado. Com os perfis térmicos foram determinados os principais parâmetros térmicos do processo de solidificação, isto é, a velocidade de crescimento da ponta da dendrita, o gradiente térmico à frente da isoterma liquidus e a taxa de resfriamento. Para a determinação e quantificação das fases formadas, utilizaram-se microscopia ótica e MEV.In the case of dendritic structure, the mechanical properties of foundry products depend on the parameters: primary and secondary arm spacings. Therefore, it is very important that the computational programs use reliable equations for correlating the calculated thermal parameters with the obtained interdendritic spacings. This study presents a numerical and experimental analysis of some models for predicting the secondary arm spacings as a function of thermal parameters. The comparison between the numeric and experimental results for stainless steel permits the determination of the adequate equation for unidirectional

  19. Heterotic M2-branes

    Directory of Open Access Journals (Sweden)

    Neil Lambert

    2015-10-01

    Full Text Available We construct the action for N M2-branes on S1/Z2. The resulting theory has a gauge anomaly but this can be cancelled if the two fixed point planes each support 8 chiral Fermions in the fundamental of U(N. Taking the low energy limit leads to the worldsheet theory of N free heterotic strings whose quantization induces an E8 spacetime gauge symmetry on each fixed point plane. Thus this paper presents a non-abelian worldvolume analogue of the classic Hořava–Witten analysis.

  20. Homogeneous M2 duals

    CERN Document Server

    Figueroa-O'Farrill, José

    2015-01-01

    Motivated by the search for new gravity duals to M2 branes with $N>4$ supersymmetry --- equivalently, M-theory backgrounds with Killing superalgebra $\\mathfrak{osp}(N|4)$ for $N>4$ --- we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra $\\mathfrak{so}(n) \\oplus \\mathfrak{so}(3,2)$ for $n=5,6,7$. We find that there are no new backgrounds with $n=6,7$ but we do find a number of new (to us) backgrounds with $n=5$. All backgrounds are metrically products of the form $\\operatorname{AdS}_4 \\times P^7$, with $P$ riemannian and homogeneous under the action of $\\operatorname{SO}(5)$, or $S^4 \\times Q^7$ with $Q$ lorentzian and homogeneous under the action of $\\operatorname{SO}(3,2)$. At least one of the new backgrounds is supersymmetric (albeit with only $N=2$) and we show that it can be constructed from a supersymmetric Freund--Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  1. Effects of the relative content tungsten/niobium on the solidification and the morphology of a modified M2 steel

    International Nuclear Information System (INIS)

    The cooling curves for two AISI type M2 steels modified with niobium, were obtained and samples of these steels were quenched at convenient temperatures, in order to correlate microstructure with solidification reactions as well as with W/Nb ratio. Increasing W/Nb ratios resulted in a higher fraction of austenite and complex carbide eutectics. (Author)

  2. Study of the solidification of M2 high speed steel Laser Cladding coatings

    Directory of Open Access Journals (Sweden)

    Candel, J. J.

    2013-10-01

    Full Text Available High speed steel laser cladding coatings are complex because cracks appear and the hardness is lower than expected. In this paper AISI M2 tool steel coatings on medium carbon AISI 1045 steel substrate have been manufactured and after Laser Cladding (LC processing it has been applied a tempering heat treatment to reduce the amount of retained austenite and to precipitate secondary carbides. The study of metallurgical transformations by Scanning Electron Microscopy (SEM and Electron Back Scattered Diffraction (EBSD shows that the microstructure is extremely fine and complex, with eutectic transformations and MC, M2C and M6C precipitation. Therefore, after the laser coating is necessary to use post-weld heat treatments.Los recubrimientos de acero rápido por Laser Cladding (LC son complejos porque aparecen fisuras y la dureza es menor a la esperada. En este trabajo se han fabricado recubrimientos de acero AISI M2 sobre acero al carbono AISI 1045 y tras el procesado por láser, se han revenido para reducir la cantidad de austenita retenida y precipitar carburos secundarios. El estudio de las transformaciones metalúrgicas con Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (EBSD muestra que la microestructura es extremadamente fina y compleja, presenta transformaciones eutécticas y precipitación de carburos MC, M2C y M6C. Por tanto, tras el recubrimiento por láser es necesario recurrir a tratamientos térmicos post-soldeo.

  3. Higgsing M2-brane Theories

    CERN Document Server

    Davey, John; Mekareeya, Noppadol; Torri, Giuseppe

    2009-01-01

    Connections between different M2-brane theories are established via the Higgs mechanism, which can be most efficiently studied on brane tilings. This leads to several M2-brane models, with brane tilings or Chern-Simons levels which have not been considered so far. The moduli spaces of these models are identified and examined in detail. The toric diagrams are constructed using Kasteleyn matrices and the forward algorithm.

  4. M2-F1 cockpit

    Science.gov (United States)

    1963-01-01

    This photo shows the cockpit configuration of the M2-F1 wingless lifting body. With a top speed of about 120 knots, the M2-F1 had a simple instrument panel. Besides the panel itself, the ribs of the wooden shell (left) and the control stick (center) are also visible. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47

  5. Unpredictability of internal M2

    Directory of Open Access Journals (Sweden)

    H. van Haren

    2007-06-01

    Full Text Available Current observations from a shelf sea, continental slopes and the abyssal North-East Atlantic Ocean are all dominated by the semidiurnal lunar (M2 tide. It is shown that motions at M2 vary at usually large barotropic and coherent baroclinic scales, >50 km horizontally and >0.5 H vertically. H represents the waterdepth. Such M2-scales are observed even close to topography, the potential source of baroclinic, "internal" tidal waves. In contrast, incoherent small-scale, ~10 km horizontally and ~0.1 H vertically, baroclinic motions are dominated around f, the local inertial frequency, and/or near 2Ω≈S2, the semidiurnal solar tidal frequency. Ω represents the Earth's rotational vector. This confirms earlier suggestions that small-scale baroclinic M2-motions generally do not exist in the ocean in any predictable manner, except in beams very near, <10 km horizontally, to their source. As a result, M2-motions are not directly important for generating shear and internal wave induced mixing. Indirectly however, they may contribute to ocean mixing if transfer to small-scale motions at f and/or S2 and at high internal wave frequencies can be proven. Also far from topography, small-scale motions are found at either one or both of the latter frequencies. Different suggestions for the scales at these particular frequencies are discussed, ranging from the variability of "background" density gradients and associated divergence and focusing of internal wave rays to the removal of the internal tidal energy by non-linear interactions. Near f and S2 particular short-wave inertio-gravity wave bounds are found in the limits of strong and very weak stratification, which are often observed in small-scale layers.

  6. Characterization of AISI 4140 borided steels

    International Nuclear Information System (INIS)

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC(π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.

  7. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 ± 0.3) × 10−6 m2/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 ± 0.5) × 10−6 m2/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 °C, the thermal diffusivity increases up to (12.0 ± 2) × 10−6 m2/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  8. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Science.gov (United States)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K.

    2013-02-01

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 ± 0.3) × 10-6 m2/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 ± 0.5) × 10-6 m2/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 °C, the thermal diffusivity increases up to (12.0 ± 2) × 10-6 m2/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  9. Corrosion of AISI 316 and AISI 304 stainless steel with iodine vapor

    International Nuclear Information System (INIS)

    The weight loss of stainless steel in corrosion with iodine vapor was studied at 500 to 10000C and an iodine vapor pressure range of 0.05 to 0.5 mm Hg, using a thermobalance. In the initial stage of corrosion, the weight loss rate is largely influenced by solution treatment or surface treatment; the induction period, observed for solution-treated samples, is shortened or eliminated by fission-fragment irradiation, ion-bombardment or mechanical polishing, and in some cases corrosion is even accelerated by the surface treatments. A constant weight loss region follows the initial stage of corrosion. In this region, the weight loss rate is not dependent on treatment to the samples, and has a linear relationship with the vapor pressure of iodine. The rate is the largest at about 800 and 7500C for AISI 316 s. s. and AISI 304 s. s. The rates in general are larger for AISI 304 s. s. than for AISI 316 s. s. below 7000C but almost the same above 8000C. Corrosion product layer is observed on the surface of the sample below 7000C. Based on these findings, the corrosion process is discussed. The deposition of corrosion product in a temperature gradient tube is also described

  10. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    OpenAIRE

    Fabiana Cristina Nascimento; Carlos Eugênio Foerster; Silvio Luiz Rutz da Silva; Carlos Mauricio Lepienski; Carlos José de Mesquita Siqueira; Clodomiro Alves Junior

    2009-01-01

    Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses o...

  11. What is $\\Delta m^2_{ee}$ ?

    CERN Document Server

    Parke, Stephen

    2016-01-01

    The current short baseline reactor experiments, Daya Bay and RENO (Double Chooz) have measured (or are capable of measuring) an effective $\\Delta m^2$ associated with the atmospheric oscillation scale of 0.5 km/MeV in electron anti-neutrino disappearance. In this paper, I compare and contrast the different definitions of such an effective $\\Delta m^2$ and argue that the simple, L/E independent, definition given by $\\Delta m^2_{ee} \\equiv \\cos^2 \\theta_{12} \\Delta m^2_{31}+ \\sin^2 \\theta_{12} \\Delta m^2_{32}$, i.e. "the $\

  12. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    OpenAIRE

    João Paulo Sampaio Eufrásio Machado; Cleiton Carvalho Silva; Ana Vládia Cabral Sobral-Santiago; Hosiberto Batista de Sant'Ana; Jesualdo Pereira Farias

    2006-01-01

    This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration). In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (...

  13. Solidification microstructure of M2 high speed steel by different casting technologies

    Directory of Open Access Journals (Sweden)

    Zhou Xuefeng

    2011-08-01

    Full Text Available The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.

  14. Casting AISI 316 steel by gel cast

    International Nuclear Information System (INIS)

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160oC to 1300oC under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  15. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep).

    Science.gov (United States)

    Ngambenjawong, Chayanon; Gustafson, Heather H; Pineda, Julio M; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Pun, Suzie H

    2016-01-01

    Tumor associated macrophages (TAMs) are a major stromal component of the tumor microenvironment in several cancers. TAMs are a potential target for adjuvant cancer therapies due to their established roles in promoting proliferation of cancer cells, angiogenesis, and metastasis. We previously discovered an M2 macrophage-targeting peptide (M2pep) which was successfully used to target and deliver a pro-apoptotic KLA peptide to M2-like TAMs in a CT-26 colon carcinoma model. However, the effectiveness of in vivo TAM-targeting using M2pep is limited by its poor serum stability and low binding affinity. In this study, we synthesized M2pep derivatives with the goals of increasing serum stability and binding affinity. Serum stability evaluation of M2pepBiotin confirmed its rapid degradation attributed to exolytic cleavage from the N-terminus and endolytic cleavages at the W10/W11 and S16/K17 sites. N-terminal acetylation of M2pepBiotin protected the peptide against the exolytic degradation while W10w and K(17,18,19)k substitutions were able to effectively protect endolytic degradation at their respective cleavage sites. However, no tested amino acid changes at the W10 position resulted in both protease resistance at that site and retention of binding activity. Therefore, cyclization of M2pep was investigated. Cyclized M2pep better resisted serum degradation without compromising binding activity to M2 macrophages. During the serum stability optimization process, we also discovered that K9R and W10Y substitutions significantly enhanced binding affinity of M2pep. In an in vitro binding study of different M2pep analogs pre-incubated in mouse serum, cyclic M2pep with K9R and W10Y modifications (cyclic M2pep(RY)) retained the highest binding activity to M2 macrophages over time due to its improved serum stability. Finally, we evaluated the in vivo accumulation of sulfo-Cy5-labeled M2pep and cyclic M2pep(RY) in both the CT-26 and 4T1 breast carcinoma models. Cyclic M2pep

  16. Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA)

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi; Firat, Emrah Hanifi; Caligulu, Ugur [Firat Univ., Elazig (Turkey)

    2013-06-01

    Materials difficult to weld by fusion welding processes can be successfully welded by friction welding. The strength of the friction welded joints is extremely affected by process parameters (rotation speed, friction time, friction pressure, forging time, and forging pressure). In this study, statistical values of tensile strength were investigated in terms of rotation speed, friction time, and friction pressure on the strength behaviours of friction welded AISI 1040 and AISI 304L alloys. Then, the tensile test results were analyzed by analysis of variance (ANOVA) with a confidence level of 95 % to find out whether a statistically significant difference occurs. As a result of this study, the maximum tensile strength is very close, which that of AISI 1040 parent metal of 637 MPa to could be obtained for the joints fabricated under the welding conditions of rotation speed of 1700 rpm, friction pressure of 50 MPa, forging pressure of 100 MPa, friction time of 4 s, and forging time of 2 s. Rotation speed, friction time, and friction pressure on the friction welding of AISI 1040 and AISI 304L alloys were statistically significant regarding tensile strength test values. (orig.)

  17. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    International Nuclear Information System (INIS)

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well

  18. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Zsolt; Horvath, Akos [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary); Nagy, Gabor [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary)], E-mail: nagyg@sunserv.kfki.hu

    2007-10-10

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well.

  19. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    OpenAIRE

    Thanee Toomprasen; Chawalit Thinvongpituk; Sukangkana Talangkun

    2014-01-01

    This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grain...

  20. Investigation of residual stress in laser welding between carbon steel AISI 1010 and stainless AISI 304

    International Nuclear Information System (INIS)

    The dissimilar materials union has the residual stress formation as one of the most critical problems, which occurs mainly because these materials have both different thermal expansion coefficients and thermal conductivities. In this study, it was investigated the laser welding technique between steels, AISI 1010 and AISI 304. The materials were joined by butt autogenous welding with a continuous Nd:YAG laser. The main objective was to identify the welding parameters influence by the residual stresses analysis in the heat affected zone (HAZ). It was executed a factorial design with three-factor at two levels with a replica, which were varied power, welding speed and focal position of the laser beam. Residual stress measurements by the diffraction of X-rays were performed on the sample surface, to study their variation as a function of the parameters investigated. The blind hole method was also used to evaluate the residual stress along the samples depth, up to depth of 1mm. Besides residual stress measurement, weld seams were evaluated by optical and scanned electron microscopy, which were aimed to determine the weld geometry and changes in the microstructure. It was also made Vickers hardness measurements to evaluate the extent of HAZ. To evaluate the mechanical properties of the union were performed tensile and fatigue test. The MINITAB 15 software was used to analyze the residual stresses obtained by the blind hole method at different depths of the HAZ. It was also used statistical regression based on both the influences different and the combination of this input factors, in the residual stress of union. The results indicate that the models can satisfactorily predict the responses and provide users a guide to better define the welding parameters. (author)

  1. Multiple M2-Branes and Plane Waves

    OpenAIRE

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane world-volume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency...

  2. Colloquium on Large Scale Improvement: Implications for AISI

    Science.gov (United States)

    McEwen, Nelly, Ed.

    2008-01-01

    The Alberta Initiative for School Improvement (AISI) is a province-wide partnership program whose goal is to improve student learning and performance by fostering initiatives that reflect the unique needs and circumstances of each school authority. It is currently ending its third cycle and ninth year of implementation. "The Colloquium on Large…

  3. M2-F1 simulator cockpit

    Science.gov (United States)

    1963-01-01

    This early simulator of the M2-F1 lifting body was used for pilot training, to test landing techniques before the first ground tow attempts, and to test new control configurations after the first tow attempts and wind-tunnel tests. The M2-F1 simulator was limited in some ways by its analog simulator. It had only limited visual display for the pilot, as well. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne

  4. M2-F1 In Tow Flight

    Science.gov (United States)

    1964-01-01

    The M2-F1 lifting body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 feet where free flights back to Rogers Dry Lake began.

  5. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  6. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M. (Santa Fe, NM)

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  7. Superconformal Quantum Mechanics from M2-branes

    CERN Document Server

    Okazaki, Tadashi

    2015-01-01

    We discuss the superconformal quantum mechanics arising from the M2-branes. We begin with a comprehensive review on the superconformal quantum mechanics and emphasize that conformal symmetry and supersymmetry in quantum mechanics contain a number of exotic and enlightening properties which do not occur in higher dimensional field theories. We see that superfield and superspace formalism is available for $\\mathcal{N}\\le 8$ superconformal mechanical models. We then discuss the M2-branes with a focus on the world-volume descriptions of the multiple M2-branes which are superconformal three-dimensional Chern-Simons matter theories. Finally we argue that the two topics are connected in M-theoretical construction by considering the multiple M2-branes wrapped around a compact Riemann surface and study the emerging IR quantum mechanics. We establish that the resulting quantum mechanics realizes a set of novel $\\mathcal{N}\\ge 8$ superconformal quantum mechanical models which have not been reached so far. Also we discus...

  8. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    Directory of Open Access Journals (Sweden)

    Thanee Toomprasen

    2014-06-01

    Full Text Available This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grains. in the welded area. This is the result of friction pressure and upset pressure in the welding process. In addition, the observation result indicated some changes of Ferrite and Pearlite in welded zone. This phase change resulted in the increment of hardness in AISI 4140 at the contact area and adjacent. In part of AISI 1040, the portion of Pearlite and Ferrite are not significantly changed, therefore the value of hardness is almost constant.

  9. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2009-06-01

    Full Text Available Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

  10. M2-F1 in Tow

    Science.gov (United States)

    1964-01-01

    The M2-F1 lifting body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric re-entry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle.

  11. Wrapped M2/M5 Duality

    OpenAIRE

    Guica, Monica; Strominger, Andrew E.

    2007-01-01

    A microscopic accounting of the entropy of a generic 5D supersymmetric rotating black hole, arising from wrapped \\(M2\\)-branes in Calabi-Yau compactified \\(M\\)-theory, is an outstanding unsolved problem. In this paper we consider an expansion around the zero-entropy, zero-temperature, maximally rotating ground state for which the angular momentum \\(J_L\\) and graviphoton charge \\(Q\\) are related by \\({J_L}^2 = Q^3\\). At \\(J_L = 0\\) the near horizon geometry is \\(AdS_2 × S^3\\). As \\({J_L}^2 → Q...

  12. Experimental evaluation of mechanical properties of friction welded AISI steels

    Directory of Open Access Journals (Sweden)

    Amit Handa

    2014-12-01

    Full Text Available In the present study, an experimental setup was designed and fabricated in order to accomplish friction welded joints between austenitic stainless steel and low-alloy steel. Thereafter, the effect of axial pressures on the mechanical properties of friction welded AISI 304 with AISI 1021 steels, produced by mechanical joining, have been investigated. Samples were welded under different axial pressures ranging from 75 to 135 MPa, at constant speed of 1250 rpm. The tensile strength, impact strength, and micro-hardness values of the weldments were determined and evaluated. Simultaneously, the fractrography of the tensile-tested specimens were carried out, so as to understand the failure analysis.

  13. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  14. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  15. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    OpenAIRE

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  16. Multiple M2-branes and plane waves

    International Nuclear Information System (INIS)

    We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane world-volume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency check of this proposal we show that the properties of metric 3-algebras ensure the equivalence of the Rosen coordinate version of this action (time-dependent metric on the space of 3-algebra valued scalar fields, no mass terms) and its Brinkmann counterpart (constant couplings but time-dependent mass terms). We also establish an analogous result for deformed Yang-Mills theories in any dimension which, in particular, demonstrates the equivalence of the Rosen and Brinkmann forms of the plane wave matrix string action.

  17. Multiple M2-Branes and Plane Waves

    CERN Document Server

    Blau, Matthias

    2008-01-01

    We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane worldvolume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency check of this proposal we show that the properties of metric 3-algebras ensure the equivalence of the Rosen coordinate version of this action (time-dependent metric on the space of 3-algebra valued scalar fields, no mass terms) and its Brinkmann counterpart (constant couplings but time-dependent mass terms). We also establish an analogous result for deformed Yang-Mills theories in any dimension which, in particular, demonstrates the equivalence of the Rosen and Brinkmann forms of the plane wave matrix string action.

  18. Hot forming of AISI A2 tool steel

    OpenAIRE

    Večko Pirtovšek, T.; Peruš, I.; Kugler, G.; Turk, R.; M. Terčelj

    2008-01-01

    For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization...

  19. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author)

  20. An investigation on fatigue life of borided AISI 1010 steel

    Directory of Open Access Journals (Sweden)

    O.N. Celik

    2009-01-01

    Full Text Available Purpose: This study aims to investigate the fatigue life of box borided AISI 1010 steel materials.Design/methodology/approach: Fatigue specimens firstly have been prepared according to ASTM E466-96 standard and normalized. Then their surfaces have been cleaned by polishing. Boriding heat treatment has been applied in solid media with the help of Ekabor2 powder. Specimens have been borided at 1173-1223-1273 and 1323 K temperatures for 2-4 and 6 hours respectively. Fatigue tests have been made in rotating-bend test device. Separate S-N diagram has been formed for each boriding condition and then their results were compared with the results of the specimens on which any heat treatment has not been made.Findings: As a result it has been seen that boriding has no positive effect on fatigue life of AISI 1010 steel materials. And also it has been determined that fatigue life of the materials on which boriding heat treatment applied, decreases in between 14 %-55 %.Research limitations/implications: It can be noted that the reasons of short fatigue life determination are the boride layer’s much higher hardness than the substrate material’s, and the micro cracks existed between boride phases formed onto the surface.Originality/value: The investigations on fatigue life of borided AISI 1010 steel were made.

  1. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Eufrásio Machado

    2006-06-01

    Full Text Available This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration. In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (200, 300 and 400 °C. The procedure was done in conditions close to those in the distillation column. Heat was gradually increased from room temperature, and directly heated to working temperature. Each treatment took 4 hours to be completed. Scanning electronic microscopy (SEM and the analysis of X rays dispersive energy (EDX were used after the trials to characterize the samples. The results show that treatment temperature, as well as the type of heating, has distinct influences on each type of steel.

  2. M2 qualify laser beam propagation

    International Nuclear Information System (INIS)

    One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. Laser beam diameter and quality factor M2 are significant parameters in a wide range of laser applications. This is because the spatial beam quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization of any kind of beam

  3. LOSA-M2 aerosol Raman lidar

    International Nuclear Information System (INIS)

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  4. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm2 obtained at aging temperature of 210oC for hours with homogenous dendritic microstructure

  5. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    International Nuclear Information System (INIS)

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  6. Microstructural Characteristic of Dissimilar Welded Components (AISI 430 Ferritic-AISI 304 Austenitic Stainless Steels) by CO2 Laser Beam Welding (LBW)

    OpenAIRE

    Caligulu, Ugur; Dikbas, Halil; Taskin, Mustafa

    2012-01-01

    In this study, microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW) was investigated. Laser beam welding experiments were carried out under argon and helium atmospheres at 2000 and 2500 W heat inputs and 100-200-300 cm/min. welding speeds. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy, SEM, EDS and XRD analysis. The tensile strengt...

  7. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    OpenAIRE

    Francisco Javier Cárcel-Carrasco; Manuel Pascual-Guillamón; Miguel Angel Pérez-Puig

    2016-01-01

    This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds i...

  8. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    Paula Fernanda da Silva Farina

    2012-06-01

    Full Text Available The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i time at cryogenic temperatures (3, 10 and 30 hours; ii cryogenic temperatures (–80°C and –196°C; iii stress relief heat treatment (130°C before cryogenic treatments; iv effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.

  9. Mössbauer studies on an AISI 1137 type steel

    Indian Academy of Sciences (India)

    E Güler; H Akta

    2006-06-01

    An AISI 1137 type medium carbon steel was studied by means of scanning electron microscopy and Mössbauer spectroscopy. This steel in as received state at room temperature was ferritic. Different heat treatments on related steel exhibited different microstructures such as pearlite and bainite. Also magnetism of these product phases was determined as 32.7 T and 32.6 T relatively where ferromagnetism of ferritic phase in as received state was 33.05 T. Mössbauer parameters such as isomer shifts and % volumes were also determined before and after transformations.

  10. Cariótipo Fetal em Líquido Pleural Obtido por Toracocentese

    OpenAIRE

    Cabral Antonio Carlos Vieira; Machado Isabela Nelly; Leite Henrique Vitor; Pereira Alamanda Kfoury; Vitral Zilma Nogueira Reis

    2001-01-01

    Objetivos: avaliar a efetividade da realização de cariótipo em líquido pleural obtido por toracocentese de um grupo de fetos portadores de derrame pleural. Métodos: foram avaliados 15 fetos com derrame pleural uni ou bilateral nos quais se realizou uma punção da cavidade torácica. A idade gestacional variou entre 19 e 34 semanas. Os fetos foram estudados com ultra-sonografia morfológica para determinar a presença de anomalias associadas. Nos casos em que não se obteve o cultivo em líquido ple...

  11. Aluminum coating by fluidized bed chemical vapor deposition on austenitic stainless steels AISI 304 and AISI 316

    Directory of Open Access Journals (Sweden)

    Jose Luddey Marulanda-Arevalo

    2015-01-01

    Full Text Available Los revestimientos de aluminio f ueron depositados sobre aceros inoxidables AISI 304 y AISI 316 en el rango de temperatura de 5 60 a 600 °C por deposición química de vapor en lecho fluidizado(CVD – FBR. Se utilizó un lecho que consistía en 10 % de aluminio en polvo y 90 % de lecho inerte (alúmina, el cual fue fluidizado con Ar y como ga ses activadores se utilizó una mezcla de ácido clorhídrico con hidrógeno (HCl/H 2 . En el recubrimiento si n tratamiento térmico están las siguiente s especies: Al 13 Fe 4 , Fe 2 Al 5 , FeAl 2 y Al 5 FeNi, las cuales están presentes para ambos aceros. Además, el tratamiento térmico provoca la difusa de alu minio hacia el sustrato y la difusa de hierro del sustrato haci a la superficie del recubrimiento, haciendo la trans formación de los compuestos ant eriores a FeAl, Fe 2 Al 5 , FeAl 2 , Al 0.99 Fe 0.99 Ni 0.02 , AlNi y el Fe 2 AlCr. Se realizó la simulación termodinámica con el s oftware Thermo Calc para obt ener información de la posible composición y la cantidad de mat erial depositado, para condiciones seleccionadas. Las muestras recubi ertas y sin recubrir, se expus ieron a 750 ºC en una atmósfera d onde el vapor agua se transporta a las muestras usando un flujo de N 2 de 40 ml/min, más 100 % vapor de agua (H 2 O. Los dos sustratos sin revestir se comportaron de manera diferente, ya que el acero AISI 304 soportó bien el a taque y ganó poco peso (0.49 mg/cm 2 , en comparación con el acero AISI 316 que perdió mucho peso (25.4 mg/cm 2 . Los aceros recubiertos ganaron poco de peso durante las mil horas de exposición (0.26 mg/cm 2 y soportaron muy bien el ataque corrosivo en c omparación con sustratos sin r ecubrimiento.

  12. Fiber laser welding of AISI 304 stainless steel plates

    International Nuclear Information System (INIS)

    Compared with conventional lasers, fiber laser welding is characterized by high melting efficiency, deferent keyhole modes and power density characteristics, which could affect the heat and melt flow of the molten pool during welding. The objective of the present work was to study the fiber laser weldability of 5 mm thick AISI 304 austenitic stainless steel plates; therefore, bead-on-plate welding was exploited on AISI 304 stainless steel plates with different laser powers, welding speeds, defocused distances with different types of shielding gas and their effects on the weld zone geometry and properties and final solidification microstructure at room temperature. Laser power, welding speed and defocused distance have a great effect on the bead appearance and weld zone shape while almost no significant effect on both the type of microstructure and mechanical properties of welds. The microstructure of all laser welds was always austenitic including about 3-5 % ferrite. However, the lower the laser power and/or the higher the welding speed, the finer solidification structure, primary ferrite or mixed-mode solidification resulted in crack-free welds. (author)

  13. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  14. Efeitos do envelhecimento térmico na microestrutura e na resistência à corrosão do metal de solda de aço AISI 317L

    OpenAIRE

    Humberto N. Farneze; Sérgio S. M. Tavares; Juan M Pardal; Guttemberg C. de Souza

    2014-01-01

    Visando uma análise da evolução microestrutural e da resistência à corrosão do metal de solda em aço AISI 317L, obtido pelo processo GTAW, realizou-se a avaliação do efeito de exposições prolongadas a 550°C, através de tratamentos térmicos por 200h, 300h e 400h. Após cada tratamento foi efetuada uma caracterização microestrutural por microscopia eletrônica de varredura (MEV). Em seguida, foram realizados testes de polarização eletroquímica de reativação cíclica (PERC), para avaliar o grau de ...

  15. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  16. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  17. Main: 1M2P [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1M2P トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...LVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYFQQVRAAENSRTRA corn_1M2P.jpg ...

  18. Main: 1M2R [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1M2R トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...ELLVDLQDYDYSLDMWSLGCMFAGMIFRKEPFFYGHDNHDQLVKIAKVLGTDGLNVYLNKYRIELDPQLEALVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYFQQVRAAENSRTRA corn_1M2R.jpg ...

  19. Main: 1M2Q [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1M2Q トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...LVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYFQQVRAAENSRTRA corn_1M2Q.jpg ...

  20. 26 CFR 1.401(m)-2 - ACP test.

    Science.gov (United States)

    2010-04-01

    ... determined under § 1.401(m)-2(b)(2)(iv) (as it appeared in the April 1, 2007, edition of 26 CFR part 1). (E... determined under § 1.401(m)-2(b)(2)(vi) (as it appeared in the April 1, 2007, edition of 26 CFR Part 1). If... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ACP test. 1.401(m)-2 Section 1.401(m)-2...

  1. Subsolidus phase relations in the systems M2+-M2+O-V2O5 (M+-Li, Na, K, Rb, Cs; M2+-Mg, Ca)

    International Nuclear Information System (INIS)

    One studied phase composition of M2O(M2CO3)-MgO-V2O5 and M2O(M2CO3)-CaO-V2O5 systems, where M-Li, Na, K, Rb, Cs under the subsolidus temperatures. One synthesized 20 binary vanadates 5 ones of which (Rb2CaV2O7, Cs2CaV2O7, LiMg4(VO4)3, RbCaVO4 and CsCaVO4) were prepared for the first time. Paper presents summary table of structural characteristics of all binary vanadates. For 14 ones of them one presents structure and parameters of lattice (for 6 vanadates data were obtained for the first time). One shows formation of terminal solid solution based on calcium orthovanadate. One studied phase diagrams of 6 systems (M+-Li, Na, K, Rb, Cs; M2+-Mg, Ca)

  2. Computer Aided Design of Heat Treatment for AISI P20+Ni Mold Steel with Good Machinability

    Institute of Scientific and Technical Information of China (English)

    HU Xin-bin; GAO Wen; HE Yan-lin; LI Lin

    2004-01-01

    Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching &tempering has optimal machinability; normalizing at the temperature of 910℃ & tempering can avoid cracking and result in acceptable machinability in small thickness module.

  3. Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    This paper concerns a fractographic examination of hydrogen embrittlement of a stable AISI 316L type austenitic stainless steel. The objective is a better understanding of the possible role of hydrogen in stress corrosion cracking processes. (author)

  4. Hot forming of AISI A2 tool steel

    Directory of Open Access Journals (Sweden)

    T. Večko Pirtovšek

    2008-10-01

    Full Text Available For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization purposes the activation energies and constants of the hyperbolic sine function for two temperatures ranges (850-1000°C and 1000-1150°C were calculated.

  5. CO2 laser welding of AISI 321stainless steel

    International Nuclear Information System (INIS)

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel

  6. Radiation-induced phase development in AISI 316

    International Nuclear Information System (INIS)

    During irradiation at temperatures between 460 and 6500C, the alloy AISI 316 decomposes into an austenite matrix of altered composition and some mixture of six possible precipitate phases. These phases are γ', G, eta-silicide, M23C6, M6C, and Laves. The balance of phases developed is exceptionally sensitive to a large number of material and environmental variables and frequently varies within a single grain. All of these phases are found to be either naturally rich in nickel and silicon or to become progressively enriched in these elements as the irradiation proceeds. The precipitates can be considered to be classified as thermally stable but modified, irradiation-enhanced, irradiation-induced, and irradiation-transformed

  7. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    Science.gov (United States)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  8. Corrosion of AISI 304 stainless steel in polluted seawater

    International Nuclear Information System (INIS)

    The sequence of microbiofouling settlement on AISI 304 stain steel samples exposed to polluted harbor sea water of a power cooling water intake is studied. The firts sates of bacterial colonization are followed by means of scanning electron microscopy during two weeks of exposure. The relation between microbiofouling and corrosion is also followed by scanning electron microscopy and evaluated through electrochemical polarization experiments. The results obtained show that microbial colonization and extracellular polimeric substances forming the biofilms have a marked influence on the electrochemical behaviour of stainless steel in sea water. Laboratory experiments using inorganic chloride solutions or artificial sea water show a considerably lesser attack of the metal than those performed 'in situ' with natural sea water. Passivity breadown is highly facilitated when complex biological and inorganic deposits (fouling) have settled on the metal surface. (Author)

  9. Pileup Behavior in Sharp Nanoindentation of AISI 1045 Steel

    Science.gov (United States)

    Zhu, L. N.; Xu, B. S.; Wang, H. D.; Wang, C. B.

    Experimental measurements have been used to investigate the pileup behavior during nanoindentation with a sharp indenter. The AISI 1045 steels treated by quenching and annealing were examined. The results show that during sharp nanoindentation process, the amount of pileup is related to the residual stress state, the indentation depth and the work hardening. The quenched steel with compressive residual stress will tend to pile up, and the stress-free annealed steel can decrease the pileup height. It is found that the pileup height gradually increases for the two steels as the indentation depth becomes larger. It is also shown that the low work hardening of the two steels can also result in the pileup deformation.

  10. Stress Ratio Effect on Ratcheting Behavior of AISI 4340 Steel

    Science.gov (United States)

    Divya Bharathi, K.; Dutta, K.

    2016-02-01

    Ratcheting is known as accumulation of plastic strain during asymmetric cyclic loading of metallic materials under non-zero mean stress. This phenomenon reduces fatigue life of engineering materials and thus limits the life prediction capacity of Coffin-Manson relationship. This study intends to investigate the ratcheting behavior in AISI 4340 steel which is mainly used for designing of railway wheel sets, axles, shafts, aircraft components and other machinery parts. The effect of stress ratio on the ratcheting behaviour in both annealed and normalised conditions were investigated for investigated steel. Ratcheting tests were done at different stress ratios of -0.4, -0.6 and -0.8. The results showed that the material responds to hardening behavior and nature of strain accumulation is dependent on the magnitude of stress ratio. The post ratcheted samples showed increase in tensile strength and hardness which increases with increasing stress ratio and these variations in tensile properties are correlated with the induced cyclic hardening.

  11. Study of discordancy mobility in the AISI 304 steel

    International Nuclear Information System (INIS)

    Internal Friction (IF), measurements were carried out in a type AISI 304 austenitic stainless steels at approximately 1HZ of frequency in the temperature interval from 120 to 573K. The IF spectra and the vibration frequency were obtained in samples were submitted to specific heat treatments. The results showed IF spectra with a well defined peak at 260K. The intensity dependes on the amount of plastic deformation previously introduced in the sample. Another broad peak was detected between 300 and 400K. Both peaks could only be detected after plastic deformation in uniaxial tension or torsion. In torsionably deformed samples at liquid nitrogen temperature, 77 K, the IF spectrum is observed only after linear annealing at 400K. This apparently results from a high damping due to a possible phase transformation which occurs around room temperature. The broad peak at higher temperature is sensitive to recovery induced by linear annealings. (Author)

  12. Comportamiento termomecánico de aceros AISI 304

    Directory of Open Access Journals (Sweden)

    El Wahabi, M.

    2001-04-01

    Full Text Available The hot deformation behaviour of three AISI 304 (H, L and HP austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free displayed the lower stress levels as its hardening rate was slower than in the other two steels.

    Se llevó a cabo un estudio del comportamiento termomecánico de tres aceros inoxidables austeníticos tipo AISI 304 (H, L y HP con diferentes contenido en carbono, mediante la determinación de los parámetros que describen las etapas de deformación en caliente. No se notó un fuerte efecto del carbono en dichos parámetros, excepto en los que describen los procesos de endurecimiento y de restauración dinámica que muestran una cierta dependencia con la composición química, especialmente a bajos valores del parámetro de Zener-Hollomon, donde el acero de alto carbono (304H endurece y restaura más rápido que el de bajo carbono (304L, alcanzándose valores de tensión de pico similares en ambos casos. El material de alta pureza (libre de intersticiales toma valores de tensión de pico más bajos que los otros aceros, endureciendo más lentamente y con una velocidad de restauración similar a la del 304H.

  13. Linear friction welding of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → Linear friction welding is a feasible process for joining AISI316L. → Most welds had tensile strengths superior to the parent material. → Welding parameters had a significant impact on weld microstructure. → Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {1 1 1} type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  14. Kepekaan Retak Korosi Tegangan Baja Tahan Karat Austenitik AISI 304 Dalam Lingkungan Air Laut Buatan

    OpenAIRE

    Daud, Marzuki

    2012-01-01

    The component of AISI 304 stainless steel construction is used as a prop of linking up the ropes on the boat on the sea, such as socket swaged, chain plate, turnbuckle, and so on. This component usually has a failure problem of Stress Corrosion Cracking (SCC) although the stress which operates mechanically is far from its yield strength. The aim of this research is to analyze the SCC susceptibility of AISI 304 austenite stainless steel in artificial sea water which is represent...

  15. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  16. Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyección térmica por arco eléctrico

    OpenAIRE

    López-Covaleda, E. A.; Mercado-Velandia, J. L.; Olaya-Flórez, J. J.

    2013-01-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical micros...

  17. Study on residual stress of AISI304 TIG welding line with laser shock processing by x-ray stress analyzer

    Science.gov (United States)

    Zhang, Y. K.; Kong, D. J.; Yin, S. M.; Feng, A. X.; Lu, J. Z.; Ge, T.

    2006-02-01

    The surface of AISI304 TIG welding line was processed by LSP (laser shock processing). The effects on the microstructure, hardness and residual stress of AISI304 welding line by LSP were observed, and its mechanical properties were researched by SEM (scanning electron microscope) and test device of mechanical property. Residual stresses of AISI304 TIG welding line by LSP were measured with Model X-350A X ray analyzer. The test results show that compressive residual stress values of AISI304 TIG welding line by LSP are about 110MPa. Strengthening effects of AISI304 TIG welding line by LSP is very obvious, and fatigue properties of welding line is improved, and tensile residual stresses of welding line are obviously reduced, the distribution of residual stress tends to equality, and service life of AISI304 TIG welding line is improved.

  18. Breakdown and evolution of the protective oxide scales of AISI 304 and AISI 316 stainless steels under high-temperature oxidation

    OpenAIRE

    Habib, K. A.; Damra, M. S.; Saura, J. J.; Cervera, I.; Bellés, J.

    2011-01-01

    The failure of the protective oxide scales of AISI 304 and AISI 316 stainless steels has been studied and compared at 1,000°C in synthetic air. First, the isothermal thermogravimetric curves of both stainless steels were plotted to determine the time needed to reach the breakdown point. The different resistance of each stainless steel was interpreted on the basis of the nature of the crystalline phases formed, the morphology, and the surface structure as well as the cross-section structure of...

  19. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Science.gov (United States)

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  20. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    Science.gov (United States)

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  1. Influência da temperatura de digestão no comportamento dos asfaltos-borracha obtidos pelo processo úmido

    OpenAIRE

    Neto, Silvrano Adonias Dantas; Farias, Márcio Muniz de; Pais, Jorge C.

    2006-01-01

    Os asfaltos-borracha são materiais obtidos pela incorporação de uma borracha granulada reciclada de pneus usados a um ligante asfáltico convencional. O processo de mistura entre estes dois materiais ocorre sob determinadas condições de tempo e temperatura que influenciam diretamente o comportamento do produto obtido, ou seja, do asfalto-borracha. Em geral não existem parâmetros pré-definidos para a escolha do tempo, e principalmente da temperatura empregada na fabricação dos asfaltos-borracha...

  2. Towards Horizontal Architecture for Autonomic M2M Service Networks

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2014-05-01

    Full Text Available Today, increasing number of industrial application cases rely on the Machine to Machine (M2M services exposed from physical devices. Such M2M services enable interaction of physical world with the core processes of company information systems. However, there are grand challenges related to complexity and “vertical silos” limiting the M2M market scale and interoperability. It is here expected that horizontal approach for the system architecture is required for solving these challenges. Therefore, a set of architectural principles and key enablers for the horizontal architecture have been specified in this work. A selected set of key enablers called as autonomic M2M manager, M2M service capabilities, M2M messaging system, M2M gateways towards energy constrained M2M asset devices and creation of trust to enable end-to-end security for M2M applications have been developed. The developed key enablers have been evaluated separately in different scenarios dealing with smart metering, car sharing and electric bike experiments. The evaluation results shows that the provided architectural principles, and developed key enablers establish a solid ground for future research and seem to enable communication between objects and applications, which are not initially been designed to communicate together. The aim as the next step in this research is to create a combined experimental system to evaluate the system interoperability and performance in a more detailed manner.

  3. A Survey on M2M Service Networks

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2014-11-01

    Full Text Available The number of industrial applications relying on the Machine to Machine (M2M services exposed from physical world has been increasing in recent years. Such M2M services enable communication of devices with the core processes of companies. However, there is a big challenge related to complexity and to application-specific M2M systems called “vertical silos”. This paper focuses on reviewing the technologies of M2M service networks and discussing approaches from the perspectives of M2M information and services, M2M communication and M2M security. Finally, a discussion on technologies and approaches potentially enabling future autonomic M2M service networks are provided. According to our conclusions, it is seen that clear definition of the architectural principles is needed to solve the “vertical silo” problem and then, proceeding towards enabling autonomic capabilities for solving complexity problem appears feasible. Several areas of future research have been identified, e.g., autonomic information based services, optimization of communications with limited capability devices, real-time messaging, creation of trust and end to end security, adaptability, reliability, performance, interoperability, and maintenance.

  4. Study on tempering behaviour of AISI 410 stainless steel

    International Nuclear Information System (INIS)

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M23C6) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe2C and M23C6 types of carbides coexisting in the material. The nucleation of Fe2C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M23C6 carbides, instead of Fe2C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with temperature of tempering

  5. M2 factor of four-petal Gaussian beam

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan; Fan Yan

    2008-01-01

    Based on the second-order moments,this paper derives an analytical expression of the M2 factor of four-petal Gaussian beam.The results show that the M2 factor is only determined by the beam order n.The corresponding numerical calculations are also given.As the beam order increases,the augment of M2 factor is disciplinary.As the expression of M2 factor is expressed in series form and becomes more complicated,a new concise formula of M2 factor is also presented by using curve fitting of numerical calculations.When 3≤n≤200,the maximum error rate of fitting formula will not exceed 2.6% and the average error rate is 0.28%.This research is helpful to the applications of four-petal Gaussian beam.

  6. AISI waste oxide recycling program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  7. Qualification criteria verification for aisi-4340 steel suspension lug

    International Nuclear Information System (INIS)

    All external loads carried underneath an aircraft are mounted onto it through mechanism generally known as suspension system. The externally mounted attachments like bombs, missiles and fuel tanks etc. experience enormous aerodynamic and inertial forces in the flights. These forces are transferred to the interface point of suspension system, known as 'Suspension Lug'. Thus lugs are considered critical component and have extremely stringent qualification criteria standards used in the aviation industry in USA, Europe, Russia, etc. Different standards prevail in different parts of the world about qualification and testing of these lugs. As Pakistan is entering into aviation industry, therefore there is a need to fulfill the requirements of these standards, to suit Pakistani environment. The suspension lug under study is 2000 Ibs. load class made from AISI-4340 Steel having good mechanical properties as per required standard. The manufacturing processes included forging, machining and vacuum heat treatment. The prototypes of suspension lugs were manufactured in the local industry and subjected to the required mechanical tests such as tensile testing at 5 to 35 degree angles. Impact testing at cryogenic temperatures of -50 to -70 degree C, and breaking load testing were performed. The acceptable results were obtained and mechanical testing for qualification of lugs was finalized and standardized. The options were compared with practical viability, utilization of product and cost effectiveness. (author)

  8. High-temperature oxidation behavior of aluminized AISI 4130 steel

    Science.gov (United States)

    Badaruddin, Mohammad; Wang, Chaur Jeng; Wardono, Herry; Tarkono, Asmi, Dwi

    2016-02-01

    AISI 4130 steel was dipped into a molten aluminum bath at 700°C for 16 s to produce an aluminide coating on the steel substrate. The coating, which consisted of an Al-rich layer and an FeAl3 and Fe2Al5 intermetallic layer, strongly adhered to the steel substrate. High-temperature oxidation of the bare steel and aluminized steel was performed by thermogravimetry at 850°C for 49 h in static air. The oxidation products were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The aluminide coating could increase the oxidation resistance of the bare steel by a factor of ˜19. The increase in high-temperature oxidation resistance of the aluminized steel is attributed to the formation of protective alumina scale (α-Al2O3). Although iron oxide nodules grew on the aluminide coating surface, the oxidation rate of the aluminide coatings was very low. After 49 h of oxidation, agglomerates of α-Al2O3 fine grains grew on the rod-shaped FeAl phases.

  9. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  10. Plasma post oxidation of nitrocarburized AISI 4140 steel

    Institute of Scientific and Technical Information of China (English)

    LEE Insup

    2006-01-01

    Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of AISI 4140 steel.Plasma nitrocarburizing was conducted for 3 h at 570 ℃ in the nitrogen, hydrogen and methane atmosphere to produce the ε-Fe2-3(N,C) phase.It was found that the compound layer produced by plasma nitrocarburising was predominantly composed of ε-phase, with a small proportion of γ'-Fe4(N,C) phase.The thickness of the compound layer was about 10 μm and the diffusion layer was about 300 μm in thickness, respectively.Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at a constant temperature of 500 ℃ for 1 h.The very thin magnetite (Fe3O4) layer 1-2 μm in thickness on top of the compound layer was obtained by plasma post oxidation.It was confirmed that the corrosion characteristics of the nitrocarburized compound layer can be further improved by the application of the superficial magnetite layer.

  11. Environment-tensile property relationship in AISI 1018 steel

    International Nuclear Information System (INIS)

    Environment-material interaction depends on several concurrent and mutually competitive variables ranging from nature of the environment to composition of the steel and including: the test temperature; the time of exposure of the material to the environment; the deformation rate; and intrinsic microstructural effects; The present work is a characterization of strain rate and environment influences on the tensile properties of a steel, AISI 1018, having a fully spheroidized microstructure. Tensile tests were performed at ambient temperature (300 K) in environments which are mildly aggressive (moist laboratory air-relative humidity 50%) and inert (dry gaseous nitrogen). The specimens were deformed to failure at strain rates of 10-4sec-1 and 10-5sec-1. No appreciable increase in yield and tensile strengths was observed at the strain rate of 10-4sec-1. However, the increase in both was of the order of 10 to 12% at the strain rate of 10-5sec-1. Ductility showed no variation with strain rate, but increased in the inert environment at both strain rates. Both environment and strain rate were found to have little to no influence on reduction in area of the test specimens. The true fracture stress followed a similar trend to the yield strength and ultimate tensile strength. (author)

  12. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction

    DEFF Research Database (Denmark)

    Burnett, A. K.; Russell, N. H.; Hills, R. K.;

    2015-01-01

    Modifying induction therapy in acute myeloid leukemia (AML) may improve the remission rate and reduce the risk of relapse, thereby improving survival. Escalation of the daunorubicin dose to 90 mg/m(2) has shown benefit for some patient subgroups when compared with a dose of 45 mg/m(2), and has be...

  13. On M2M communications standards for smart metering

    OpenAIRE

    Sneps-sneppe, Manfred; Maximenko, Anatoly; Namiot, Dmitry

    2013-01-01

    The paper discusses M2M communications standards for smart metering. One of the our goals is to show the failures of ETSI standartization process for M2M communications. Our paper proposes some extesions to ETSI standards. At the first hand, it is M-Bus protocol and Open Metering System based on M-Bus. The paper shows how to estimate wireless M-bus throughput and how to avoid collisions. After analysis of Open API for M2M, submitted to ETSI, we propose a new approach in the client-side web de...

  14. Atividade Antimicrobiana de Peptídeos Obtidos de Caseína Bovina

    Directory of Open Access Journals (Sweden)

    C. C. H. KRÜGER

    2008-10-01

    Full Text Available

    As proteínas de leite são precursoras de vários peptídeos biologicamente ativos. Estes, inativos dentro da seqüência da proteína original, podem ser liberados pela proteólise enzimática. Após a hidrólise, algumas proteínas apresentam atividade antibacteriana. Caseinofosfopeptídeos (CPP podem ser liberados in vivo na digestão normal da caseína ou formados in vitro pela hidrólise enzimática. O objetivo do trabalho foi a investigação do potencial de peptídeos obtidos pela hidrólise tríptica da caseína em inibir o crescimento de bactérias. Os peptídeos foram testados contra as bactérias Gram-positivas Listeria monocytogenes e Staphylococcus aureus e as bactérias Gram-negativas, Escherichia coli e Salmonella typhimurium. Foram testadas diferentes formas de produção de CPP. O peptídeo denominado CPP-A apresentou atividade bacteriostática contra Escherichia coli a 1 mg/mL e 0,2 mg/mL. O CPP-C inibiu o crescimento de Staphylococcus aureus, Escherichia coli e Salmonella typhimurium em quase todas as concentrações testadas. A Listeria monocytogenes foi inibida por todos os peptídeos testados.

  15. Solidificação da zona de fusão na soldagem do AISI 304 com inconel 600 por laser de Nd: YAG Microstructure development in Nd: YAG laser welding of AISI 304 and Inconel 600

    Directory of Open Access Journals (Sweden)

    Maurício David M. das Neves

    2009-06-01

    Full Text Available Neste trabalho estudou-se a morfologia de solidificação da zona de fusão, numa junta formada a partir de materiais dissimilares, composta por aço inoxidável austenítico AISI 304 e por liga de níquel Inconel 600, soldada com laser pulsado de Nd:YAG. Os parâmetros do feixe laser e do sistema óptico foram selecionados, visando obter uma solda com penetração total e bom acabamento superficial. A caracterização microestrutural foi realizada por microscopia ótica, onde se observou uma zona de fusão com penetração total do tipo keyhole, a presença de pequenos poros e a ausência de trincas. As juntas soldadas foram caracterizadas também, por meio de microscopia eletrônica de varredura (MEV. Medidas realizadas por espectrometria de raios X por dispersão de energia na zona de fusão indicaram uma distribuição levemente heterogênea de níquel e ferro. Observou-se que o início de solidificação da zona de fusão ocorreu por meio de crescimento epitaxial. A morfologia de solidificação da ZF foi basicamente dendrítica e celular sendo, influenciada pelo gradiente de temperatura, velocidade de solidificação e composição química. As variações de composição química e da morfologia de solidificação não alteraram significativamente os valores de microdureza Vickers na zona de fusão. Resultados obtidos nos ensaios de tração indicaram valores de eficiência de soldagem adequados.An autogenous laser welding of dissimilar materials involving AISI 304 austenitic stainless steels and Inconel 600 nickel alloy was investigated in this study. Hence, the aim of this investigation was to study the solidification and microstructure of fusion zone when using a pulsed Nd:YAG laser. The laser and optical beam parameters were chosen to achieve a good weld with total penetration. Optical microscopy pictures showed a typical keyhole weld with total penetration, small pores and free of cracks. The x-ray spectrometry by energy dispersion

  16. SDiff Gauge Theory and the M2 Condensate

    CERN Document Server

    Bandos, Igor A

    2009-01-01

    We develop a general formalism for the construction of (supersymmetric) gauge theories of volume-preserving diffeomorphisms (SDiff), focusing on the D=3 superconformal SDiff(3) invariant `BLG' theory describing a condensate of M2-branes.

  17. Theoretical Assessment of 178m2Hf De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  18. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  19. M2-Edge Colorings Of Cacti And Graph Joins

    Directory of Open Access Journals (Sweden)

    Czap Július

    2016-02-01

    Full Text Available An edge coloring φ of a graph G is called an M2-edge coloring if |φ(v| ≤ 2 for every vertex v of G, where φ(v is the set of colors of edges incident with v. Let 2(G denote the maximum number of colors used in an M2-edge coloring of G. In this paper we determine 2(G for trees, cacti, complete multipartite graphs and graph joins.

  20. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    OpenAIRE

    Jian Ji; Dingming Shu; Mingzhu Zheng; Jie Wang; Chenglong Luo; Yan Wang; Fuyou Guo; Xian Zou; Xiaohui Lv; Ying Li; Tianfei Liu; Hao Qu

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. ...

  1. Characterization of M2 antibodies in asymptomatic Chinese population

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hua Jiang; Ren-Qian Zhong; Xiao-Yun Fan; Yin Hu; Feng An; Jian-Wen Sun; Xian-Tao Kong

    2003-01-01

    AIM: To investigate the presence of M2 antibodies specific for pdmary biliary cirrhosis (PBC) in asymptomatic Chinese and identify patients with early PBC.METHODS: Enzyme-linked immunosorbent assay (ElISA)tests for M2 antibodies to recombinant protein were performed in 5 011 subjects (age range, 26-85 years; mean age: 45.81±15.02 years) who took an annual physical examination. M2-positive subjects were further analyzed for immunoglobulin (Ig) classes and subclasses of M2 antibodies.Clinical, biochemical and immunological data were obtained for M2-positive subjects. In addition, ultrasonography (US)or endoscopic retrograde cholangio-pancreatography (ERCP)was performed to exclude any disorders other than PBC.RESULTS: M2 antibodies were detected in 8 (0.16%) of the 5 0LL subjects studied. Of the 8 subjects, 7 were female and 1 was male (age range: 40-74 years). An unexplained increase of serum alkaline phosphatase (ALP) and gamma glutamyl transpeptidase (γ-GT) values, often to striking levels,was detected in 4 M2-positive subjects, 3 of them accorded with the diagnostic criteria recommended by the American Association for the Study of Liver Diseases, even though they had no symptoms of PBC (such as fatigue, pruritus or jaundice).Liver biopsy was performed in two M2-positive subjects and the histology was compatible with PBC in both cases.CONCLUSION: Our data, while not assessing the true prevalence of asymptomatic PBC in the general population,suggest that asymptomatic PBC is much more common in China than has been supposed.

  2. A distributed approach for secure M2M communications

    OpenAIRE

    Ben Saied Y.; Olivereau A.; Laurent M.

    2012-01-01

    A key establishment solution for heterogeneous Machine to Machine (M2M) communications is proposed. Decentralization in M2M environment leads to situations where highly resource-constrained nodes have to establish end-to-end secured contexts with powerful remote servers, which would normally be impossible because of the technological gap between these classes of devices. This paper proposes a novel collaborative session key exchange method, wherein a highly resource-constrained node obtains a...

  3. Characterization of AISI 1005 corrosion films grown under cyclic voltammetry of low sulfide ion concentrations

    International Nuclear Information System (INIS)

    Highlights: •The corrosion of AISI 1005 in sulfide solutions was investigated. •The mechanism of film growth on carbon steel in sulfide solutions was studied. •Film growth was characterized using SEM, EDX, XRD and Mössbauer spectroscopy. •Growth of AISI 1005 corrosion films under cyclic voltammetry. -- Abstract: The mechanism of AISI 1005 corrosion in sulfide ion solutions has been investigated using cyclic voltammetry, electrochemical impedance spectroscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The proposed mechanism occurs with the initial formation of oxygenated ferrous species followed by adsorption of HS− species, precipitation of iron monosulfides and their partial conversion to bisulfide iron. This mechanism was demonstrated by XRD results that revealed Fe-O and Fe-S phases and by MS results that detected pyrite as the major proportion (94%) of the iron species in the corrosion product

  4. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pinedo

    2013-06-01

    Full Text Available In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462 stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon supersaturation and expansion of the FCC lattice. For the duplex stainless steel AISI F51, the austenitic grains transformed to carbon expanded austenite (γC, the ferritic grains transformed to carbon expanded ferrite (αC and M23C6 type carbides precipitated in the nitrided case. Hardness of the carburized case of the F51 duplex steel reached 1600 HV due to the combined effects of austenite and ferrite lattice expansion with a fine and dispersed precipitation of M23C6 carbides.O aço inoxidável austenítico AISI 316L e o aço inoxidável duplex AISI F51 (EN 1.4462 foram cementados sob plasma-DC na temperatura de 480ºC, utilizando-se CH4 como gás de arraste. A cementação sob plasma à baixa temperatura conduziu a uma elevada supersaturação do reticulado cristalino em carbono com a formação de austenita expandida(γC, sem a precipitação de carbonetos. A dureza do aço 316L, após a cementação, atingiu um valor máximo de 1000 HV, devido à supersaturação de ∼ 13 at% de carbono e à expansão do reticulado cristalino CFC. Para o aço inoxidável duplex AISI F51, os grãos de austenita se transformaram em austenita expandida pelo carbono e os grãos de ferrita se transformaram para ferrita expandida com a precipitação de carbonetos do tipo M23C6, na camada cementada. A dureza da camada cementada, no aço F51, atingiu 1600HV, devido ao efeito combinado da expansão dos reticulados cristalinos da austenita e da ferrita com a precipitação fina e

  5. Laser gas assisted treatment of AISI H12 tool steel and corrosion properties

    Science.gov (United States)

    Yilbas, B. S.; Toor, Ihsan-ul-Haq; Malik, Jahanzaib; Patel, F.

    2014-03-01

    Laser gas assisted treatment of AISI H12 tool steel surface is carried out and the electrochemical response of the laser treated surface is investigated. Morphological and metallurgical changes in the treated layer are examined using a scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Potentiodynamic polarization tests are carried out for untreated and laser treated specimen in 0.2 M NaCl solution at room temperature. It is found that the laser treated AISI H12 workpiece surfaces exhibit higher corrosion resistance as compared to untreated specimen as confirmed by lower corrosion rate, higher pitting potential, and lower passive current density.

  6. Corrosion Behavior of TiN Coated AISI D2 Steel

    OpenAIRE

    ÇEĞİL, Özkan; Şen, Şaduman

    2014-01-01

    In this study, the corrosion behaviors of nitride and titanium nitride (TiN) layers deposited on AISI D2 steel samples are reported. Steel was at first nitrided in a nitrogen and ammonia atmosphere at 575 °C for 8 h and then titanium nitride coating treatment was performed in the powder mixture consisting of ferro-titanium, ammonium chloride and alumina at 1000°C for 2h by pack diffusion coating. TiN coating layer thickness realized on the AISI D2 steel is 6,71 ± 0,9 μm. The hardness of TiN l...

  7. Study of radiation damages in AISI 316 and 347 steels

    International Nuclear Information System (INIS)

    The CV-28 cyclotron at IEN (Nuclear Engineering Institute) has been used to simulated, in a short time scale, uniform He concentrations produced during neutron irradiation of metals by (n, α) reactions. Helium was implanted at concentrations of 1 to 300 ppm in 100 μm thick sheet samples of AISI 316 and 347 S S by degrading a 28 MeV alpha particle beam with a rotating energy degrader. The effects of He on the mechanical properties of the steels were studied by both non-destructive (positron annihilation) and destructive tests (tensile, creep, TEM and SEM). The positron lifetime measurements of irradiated and annealed samples were used as the base to discuss the He diffusion mechanism. Activation energies of 0.34±0.04 eV for 316 S S and 0.57±0.06 eV for 347 S S, characterized a dissociative process above 6500 C. TEM analyses have suggested the Ostwald ripening process for bubble growth over the full range of He concentrations studied. It was shown, in agreement with theoretical calculations that, by themselves the displacements produced during the helium implantation, at rate of 1.8 x 10-3 d pa/ppm, were not sufficient to cause significant changes in ductility. However, a strong ductility loss with increasing He concentration was observed for both types of steel for tensile tests at 250 C, as well as in creep at 7500 C over the range of strain (100 to 200 MPa). Finally, it was shown that charged particle simulation associated with positron annihilation techniques provides a fast, relatively low cost, and useful method to study different kinds of neutron damage in materials. (author)

  8. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  9. THE EFFECT OF SMALL AMOUNTS OF ELEMENTS ON SHAPES OF POTENTIODYNAMIC AND POTENTIOSTATIC CURVES OF AISI 304L AND AISI 316L STAINLESS STEELS IN CHLORIDE MEDIA

    Directory of Open Access Journals (Sweden)

    D. Pulino-Sagradi

    1997-06-01

    Full Text Available Abstract - Samples of high purity grade and commercial purity grade type AISI 304L and AISI 316L steels were studied by the potentiodynamic and potentiostatic techniques in a naturally aerated 3.5% NaCl aqueous solution at a controlled temperature of (23±2°C. The anodic polarization curves of the potentiodynamic technique showed that not always is it possible to determine pitting potential: most of the curves of commercial purity grade steels displayed a smooth curvature in the region where the current density should increase sharply. The density current versus time potentiostatic curves also showed different shapes according to the purity grade steels: for the commercial purity grade steels, the current density showed large oscillations with time (related to unstable pits, whereas for the high purity grade steels, a regular behavior of current density as a function of time was found (related to stable pits

  10. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L

    International Nuclear Information System (INIS)

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  11. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    International Nuclear Information System (INIS)

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  12. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma; Estructura y propiedades del acero inoxidable AISI 316 nitrurado con plasmas de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Becerril R, F

    1999-07-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as {gamma}N which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  13. M$^2$I Communication: From Theoretical Modeling to Practical Design

    CERN Document Server

    Guo, Hongzhi

    2015-01-01

    Wireless communications in complex environments are constrained by lossy media and complicated structures. Magnetic Induction (MI) has been proved to be an efficient solution to extend the communication range. Due to the small coil antenna's physical limitation, however, MI's communication range is still very limited. To this end, Metamaterial-enhanced Magnetic Induction (M$^2$I) communication has been proposed and the theoretical results suggest that it can significantly increase the communication performance, namely, data rate and communication range. Nevertheless, currently, the real implementation of M$^2$I is still a challenge and there is no guideline on design and fabrication of spherical metamaterial. In this paper, we propose a practical design by using a spherical coil array to realize M$^2$I and we prove that it can achieve negative permeability and there exists a resonance condition where the radiated magnetic field can be significantly amplified. The radiation and communication performance are ev...

  14. M2-F1 in flight on tow line

    Science.gov (United States)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting-body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The M2-F1 project had limited goals. They were to show that a piloted lifting body could be built, that it could not only fly but be controlled in flight, and that it could make a successful landing. While the M2-F1 did prove the concept, with a wooden fuselage and fixed landing gear, it was far from an operational spacecraft. The next step in the lifting-body development was to build a heavyweight, rocket-powered vehicle that was more like an operational lifting body, albeit one without the thermal protection system that would be needed for reentry into the atmosphere from space at near-orbital speeds. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to

  15. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc

    International Nuclear Information System (INIS)

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  16. M2m Automation: Matlab-To-Map Reduce Automation

    Directory of Open Access Journals (Sweden)

    Archana C S

    2014-06-01

    Full Text Available Abstract- MapReduce is a very popular parallel programming model for cloud computing platforms, and has become an effective method for processing massive data by using a cluster of computers. Program language -to-MapReduce Automator is a possible solution to help traditional programmers easily deploy an application to cloud systems through translating sequential codes to MapReduce codes.M2M Automation mainly focuses on automating numerical computations by using hadoop at the back end. M2M automates Hadoop, for faster execution of Matlab commands using MapReduce code.

  17. A note on M_{2}-edge colorings of graphs

    OpenAIRE

    Július Czap

    2015-01-01

    An edge coloring \\(\\varphi\\) of a graph \\(G\\) is called an \\(M_2\\)-edge coloring if \\(|\\varphi(v)|\\le2 \\) for every vertex \\(v\\) of \\(G\\), where \\(\\varphi(v)\\) is the set of colors of edges incident with \\(v\\). Let \\(K_2(G)\\) denote the maximum number of colors used in an \\(M_2\\)-edge coloring of \\(G\\). Let \\(G_1\\), \\(G_2\\) and \\(G_3\\) be graphs such that \\(G_1\\subseteq G_2\\subseteq G_3\\). In this paper we deal with the following question: Assuming that \\(K_2(G_1)=K_2(G_3)\\), does it hold ...

  18. M2-F1 on lakebed with pilot Milt Thompson

    Science.gov (United States)

    1963-01-01

    NASA Flight Research Pilot Milt Thompson, shown here on the lakebed with the M2-F1 lifting body, was an early backer of R. Dale Reed's lifting-body proposal. He urged Flight Research Center director Paul Bikle to approve the M2-F1's construction. Thompson also made the first glide flights in both the M2-F1 and its successor, the heavyweight M2-F2. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved

  19. M2-Branes And The (2,0) Superalgebra

    CERN Document Server

    Lambert, Neil

    2016-01-01

    We present a generalization of the six-dimensional (2,0) system of arXiv:1007.2982 to include a constant abelian 3-form. For vanishing 3-form this system is known to provide a variety descriptions of parallel M5-branes. For a particular choice of 3-form the system is shown to reduce to that of two M2-branes. Thus this generalised (2,0) system provides a unified description of two parallel M2-branes or M5-branes.

  20. M2M Traffic Characteristics : When machines participate in communication

    OpenAIRE

    Orrevad, Anders

    2009-01-01

    Machine-to-machine, machine-to-man, or man-to-machine (M2M) communications is expected to grow very rapidly over the next few years with an anticipated 50 billion devices being connected to broadband connections by 2020 [35]. To be able to plan and dimension for the expected (increase) in data traffic it is important to have a model for the traffic that will flow through the network. A concept often talked about in conjunction with M2M communications is the “Internet of things”, where billion...

  1. M2-F1 ejection seat test at South Edwards

    Science.gov (United States)

    1963-01-01

    The M2-F1 was fitted with an ejection seat before the airtow flights began. The project selected the seat used in the T-37 as modified by the Weber Company to use a rocket rather than a ballistic charge for ejection. To test the ejection seat, the Flight Research Center's Dick Klein constructed a plywood mockup of the M2-F1's top deck and canopy. On the first firings, the test was unsuccessful, but on the final test the dummy in the seat landed safely. The M2-F1 ejection seat was later used in the two Lunar Landing Research Vehicles and the three Lunar Landing Training Vehicles. Three of them crashed, but in each case the pilot ejected from the vehicle successfully. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with

  2. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  3. Influence of plasma nitriding on the hardness of AISI 304 and low carbon steel

    International Nuclear Information System (INIS)

    Nitriding with plasma/ion nitriding technique for surface treatment of AISI 304 and low carbon steel as a machine component material has been done. Surface treatment is meant to improve the surface quality of metal especially its hardness. To reach the optimum condition it has been done a variation of nitriding pressure, while to analyse the result it has been done the hardness and microstructure test, and the nitrogen content. Result of the test indicates that: the optimum hardness obtained at 1.8 mbar of pressure that is 624.9 VHN or 2.98 times while the initial hardness is 210.3 VHN for AISI 304 and 581.6 VHN or 3.07 times compare with initial hardness 142.9 VHN for low carbon steel. The thickness of nitride layer for AISI 304 and low carbon steel is around 30 µm. Nitrogen contents after nitriding are 10.74% mass or 30.32% atom for AISI 304 and 6.81% mass or 21.76% atom for low carbon steel. (author)

  4. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  5. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  6. M2磁带机挑战极限

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    日前安百特(Exabyte)公司宣布,其OEM合作伙伴Cybernetics在对Mammoth-2(M2)磁带机的性能和可靠性测试中取得了创记录的结果,从而加快了M2的商业交付计划。M2磁带机以部门级价格提供了企业级的性能,其容量增加50%,达到60GB,性能提高一倍,传输率达到12MB/s,可在一小时内备份43GB数据(未压缩)。Cybernetics利用该公司为了故意“破坏”磁带机而创建的定制软件对M2进行了测试,包括读/写能力测试、

  7. M2-F1 in hangar with Pontiac tow vehicle

    Science.gov (United States)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  8. Internal steel structure of M2-F1

    Science.gov (United States)

    1963-01-01

    The internal steel structure for the M2-F1 was built at the Flight Research Center (predecessor of the Dryden Flight Research Center, Edwards, CA) in a section of the calibration hangar dubbed 'Wright Bicycle Shop.' Visible are the stick, rudder pedals, and ejection seat. The external wooden shell was attached to the steel structure. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly

  9. Wilson Loops for M2- and M5-brane spaces

    CERN Document Server

    Quijada, Edward

    2015-01-01

    We calculate the quark and anti-quark interaction energy in different positions in spaces generated by $N$ coincident $M2$- and $M5$-branes. We use the Maldacena-Rey-Yee method for calculating this energy as a function of quark-antiquark separation. We obtain the solution for these problems as integrals of the metric elements. For limiting regimes we find simpler solutions for which some potentials exhibit a confinement behavior.

  10. Superconformal M2-branes and generalized Jordan triple systems

    OpenAIRE

    NILSSON, B.; Palmkvist, J.

    2008-01-01

    Three-dimensional conformal theories with six supersymmetries and SU(4) R-symmetry describing stacks of M2-branes are here proposed to be related to generalized Jordan triple systems. Writing the four-index structure constants in an appropriate form, the Chern-Simons part of the action immediately suggests a connection to such triple systems. In contrast to the previously considered three-algebras, the additional structure of a generalized Jordan triple system is associated to a graded Lie al...

  11. M2-branes, 3-Lie algebras and Pluecker relations

    International Nuclear Information System (INIS)

    We find that the structure constants 4-form of a metric 3-Lie algebra is the sum of the volume forms of orthogonal 4-planes proving a conjecture in math/0211170. In particular, there is no metric 3-Lie algebra associated to a u(N) Lie algebra for N>2. We examine the implication of this result on the existence of a multiple M2-brane theory based on metric 3-Lie algebras.

  12. State-of-the-art Model M-2 Maintenance System

    International Nuclear Information System (INIS)

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system. 5 references, 8 figures

  13. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    International Nuclear Information System (INIS)

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  14. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Moghanizadeh, Abbas; Farzi, Abolfazl [Islamic Azad Univ., Esfarayen (Iran, Islamic Republic of). Dept. of Civil Engineering

    2016-07-01

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  15. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Nový, F.; Fintová, Stanislava

    2014-01-01

    Roč. 21, č. 4 (2014), s. 172-177. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L * Structural sensitization * Rotating bending fatigue test Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. M2-F1 under tow across lakebed by car

    Science.gov (United States)

    1963-01-01

    This 20-second clip shows the M2-F1 being towed by the Pontiac across Rogers Dry Lakebed. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2`F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their

  17. EFFECTS OF CARBURIZING AND NITRIDING PROCESSES ON THE COST AND QUALITY OF GEARS PRODUCED WITH AISI 4140 AND 8620 STEELS

    OpenAIRE

    Claudio José Leitão; Paulo Roberto Mei; Rodolfo Libard

    2012-01-01

    This study compares the effects of nitriding and carburizing processes applied to gears subjected to contact stresses below 1300 MPa. The manufacturing cost, as well the depth of hardened layer and the distortion produced by two processes are analyzed. AISI 4140 gears quenched, tempered, liquid and gas nitriding and AISI 8620 gears after liquid carburizing, quenching and tempering are analyzed. The dimensional control of the gears was carried out before and after heat and thermoch...

  18. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    International Nuclear Information System (INIS)

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O2 + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack

  19. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  20. AISI 316L under electron radiolysis at high temperature and pressure in PWR modelling conditions

    International Nuclear Information System (INIS)

    temperature (HT), 280-320 deg. C, and high pressure (HP), 15.5 MPa. Very few data are available in the literature on the role of HTHP water radiolysis on the corrosion of metallic reactor components. The present approach use electron beam to control the production of radiolytic species at a AISI 316L/PWR solution interface in a high temperature and high pressure (HTHP) electrochemical cell working at the range [25 deg. C, 1 bar] - [300 deg. C, 90 bar]. The cell is designed to record the free corrosion potential of the AISI 316L/PWR solution interface mounted on line at the SIRIUS pelletron delivering the electron beam (LSI, Ecole Polytechnique, France). The PWR primary solutions are simulated by aqueous solutions prepared at room temperature by adding boric acid and lithium hydroxide to high purity water and, in some cases, purged with Ar/H2 flow. At the AISI 316L/PWR solution interfaces irradiated between 25 deg. C/ 1 bar and 300 deg. C/ 90 bar, electrons emerge at ∼0.6 MeV and the flux varies from ∼1010 to 1012 e-.cm-2.s-1. The results clearly show that the response of the free potential between the AISI316L/water interface and a pseudo-reference electrode, i.e. a platinum wire during the irradiation (from electron beam switch-on until cut-off) depends on many parameters: the energy of the electron beam, the temperature and pressure, the concentration of hydrogen in the solution, the ageing of the disc electrode, the growth conditions of the initial oxide passive layers, etc... These results can be compared with those which have obtained by using the proton beam (CEMHTI, CNRS Orleans, France). Surface characterization experiments (XPS, SEM, Raman spectroscopy, photoluminescence...) on the oxide layer of AISI316L which are formed under the irradiation could also bring new information about the irradiation influence on the AISI316L. (authors)

  1. Hot rolling of the superaustenitic stainless steel AISI 904L: Vroče valjanje superavstenitnega nerjavnega jekla AISI 904L:

    OpenAIRE

    Arh, Boštjan; Burja, Jaka; PODGORNIK, Bojan; Tehovnik, Franc; Žužek, Borut

    2014-01-01

    The AISI 904L superaustenitic stainless steel has a narrow processing window. In this work the hot rolling of steel, specifically the hot deformation behavior, is investigated. Specimens of steel were hot rolled at temperatures from 1000 °C to 1250 °C with 50 °C increments and the rolling loads were measured and recorded. Microstructural changes were examined, with the accent on the recrystallization. From changes of the hot-rolling loads and microstructure it is concluded that the recrystall...

  2. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Directory of Open Access Journals (Sweden)

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  3. The Case for an M2 Growth Rate of 10%

    OpenAIRE

    William Carlson; Conway Lackman

    2013-01-01

    The recovery from the 2008-2009 recession has been much slower than the average recovery since the 1924 recession. As analysts who believe that the St. Louis model created by Leonall Andersen and Jerry Jordan still has relevance we believe that the slow rate of M2 growth since 2Q2009 is a major reason why GDP growth has been so slow. At the 9th Annual Missouri Economics Conference on March 27, 2009 we presented a paper, “Interwar Hoarding, Liquidity Traps, and the 2008 Solvency Trap” in whic...

  4. Light-cone M5 and multiple M2-branes

    CERN Document Server

    Bandos, Igor A

    2008-01-01

    We present the light-cone gauge fixed Lagrangian for the M5-brane; it has a residual `exotic' gauge invariance with the group of 5-volume preserving diffeomorphisms, SDiff(5), as gauge group. For an M5-brane of topology R2 x M3, for closed 3-manifold M3, we find an infinite tension limit that yields an SO(8)-invariant (1+2)-dimensional field theory with `exotic' SDiff(3) gauge invariance. We show that this field theory is the Carrollian limit of the Nambu bracket realization of the `BLG' model for multiple M2-branes.

  5. Marginal fluctuations as instantons on M2/D2-branes

    OpenAIRE

    Naghdi, M.

    2014-01-01

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over AdS4×M7|6 spaces, where we use S7/Zk and CP3 for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony–Bergman–Jafferis–Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk...

  6. Ghost-Free Superconformal Action for Multiple M2-Branes

    CERN Document Server

    Bandres, Miguel A; Schwarz, John Henry

    2008-01-01

    The Bagger--Lambert construction of N = 8 superconformal field theories (SCFT) in three dimensions is based on 3-algebras. Three groups of researchers recently realized that an arbitrary semisimple Lie algebra can be incorporated by using a suitable Lorentzian signature 3-algebra. The SU(N) case is a candidate for the SCFT describing coincident M2-branes. However, these theories contain ghost degrees of freedom, which is unsatisfactory. We modify them by gauging certain global symmetries. This eliminates the ghosts from these theories while preserving all of their desirable properties. The resulting theories turn out to be precisely equivalent to N = 8 super Yang--Mills theories.

  7. Ghost-free superconformal action for multiple M2-branes

    International Nuclear Information System (INIS)

    The Bagger-Lambert construction of N = 8 superconformal field theories (SCFT) in three dimensions is based on 3-algebras. Three groups of researchers recently realized that an arbitrary semisimple Lie algebra can be incorporated by using a suitable Lorentzian signature 3-algebra. The SU(N) case is a candidate for the SCFT describing coincident M2-branes. However, these theories contain ghost degrees of freedom, which is unsatisfactory. We modify them by gauging certain global symmetries. This eliminates the ghosts from these theories while preserving all of their desirable properties. The resulting theories turn out to be precisely equivalent to N = 8 super Yang-Mills theories.

  8. 1/2 BPS geometries of M2 giant gravitons

    International Nuclear Information System (INIS)

    We construct the general 1/2 BPS M2 giant graviton solutions asymptotic to the 11-dimensional maximally supersymmetric plane-wave background, based on the recent work of Lin, Lunin, and Maldacena. The solutions have null singularity and we argue that it is unavoidable to have null singularity in the proposed framework, although the solutions are still physically relevant. They involve an arbitrary function F(x) which is shown to have a correspondence to the 1/2 BPS states of the Berenstein-Maldacena-Nastase (BMN) matrix model. A detailed map between the 1/2 BPS states of both sides is worked out

  9. M2-Branes in N = 3 Harmonic Superspace

    Directory of Open Access Journals (Sweden)

    E. Ivanov

    2010-01-01

    Full Text Available We give a brief account of the recently proposed N = 3 superfield formulation of the N = 6, 3D superconformal theory of Aharony et al (ABJM describing a low-energy limit of the system of multiple M2-branes on the AdS4×S7/Zk background. This formulation is given in harmonic N = 3 superspace and reveals a number of surprising new features. In particular, the sextic scalar potential of ABJM arises at the on-shell component level as the result of eliminating appropriate auxiliary fields, while there is no explicit superpotential at the off-shell superfield level.

  10. 1/2 BPS Geometries of M2 Giant Gravitons

    CERN Document Server

    Bak, D; Yee, H U; Bak, Dongsu; Siwach, Sanjay; Yee, Ho-Ung

    2005-01-01

    We construct the general 1/2 BPS M2 giant graviton solutions asymptotic to the eleven-dimensional maximally supersymmetric plane wave background, based on the recent work of Lin, Lunin and Maldacena. The solutions have null singularity and we argue that it is unavoidable to have null singularity in the proposed framework, although the solutions are still physically relevant. They involve an arbitrary function F(x) which is shown to have a correspondence to the 1/2 BPS states of the BMN matrix model. A detailed map between the 1/2 BPS states of both sides is worked out.

  11. SDiff gauge theory and the M2 condensate

    Science.gov (United States)

    Bandos, Igor A.; Townsend, Paul K.

    2009-02-01

    We develop a general formalism for the construction, in D-dimensional Minkowski space, of gauge theories for which the gauge group is the infinite-dimensional group SDiffn of volume-preserving diffeomorphisms of some closed n-dimensional manifold. We then focus on the D = 3 SDiff3 superconformal gauge theory describing a condensate of M2-branes; in particular, we derive its Script N = 8 superfield equations from a pure-spinor superspace action, and we describe its relationship to the D = 3 SDiff2 super-Yang-Mills theory describing a condensate of D2-branes.

  12. Behavior of AISI SAE 1020 steel implanted by titanium and exposed to bacteria sulphate deoxidizer

    International Nuclear Information System (INIS)

    A hybrid technology to treat solid surfaces with the pulse high voltage and electric arc discharges of low pressure with a three-dimensional ion implantation technique (3DII) is applied. This technology is used to protect AISI SAE 1020 steel against a microbiological corrosion. The titanium ion implanted steel samples (coupons) are subjected to a medium of bacteria sulphate deoxidizer (BSD) which are very typical of the hydrocarbon industry and are potentially harmful for structures when are in contact with petroleum and some of its derivatives. The used technology aims to find an effective hybrid procedure to minimize the harmful effects of bacteria on AISI SAE 1020 steel. The hybrid technology efficiency of superficial titanium implantation is estimated through the measurements of the point corrosion characteristics obtained after testing both the treated and non-treated coupons. The three-dimensional surface structures of the samples are reconstructed with help of a confocal microscope.

  13. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  14. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  15. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  16. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Energy Technology Data Exchange (ETDEWEB)

    Guu, Y.H. [Department of Mechanical Engineering, National United University, 1 Lien Da, Kung-Ching Li, Miaoli 360, Taiwan (China)]. E-mail: yhorng@nuu.edu.tw

    2005-04-15

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  17. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  18. Analysis of pulsed Nd:YAG laser welding of AISI 304 steel

    International Nuclear Information System (INIS)

    Pulsed laser welding of AISI 304 stainless steel plate was simulated using commercial finite element software to determine the optimal welding conditions. Due to geometric symmetry, only one plate was modeled to reduce the simulation computation time. User subroutines were created to account for a moving three-dimensional heat source and to apply boundary conditions. The material properties such as conductivity, specific heat, and mass density were determined as functions of temperature. The latent heat was considered within the given temperature range. The three-dimensional heat source model for pulsed laser beam butt welding was designed by comparing the finite element analysis results and experimental data. This successful simulation of pulsed Nd:YAG laser welding for AISI 304 stainless steel will prove useful for determining optimal welding conditions

  19. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 1022 n/cm2 (E > 0.1 MeV at temperatures ranging from 4000C to 6000C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  20. Martensitic transformation on AISI 304 stainless steel produced by a coaxial plasma gun

    International Nuclear Information System (INIS)

    Full text: In a previous paper, a surface treatment of AISI 304 stainless steel irradiated by a Nitrogen ion beam generated in a coaxial plasma gun has been reported. The device is operated with a Titanium insert at the end of the inner electrode, producing a TiN coating on the surface of the sample. Because of the ion and plasma energy deposition, the sample surface is strongly heated during the treatment resulting in titanium diffusion. Preliminary X-ray diffraction (XRD) studies have shown the presence of a martensitic transformation on AISI 304 samples, probably induced by Ti atoms. In this work, the transformation depth is studied with grazing-incidence XRD on samples subjected to several superimposed shots. For this purpose, multiple low angles of incidence are used, allowing the analysis at different depths of the substrate

  1. Analysis of pulsed Nd:YAG laser welding of AISI 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwan Woo; Lee, Jung Kil; Cho, Hae Yong [Chungbuk National University College of Medicine, Jeonju (Korea, Republic of)

    2010-11-15

    Pulsed laser welding of AISI 304 stainless steel plate was simulated using commercial finite element software to determine the optimal welding conditions. Due to geometric symmetry, only one plate was modeled to reduce the simulation computation time. User subroutines were created to account for a moving three-dimensional heat source and to apply boundary conditions. The material properties such as conductivity, specific heat, and mass density were determined as functions of temperature. The latent heat was considered within the given temperature range. The three-dimensional heat source model for pulsed laser beam butt welding was designed by comparing the finite element analysis results and experimental data. This successful simulation of pulsed Nd:YAG laser welding for AISI 304 stainless steel will prove useful for determining optimal welding conditions

  2. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    Science.gov (United States)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  3. INFLUENCE OF AISI 316Ti STAINLESS STELL SURFACE TREATMENT ON PITTING CORROSION IN VARIOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Pavol Fajnor

    2010-12-01

    Full Text Available Investigation of the surface treatment effect on the resistance of AISI 316Ti stainless steel to pitting corrosion is presented in this paper. The grinded surfaces without additional chemical treatment, grinded and pickled, grinded, pickled and passivated surfaces are tested. The corrosion tests are carried out by exposition in solution which evoke pitting and by electrochemical cyclic potential - sweep method. According to the results the surface treatment has a great influence on the resistance of the tested material to pitting. It is not possible to estimate the best surface treatment because behavior of AISI 316Ti stainless steel with different surface state depends on the mechanism of corrosion processes which vary in the used experimental methods.

  4. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  5. Embrittlement and strain hardining of the hydrogenated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    The influence of hydrogen the mechanical properties of type AISI 304 austenitic stainless steel was analysed. Hydrogenation was performed cathodically, at room temperature, in a 1N H2SO4 solution. The variables controlled for analysis were current density and time. Uniaxial tensile tests were conducted with constant nominal strain rate. Fracture morphology was analysed by scanning electron microscopy and the kinetics of strain hardening by applying Ludwick's equation to the resulting stress-strain curves. It was verified that hydrogen embrittles markedly, the austenitic AISI 304 steel, leading to a significant loss of ductility and modifying the fracture made, from essentially ductile to a transgrannular fragile fracture, containing small regions of intergranular fracture. With increasing amounts of hydrogen there was also a decrease in the maximum uniform stress, the strength coefficient, the strain hardening exponent and in the range the deformation stages II and III extended. (Author)

  6. Microhardness measurement in AISI 321 stainless steel with niobium additions before and after fast neutron irradiation

    International Nuclear Information System (INIS)

    Data about influence of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05 and 0.1wt.% Nb additions are presented. The microhardness measurements were made in the range of 300 to 6500C, before and after fast neutron irradiation with fluences about 1017n/cm2. Our results indicate that radiation damage peaks occur around 4800C for the stainless steel of type AISI 321 without Nb addition, around 5000C for the composition with 0.05 wt.% Nb addition and around 5700C for the composition with 0.1 wt.% Nb addition. Microhardness data are in agreement with those obtained by means of electrical resistivity measurements, performed at the same conditions. (Author)

  7. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  8. Marginal fluctuations as instantons on M2/D2-branes

    Science.gov (United States)

    Naghdi, M.

    2014-03-01

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.

  9. Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K

    Energy Technology Data Exchange (ETDEWEB)

    Pipatnukun, Peeraya; Wangyao, Panyawat; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2015-11-01

    This work investigates the isothermal oxidation behavior of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 at 1,173 K in air flow rate of 40 cm{sup 3} x min{sup -1} using thermogravimetric analysis (TGA). In 33 hours, the oxidation resistance declines from high to low are as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309, respectively. The oxidation kinetic results show that the exponential rate constant of the as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 8.79 x 10{sup -6}, 4.02 x 10{sup -5} and 4.35 x 10{sup -5} g x cm{sup -2} x s{sup -n}, respectively. The exponential growth rates of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 0.42, 0.29 and 0.32, respectively. It indicates that the oxidation kinetic of as cast 26Cr-16Ni approaches a parabolic rate law, but those of as cold-rolled and as cast AISI 309 approach the cubic rate law. The sequence of oxide scale formations on the tested samples is also discussed.

  10. Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K

    International Nuclear Information System (INIS)

    This work investigates the isothermal oxidation behavior of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 at 1,173 K in air flow rate of 40 cm3 x min-1 using thermogravimetric analysis (TGA). In 33 hours, the oxidation resistance declines from high to low are as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309, respectively. The oxidation kinetic results show that the exponential rate constant of the as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 8.79 x 10-6, 4.02 x 10-5 and 4.35 x 10-5 g x cm-2 x s-n, respectively. The exponential growth rates of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 0.42, 0.29 and 0.32, respectively. It indicates that the oxidation kinetic of as cast 26Cr-16Ni approaches a parabolic rate law, but those of as cold-rolled and as cast AISI 309 approach the cubic rate law. The sequence of oxide scale formations on the tested samples is also discussed.

  11. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  12. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    OpenAIRE

    Rômulo Ribeiro Magalhães de Sousa; Francisco Odolberto de Araújo; José Alzamir Pereira da Costa; Antonio Maia de Oliveira; Mineia Sampaio Melo; Clodomiro Alves Junior

    2012-01-01

    AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN), with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  13. Multi-scale modelling of AISI H11 martensitic tool steel surface anisotropic mechanical behaviour

    OpenAIRE

    Zouaghi Ahmed; Velay Vincent; Soveja Adriana; Rézaï-Aria Farhad

    2014-01-01

    In this work, a numerical investigation is carried out on the anisotropic and heterogeneous behaviour of the AISI H11 martensitic tool steel surface using finite element method and a multi-scale approach. An elasto-viscoplastic model that considers nonlinear isotropic and kinematic hardenings is implemented in the finite elements code ABAQUS using small strain assumption. The parameters of the constitutive equations are identified using macroscopic quasi-static and cyclic material responses b...

  14. Optimization of Machining Parameters for improved Surface Integrity of AISI H13 Tool Steel

    OpenAIRE

    OUTEIRO, José

    2012-01-01

    The surface integrity plays a very important rule in this functional performance, being dependent of a large number of machining parameters. The major concern of the industry is to know which combination of machining parameters provides a better surface integrity of the machined components. AISI H13 tool steel has been applied widely to produce many different types of hot working dies due to its excellent mechanical properties, such as: good resistance to thermal softening, high hardenabil...

  15. Laser welding of butt joints of austenitic stainless steel AISI 321

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-11-01

    Full Text Available Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters which ensures high quality joints of mechanical strength not lower than the strength of the base material (BM. The butt joints of austenitic steel AISI 321 sheets welded by the HPDL diode laser at optimal parameters are very high quality, without any internal imperfections and the structure and grain size of weld metal and HAZ is very small and also the HAZ is very narrow and the fusion zone is very regular.Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding.Practical implications: The technology of laser welding can be directly applied for welding of butt joints of austenitic steel AISI 321 sheets 0.5 and 1.0 [mm] thick.Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 321.

  16. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  17. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  18. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means of...... irreversible fatigue cohesive elements. Different orientations of the cracks and different matrix-inclusion bonding conditions are analyzed and compared....

  19. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    OpenAIRE

    Adão Felipe Oliveira Skonieski; Giovanni Rocha dos Santos; Thomas Karl Hirsch; Alexandre da Silva Rocha

    2013-01-01

    Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscop...

  20. Deposition and characterization of duplex treated coating system applied on hot work steel AISI H13

    OpenAIRE

    Bejarano Gait??n, Gilberto; Arroyave Franco, Mauricio; G??mez Botero, Maryori

    2015-01-01

    AISI H13 steel is widely used for extrusion moulds and other hot work tools fabrication, due to its high toughness, strength and hardness around 56 HRC (Rockwell C) -- However, this steel possesses a relatively low wear resistance, which reduces its life time under high loading conditions -- The aim of this work was to enhance the wear resistance of the steel H13 using the following surface treatments:austenitizing + quenching + tempering (further called ???tempering???), tempering and bath n...

  1. Corrosion behaviour of AISI 316L steel in artificial body fluids

    Directory of Open Access Journals (Sweden)

    W. Kajzer

    2008-12-01

    Full Text Available Purpose: The paper presents the comparison of corrosion resistance of AISI 316L stainless steel in various corrosive media such as artificial urine, Tyrode’s physiological solution and artificial plasma.Design/methodology/approach: The tests were carried out on samples of the following surfaces: grinded – average roughness Ra = 0.31 μm and electropolished and chemically passivated average roughness Ra = 0.10 μm. The corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests was applied. The tests were carried out in electrolyte simulating urine (pH = 6-6.4, Tyrode’s physiological solution (pH = 6.8-7.4 and plasma (pH = 7.2-7.6 at the temperature of 37±1°C.Findings: Surface condition of AISI 316L stainless steel determines its corrosion resistance. The highest values of breakdown potentials were recorded for all electropolished and chemically passivated samples in all simulated body fluids. The highest values of anodic current density were recorded for samples tested in artificial urine, the lowest values were recorded for samples tested in Tyrode’s physiological solution.Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the AISI 316L stainless steel.Practical implications: On the basis of the obtained results it can be stated that stainless steel meets the basic biocompatibility criteria and can be applied in reconstruction surgery, operative cardiology and urology.Originality/value: The paper presents the influence of various corrosive media simulating human body fluids on corrosion resistance of AISI 316L stainless steel.

  2. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  3. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53. ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  4. AN ELECTROCHEMICAL PROCESSING STRATEGY FOR IMPROVING TRIBOLOGICAL PERFORMANCE OF AISI 316 STAINLESS STEEL UNDER GREASE LUBRICATION

    OpenAIRE

    JIAOJUAN ZOU; MAOLIN LI; NAIMING LIN; XIANGYU ZHANG; LIN QIN; BIN TANG

    2014-01-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribolo...

  5. The structure of austenitic steel AISI 316 after ECAP and low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    L. Kander

    2008-06-01

    Full Text Available Purpose: The article presents results of investigation of structure and properties of austenitic steel grade AISI 316 after application of Equal Channel Angular Pressing (ECAP at the temperature of approx. 290ºC.Design/methodology/approach: The ECAP method led to significant improvement of strength of investigated material. Experiments were planned and realised at the temperature ranging from room temperature up to above mentioned temperature.Findings: It was established with use of the EBSD technique that after 8 passes through the ECAP die the sub-grains with an angle of disorientation smaller than 10º formed less than 20% of resulting structure. Average size of austenitic grains with high angle boundary after 8 passes was approx. 0.32 µm. It was proven that the ECAP method enables obtaining of ultra fine-grained austenitic structure formed by recrystallised grains with very low density of dislocations.Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verification of ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel, because ECAP technology influence on fatigue properties was confirmed.Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue the ultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatigue characteristics, particularly fatigue limit.

  6. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  7. Structure and low-cycle fatigue of steel AISI 316 after ECAP

    Directory of Open Access Journals (Sweden)

    M. Greger

    2008-05-01

    Full Text Available Purpose: Main aim of this paper is to describe the plastic deformation executed by ECAP on low cycle fatigueof steel AISI 316. Among others was attention fixed on mechanical properties after this treatment.Design/methodology/approach: Experiments were planned and realised at the temperature ranging fromroom temperature up to 280 °C. After application of deformation the structure was investigated in dependence onaccumulation of deformation and deformation temperature as well as abovementioned final properties.Findings: Accumulated real (logarithmic deformation varied from the value 2 to 8. Investigation of structure byelectron microscopy was made with use of microscope JEOL JEM 2100. Mechanical properties were investigatedby conventional tensile test and penetration test. Selected samples were subjected to low-cycle fatigue. Statisticevaluation of angular disorientation and of size of grains/sub-grains was also made with use of electron diffraction(EBSD in combination with scanning electron microscope FEG SEM Philips.Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verificationof ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel,because ECap technology influence on fatigue properties was confirmed.Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue theultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatiguecharacteristics, particularly fatigue limit.

  8. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  9. Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy and magnetic measurements on thermally oxidized AISI 304 and AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Maachi, B. [Universite d' Oran, Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique (LPC2ME), BP 1524, El M' Naouer, 31000 Oran (Algeria); Pirri, C.; Mehdaoui, A. [Universite de Haute Alsace (UHA), Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 - CNRS, 4 rue des freres Lumiere, 68093 Mulhouse (France); Hakiki, N.E., E-mail: hakiki.nourredine@yahoo.f [Universite d' Oran, Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique (LPC2ME), BP 1524, El M' Naouer, 31000 Oran (Algeria); Bubendorff, J.L., E-mail: jean-luc.bubendorff@uha.f [Universite de Haute Alsace (UHA), Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 - CNRS, 4 rue des freres Lumiere, 68093 Mulhouse (France)

    2011-03-15

    Research highlights: {yields} The surface roughness of the bare substrate influence the oxide layer growth. {yields} The oxide layer roughness follows power laws and belongs to universality class. {yields} At low growth temperature, the p-n heterojunction disappears in some places. {yields} SKPFM images allow the direct visualization of local corrosion sites. {yields} Presence of a magnetite phase in the outer iron rich layer of the oxide thin film. - Abstract: Thermally oxidized AISI304 and AISI316 stainless steels are studied by Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy (SKPFM) and Magneto-Optical Kerr effect as a function of their growth temperature. The surface roughness is a competition between the roughness of the bare substrate and the roughness resulting from the oxide layer growth. Cr oxide is present at some places on the surface at low growth temperature as shown by SKPFM. The observed decrease of surface potential with the oxide layer thickness indicates an effective protection against corrosion. Magnetic measurements demonstrate that the outer layer contains a magnetite phase (in-plane magnetization).

  10. Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy and magnetic measurements on thermally oxidized AISI 304 and AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Research highlights: → The surface roughness of the bare substrate influence the oxide layer growth. → The oxide layer roughness follows power laws and belongs to universality class. → At low growth temperature, the p-n heterojunction disappears in some places. → SKPFM images allow the direct visualization of local corrosion sites. → Presence of a magnetite phase in the outer iron rich layer of the oxide thin film. - Abstract: Thermally oxidized AISI304 and AISI316 stainless steels are studied by Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy (SKPFM) and Magneto-Optical Kerr effect as a function of their growth temperature. The surface roughness is a competition between the roughness of the bare substrate and the roughness resulting from the oxide layer growth. Cr oxide is present at some places on the surface at low growth temperature as shown by SKPFM. The observed decrease of surface potential with the oxide layer thickness indicates an effective protection against corrosion. Magnetic measurements demonstrate that the outer layer contains a magnetite phase (in-plane magnetization).

  11. A study on the control of melting ratio to increase mechanical properties of laser welded joints between AISI 440C and AISI 430F

    Science.gov (United States)

    Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.

    2015-05-01

    Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.

  12. Light-cone M5 and multiple M2-branes

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor A [Department of Theoretical Physics and History of Science, University of the Basque Country (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)], E-mail: bandos@ific.uv.es, E-mail: p.k.townsend@damtp.cam.ac.uk

    2008-12-21

    We present the light-cone gauge fixed Lagrangian for the M5-brane; it has a residual 'exotic' gauge invariance with the group of 5-volume preserving diffeomorphisms, SDiff{sub 5}, as gauge group. For an M5-brane of topology R{sup 2}xM{sub 3}, for closed 3-manifold M{sub 3}, we find an infinite tension limit that yields an SO(8)-invariant (1 + 2)-dimensional field theory with 'exotic' SDiff{sub 3} gauge invariance. We show that this field theory is the Carrollian limit of the Nambu bracket realization of the 'BLG' model for multiple M2-branes.

  13. The iron dispersion of the globular cluster M 2, revised

    CERN Document Server

    Lardo, C; Bastian, N

    2015-01-01

    M 2 has been claimed to posses three distinct stellar components that are enhanced in iron relative to each other. We use equivalent width measurements from 14 red giant branch stars from which Yong et al. detect a $\\sim$0.8 dex wide, trimodal iron distribution to redetermine the metallicity of the cluster. In contrast to Yong et al., which derive atmospheric parameters following only the classical spectroscopic approach, we perform the chemical analysis using three different methods to constrain effective temperatures and surface gravities. When atmospheric parameters are derived spectroscopically, we measure a trimodal metallicity distribution, that well resembles that by Yong et al. We find that the metallicity distribution from Fe II lines strongly differs from the distribution obtained from Fe I features when photometric gravities are adopted. The Fe I distribution mimics the metallicity distribution obtained using spectroscopic parameters, while the Fe II shows the presence of only two stellar groups wi...

  14. The M2/M5 BPS Partition Functions from Supergravity

    CERN Document Server

    Silva, Pedro J

    2009-01-01

    In the framework of the AdS/CFT duality, we calculate the supersymmetric partition function of the superconformal field theories living in the world volume of either $N$ $M2$-branes or $N$ $M5$-branes. We used the dual supergravity partition function in a saddle point approximation over supersymmetric Black Holes. Since our BHs are written in asymptotically global $AdS_{d+1}$ co-ordinates, the dual SCFTs are in $R x S^{d}$ for $d=2,5$. The resulting partition function shows phase transitions, constraints on the phase space and allowed us to identify unstable BPS Black hole in the $AdS$ phase. This configurations should corresponds to unstable configurations in the dual theory. We also report an intriguing relation between the most general Witten Index, computed in the above theories, and our BPS partition functions.

  15. Parkin Regulates the Activity of Pyruvate Kinase M2.

    Science.gov (United States)

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-05-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  16. The discovery of an anomalous RGB in M 2

    CERN Document Server

    Lardo, C; Mucciarelli, A; Milone, A P

    2013-01-01

    Using UV images taken with the Telescopio Nazionale Galileo, we discovered an anomalous sequence in the color-magnitude diagram of M 2. This feature appears as a narrow poor-populated red giant branch, which extends down to the sub giant branch region. We speculate that this new feature could be the extension of the faint component of the split sub giant branch recently discovered by Piotto et al. We identified in our UV images two CH stars detected in previous studies. These stars, which are both cluster members, fall on this redder sequence, suggesting indeed that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown substructure

  17. M2-branes, 3-Lie Algebras and Plucker relations

    CERN Document Server

    Papadopoulos, G

    2008-01-01

    We solve the Jacobi identity of metric 3-Lie algebras for which an associated Lie algebra either does not admit bi-invariant 4-forms or it is the sum of up to three abelian directions and a semi-simple Lie algebra. In all cases, we find that the structure constants of the metric 3-Lie algebras are sums of orthogonal simple 4-forms verifying a conjecture in math/0211170. In particular, there is no metric 3-Lie algebra associated to a $\\mathfrak{u}(N)$ Lie alebra for $N>2$. We examine the implication of this result on the existence of a multiple M2-brane theory based on metric 3-Lie algebras.

  18. Marginal fluctuations as instantons on M2/D2-branes

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, M. [University of Ilam, Department of Physics, Faculty of Basic Sciences, Ilam (Iran, Islamic Republic of)

    2014-03-15

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over AdS{sub 4} x M{sup 7} {sup vertical} {sup stroke} {sup 6} spaces, where we use S{sup 7}/Z{sub k} and CP{sup 3} for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis- Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of SO(8) and SU(4) x U(1), and it agrees with a marginal boundary operator of the conformal dimension of Δ{sub +} = 3. However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized AdS{sub 4} space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all N = 8, 6 supersymmetries to N = 0, while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations 8s and 8v for the supercharges and scalars, respectively, while the fermions remain fixed in 8c of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full U(N){sub k} x U(N){sub -k} gauge group along the same lines with a similar situation to the one faced in the AdS{sub 5}/CFT{sub 4} correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for k = 1, 2 as well. (orig.)

  19. The Extreme Type I Planetary Nebula M2-52

    Directory of Open Access Journals (Sweden)

    M. Peña

    2002-01-01

    Full Text Available Se presentan los resultados obtenidos a partir de espectroscopía de alta resolución de la parte central de la nebulosa planetaria bipolar M2-52 que muestra un tipo morfológico Br. Hemos confirmado que M2-52 es una nebulosa de Tipo I de Peimbert, con un espectro rico en líneas de alto y bajo grado de ionización y un fuerte enriquecimiento de He y N. La composición química del gas ionizado es: He/H = 0:165 0:010, O/H = (2:6 0:5 x 10_4, N/O = 2:3 0:3, Ne/O = 0:37 0:10, Ar/O = (9:2 2:0 x 10_3 y S/O > 2:0 x 10_3. La velocidad de expansión de la nebulosa es, en promedio, de 20 2 km s_1 y varía ligeramente dependiendo del ión considerado. Los iones de menor grado de ionización, N+ y S+, muestran vexp _ 18 km s_1, O++ y He+ muestran vexp _ 20 km s_1, en tanto que He++ y H+ muestran vexp _ 22 km s_1. Es posible que la zona de N+ y S+ esté siendo frenada por el anillo de material molecular encontrado alrededor de la estrella.

  20. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints

    International Nuclear Information System (INIS)

    Highlights: • Friction stud welding of AA 6063 and AISI 1030 was done successfully. • Ultrasonic evaluation of interfacial properties. • EDX analysis confirms intermetallic compound (FeAl) in the interfacial region. - Abstract: Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the

  1. New compounds in the systems M2O-M2MeO4(M=Rb, Cs; Me=Mo,W)

    International Nuclear Information System (INIS)

    New compounds in the systems M2O-M2MeO4(M = Rb, Cs; Me = Mo, W) are reported. The compounds were synthesized by reaction in the solid state between the oxides M2O and the 'metallates' M2MeO4 in varying proportions. Experimental details are presented. Crystallographic analysis was by the Debye-Scherrer method. Chemical analysis, flame spectrophotometry, and gravimetric analysis were also used to characterize the products. (U.K.)

  2. Fermi surface behavior in the ABJM M2-brane theory

    Science.gov (United States)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  3. Research on machine to machine (M2M load control

    Directory of Open Access Journals (Sweden)

    ZHANG Jun

    2014-02-01

    Full Text Available In recent years,Machine Type Communication(MTCcan also be referred to as Machine to Machine(M2M,which is a new kind of communication service,receives widespread attention gradually and is a hot topic in the 3 GPP standardization conference.However,due to its service feature of existing large number of MTC-Device which frequently transmit small data,when surge of MTC-Devices initiate a large number of random access channel requests simultaneously,it will cause random channel congestion which causes the user to experience a long time delay.Therefore,3GPP standard organization proposed a EAB mechanism to avoid a large number of MTC terminal access leading to congestion.This mechanism can control the number of terminal access,while the number of terminals initiating random channel access requests at the same time is not ideal.It is necessary to propose an extra dispersion scheme to disperse the number of access terminals at the same time.

  4. Optical spectrum of the planetary nebula M 2-24

    CERN Document Server

    Zhang, Y

    2003-01-01

    We have obtained medium-resolution, deep optical long-slit spectra of the bulge planetary nebula (PN) M 2-24. The spectrum covers the wavelength range from 3610--7330 A. Over two hundred emission lines have been detected. The spectra show a variety of optical recombination lines (ORLs) from C, N, O and Ne ions. The diagnostic diagram shows significant density and temperature variations across the nebula. Our analysis suggests that the nebula has a dense central emission core. The nebula was thus studied by dividing it into two regions: 1) an high ionization region characterized by an electron temperature of T_e=16,300K and a density of logN_e(cm^{-3})=6.3; and 2) a low ionization region represented by T_e=11,400K and logN_e(cm^{-3})=3.7. A large number of ORLs from C, N, O and Ne ions have been used to determine the abundances of these elements relative to hydrogen. In general, the resultant abundances are found to be higher than the corresponding values deduced from collisionally excited lines (CELs). This b...

  5. Evaluation of performance of AISI 444 steel for application in distillation towers; Avaliacao do desempenho do aco AISI 444 para aplicacao como 'lining' em torres de destilacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R.F.; Miranda, H.C. de; Farias, J.P. [Universidade Federal do Ceara (DEMM/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Caracterizacao de Materiais], e-mail: rf.guimaraes@yahoo.com.br

    2008-07-01

    In this work, the behavior of the AISI 444 ferritic stainless steel submitted to thermal fatigue test and their corrosion resistance in heavy crude oil was evaluated. The AWS E309MoL-16 and E316L-17 weld metal was employed as filler metal. Plates of the AISI 444 were welded on ASTM A-516 Gr. 60 plates and submitted to fatigue thermal cycle. Samples were extracted from plates welded and heat treated immersed in heavy crude oil at 300 deg C. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive of X-ray analysis (EDX) were used to characterize the microstructure and the corroded surface. The results show that the AISI 444 stainless steels did not present cracks after the thermal fatigue cycle and the heat treated immerse in heavy crude oil. The electrode AWS E309MoL-16 show better corrosion resistance than the AWS E316L-17. (author)

  6. Frequência de mola hidatiforme em tecidos obtidos por curetagem uterina Frequency of hydatidiform mole in tissue obtained by curettage

    OpenAIRE

    Andressa Biscaro; Sheila Koettker Silveira; Giovani de Figueiredo Locks; Lívia Ribeiro Mileo; João Péricles da Silva Júnior; Péricles Pretto

    2012-01-01

    OBJETIVO: Determinar a frequência de mola hidatiforme em tecidos obtidos por curetagem uterina. MÉTODOS: Estudo transversal, prospectivo e descritivo que incluiu pacientes submetidas à curetagem uterina por diagnóstico de aborto ou mola hidatiforme cujo material obtido foi encaminhado para exame anatomopatológico. Foram excluídas aquelas que não aceitaram participar da pesquisa, recusando-se a assinar o Termo de Consentimento Informado Livre e Esclarecido. Foram analisadas as seguintes variáv...

  7. Modification and characterization of the AISI 410 martensitic stainless steels surface; Modificacao e caracterizacao da superficie do aco inoxidavel martensitico AISI 410

    Energy Technology Data Exchange (ETDEWEB)

    Bincoleto, A.V.L. [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Nascente, P.A.P. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  8. Influencia de los regímenes de lubricación en la vida de la herramienta y el acabado superficial del fresado de aceros endurecidos AISI D2 y AISI D6

    OpenAIRE

    Maritza Mariño-Cala; Yanier Sánchez-Hechavarría

    2015-01-01

    Se realizó un análisis de la calidad superficial y la vida de la herramienta durante el mecanizado con altas velocidades de los aceros endurecidos AISI D2 y AISI D6, en dos regímenes de lubricación. Los ensayos fueron realizados en un centro de mecanizado MORI SEIKI SV 40 y se emplearon herramientas intercambiables de metal duro recubiertas. La evaluación de la calidad superficial se realizó mediante el monitoreo off-line de la rugosidad superficial media Ra en el sentido del avance y perpend...

  9. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  10. Effect of aging at 700 deg. C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds

    International Nuclear Information System (INIS)

    A detailed knowledge of changes in microstructures and mechanical behaviour that occur in austenitic stainless steels with or without Nb/Ti-stabilized weld during heat treatment is of great interest, since the ductility and toughness of the material may change drastically after long aging times. Two kinds of materials, i.e. AISI 321 base and without Ti-stabilized weld steel and AISI 347 base with Nb-stabilized weld steel, were compared during aging at 700 deg. C up to 6000 h. Both materials present increased amount of precipitate and decreased impact energy as the aging time increases. The decreased extent of impact energy with aging is almost the same for both base materials. However, it presents differences for 347 and 321 weld samples. The latter shows a more drastic decrease of impact energy than the former due to the different amount of precipitates. 321 weld sample precipitates more numerously than 347 weld sample due to the absence of stabilized Ti/Nb on the former. Large amount of carbides is formed on 321 weld sample immediately after welding. The carbides are transformed to sigma phase, which is mainly responsible for the much more sigma phase precipitation compared with other samples, after high-temperature aging. The fractographs showed, in general, brittle fracture mode in 321 weld impact-fractured specimens after aging at 700 deg. C for 6000 h. However, other samples show ductile fracture mode in general. Several approaches should be employed to control sigma phase precipitation in weld material. These approaches include: decreasing content of ferrite and M23C6 carbide in weld and selecting Nb added weld wire during welding

  11. Numerical-experimental analysis of a rin AISI{sub 7}Mg Alloy; Analisis numerico experimental de un rin de aleacion AISi{sub 7}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Sauceda Mesa, Israel; Mata Lucero, Omar; Tirado Delgado, Luis; Ocampo Diaz, Juan de Dios [Universidad Autonoma de Baja California, Mexicali, Baja California (Mexico)

    2005-10-15

    The present work shows the results obtained from an investigation mode on the behaviour of a rin of alloy AISi{sub 7}Mg, which is used in compact Volkswagen's cars. Due to two kind of analysis were realized, firstly an experimental and numerical analysis was done, using a special machine for test the flexionante torque and material fatigue, besides was used an equipment of laser to scanner zone with strength concentrations and the maximum displacement amplitudes. The second analysis was done with the finite element technique, using the software ANSYS and CATIA. The difference between life fatigue cycles obtained from the two analyses was 0.6%. While the time optimize by MEF, was of 85% less than experimental analysis. [Spanish] En el presente trabajo se hicieron investigaciones del comportamiento de un rin de aleacion AISi{sub 7}Mg, el cual es usado en automoviles compactos de volkswagen (VW). Para esto, se realizo analisis experimental y numerico. En el primero se utilizo una maquina para prueba de fatiga de momento flexionante, un equipo de medicion de laser escaner donde se detectaron las zonas de concentraciones de esfuerzos y la maxima amplitud de desplazamiento en el rin. Mientras que en el segundo se obtuvieron los esfuerzos que ocasionaban la fatiga por el elemento finito, utilizando los paquetes de computo Ansys y Catia. La diferencia de los ciclos de vida de fatiga obtenidos entre ambos analisis fue del 0.6%. Mientras que el tiempo que se optimizo por el MEF, fue de un 85% menos que el analisis experimental.

  12. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  13. Creep behaviour and microstructural evolution in AISI 316LN + Nb steels at 650 deg. C

    International Nuclear Information System (INIS)

    Research highlights: → We studied the effect of Nb additions to AISI 316LN steels on creep and microstructure at 650 deg. C. → Nb additions resulted in a reduction of secondary creep rate and shortening of the tertiary stage. → Two nitrogen rich minor phases were present in the niobium-bearing casts: Z-phase and M6X. → The dimensional stability of Z-phase during creep at 650 deg. C was much better than that of M6X. → Nb accelerated σ-phase and η-Laves formation and this surpassed the positive effect of Z-phase. - Abstract: The paper deals with the effect of niobium in the wrought AISI 316LN steels on the long-term creep characteristics at 650 deg. C. Casts B and C contained 0.1 and 0.3 wt.%Nb, respectively. As a reference material the niobium free Cast A was used. Small additions of niobium to the AISI 316LN steel resulted in a significant reduction of the minimum creep rate and shortening of the tertiary creep stage. At time to rupture exceeding 104 h the creep rupture strength of the niobium-bearing Casts B and C was slightly inferior to the Cast A. Two nitrides formed in the Casts B and C: Z-phase and M6X. The minimum creep rate in niobium-bearing casts was favourably affected by precipitation of the Z-phase. The dimensional stability of Z-phase particles was very high, but niobium additions also accelerated the formation and coarsening of η-Laves and σ-phase. Coarse σ-phase particles at grain boundaries contributed significantly to the shortening of the tertiary creep stage.

  14. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Directory of Open Access Journals (Sweden)

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  15. Compatibility studies of AISI type 316 stainless steel with lead-lithium eutectic alloy

    International Nuclear Information System (INIS)

    Spent fuel subassemblies from the Fast Breeder Test Reactor (FBTR) are to be stored in leak tight cotainers until they are required to be sent for reprocessing. Use of advanced fuels like uranium carbides and plutonium carbides, which are known to be highly chemically active with oxygen and moisture demands adequate leak tightness during long term storage to avoid undesirable chemical reactions. Use of low melting alloys which acts as liquid/solid sealants in the storage containers in which fuel subassemblies are to be kept is being considered for this purpose. Lead-lithium (0.7 wt % lithium) eutectic alloy was chosen as one of the candidate alloys for the purpose on the basis of theoretical assessments. The candidate sealing alloy should have good compatibility with the structural materials of fuel subassemblies as well as the fuel and fission products. AISI type 316 stainless steel in solution annealed, ten and twenty percent cold worked condition is the clad and wrapper material used for the fabrication of fuel pins and subassemblies. Compatibility studies between eutectic Pb-Li alloy and AISI type 316 stainless steel material in the above conditions were undertaken at different temperatures and time durations. The studies indicate that the tensile properties of AISI type 316 stainless steel are not subject to any serious jeopardisation through contact with this molten Pb-Li eutectic alloy for periods extending even upto 7000 hours at 873 K. Thus use of Pb-Li eutectic alloy would be suitable for the storage of irradiated fuel. (author). 16 refs., 38 figs., 3 tabs

  16. Elastic-plastic fracture toughness characteristics of irradiated AISI 316 H stainless steel

    International Nuclear Information System (INIS)

    The objective of this research is the FM assessment of neutron damage to AISI 316 H steel commonly used in LMFBR's permanent primary circuit components. The material FM characteristics studied are the crack-initiation toughness and the crack-resistance curves. The AISI 316 H stainless steel has been considered in the base condition, the welded deposit and the HAZ material. The specimens tested are 3PB bars. The results presented cover the 0, 0.1 dpa and 0.3 dpa fluences at 350 deg. C and 550 deg. C. The crack-growth-resistance curves were obtained following the dimensional analysis approach together with the deformation theory of plasticity concepts. This method, using key curves has effectively shown trends in the above-mentioned fracture mechanics characteristics of the irradiated AISI 316 H steel. The results obtained so far indicate generally low degradation at both temperatures between the non-irradiated and the irradiated base material, one note-worthy exception being the significant lowering at 550 deg. C and 0.1 dpa of sup(dJ)/da by about 35% and of sup(J)Ic by about 50% with respect to those parameters values in the other conditions of fluences and temperatures. As far as the weld material is concerned, it exhibits significantly lower initiation toughness and tearing moduli in the pre and post irradiation conditions with respect to the base material but those FM parameters values are practically unaltered at both temperatures and all fluence levels. The HAZ material was studied too and it was found that all J values corresponding to various crack advances fell within the base material results at 350 deg. C as upper bound and the welded material at 550 deg. C as lower bound at corresponding fluence levels. (author)

  17. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    OpenAIRE

    Paula Fernanda da Silva Farina; Alexandre Bellegard Farina; Celso Antonio Barbosa; Helio Goldenstein

    2012-01-01

    The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i) time at cryogenic temperatures (3, 10 and 30 hours); ii) cryogenic temperatures (–80°C and –196°C); iii) stress relief heat treatment (130°C) before cryogenic treatments; iv) effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and witho...

  18. Effects of ageing on the ductile fracture of AISI type 316 stainless steel

    International Nuclear Information System (INIS)

    The micromechanisms of ductile fracture have been studied in a commercial AISI type 316 austenitic stainless steel. Tensile, Charpy impact and ductile fracture toughness testing has been performed on unaged material and samples aged at 7000C for times up to 4380 h. Examination of the specimens after testing has demonstrated that the microstructural changes occurring at grain boundaries are reponsible for the observed losses of ductility and crack growth resistance. The relative magnitude of the observed changes in mechanical properties has been accounted for using a simple model to describe the ductile fracture process. (author)

  19. 1020 AISI-SAE steel Austenitic Nitrocarburising with alcohol and triethanolamine

    Directory of Open Access Journals (Sweden)

    Álvaro Castro P

    2010-04-01

    Full Text Available The present work shows AISI-SAE 1020 steel's nitrocarbide layer's microstructure and micro-hardness profile following 4 hours at 700ºC using methanol, isopropanol and triethanolamine. The steel was then hardened by quenching it in water and then tempered at 350ºC for 1 hour. Its surface had been partially oxidised by heating it at 400ºC for 1 hour. An example is given of other researchers analysing microstructure and propierties in steel having 0,5% C, using endothermic gas and different amounts of ammoniac.

  20. Thermo-mechanical and isothermal fatigue behavior of austenitic stainless steel AISI 316L

    Czech Academy of Sciences Publication Activity Database

    Škorík, Viktor; Šulák, Ivo; Obrtlík, Karel; Polák, Jaroslav

    Ostrava: TANGER Ltd, 2015. ISBN 978-80-87294-58-1. [METAL 2015 - International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA15-20991S; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Thermo-mechanical fatigue (TMF) * In-phase cycling (IP) * Isothermal fatigue (IF) * AISI 316L * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  2. Investigation into some tribological properties of plasma nitrided hot-worked tool steel AISI H11

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Sahin, A.Z.; Said, S.A.M.; Nickel, J.; Coban, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    1996-04-01

    Interest in the tribological properties of plasma nitriding has increased substantially over the past years because plasma nitriding provides a high nitride depth and improved hard facing. The present study examines the tribological properties of AISI H11 plasma nitrided, hot-worked steel. Different nitriding temperatures and durations were considered. Characterization of the composite structures was investigated with wear tests, x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and microhardness tests. The depth profile of the nitrided zone was measured using the nuclear reaction analysis (NRA) technique. Plasma nitriding affected the microhardness, wear properties, and morphology considerably. Increase in process temperature increased the nitride zone depth.

  3. Laser welding of butt joints of austenitic stainless steel AISI 321

    OpenAIRE

    A. Klimpel; A. Lisiecki

    2007-01-01

    Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters w...

  4. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    Science.gov (United States)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-07-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  5. The structural characterization of some biomaterials, type AISI 310, used in medicine

    Science.gov (United States)

    Minciuna, M. G.; Vizureanu, P.; Hanganu, C.; Achitei, D. C.; Popescu, D. C.; Focsaneanu, S. C.

    2016-06-01

    Orthopedics biomaterials are intended for implantation in the human body and substituted or help to repair of bones, cartilage or organ transplant, and tendons. At the end of the 20th century, the availability of materials for the manufacture implants used in medicine has been the same as for other industrial applications. The most used metals for manufacturing the orthopedics implants are: stainless steels, cobalt-chrome-molybdenum alloys, titanium and his alloys. The structural researches which are made in this paper, offer a complete analysis of AISI310 stainless steels, using: optical spectrometry, X-ray diffraction and scanning electronic microscopy.

  6. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Rodrigo L.O. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Pastore, Heloise O. [Instituto de Quimica, Universidade Estadual de Campinas, 13084-862 Campinas, SP (Brazil); Schmidt, Vanessa [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Baumvol, Israel J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Abarca, Silvia A.C.; Souza, Fernando S. de; Spinelli, Almir [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Figueroa, Carlos A. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Giacomelli, Cristiano, E-mail: cgiacomelli@pq.cnpq.b [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil)

    2010-09-15

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (E{sub pit}) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 {sup o}C and 520 {sup o}C. Under such experimental conditions the E{sub pit}-values shifted up to 1.25 V in the positive direction.

  7. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    International Nuclear Information System (INIS)

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 oC and 520 oC. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.

  8. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    International Nuclear Information System (INIS)

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na2 SO4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  9. XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing

    Directory of Open Access Journals (Sweden)

    Rokosz K.

    2015-03-01

    Full Text Available In the paper, the passive surface layers of AISI 304L after standard (EP50 and very-high-current density electropolishing (EP1000 in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

  10. Effects of the stress reduction tests in the creep of AISI-316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Stress Reduction Tests were performed at the temperature of 1006 K (7330C) in AISI-316 stainless steel and the evolution of the microstructure was followed. After the stress reduction a rapid decrease in the dislocation density, a continuous increase in the average carbide size and a decrease in the mean particle spacing are observed. No change in the subgrain size occurs after the stress reduction. An increase in the creep resistance is observed after the stress reductions and is interpreted based on the microstructural modifications. (Author)

  11. Wear Properties of TiN Coating Formed on AISI D2 Surface

    OpenAIRE

    ÇEĞİL, Özkan; KILINÇ, Bülent; Şen, Şaduman

    2014-01-01

    In this work, the wear test of uncoated and titanium nitride coated AISI D2 cold work tool steel against silicon nitride ball was realized at 0.3 m/s sliding speed and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then titanium nitride coating was performed by pack diffusion coating in a powder mixture consisting of ferro-titanium, ammonium chloride and alumina at 1000°C for 2h. Nitro-titanized samples were char...

  12. Effect of Welding Current on Energy Absorption of AISI 304 Resistance Spot Welds

    Directory of Open Access Journals (Sweden)

    M. Pouranvari

    2012-08-01

    Full Text Available In this study, the effect of welding current on the energy absorption capability of austenitic stainless steel AISI304 resistance spot welds during the quasi-static tensile-shear test is investigated. Results showed that there is a direct relationship between the fusion zone size and failure energy in expulsion free samples. However, when expulsion occurred, the energy absorption capability reduced significantly. Failure energy for samples experiencing expulsion is lower compared to expulsion free samples with identical or even smaller weld nugget size.

  13. Estimation of embrittlement during aging of AISI 316 stainless steel TIG welds

    Indian Academy of Sciences (India)

    J Nayak; K R Udupa; K R Hebbar; H V S Nayak

    2004-12-01

    Weldments of AISI grade 316 stainless steel, having a ferrite content of 4–6% and a variety of nitrogen concentrations were prepared using a modified element implant technique. Charpy impact specimens prepared from these weldments were subjected to a variety of aging treatments. Impact toughness decreases with aging time at all aging temperatures. Nitrogen is found to be beneficial to toughness. An empirical relation connecting the aging temperature, aging time and nitrogen content with toughness has been developed which can be used to estimate the time for embrittlement.

  14. Estudio de las fuerzas de corte en el fresado de AISI 316

    OpenAIRE

    González López, Diego

    2015-01-01

    Este trabajo trata sobre el comportamiento que tiene un acero AISI 316-L ASS al ser fresado mediante dos tipos de procedimiento: fresado en concordancia y fresado en oposición. Para realizar este estudio se ha instalado un dinamómetro Kistler en la herramienta, con el objetivo de medir las fuerzas de corte que intervienen en el mecanizado.Estas fuerzas se procesan con el sistema de adquisición de datos " WaveBook-512" y se analizan posteriormente con el software " Dasylab 8.0", un sistema d...

  15. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316

    International Nuclear Information System (INIS)

    This work investigates microbially-influenced corrosion (MIC) of stainless steel AISI 316 by two sulphate-reducing bacteria, Desulfovibrio desulfuricans and a local marine isolate. The biofilm and pit morphology that developed with time were analyzed using atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) results were interpreted with an equivalent circuit to model the physicoelectric characteristics of the electrode/biofilm/solution interface. D. desulfuricans formed one biofilm layer on the metal surface, while the marine isolate formed two layers: a biofilm layer and a ferrous sulfide deposit layer. AFM images corroborated results from the EIS modeling which showed biofilm attachment and subsequent detachment over time

  16. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  17. Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel

    Institute of Scientific and Technical Information of China (English)

    Shahram Kheirandish; Ahmad Noorian

    2008-01-01

    The effect of niobium addition on the microstructure of cast AISI H13 hot work tool steel was evaluated by using EDX analyzer attached to the scanning electron microscope.The volume percent of eutectic area and eutectic cell size and also volume percent of different carbides of new steel,which is heat treated under different conditions,are also determined.The results show that the a niobium addition modifies the cast structure of Nb-alloyed hot work tool steel,and reduces the size and volume of eutectic cells,and increases the maximum hardness of the steel.

  18. Comparative study of the microbiological corrosion among an AISI 304L and an API X65

    International Nuclear Information System (INIS)

    Metallic samples of AISI 304L sensitized and API X65, were subjected to the action of an inoculated media with reductive sulphate microorganisms (SBR), carrying out electrochemical evaluations by means of the techniques of Polarization Resistance (RP), Tafel extrapolation (ET) and Electrochemical Noise (RE). The generated information was complemented with the analysis and diagnostic of the present damage in the surfaces exposed in both metals. The used electrochemical techniques allow to determine the corrosion velocities associated to each system, establishing that the uniform corrosion is not affected by the effect of the microorganisms; however, electrochemical noise, evidenced the formation of stings associated to the presence of bacteria. (Author)

  19. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    Science.gov (United States)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-04-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  20. Aspects of plasma arc cutting process in the AISI 321 type stainless steel

    International Nuclear Information System (INIS)

    Some aspects of plasma arc cutting process in the AISI321 stainless steel, used in nuclear industry, are analysed. The maximum values of the velocity of cutting and, the minimum quantity of energy per unit of length necesary for the plasma were determined. The localization of irregularities in the cut surface in function of the velocity of cutting was investigated. The cut surfaces were evaluated by surface roughness, using as measurement parameter, the distance between the sharpest salience and the deepest reentrance of the sample profile. The width of layer from thermal action of the plasma was influenced by the velocity of cutting. (Author)

  1. Fatigue of welded joint in a stainless steel AISI 304 L

    International Nuclear Information System (INIS)

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author)

  2. Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation

    International Nuclear Information System (INIS)

    The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength

  3. Numerical Simulation on Temperature and Microstructure during Quenching Process of Large-sized AISI P20 Steel Die Blocks

    Institute of Scientific and Technical Information of China (English)

    SONGDong-li; GUJian-feng; ZHANGWei-min; LIUYang; PANJian-sheng

    2004-01-01

    In this paper, a model of coupled thermal and phase transformation is described. The temperature and microstructure during the quenching process for large-sized AISI P20 steel die blocks have been simulated using the finite element method (FEM). The optimum quenching technology of large-sized AISI P20 steel die blocks has been proposed based on the simulation results, which not only can effectively avoid quenching cracks and obtain deeper hardened depth, but also can improve the microstructure and properties of the large-sized die blocks.

  4. Numerical Simulation on Temperature and Microstructure during Quenching Process of Large-sized AISI P20 Steel Die Blocks

    Institute of Scientific and Technical Information of China (English)

    SONG Dong-li; GU Jian-feng; ZHANG Wei-min; LIU Yang; PAN Jian-sheng

    2004-01-01

    In this paper, a model of coupled thermal and phase transformation is described. The temperature and microstructure during the quenching process for large-sized AISI P20 steel die blocks have been simulated using the finite element method (FEM). The optimum quenching technology of large-sized AISI P20 steel die blocks has been proposed based on the simulation results, which not only can effectively avoid quenching cracks and obtain deeper hardened depth,but also can improve the microstructure and properties of the large-sized die blocks.

  5. Optimization of the contact mechanical strength of magnetron-sputtered nitrogen-doped AISI 316L physically vapour deposited coatings

    International Nuclear Information System (INIS)

    The reactive magnetron sputtering technique adopted produces perfectly adhering nitrogen-doped AISI 316L coatings on construction and stainless steel substrates (AISI 316L and 4135). Surface mechanical testing was done by indentation and sclerometric, frictional, low cycle fatigue. The major damage parameters adopted were the critical coating cracking loads, track depression and lateral pile-up volumes. It is shown that the detrimental effect of growth defects on coating brittleness can be controlled to some extent by optimizing substrate surface treatment prior to and bias voltage during deposition. (orig.)

  6. M2e通用流感疫苗的研究进展%Universal influenza vaccine based on the extracellular domain of M2 protein

    Institute of Scientific and Technical Information of China (English)

    花艳红; 王希良

    2009-01-01

    M2基质蛋白是A型流感病毒膜蛋白,在A型流感病毒的生命周期中,M2具有重要的生物学功能,已成为抗病毒药物研究的靶蛋白.其胞外区M2e(M2 eetodomain,M2e)为24个氨基酸残基,该片段在多病毒株中具有极高的保守性.针对M2e产生IgG型抗体能够防止流感病毒引发的死亡,减少动物模型中流感的发病率.了解有关M2e疫苗的研究进展,以及关于M2e作为A型流感疫苗靶抗原的关键问题很重要.%Matrix protein M2 (M2) is the membrane protein of Influenza A with an extracellular domain of 24 amino acid residues, which is strongly conserved across virus strains. M2 plays an important role in the life cy-cle of the Influenza A virus and has been the target of antiviral drugs. IgG subtype antibodies directed against M2e can prevent death from influenza and reduce morbidity in animal models for influenza disease. This review summarizes the findings on M2e vaccine candidates and addresses some key questions about this Influenza A vaccine target.

  7. Investigate M2M-related communication standards that exist on the global market today

    OpenAIRE

    Albretsen, Aleksander

    2006-01-01

    Most M2M applications use well-known communication technologies to interconnect the devices. Even though they use well-known communication technologies there are no widely used and well-defined M2M standards regarding the data exchange (application layer). This thesis investigates and identifies M2M related communication standards that exist on the global market today, and are applicable for M2M standardisation. This thesis is limited to the following segments within M2M: Security, Automat...

  8. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  9. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  10. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  11. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    International Nuclear Information System (INIS)

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses

  12. OPTIMIZATION OF PROCESSING PARAMETERS IN ELECTROCHEMICAL MACHINING OF AISI 202 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    V. SATHIYAMOORTHY

    2015-06-01

    Full Text Available This paper attempts to optimize the predominated machining parameters in Electro Chemical Machining (ECM of AISI 202 Austenitic stainless steel using Response Surface Methodology (RSM. The chosen material has been used in railway rolling stock. The selected influencing parameters are applied voltage, electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty six experiments were conducted through design of experiments and central composite design in RSM was applied to identify the optimum conditions which turn into the best Material Removal Rate (MRR and Surface roughness (SR. The experimental analyses reveal that applied voltage of 16 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 10 L/min would be the optimum values in ECM of AISI 202 under the selected conditions. For checking the optimality of the developed equation, MRR of 298.276 mm3/min and surface roughness Ra of 2.05 µm were predicted at applied voltage of 12.5 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 11.8 L/min with composite desirability of 98.05%. Confirmatory tests showed that the actual performance at the optimum conditions were 291.351 mm3/min and 2.17 µm. The deviation from the predicted performance is less than 6% which proves the composite desirability of the developed models for MRR and surface roughness.

  13. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    International Nuclear Information System (INIS)

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Plasma nitriding and post-aluminizing result in AlN single phase layer on the steel. • PN–Al coated steel had better corrosion resistance than Al–PN one. • Formation of oxide layer provided protection of PN–Al coated steel against corrosion. • Pitting and surface defects was the dominant corrosion mechanism in Al–PN coated steel. - Abstract: Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN–Al), while the others were pack aluminized followed by plasma nitriding (Al–PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (Rp) resistances were obtained in PN–Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al–PN specimens

  14. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    Energy Technology Data Exchange (ETDEWEB)

    Haftlang, Farahnaz, E-mail: f.haftlang@students.semnan.ac.ir [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Habibolahzadeh, Ali [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Sohi, Mahmoud Heydarzadeh [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-02-28

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Plasma nitriding and post-aluminizing result in AlN single phase layer on the steel. • PN–Al coated steel had better corrosion resistance than Al–PN one. • Formation of oxide layer provided protection of PN–Al coated steel against corrosion. • Pitting and surface defects was the dominant corrosion mechanism in Al–PN coated steel. - Abstract: Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN–Al), while the others were pack aluminized followed by plasma nitriding (Al–PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (R{sub p}) resistances were obtained in PN–Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al–PN specimens.

  15. Characterization of a nitrurated coat in AISI 420 and SAE 1040 steels with different thermal treatments

    International Nuclear Information System (INIS)

    According to the results obtained in tribological tests, they are heavily influenced by the behavior of the tribosurfaces as well as by the substrate of the erosion couple. This work was undertaken in order to better understand these surface layers, by characterizing the layer of ionic nitruration compounds in test pieces of AISI 420 stainless steel with different thermal treatments and under the influence of the alloying elements while they are being formed. Circular test pieces of AISI 420 stainless steel and SAE 1040 steel were used. Samples of both groups were quenched and tempered at 673 K and 943 K. Then they were ionically nitrurated at 25% N2 and 75% H2, for 20 h at a pressure of 0.15 MPa. The qualitative determination of the present phases was carried out by X-ray diffraction (XRD) and with grade line X-ray diffraction. The thicknesses for the nitrurated layers were established by Vickers microhardness variation. The morphology, size, distribution and preferred site of carbide precipitation were analyzed by optic microscopy and scanning electron microscopy (SEM). The results show the influence of the alloying elements and of the prior microstructure, product of the different tempering temperatures, on the morphology of the nitrurated layer (CW)

  16. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    International Nuclear Information System (INIS)

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  17. Sintering, microstructure and properties of WC-AISI304 powder composites

    International Nuclear Information System (INIS)

    Highlights: ► Total replacement of Co binder by stainless steel AISI 304 in WC based composites. ► Processing conditions for WC–stainless steel composites. ► Mechanical behavior and oxidation resistance of WC–stainless steel composites. -- Abstract: Tungsten carbide–stainless steel (AISI 304) based composites were successfully prepared by powder metallurgy routes using vacuum sintering at a maximum temperature of 1500 °C. The effects of the binder amount (between 6 and 15 wt.%) on the phase composition, microstructure and mechanical properties, namely hardness and fracture toughness, were investigated. Appreciable amount of (M,W)6C up to 12 wt.% was detected, especially for the higher SS contents. However, a good compromise between toughness and hardness was observed. Besides that, improved oxidation resistance was noticed in WC–SS based composites compared with WC–Co composites. The results are discussed having in mind the correlation between chemical composition, phase composition, microstructure and mechanical behavior

  18. Microstructure evolution in nano/submicron grained AISI 301LN stainless steel

    International Nuclear Information System (INIS)

    The phase and microstructure evolution of a heavily cold-rolled AISI 301LN stainless steel (SS), before and after annealing is discussed. AISI 301LN SS has been cold-rolled to 63% rolling reduction and subsequently annealed from 600 to 1000 deg. C for short annealing durations (1-100 s). Phase analysis indicates that the cold-rolled sheet comprises almost 100% martensite, while transmission electron microscopy examination reveals its morphology to be of dislocation cell- and heavily deformed lath-type martensite. The martensite → austenite reversion upon annealing at 600 deg. C for 1 and 10 s is negligible, but nanoscale austenite grains are formed in the martensitic matrix. Partial reversion to nano/submicron austenite grains is observed for samples annealed at 600 deg. C for 100 s, and 700 deg. C for 1 s. Samples annealed at higher temperatures exhibit a complete reversion to submicron/nano-austenite grains with a large grain size variation, as well as secondary phase chromium nitride precipitates.

  19. Effects of biofilm formation on the electrochemical behavior of AISI 304 SS in board machine environment

    Energy Technology Data Exchange (ETDEWEB)

    Carp, L.; Hakkarainen, T. [VTT Manufacturing Technology (Finland); Raaska, L. [VTT Biotechnology and Food Research (Finland)

    1999-11-01

    The electrochemical behavior of and biofilm formation on AISI 304 stainless steel were studied in board machine environment with natural bacteria population. Open circuit potentials, redox-potential as well as different electrochemical measurements were performed. The biofilms formed were analyzed by microbial cultivation and by epifluorescence microscopy. The results of the measurements were compared with those performed both in sterilized white water and in artificial white water. The anodic polarization behavior of just immersed specimens was very similar in biotic (real), artificial and abiotic (sterilized) white water. Pitting initiated at very low potentials and continued to very negative values. The initiation of pitting became more difficult when the immersion time increased to 7 or 8 days in real, artificial or sterilized water. When the immersion time further increased, the pitting nucleated more easily in sterilized white water as well as in artificial white water than in biotic white water. In the laboratory equipment it was possible to maintain the biofilm already formed in the board mill, but the amount of sulfate reducing bacteria decreased and the amount of biofilm did not further increase. The composition and structure of the biofilm formed in laboratory differed from that formed in board mill conditions. The preliminary results indicate that the formation of biofilm in biotic white water rather inhibits than enhances the pitting corrosion of type AISI 304 stainless steel.

  20. SIMS study on the surface elemental distribution in AISI type 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Chika; Wagner, Stefan; Burlaka, Vladimir; Pundt, Astrid [Institut fuer Materialphysik der Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Martin, Mauro; Weber, Sebastian [Gemeinsame Forschergruppe, Helmholtz-Zentrum Berlin / Ruhr-Universitaet Bochum, Universitaetsstr. 150 - IA 2/44, D-44801 Bochum (Germany); Bourgeon, Anais; Pargeter, Richard [TWI Ltd., Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom); Michler, Thorsten [Adam Opel GmbH, IPC R2-50, GM Alternative Propulsion Center Europe 65423 Ruesselsheim (Germany)

    2011-07-01

    Hydrogen embrittlement of low-Ni austenitic stainless steels is suggested to occur due to strain-induced surface alpha -martensite, since the hydrogen diffusivity in bcc phases is expected to be much higher than in the austenitic phase. But, also the local surface chemistry might be responsible for the steel susceptibility. The surface chemistry on two different surface conditions of AISI 304 was investigated by Secondary Ion Mass Spectrometry: a. directly after the machining process and b. after solution annealing process. For both AISI 304 surfaces a layered stacking of Fe- and Cr-oxide was found. The oxide layer thickness was about 5 nm for sample a., and about 10 nm for sample b. The chemical mapping on sample a. shows relatively homogeneous elemental distributions due to the fine microstructure of martensite. For sample b, Fe, Ni, SiO2, FeO and NiO are segregated at the grain boundaries. In contrast, Cr and CrO are distributed in grains.

  1. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    International Nuclear Information System (INIS)

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000oC for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB2 and Nb3B4 and also iron boride phases such as FeB, Fe2B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV0.005

  2. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Science.gov (United States)

    Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M.

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3-6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  3. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  4. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Science.gov (United States)

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  5. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    Science.gov (United States)

    Kon, O.; Pazarlioglu, S.; Sen, S.; Sen, U.

    2015-03-01

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000oC for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1-4 h. The presence of the niobium boride layers such as NbB, NbB2 and Nb3B4 and also iron boride phases such as FeB, Fe2B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV0.005.

  6. Using Mather-Type Plasma focus Device for Surface Modification of AISI304 Steel

    International Nuclear Information System (INIS)

    A 8.8 kJ plasma focus device with a nitrogen gas filling and a copper anode capsulated by aluminum was used to modify the surface of AISI304 steel substrate, in order to improve its properties. The treatment was carried out using a various number of nitrogen plasma focus shots at a pressure of 0.5 mbar and at two steel sample distances (20 and 40 mm) from the anode. The plasma diagnostics was made using the voltage and current curves recorded by a voltage divider, Rogowski coil, accompanied with calculations using a five phase radiative Lee model (RADPF5.15a) to determine the temperature and plasma density. The surface hardness of AISI304 steel was increased by 175% after plasma treatment and the thickness of the treated layers was about 1-2 μ. Results show that the surface hardness is increased with increasing shot number and decreased with increasing distance from the anode. Changes in surface morphology and the elemental composition were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). (author)

  7. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Toivonen, A. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland); Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H. [Department of Mechanical Engineering, Helsinki University of Technology Puumiehenkuja 3, P.O. Box 4200, FIN-02015 HUT (Finland)

    2004-07-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  8. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated...

  9. HIGH SPEED END MILLING OF HARDENED AISI D3 COLD WORK TOOL STEEL WITH CBN CUTTING TOOL

    OpenAIRE

    Aslan, E; CAMUŞCU, N.

    2010-01-01

    ABSTRACTIn this work, high speed end milling of AISI D3 cold-work tool steel hardened to 35 HRC and 62 HRC was investigated using CBN cutting tools. Cutting tool performance was studied with respect to tool life and surface finish of the workpiece. The effect of material hardness on the tool wear and surface roughness was also discussed.

  10. X-Ray diffraction application in studying the nitrogen fixing and aging in stainless steel AISI 304

    International Nuclear Information System (INIS)

    Solid solutions of N in AISI-304 stainless steels were aged to different degrees. The aging was monitored through X-Ray difraction measurement of the lattice parameter 'a'. The increases in 'a', due to the increase of N in solid solution were determined experimentally

  11. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  12. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie Carola; Håkansson, Kjell Ove; Jensen, Benjamin Anderschou Holbech;

    2012-01-01

    e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly...

  13. Wear measurements of stainless steel AISI 316 by thin layer activation in cyclotron

    International Nuclear Information System (INIS)

    Nuclear energy techniques have multiple applications in medicine, agriculture and industry. Among the industrial applications, thin layer activation shows as a promising quantitative analytic method for on-line wear measurements in machine components with many advantages when compared with the conventional methods. Some of these advantages are beside the on-line measurements the possibility to carry out these measurements in specific areas where the material is activated and also for a short time required in the wear analysis. The main objective of this work was to study the viability to develop an experimental method using proton irradiation in the thin layer activation technique for wear evaluation of machine metallic components. In this work wear measurements, in stainless steel AISI 316 irradiated with 8 MeV - protons using the CV-28 Cyclotron at IPEN-CNEN/SP, were carried out. The first task of this work was the proton beam characterization in both homogeneity and incident energy using specific nuclear reactions in samples of pure Cu. Two sets of stainless steel AISI 316 samples were used. The first set were formed by 12.5 μm foils which were used to obtain the calibration curves that give the induced activity as a function of thickness. The second set of samples was stainless steel AISI 316 blocks on which consecutive programmed wear processes were performed using an automatic polishing machine. After proton irradiation the foils activated were measured with a high purity Ge detector where 56Co, 57Co, 58Co and 52Mn were determined and selected as a function of the proton energy and the radioactive decay of the radionuclides of short half-life. From these radionuclides, 56Co had shown to be the worse suitable for the calibration curve determination. For on-line wear measurements a Nal(Tl)-detector with a portable probe was used. To simulate real conditions for the wear measurements, metallic capsules were used to separate the activated material and the

  14. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  15. Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyección térmica por arco eléctrico

    Directory of Open Access Journals (Sweden)

    López-Covaleda, E. A.

    2013-10-01

    Full Text Available The commercial materials 140MXC (with iron, tungsten, chrome, niobium, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1 homogeneous coatings and (2 coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser confocal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW. We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation.Mediante proyección térmica de arco eléctrico fueron depositados tres materiales comercialmente conocidos como: 140MXC (a base de hierro, wolframio, cromo y niobio, 530AS (acero AISI 1020 y 560AS (acero AISI 420, sobre acero AISI 4340. Con el objetivo de evaluar la mejor estrategia para incrementar la resistencia al desgaste abrasivo, los recubrimientos fueron depositados de dos formas: (1 monocapas homogéneas de cada material y (2 recubrimientos depositando con alambres disimiles de 140MXC + 530AS y 140MXC + 560AS. Los recubrimientos fueron caracterizados microestructuralmente mediante Difracción de rayos X, Microscopía óptica, Microscopía láser confocal y Microscopía electrónica de barrido. La evaluación de la resistencia al desgaste abrasivo se realizó mediante ensayo con arena seca y rueda de caucho (DSRW. Se encontró que la resistencia al desgaste depende entre otras de las

  16. Influenza M2 Transmembrane Domain Senses Membrane Heterogeneity and Enhances Membrane Curvature.

    Science.gov (United States)

    Ho, Chian Sing; Khadka, Nawal K; She, Fengyu; Cai, Jianfeng; Pan, Jianjun

    2016-07-01

    Targeting host cell membranes by M2 of influenza A virus is important for virus invasion and replication. We study the transmembrane domain of M2 (M2TM) interacting with mica-supported planar bilayers and free-standing giant unilamellar vesicles (GUVs). Using solution atomic force microscopy (AFM), we show that the size of M2TM oligomers is dependent on lipid composition. The addition of M2TM to lipid bilayers containing liquid-ordered (Lo) and liquid-disordered (Ld) phases reveals that M2TM preferentially partitions into the Ld phase; phase-dependent partitioning results in a larger rigidity of the Ld phase. We next use fluorescence microscopy to study the effects of M2TM on phase-coexisting GUVs. In particular, M2TM is found to increase GUVs' miscibility transition temperature Tmix. The augmented thermodynamic stability can be accounted for by considering an enhanced energy barrier of lipid mixing between coexisting phases. Our GUV study also shows that M2TM can elicit an array of vesicle shapes mimicking virus budding. M2TM enhanced membrane curvature is consistent with our AFM data, which show altered membrane rigidity and consequently line tension at domain edges. Together, our results highlight that in addition to conducting protons, M2TM can actively regulate membrane heterogeneity and augment membrane curvature. PMID:27285399

  17. Effects of hydrogen charging methods on ductility and fracture characteristics of AISI 9840 steel

    Energy Technology Data Exchange (ETDEWEB)

    Biggiero, G.; Borruto, A.; Taraschi, I. [Rome Univ. (Italy). Ist. di Metallurgia e Metallografia

    1995-06-01

    Two different methods were used in the tests: the premature fracture method and the tensile test under hydrogen charging method, on AISI 9840 steel corrosion specimens. The aim of this work was to reveal the hydrogen effects on plastic deformation in tensile tests with or without simultaneous hydrogen charging. True stress-true strain curves have clearly shown the material`s different behaviour in the two tests: in the case of premature fracture tests, during plastic deformation, dislocations glide and allow hydrogen to escape and the material to partially regain its properties more rapidly; on the contrary, in the case of tensile tests under hydrogen charging, the interaction between the penetrating hydrogen and the Cottrell clouds (pre-existing hydrogen) slackens dislocation glide, so that plastic deformation is greatly reduced, as is shown both from the diagrams and the SEM analyses. (author)

  18. Applications of the essay at slow deformation velocity in pipes of stainless steel AISI-304

    International Nuclear Information System (INIS)

    Nowadays is carried out research related with the degradation mechanisms of structures, systems and/or components in the nuclear power plants, since many of the involved processes are those responsible for the dependability of these, of the integrity of the components and of the aspects of safety. The purpose of this work, was to determine the grade of susceptibility to the corrosion of a pipe of Austenitic stainless steel AISI 304, in a solution of Na CI (3.5%) to the temperatures of 60 and 90 C, in two different thermal treatments - 1. - Sensitive 650 C by 4 hours and cooled in water. 2. Solubilized to 1050 C by 1 hour and cooled in water

  19. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    Science.gov (United States)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  20. Surface Modification by Nitrogen Plasma Immersion Ion Implantation on Austenitic AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Miguel CASTRO-COLIN; William DURRER; Jorge ALPEZ; Enrique RAMIREZ-HOMS

    2016-01-01

    Surfaces of AISI 304 austenitic stainless steel plates nitrided by plasma immersion ion implantation (PIII) technology were studied by means of Auger electron spectroscopy (AES)and X-ray photoelectron spectroscopy (XPS)to determine the effect of the nitriding process on the surface and subjacent layers.Elemental compositions obtained by AES and XPS at varying depths indicate that the saturation of N is relatively constant as a function of depth,indicating the reliability of PIII technology for subsurface saturation.It is concluded that the concentrations of both Cr and O increase with depth,the subjacent oxide is driven by the Ar+ sputtering process used to access the lower layers,and then N is bound to Cr.

  1. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  2. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  3. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  4. Vruća prerada AISI A2 alatnog čelika

    OpenAIRE

    Večko Pirtovšek, T.; Peruš, I.; Kugler, G.; Turk, R.; M. Terčelj

    2008-01-01

    Za postizanje više gospodarnosti proizvodnje AISI A2 alatnog čelika potrebni su koraci istraživanja vezani na postizanja tehnološke plastičnosti i uspješno predvidjanje krivulja tečenja. Sa metodom CAE neuralnih mreža bile su predviđene krivulje tečenja i za odgovarajuća temperaturna stanja i brzine deformacija. Pomoću pokusa vrućeg sabijanja utvrđeno je, da ulazna mikrostruktura utječe na donju temperaturnu granicu, a kemijski sastav na gornju temperaturnu granicu radnog područja s obzirom n...

  5. Multi-scale modelling of AISI H11 martensitic tool steel surface anisotropic mechanical behaviour

    Directory of Open Access Journals (Sweden)

    Zouaghi Ahmed

    2014-06-01

    Full Text Available In this work, a numerical investigation is carried out on the anisotropic and heterogeneous behaviour of the AISI H11 martensitic tool steel surface using finite element method and a multi-scale approach. An elasto-viscoplastic model that considers nonlinear isotropic and kinematic hardenings is implemented in the finite elements code ABAQUS using small strain assumption. The parameters of the constitutive equations are identified using macroscopic quasi-static and cyclic material responses by the mean of a localization rule. Virtual realistic microstructures, consisting of laths and grains, are generated using particular Voronoï tessellations. These microstructures consider the specific crystallographic orientations α’/γ. Finite element investigation is then performed. The local heterogeneous and anisotropic behaviour of the surface as well as the subsurface is shown under quasi-static and cyclic mechanical loadings. The laths morphology and crystallographic orientation have an important impact on the local mechanical fields.

  6. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc

  7. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  8. Effect of rare earth oxide additions on oxidation behavior of AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2006-12-01

    Full Text Available AISI 304L stainless steel powder compacts containing 2 vol% high purity rare earth oxides were prepared by mixing the different powders in a vibratory mill followed by pressing. The compacts thus obtained were sintered in a vacuum furnace and isothermal oxidation measurements were carried out in a muffle furnace, in air, up to 200 hours at 900 °C. The oxidized surfaces were examined in a scanning electron microscope and micro regions of the reaction products were studied using energy dispersive analysis. The addition of rare earth oxides decreased the oxidation rate of the stainless steel. Further evidence of predominant oxygen ion diffusion controlling the overall oxidation process in rare earth containing chromium oxide forming alloys has been observed.

  9. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  10. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  11. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    International Nuclear Information System (INIS)

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  12. Effect of constraint on fracture behavior of welded 17mn4 and AISI304 steels

    International Nuclear Information System (INIS)

    In this study, 17Mn4 (P295GH) pressure vessels steel and AISI304 stainless steel were welded with ER309L austenitic consumable. In experimental part of the study, tensile tests were conducted on welded plates and variation of hardness values along specimen was measured. J-integral fracture toughness values were investigated for different crack locations. In order to determine the regions where plastic deformation did not take place due to constraint, uni-axial tensile test was performed on welded tensile specimen after attaching strain gauges. In numerical part of the study, finite element (FE) analyses were conducted by fixing 2-D models precracked on different locations by using ANSYS software. In these models, stress triaxiality and plastic deformation characteristics around crack tip were determined for each crack locations after stress and strain analyses. The limitation on the extension of plastic deformation at diffusion line causes extra increase in stress triaxiality at crack tip

  13. Effect of the Surface Roughness on Galvanic Corrosion of AISI 316 Stainless Steel

    International Nuclear Information System (INIS)

    One of the major problems that can be raised in different mechanical designs in many different applications such as reactors, piping systems and production of hot cells, machine tools, is the galvanic corrosion. Many studies have been carried out concerning the dangerous effect of galvanic corrosion that usually occur between two mating components of dissimilar metals. So far limited attention has been paid to the effect of the surface roughness of two mating parts of two mating parts of same material on their mutual galvanic corrosion. The present work presents a practical study on galvanic corrosion concerning the remarkable effect of the use of two mating parts of same materials (AISI 316 St. St.) but having different values of surface roughness. From this investigation, it is concluded that designers must classify the surface roughness of the mating parts in their design to have the same value, to minimize galvanic corrosion

  14. Analysis of deformation induced martensite in AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  15. Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel

    Indian Academy of Sciences (India)

    M Ghorannevis; A Shokouhy; M M Larijani; S H Haji Hosseini; M Yari; A Anvari; M Gholipur Shahraki; A H Sari; M R Hantehzadeh

    2007-01-01

    This work presents the results of a low-energy nitrogen ion implantation of AISI 304 type stainless steel (SS) at a moderate temperature of about 500° C. The nitrogen ions are extracted from a Kauffman-type ion source at an energy of 30 keV, and ion current density of 100 A cm-2. Nitrogen ion concentration of 6 × 1017, 8 × 1017 and 1018 ions cm-2, were selected for our study. The X-ray diffraction results show the formation of CrN polycrystalline phase after nitrogen bombardment and a change of crystallinity due to the change in nitrogen ion concentration. The secondary ion mass spectrometry (SIMS) results show the formation of CrN phases too. Corrosion test has shown that corrosion resistance is enhanced by increasing nitrogen ion concentration.

  16. Influence Of Surface Roughness On Ultra-High-Cycle Fatigue Of Aisi 4140 Steel.

    Directory of Open Access Journals (Sweden)

    Daniel Januário Cordeiro Gomes

    2015-04-01

    Full Text Available Low and high-cycle fatigue life regimes are well studied and are relatively well understood. However, recent fatigue studies on steels have shown that fatigue failures can occur at low amplitudes even below the conventional fatigue limit in the ultra-high-cycle fatigue range (life higher than 107 cycles. Fatigue life in the regime of 106 to 108 cycles-to-failure in terms of the influence of manufacturing processes on fatigue strength is examined. Specifically, the influence of surface roughness of turned surfaces of AISI 4140 steel specimens on fatigue strength in the giga cycle or ultra-high-cycle fatigue range is evaluated. The fatigue experiments were carried out at room temperature, with zero mean stress, on a rotating-bending fatigue testing machine of the constant bending moment type. The fatigue strength of the specimens were determined using the staircase (or up-and-down method.

  17. An investigation of the aseptic loosening of an AISI 316L stainless steel hip prosthesis

    International Nuclear Information System (INIS)

    The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.

  18. Effect of adhesive geometry on the tensile properties of AISI 1350 steel

    Directory of Open Access Journals (Sweden)

    A. Yasar

    2011-01-01

    Full Text Available It is utilized increasingly to use adhesive bonding in automotive industry to join structural components of metallic materials. The aim of this experimental study is to extend the information available to the automotive design engineer and contribute the better understanding of how the various geometrical shaped of steel parts affect the adhesive bonding. In this study, different types of lap joints, such as butt, step butt, scarf, tubular lap, were used to determine the mechanical strength of SAE/AISI 1350 steel. It has been observed that the cylindrical geometries can be subject to more stress compared to square specimens generally and the geometries with both tensile and shear stress can stand more stress per unit compared with the specimens with only tensile stress.

  19. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  20. Diffusion characteristics of plasma nitrided hard chromium on AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electronic Engineering Dept.; Kocabas, Mustafa; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey)

    2015-06-01

    In order to investigate the different Cr-N formation characteristics of plasma nitrided hard Cr coatings, Cr was electrodeposited on AISI 1010 steel and plasma nitrided at 600, 700 and 800 C for 3 h, 5 h and 7 h, respectively. Phase analyses of resulting Cr-N phases and grain size of Cr layer before and after nitriding process were calculated by X-ray diffraction analysis. Structure of nitride layer and its thickness were analyzed using scanning electron microscopy micrographs. The micrographs indicated that samples consisted of three distinctive layers. In order to distinguish these layers, scanning electron microscopy and energy dispersive spectroscopy (EDX) analysis were used as well as elemental distribution versus depth was plotted. The Cr-N diffusion was investigated by layer thickness measurements, and diffusion coefficient as well as activation energies were calculated.

  1. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  2. Experimental study of dual-beam laser welding of AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.N.; Kannatey-Asibu, E. Jr. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    1997-09-01

    Experiments were conducted to assess the impact of dual-beam laser welding on the cooling rates, and thus microstructure and hardness, of weldments. Temperature measurements were continuously recorded using K-type thermocouples. The results indicate that dual-beam laser welding reduces the hardness of a weldment when compared to the case of single-beam laser welding. For example, the hardness of the hot-rolled AISI 4140 steel used was about 283 HB before laser welding. After laser welding with a power of 800 W and a welding speed of 10 mm/s, the hardness became 552 HB; but with a preheating power of 800 W and an interbeam spacing of 10 mm, the hardness reduced to 477 HB for the same welding speed. The impacts of minor heat source power, welding speed and interbeam spacing on weldment hardness and weld shape for both preheating and postheating cases are discussed.

  3. Stress corrosion cracking of AISI 321 stainless steel in acidic chloride solution

    Indian Academy of Sciences (India)

    Yanliang Huang

    2002-02-01

    The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).

  4. Quantifying Cutting and Wearing Behaviors of TiN- and CrNCoated AISI 1070 Steel

    Directory of Open Access Journals (Sweden)

    Ahmet Cakan

    2008-11-01

    Full Text Available Hard coatings such as titanium nitride (TiN and chromium nitride (CrN are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM, line scan analyses and X-ray diffraction (XRD. The wear properties of TiN- and CrNcoated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples.

  5. Effect of constraint on fracture behavior of welded 17mn4 and AISI304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Uyulgan, Bahadir; Aksoy, Tevfik [Dokuz Eylul University, Izmir (Turkmenistan); Cetinel, Hakan [Celal Bayar University, Manisa (Turkmenistan)

    2011-09-15

    In this study, 17Mn4 (P295GH) pressure vessels steel and AISI304 stainless steel were welded with ER309L austenitic consumable. In experimental part of the study, tensile tests were conducted on welded plates and variation of hardness values along specimen was measured. J-integral fracture toughness values were investigated for different crack locations. In order to determine the regions where plastic deformation did not take place due to constraint, uni-axial tensile test was performed on welded tensile specimen after attaching strain gauges. In numerical part of the study, finite element (FE) analyses were conducted by fixing 2-D models precracked on different locations by using ANSYS software. In these models, stress triaxiality and plastic deformation characteristics around crack tip were determined for each crack locations after stress and strain analyses. The limitation on the extension of plastic deformation at diffusion line causes extra increase in stress triaxiality at crack tip.

  6. Correlation of substructure with time-dependent fatigue properties of aisi304 stainless steel

    Science.gov (United States)

    Ermi, A. M.; Moteff, John

    1982-09-01

    Transmission electron microscopy was employed to study the substructure of AISI 304 stainless steel tested at 482, 593, and 650 °C in low-cycle fatigue with various hold times. Total strains investigated ranged from 0.5 to 2.0 pct, strain rates of 4 E-03 and 4 E-05 s-1. The cell size was found to be inversely related to the relaxed tensile saturation stress, but with different constants of proportionality for the two strain rates. At the lower strain rate, substructures tended to resemble those produced by pure creep. A modified work-hardening theory was used to relate the peak saturation stress to both plastic strain and cell size.

  7. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H2 S O4 solution containing As2 O3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  8. Effect of Starch Binders in Alumina Coatings on Aisi 316 L Stainless Steel for Medical Application

    Science.gov (United States)

    Ghazali, M. J.; Pauzi, A. A.; Azhari, C. H.; Ghani, J. A.; Sulong, A. B.; Mustafa, R.

    A slurry immersion technique of alumina coatings was carried out on several AISI 316 L stainless steels using two types of binding agents; commercial starch and Sarawakian starch (sago), which were also mixed with polyvinylchloride (PVA) for strengthening purposes. The sintering temperatures in this work were varied from 500 to 1000°C. Prior to sintering process, all stainless steels were metallographically ground and polished to approximately 0.6 µm of average roughness. Detailed characterisations on the sintered specimens were carried out with the aid of the secondary electron microscopy (SEM), microhardness and a profilometer. The results revealed that coated steels using sago binder showed improved adhesion and homogenous microstructures with greater hardness of 2642 HV than those found in coated steel with commercial starch after sintering process.

  9. Microstructure and Texture Evolutions in AISI 1050 Steel by Flow Forming

    Energy Technology Data Exchange (ETDEWEB)

    Bedekar, Vikram [Timken Technology Center, Canton, OH; Pauskar, Praveen [Ohio State University, Columbus; Shivpuri, Rajiv [Ohio State University, Columbus; Howe, Jane Y [ORNL

    2014-01-01

    Hot rolled and annealed AISI 1050 steel cylindrical coupons were flow formed at different levels of deformation (66% and 90% wall thickness reduction). TEM studies revealed development of ultra fine (sub) grain cell structure due to severe plastic deformation. The transverse subgrain size changed from 10 m (beginning) to 300nm (66% deformation) to 40nm (90% deformation). EBSD study revealed decreased recrystallization fraction at 90% deformation compared with 66% deformation due to orientation pinning from preferred orientation along {002} planes. No evidence of dislocation pinning or cracking was observed on any samples. The aim of the present work is to study the deformation behaviour and microstructural evolution during conventional flow forming process. The study also sheds light on the strengthening behaviour and structural changes during severe straining.

  10. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  11. Effect of Nitridation Time on the Surface Hardness of Medium Carbon Steels (AISI 1045)

    International Nuclear Information System (INIS)

    It has been investigated the effect of nitridation time on the surface hardness of medium carbon steels (AISI 1045). Parameters determining to the results were flow rate of the nitrogen gas, temperature and time. In this experiments, sample having diameter of 15 mm, thick 2 mm placed in tube of glass with diameter 35 mm heated 550 oC, flow rate and temperature were kept constants, 100 cc/minutes and 550 oC respectively, while the time were varied from 5, 10, 20 and 30 hours. It was found, that for the nitridation time of 5, 10, 20, and 30 hours, the surface hardness increased from 145 VHN to, 23.7, 296.8, 382.4 and 426.1 VHN, respectively. (author)

  12. Irradiation creep in bending of cold-worked AISI 316 stainless steel at low neutron fluence

    International Nuclear Information System (INIS)

    The results from the first and second interim examinations of a test to measure irradiation creep in bending of 20 percent cold-worked AISI 316 stainless steel are presented. These low-fluence results indicate that irradiation creep in bending exhibits a larger primary creep component of the total strain as compared with creep in biaxial pressurized tubes of the same heat of material, but the secondary creep rates in the two cases appear to be similar. The data also indicate that the bending strains have a linear fluence and stress dependency, and strains measured on beams fabricated parallel to and transverse to the direction of cold work are similar, indicating that material texture anisotropy does not effect irradiation creep in bending. 6 refs

  13. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Directory of Open Access Journals (Sweden)

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  14. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  15. Application of radionuclide techniques on AISI 316 stainless steel wear measurements

    International Nuclear Information System (INIS)

    In the last years a wide development in the area of surfaces treatment was observed in order to reduce the wear phenomena in machine components, motors, tools. In this work, sheets of stainless AISI 316 with thickness of 12,5 μm, which simulates successive and equal cuts in a block, were irradiated with 9 MeV protons at the CV-28 cyclotron. The induced activity in each foil was measured with a Ge(Li) detector, and the variation of this activity, as function of irradiated depth, was followed. In this activation with protons nominated thin layer activation has some advantages when compared to neutron activation. In the case the activation of foils of stainless steel 316 the peaks related to 52 Mn, 56 Co, 57 Co and 58 Co were clearly discriminated in the spectrum and this fact is used to establish a calibration curve for wear measurements. (author)

  16. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    X. M. ANTHONY

    2015-03-01

    Full Text Available In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA was conducted to understand the influence of all cutting parameters and tool geometry on cutting force.

  18. Stress corrosion cracking of stainless steel AISI 316L HAZ in PWR nuclear reactor environment

    International Nuclear Information System (INIS)

    In pressurized water reactors (PWRs), low alloy carbon steels and stainless steel are widely used in the primary water circuits. In most cases, Ni alloys are used to joint these materials and form dissimilar welds. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. Stress corrosion cracking of metals and alloys is caused by synergistic effects of environment, material condition and stress. Over the last thirty years, CST has been observed in dissimilar metal welds. This study presents a comparative work between the CST in the HAZ (Heat Affected Zone) of the AISI 316L in two different temperatures (303 deg C and 325 deg C). The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that CST is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C). (author)

  19. Corrosion and low-cycle fatigue properties of AISI 316L in flowing Pb-17Li

    International Nuclear Information System (INIS)

    Corrosion and low-cycle fatigue (LCF) tests were performed on AISI 316L steel specimens in a flowing lithium lead environment. The LCF and corrosion tests were conducted simultaneously in the ''LIFUS 2'' forced convection loop, at a temperature of 723 K and a flow velocity of approximately 0.01 m/s. The LCF tests, which had a strain amplitude ranging from 0.008 to 0.016, were compared with reference tests performed in an inert argon atmosphere. The results show that liquid Pb-17Li has no detrimental effect on the LCF behaviour of 316L at the test temperature of 723 K. The corrosion tests extended from 650 to 1600 h with intermediate steps. Metallographic and SEM-EDAX analyses indicated the presence of an irregular porous ferritic layer. The results are discussed in terms of ferrite growth rate and the effect of corrosion phenomena on LCF behaviour. ((orig.))

  20. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Directory of Open Access Journals (Sweden)

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  1. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  2. Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    M. Olzon-Dionysio

    2013-01-01

    Full Text Available When AISI 316L stainless steels are submitted to the nitriding process at temperatures lower than 450 °C, a high nitrogen content expanded austenite phase is formed, which shows higher hardness and higher pitting corrosion resistance compared to the untreated material. As a result, this material becomes adequate for biomedical application. The conditions of the nitriding technique, such as gas mixture, pressure, time and temperature, play an important role in some properties of the modified layer, including: thickness, hardness and N concentration along the layer. This paper explores a set of six samples of AISI 316L, nitrided at different times and temperatures, whose properties show important differences. The aim of this research is to investigate the correlation between the nitrided layer thickness (in the range of 0.77 to 11 µm with both X-ray patterns characteristics and hardness measurements, which used two distinct loads. The results of this study show that: whereas the 3.6 gf load was suitable to measure the real hardness for four of the nitrided layers showing thickness ≥ 2.9 µm, the 50 gf load measured a substrate contribution, probably even for the highest thickness, 11 µm. Moreover, analyzing different reflections of the X-ray patterns showed evidence of the clear consistency between the X-Ray depths and the nitrided layer thicknesses: if the layer thickness is lower than the penetration depth of X-rays, two phases (austenite and expanded substrate are present. If the layer thickness is higher, only the austenite is observed. Finally, concerning the citotoxicity property, all the samples, nitrided or not, were approved in the test for biocompatibility, indicating their potential use for biomedical applications.

  3. On The Enhancement of Wear Resistance of Hardened Carbon Tool Steel (AISI 1095) With Cryogenic Quenching

    Institute of Scientific and Technical Information of China (English)

    V.Soundararajan; N.Alagurmurthi; K.Palaniradja

    2004-01-01

    Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified(Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -Ⅱ hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)

  4. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.; Souza, S. D. de [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil); Souza, S. de [Instituto de Pesquisas Energeticas e Nucleares, Centro de Ciencia e Tecnologia de Materiais (Brazil); Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil)

    2011-11-15

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic {gamma}{sup Prime} phase (Fe{sub 4}N), the hexagonal phase {epsilon} (Fe{sub 2 - 3}N) and a nitrogen supersatured solid phase {gamma}{sub N}. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Moessbauer Spectroscopy results: the larger the ratio between {epsilon} and {gamma}{sup Prime} phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for {epsilon}/{gamma}{sup Prime} is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h ({epsilon}/{gamma}{sup Prime} = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the {gamma}{sub N} phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the {gamma}{sub N} phase.

  5. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    International Nuclear Information System (INIS)

    Research highlights: → At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. → The parameters of Olsen-Cohen model were found as n = 4.5, α = 3.257 and β = 3.573. → The appropriate grain refining zone for annealing treatment was determined. → A diagram showing different zones for each level of grain sizes via annealing conditions is presented. → The hardness improves 2.5 times higher after the thermo-mechanical process. → Final structure exhibits not only high strength (above 1 GPa) but also good elongation (∼40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  6. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Energy Technology Data Exchange (ETDEWEB)

    Forouzan, Farnoosh, E-mail: forouzan.iut@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, Abbas; Kermanpur, Ahmad; Hedayati, Ali; Surkialiabad, Roohallah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-10-25

    Research highlights: {yields} At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. {yields} The parameters of Olsen-Cohen model were found as n = 4.5, {alpha} = 3.257 and {beta} = 3.573. {yields} The appropriate grain refining zone for annealing treatment was determined. {yields} A diagram showing different zones for each level of grain sizes via annealing conditions is presented. {yields} The hardness improves 2.5 times higher after the thermo-mechanical process. {yields} Final structure exhibits not only high strength (above 1 GPa) but also good elongation ({approx}40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  7. Wear of plasma nitrided and nitrocarburized AISI 316L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    F.A.P. Fernandes

    2010-06-01

    Full Text Available Purpose: the purpose of the work is to compare the wear resistance, in dry and lubricated conditions, of AISI 316L austenitic stainless steel samples that were plasma nitrided or nitrocarburized at 450°C for 5 and 10 h, respectively.Design/methodology/approach: Hardness and wear resistance of austenitic stainless steel can be increased substantially, without losing corrosion resistance, by plasma nitriding or nitrocarburizing surface treatments. In this work, AISI 316L austenitic stainless steel was plasma nitrided and nitrocarburized at 450°C, for 5 and 10 h respectively.Findings: The obtained layers were characterized by optical microscopy, X-ray diffraction, microhardness and micro-wear tests in dry and lubricated conditions. Optical microscopy and X-ray diffraction analysis demonstrated that the nitrided layer is homogeneous and primarily composed of nitrogen rich expanded austenite with a thickness of about 15 µm. Nitrocarburized samples exhibited an external layer of chromium and iron compounds and a sub-layer of expanded austenite with a total thickness of 45 µm. Microhardness profiles showed that the hardness near to the surface was close to 1100 HV for nitriding and 1300 HV for nitrocarburizing. Plasma nitrided and nitrocarburized layers exhibited substantial wear reduction in dry and lubricated test conditions. The use of a lubricant oil reduces wear by a factor of approximately 200 compared to the dry test results.Research limitations/implications: The plasma nitrided layer yielded the best wear performance in both dry and lubricated conditions.Originality/value: Plasma nitriding resulted in the best wear performance when compared with nitrocarburizing in dry and lubricated sliding which is probably due to reduced layer fragility.

  8. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Highlights: • FSP can be used to produce bulk ultrafine grained structures in AISI 316L SS. • The main mechanism for grain structure refinement of FSP 316L SS is DDRX. • However, some evidences of CDRX and SRX were also observed. • The material flow was found to be near simple shear deformation (A/A‾ and C). • FSP samples have an enhanced hardness and strength compared with the base metal. - Abstract: Friction stir processing was used to refine the grain structure in 2 mm thick AISI 316L stainless steel sheets, with a pinless tool, at a constant traverse speed of 63 mm/min and relatively low rotational speeds of 200 and 315 rpm. Depending on the processing conditions, the initial grain size of 14.8 μm in the base metal was subsequently decreased to 0.8–2.2 μm in the processed areas. The microstructural characterizations by orientation imaging and transmission electron microscopy revealed that the grain structure evolution in the stir zone is primarily dominated by discontinuous dynamic recrystallization. The material flow was found to be near simple shear deformation and the developed textures were composed of a mixture of A/A‾ and C components of ideal simple shear textures. The mechanical properties were also evaluated by the longitudinal tensile tests and microhardness measurements. The obtained results showed that, despite a 50% decrease in ductility, the highest yield and ultimate tensile strength of the friction stir processed samples are respectively about 1.6 and 1.2 times higher than those of the base metal. In good agreement with the tensile properties, the increased hardness of the stir zone was attributed to the grain structure refinement

  9. Action of an aerobic hydrogenotroph bacteria isolated from ultrapure water systems on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Several microbial studies have been recently performed in nuclear power stations. These studies concerned essentially the formation of bio-films on submerged metal coupons. Heterotrophic micro-organisms have been found in bulk water of nuclear fuel storage basins but the in situ nutrient sources for bacterial development in such highly oligo-trophic water was unknown. In nuclear environments, radiations lead to the production of molecular hydrogen, hydrogen peroxide and some radicals (OH, O2-) by radiolysis of water or embedding matrices. Bacterial oxidation of molecular H2 commonly occurs in nature, as molecular hydrogen represents a high-energy reductant. We investigated the microbiology of a ultra-pure water basin containing irradiating waste. The initial aim of this study was to determine if autotrophic bacterial growth was possible in this basin. A major bacteria was isolated (Ralstonia sp. GGLH002) which was able to grow autotrophically with hydrogen as the electron donor and oxygen as the electron acceptor, and heterotrophically with organic nutrients. Its hydrogenase activity has been characterized. We focused then our study on the effects of this strain on 304L AISI stainless steel depending on the nutrient source used for bacterial development, e.g hydrogen or organics. In conclusion, the mechanism of passivation enhanced by Ralstonia sp. GGLH002 on AISI 304L SS still remains unknown. Several techniques could give substantial information, including XPS and polarization curves. It seems for the moment that the major bacteria inhabiting an oxic environment containing hydrogen due to radiolysis is not aggressive to stainless steel in conditions near from its environment. Further investigations are needed to test this hypothesis, including a study of the molecular diversity of the bacteria using culture-independent techniques, as cultivatable bacterial populations represent in general only a fraction of the total bacteria. (authors)

  10. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → The cyclic deformation response of AISI 316L steel is investigated at 20 deg. C. → The corresponding microstructure evolution is characterised by electron microscopy. → A 3D representation of dislocation evolution is proposed based on the observation. → The 3D representation gives a good explanation of the microstructure complexity. → The cyclic deformation response is discussed based on the microstructure evolution. - Abstract: The cyclic deformation response of an austenitic stainless steel is characterised in terms of its cyclic peak tensile stress properties by three stages of behaviour: a hardening stage followed by a softening stage, and finally a stable stress response stage. A series of tests have been performed and interrupted at selected numbers of cycles in the different stages of mechanical response. At each interruption point, specimens have been examined by transmission electron microscopy (TEM) with different beam directions by means of the tilting function in order to investigate the formation and the development of dislocation structures from the as-received condition until the end of fatigue life. A new 3D representation of dislocation structure evolution during cyclic loading is proposed on the basis of the microstructural observations. The 3D representation provides a deeper insight into the development of dislocation structures in AISI 316L during low cycle fatigue loading at room temperature. By investigating the dislocation evolution, the study shows that the hardening response is mainly associated with an increase of total dislocation density, whereas the softening stage is a result of the formation of dislocation-free regions. Further development of the dislocation structure into a cellular structure is responsible for the stable stress response stage.

  11. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    Directory of Open Access Journals (Sweden)

    E. Marin

    2013-09-01

    Full Text Available Atomic Layer Deposition ( ALD is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations

  12. The Baking Process of 46.8m2 Glass Melting Kiln%46.8 m2玻璃熔炉的烘炉

    Institute of Scientific and Technical Information of China (English)

    周文昌

    2000-01-01

    本文针对46.8m2玻璃熔窑烘炉的全过程-烘炉曲线的制定、烘炉准备和烘炉三方面的工作作了介绍。%This paper introduces the whole process of the baking of 46.8m2 glass kiln. Theprocess includes :laying out baking curve, baking preparation and whole baking process.

  13. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    OpenAIRE

    Mahmoud Hassan R. S.; Yusoff Syafiq A.; Zainuddin Azman; Hussain Patthi; Ismail Mokhtar; Abidin Kamal

    2014-01-01

    High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The incr...

  14. Determinación de tensiones por rayos x del acero AISI 1045 deformado por rodillo // Determination of stress for x‐ray of the steel AISI 1045 deformed for roller

    Directory of Open Access Journals (Sweden)

    Tomás Fernández‐Columbié

    2012-01-01

    Full Text Available El objetivo del trabajo es realizar el análisis de las tensiones a muestras de acero AISI 1045 endurecidasen frío por rodillo. Con empleo del método de Willianson–Hall se determinó las macro ymicrodeformaciones; la deformación reticular del parámetro de red; el tamaño de las cristalitas; losesfuerzos en la red cristalina y la reducción del tamaño promedio de los granos, lo que permitió establecerlos mecanismos de endurecimiento del acero AISI 1045, deformado por rodadura. Fueron medidos yanalizados diferentes puntos teniendo en cuenta los índices de Miller para la fase ferrítica del acero. Losmodelos lineales obtenidos, son estadísticamente significativos, que muestran una tendencia creciente delas propiedades mecánicas y metalúrgicas, según se incrementan las variables independientes delproceso de experimentación.Palabras claves: rodillo, rodadura, deformación plástica.__________________________________________________________________AbstractThe objective of the paper is to carry out the analysis from the tensions to steel samples AISI 1045hardened cold for roller. With employment of the method of Willianson-Hall was determined the macro andmicro deformations; the reticular deformation of the net parameter; the size of the crystallites; the efforts inthe crystalline net and the reduction of the size average of the grains, what allowed to establish themechanisms of hardening of the steel AISI 1045, deformed by rolling. They were measured and analyzeddifferent points keeping in mind the indexes of Miller for the phase ferrite of the steel. The obtained linealmodels, they are statistically significant that they show a growing tendency of the mechanical estates andmetallurgical, as the independent variables of the experimentation process are increased.Key words: roller, rolling, plastic deformation.

  15. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial; Estudo da resistencia a corrosao do aco inoxidavel ferritico AISI 444 para aplicacao como biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rogerio Albuquerque

    2014-09-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  16. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    Directory of Open Access Journals (Sweden)

    Pavel Michel Almaguer‐Zaldivar

    2015-01-01

    Full Text Available Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con un coeficiente de asimetría de 0,1. Se obtuvo que la unión estudiada tiene un límite de resistencia a la fatiga de 178 MPa, a un punto de corte de 2 039 093 ciclos.Palabras claves: unión soldada, fatiga, curva S-N, AISI 1015, electrodo E6013._______________________________________________________________________________AbstractWelded joints are an important component in structures, by this reason is necessary to know the behaviour of these elements under cyclic loads. The objective of this work is to obtain the S-N curve of the butt welded joint of AISI 1015 steel and electrode E6013 as the contribution material. Fatiguetest was realized within the ASTM standard in the MTS810 testing machine. Rectangular cross section specimens was used. Cyclic loads was asymmetric tensile and the asymmetry ratio used was 0,1. In this study was obtained the fatigue limit equal to 178 MPa, at the cut point of 2 039 093 cycles.Key words: welded joint, fatigue, S-N curve, AISI 1015 steel, electrode E6013.

  17. Transcriptional Analysis of the blaCTX-M-2 Gene in Salmonella enterica Serovar Infantis

    OpenAIRE

    Di Conza, José A.; Gutkind, Gabriel O.; Mollerach, Marta E.; Ayala, Juan A.

    2005-01-01

    Transcriptional organization of blaCTX-M-2 present in a multiresistance plasmid of Salmonella enterica serovar Infantis suggests the presence of more than one promoter involved in the expression of the β-lactamase gene. At least two blaCTX-M-2-specific mRNAs (near to 1 kb and 5 kb) were evidenced. Two +1 signals were detected at −22 bp and −59 bp of blaCTX-M-2 defining two putative promoters.

  18. M2M Communications for E-Health and Smart Grid: An Industry and Standard Perspective

    OpenAIRE

    Fan, Zhong; Haines, Russell J.; Kulkarni, Parag

    2013-01-01

    An overview of several standardization activities for machine-to-machine (M2M) communications is presented, analyzing some of the enabling technologies and applications of M2M in industry sectors such as Smart Grid and e-Health. This summary and overview of the ongoing work in M2M from the industrial and standardization perspective complements the prevalent academic perspective of such publications to date in this field.

  19. M2M Communications in the Smart Grid: Applications, Standards, Enabling Technologies, and Research Challenges

    OpenAIRE

    Siok Kheng Tan; Mahesh Sooriyabandara; Zhong Fan

    2011-01-01

    We present some of the ongoing standardisation work in M2M communications followed by the application of machine-to-machine (M2M) communications to smart grid. We analyse and discuss the enabling technologies in M2M and present an overview of the communications challenges and research opportunities with a focus on wireless sensor networks and their applications in a smart grid environment.

  20. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Hamidzadeh, Mohammad Ali, E-mail: mahamidzadeh@yahoo.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Meratian, Mahmood; Saatchi, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-06-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M{sub 7}C{sub 3} carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy.

  1. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    International Nuclear Information System (INIS)

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M7C3 carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy

  2. EFFECTS OF CARBURIZING AND NITRIDING PROCESSES ON THE COST AND QUALITY OF GEARS PRODUCED WITH AISI 4140 AND 8620 STEELS

    Directory of Open Access Journals (Sweden)

    Claudio José Leitão

    2012-09-01

    Full Text Available This study compares the effects of nitriding and carburizing processes applied to gears subjected to contact stresses below 1300 MPa. The manufacturing cost, as well the depth of hardened layer and the distortion produced by two processes are analyzed. AISI 4140 gears quenched, tempered, liquid and gas nitriding and AISI 8620 gears after liquid carburizing, quenching and tempering are analyzed. The dimensional control of the gears was carried out before and after heat and thermochemical treatments. It is concluded that liquid or gas nitriding processes are about 30% more economical than liquid carburizing an also they reduce the dimensional changes. By the other hand liquid carburizing achieves greater case depth. Liquid nitriding process presents the lowest cost, dimensional changes and case depth.

  3. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  4. Analysis of a premature failure of welded AISI316L stainless steel pipes originated by microbial induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Otero, E.; Bastidas, J.M.; Lopez, V. [Centro Nacional de Investigaciones Metalurgicas, Madrid (Spain)

    1997-07-01

    This paper analyses the causes of the premature failure of welded AISI 316L stainless steel (ss) pipes which formed part of a sea water cooling circuit. The service time of the pipes was 8 months. The laboratory tests carried out consisted of metallography tests, {delta}-ferrite determination, intergranular corrosion susceptibility, cyclic anodic polarization curves, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photo-electron spectroscopy (XPS). The study presents typical forms of microbial induced corrosion (MIC) in AISI 308L and 316L ss in contact with natural sea water. The research is completed with the performance of bacteriological tests which demonstrate that the bacteria which cause the localized corrosion are of the sulphate-reducing genus ``desulfovibrio`` and the sulphide-oxidizing genus ``thiocapsa``. (orig.) 17 refs.

  5. Study the influence of a new ball burnishing technique on the surface roughness of AISI 1018 low carbon steel

    Directory of Open Access Journals (Sweden)

    Abd Alkader Ibrahim

    2015-02-01

    Full Text Available Hard roller burnishing with a ball tool is a surface-finishing where a free-rotating tool rolls over the machined surface under high pressures and flattens the surface roughness peaks by cold work. In the present work, a new burnishing technique has been applied which enables both single and double ball burnishing process in site after turning without releasing the specimen. Sets of experiments are conducted to investigate the influence of burnishing force, feed, speed and number of tool passes on surface roughness of AISI 1018 Low Carbon Steel specimens. Burnishing results showed significant effectiveness of the new burnishing technique in the process. The results revealed that minimum surface roughness are obtained by applying the double ball burnishing process on AISI 1018 Low Carbon Steel specimens. Improvement in surface finish can be achieved in both single and double ball burnishing by increasing the number of burnishing tool passes. The results are presented in this paper.

  6. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    International Nuclear Information System (INIS)

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO2) coated AISI 304 substrates. In HA-SiO2 coatings, 10 wt% SiO2 and 20 wt% SiO2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO2 coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  7. LaCrO3 composite coatings for AISI 444 stainless steel solid oxide fuel cell interconnects

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2012-12-01

    Full Text Available Doped lanthanum chromite-based ceramics are the most widely used interconnector material in solid fuel cells (SOFC since they exhibit significant electrical and thermal conductivity, substantial corrosion resistance and adequate mechanical strength at ambient and high temperatures. The disadvantage of this material is its high cost and poor ductility. The aim of this study is to determine the mechanical and oxidation behavior of a stainless steel (AISI 444 with a LaCrO3 deposition on its surface obtained through spray pyrolisis. Coated and pure AISI 444 materials were characterized by mechanical properties, oxidation behavior, X-ray diffraction and scanning electronic microscopy. Results indicated that the coated material displays better oxidation behavior in comparison to pure stainless steel, but no improvement in mechanical strength. Both materials indicate that deformation behavior depends on testing temperatures.

  8. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet, E-mail: gurpreetsnabha@yahoo.com [University College of Engineering, Punjabi University, Patiala, Punjab (India); Singh, Hazoor [Yadavindra College of Engineering, Punjabi University G.K. Campus, Talwandi Sabo, Punjab (India); Sidhu, Buta Singh [Punjab Technical University, Jalandhar, Punjab (India)

    2013-11-01

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO{sub 2}) coated AISI 304 substrates. In HA-SiO{sub 2} coatings, 10 wt% SiO{sub 2} and 20 wt% SiO{sub 2} was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO{sub 2} coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  9. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    OpenAIRE

    Czub, Elzbieta; Jan K. Nowak; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the r...

  10. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation

    OpenAIRE

    Morgan, Hugh P.; O???Reilly, Francis J.; Wear, Martin A.; O'Neill, Robert; Fothergill-Gilmore, Linda A.; Hupp, Ted; Walkinshaw, Malcolm D.

    2013-01-01

    We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC50 value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC50 of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC50 (conce...

  11. Kajian Sub – Permukaan Baja Paduan Kekerasan Tinggi AISI 4140 Hasil Pembubutan Laju Tinggi Dan Kering Menggunakan Pahat CBN

    OpenAIRE

    Siahaan, Enzo Wiranta Battra

    2012-01-01

    The integrity of the sub - surface plays an important role in product quality. In this study, the impact of rate cuts, feed motion, depth of cut, cutting tool wear and tear on the sub - surface machining of steel AISI 4140 on the end for high speed machining, hard machining and dry machining studied experimentally using CBN cutting tool material. Four test parameters with three levels of cutting speed is low, medium and high. Conducted the data analysis of quantitative and qualitative. Quanti...

  12. Modifications on the behaviour of AISI 304 stainless steel submitted to creep caused by intermediate treatment of annealing

    International Nuclear Information System (INIS)

    Type AISI 304 austenitic stainless steel samples which have been previously creep deformed at 7500C, were annealed at 11000C. The effects of this heat treatment in the mechanical behavior of this material when retested in creep were investigated. The results were analysed by taking into account the structural modifications observed and the controlling mechanisms which operate during the deformation and fracture occurring in the creep process. (Author)

  13. The silica-titania layer deposited by sol-gel method on the AISI 316L for contact with blood

    Directory of Open Access Journals (Sweden)

    W. Walke

    2013-02-01

    Full Text Available Purpose: The study analyses influence of surface modification of Si:Ti on physical and chemical properties of samples made from AISI 316L steel in solution simulating blood-vascular system.Design/methodology/approach: Sol-gel layer was selected on the ground of data from literature. TEOS and TET made the ground for initial solution. Application of the layer on the surface of samples made of AISI 316L steel was preceded by mechanical working - grinding (Ra = 0.40 µm and mechanical polishing (Ra = 0.12 µm. Corrosion resistance tests were performed on the ground of registered anodic polarisation curves and Stern method. In order to evaluate phenomena that take place on the surface of the tested alloys EIS was also applied. The tests were performed in artificial blood plasma at the temperature of T = 37.0±1°C and pH = 7.0±0.2.Findings: Obtained results on the ground of voltammetric and impedance tests showed differentiated electrochemical properties of AISI 316L steel depending on the type of surface treatment. Practical implications: Suggested subject matter of the article supports development of entrepreneurship sector due to high social demand for this type of technologies and relatively easy way of putting obtained laboratory tests data into inductrial and clinical practice.Originality/value: Suggestion of proper variants of surface treatment with application of sol-gel method is meaningful in future perspective and it shall promote determination of technological conditions with precise parameters of creation of oxide layers on metallic implants made of AISI 316L steel that come into contact with blood.

  14. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...... of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite....

  15. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    OpenAIRE

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen; Somers, Marcel A. J.

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite.

  16. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  17. OPTIMIZATION OF SURFACE ROUGHNESS AND TOOL FLANK WEAR IN TURNING OF AISI 304 AUSTENITIC STAINLESS STEEL WITH CVD COATED TOOL

    OpenAIRE

    M. Kaladhar; K. Venkata Subbaiah; CH. SRINIVASA RAO

    2013-01-01

    AISI 304 austenitic stainless steel is a popularly used grade in the various fields of manufacturing because of its high ductility, high durability and excellent corrosion resistance. High work hardening, low heat conductivity and high built up edge (BUE) formation made this as difficult-to- machine material. Poor surface quality and rapid tool wear are the common problems encountered while machining it. In the present work, an attempt has been made to explore the influence of machining para...

  18. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    OpenAIRE

    Triwiyanto A.; Zainuddin A.; Abidin K.A.Z; Billah M.A; Hussain P.

    2014-01-01

    This paper present mathematical model which developed to predict the nitrided layer thickness (case depth) of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with ...

  19. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells

    OpenAIRE

    Lira-Cantú, Monica; Morales Sabio, Angel; Brustenga, Alex; Gómez-Romero, P.

    2005-01-01

    We report the electrochemical deposition of nanostructured nickel-based solar absorber coatings on stainless steel AISI type 316L. A sol–gel silica-based antireflection coating, from TEOS, was also applied to the solar surface by the dip-coating method. We report our initial results and analyze the influence of the stainless steel substrate on the final total reflectance properties of the solar absorber. The relation between surface morphology, observed by SEM and AFM, the comp...

  20. Quantifying Cutting and Wearing Behaviors of TiN- and CrN-Coated AISI 1070 Steel

    OpenAIRE

    Ahmet Cakan; Yildirim, Mustafa M.; Vedat Ozkaner

    2008-01-01

    Hard coatings such as titanium nitride (TiN) and chromium nitride (CrN) are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP) technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscop...

  1. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.Y. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Cheng, F.T. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: apaftche@polyu.edu.hk; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-02-15

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained.

  2. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    International Nuclear Information System (INIS)

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  3. IMPACT OF QUENCH SEVERITY AND HARDNESS ON AISI 4137 USING ECO-FRIENDLY QUENCHANTS AS INDUSTRIAL HEAT TREATMENT

    OpenAIRE

    Adekunle, A. S.; K. A. Adebiyi; Durowoju, M.O

    2013-01-01

    The rate of heat extraction, hardness, and severity of quenching of both edible and non-edible bioquenchants for industrial heat treatment was investigated using AISI 4137 medium carbon steel. Results showed that both the maximum and minimum cooling rates occurred in the nucleate boiling stage and were strongly dependent on the viscosity and saponification number. The peak cooling rates of Jatropha oil, groundnut oil, melon oil, sheabutter oil, palmkernel oil, and palm oil were greater than t...

  4. Effect of fast neutron irradiation on tensile properties of AISI 304 stainless steel and alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Highlights: → The σy and σUTS of AISI 304 steel increased with fluence and markedly at 4.8 x 1018 n cm-2. → Ductility of the AISI 304 steel is reduced slightly even up to highest fluence. → Marked decrease in σy and relatively less decrease in σUTS occur in the alloy Ti-6Al-4V. → Reduction in ductility occurs in Ti-6Al-4V even at low fluence of 1.2 x 1018 n cm-2. → Both the materials are shown phase instability resulting from neutron irradiation. - Abstract: Effect of fast neutron irradiation at low fluence level of ∼1018 ncm-2, on tensile properties of AISI 304 stainless steel and titanium alloy Ti-6Al-4V, was studied at ambient temperature. Flat tensile specimens, subjected to fast neutron irradiation to three different fluences of 0.6 x 1018, 1.2 x 1018 and 4.8 x 1018 ncm-2, in a reactor, were tested at ambient temperature. It was observed that yield strength and tensile strength of the AISI 304 stainless steel increased marginally, upto the fluence level of 1.2 x 1018 ncm-2, but significantly at the highest fluence of 4.8 x 1018 ncm-2. However there was only nominal decrease in ductility due to neutron irradiation. On the other hand, in the alloy Ti-6Al-4V there was fall both in strength as well as ductility with increase in neutron fluence. Ductility was found to decrease upto the fluence of 1.2 x 1018 ncm-2 and remained constant at higher fluences. Phase instability was revealed by X-ray diffraction in both the neutron irradiated materials.

  5. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-04-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  6. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  7. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    International Nuclear Information System (INIS)

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate

  8. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, F.T.; Lo, K.H.; Man, H.C

    2004-08-25

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate.

  9. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  10. Surface modifications of AISI 1045 steel created by high intensity 1064 and 532 nm picosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.

  11. Suscetibilidade do cupuaçuzeiro e outras espécies vegetais a isolados de Crinipellis perniciosa obtidos de quatro hospedeiros diferentes no sul da Bahia

    Directory of Open Access Journals (Sweden)

    LOPES JOSÉ RONALDO M.

    2001-01-01

    Full Text Available Visando avaliar as interações de suscetibilidade do cupuaçu (Theobroma grandiflorum e de outros hospedeiros ao fungo Crinipellis perniciosa, plântulas de cupuaçu , cacau (Theobroma cacao, cacau-do-peru (Theobroma bicolor e jurubeba (Solanum paniculatum, com idade entre seis a oito semanas, foram inoculadas com basidiósporos provenientes de vassouras secas e/ou frutos infetados destes hospedeiros coletados no sul da Bahia. As inoculações foram feitas depositando-se uma gota de 20 µl da suspensão de 5,0 x 10(5 basidiósporos/ml de C. perniciosa, obtidos de cada um dos hospedeiros, na gema apical e no hipocótilo (cupuaçu de cada muda. Após a inoculação as plântulas permaneceram por 24 h em câmara climatizada, com temperatura em torno de 25 ºC e aproximadamente 100% de umidade. Realizou-se a avaliação final dos sintomas 60 dias após a inoculação. O delineamento experimental utilizado foi o inteiramente casualizado, com 20 tratamentos e quatro repetições de dez plantas. O cacau e o cacau-do-peru foram suscetíveis ao inóculo obtido dos quatro hospedeiros. A jurubeba apresentou reações de suscetibilidade somente aos inóculos dela própria e de cacau. O cupuaçu apresentou sintomas quando inoculado com basidiósporos obtidos dele próprio, de cacau e de cacau-do-peru. O inóculo proveniente de cacau foi o mais infetivo a todos os hospedeiros.

  12. PROCESSAMENTO E CARACTERIZAÇÃO DE NÚCLEO DE FERRO PURO OBTIDO POR METALURGIA DO PÓ PARA APLICAÇÃO COMO CAPTADOR EM ENERGY HARVESTING

    Directory of Open Access Journals (Sweden)

    Débora Albuquerque Vieira

    2015-07-01

    Full Text Available Nos últimos anos, o termo colheita de energia tem sido utilizado em uma grande classe de aplicações, cuja principal função é a recuperação da energia disponível a partir de fontes, por exemplo, mecânica, solar, térmica, entre outras, que de outro modo seria desperdiçada. O objetivo deste estudo é o desenvolvimento e caracterização de um núcleo de pó de ferro obtido por moagem de alta energia, bem como a utilização desse núcleo como captador em um processo de colheita de energia por indução no intuito de observar a sua capacidade de colher energia. O ferro foi caracterizado por difração de raios X e microscopia eletrônica de varredura e realizados testes de bancada para avaliar a quantidade de energia colhida do captador desenvolvido. A análise estrutural mostrou que o pó obtido é monofásico, sem presença de impurezas. As micrografias apresentam característica homogênea, com pouca porosidade. As características magnéticas do material obtido o classificam como material ferromagnético mole, devido ao estreito laço de histerese. No testes para captação de energia, o núcleo apresentou resultados satisfatórios, pois foi capaz de fornecer um nível máximo de potência de 0.41mW quando submetido a uma corrente elétrica em seu enrolamento primário de 15 A

  13. Estudo da recuperação e hidrólise de isoflavonas e carboidratos obtidos a partir do melaço de soja

    OpenAIRE

    Montovani, Daniel

    2013-01-01

    Resumo: O melaço de soja é um resíduo obtido no processo de geração do concentrado proteico. É um resíduo pouco aproveitado em aplicações biotecnológicas, mesmo dispondo de substâncias bioativas, como as isoflavonas, e presença de altas quantidades de carboidratos, em especial os oligossacarídeos de rafinose (RO). Este material apresenta grande potencial para atender demandas das indústrias alimentícias e farmacêuticas. Assim, este trabalho tem como objetivo estudar a conversão dos compostos ...

  14. Propriedades funcionais de hidrolisados obtidos a partir de concentrados protéicos de soro de leite Functional properties of whey protein hydrolysates from milk whey proteins concentrate

    OpenAIRE

    Maria Teresa Bertoldo Pacheco; Nádia F. G. Dias; Vera Lúcia S. BALDINI; Tanikawa, C; Valdemiro C. Sgarbieri

    2005-01-01

    O objetivo deste trabalho foi comparar a atividade funcional de hidrolisados obtidos por diferentes sistemas enzimáticos. Foram selecionadas proteáses de origem animal (pancreatina) e bacteriana (protamex e alcalase). A atividade funcional foi monitorada pela dosagem de glutationa no fígado e testes de atividade imunológica no baço para reação imunológica primária (IgM) através da contagem de células formadoras de placa (CFP). Nos ensaios biológicos foram utilizados camundongos isogênicos da ...

  15. Cariótipo Fetal em Líquido Pleural Obtido por Toracocentese Fetal Karyotyping of Pleural Fluid Obtained by Thoracocentesis

    OpenAIRE

    Antonio Carlos Vieira Cabral; Isabela Nelly Machado; Henrique Vitor Leite; Alamanda Kfoury Pereira; Zilma Nogueira Reis Vitral

    2001-01-01

    Objetivos: avaliar a efetividade da realização de cariótipo em líquido pleural obtido por toracocentese de um grupo de fetos portadores de derrame pleural. Métodos: foram avaliados 15 fetos com derrame pleural uni ou bilateral nos quais se realizou uma punção da cavidade torácica. A idade gestacional variou entre 19 e 34 semanas. Os fetos foram estudados com ultra-sonografia morfológica para determinar a presença de anomalias associadas. Nos casos em que não se obteve o cultivo em líquido ple...

  16. Detecção de atividade antibacteriana in vitro nos extratos brutos obtidos a partir do plasmódio de Physarella oblonga (Berk. & Curt.) Morgan (Myxomycetes)

    OpenAIRE

    Ribeiro, Sheyla M.; Laise H. Cavalcanti; Pereira, Eugênia C.; Norma B. Gusmão; Nicácio H. Silva

    2002-01-01

    Utilizando-se o teste de difusão em meio sólido, detectou-se atividade antibacteriana em extratos de Physarella oblonga (Physaraceae) obtidos a partir de imobilização plasmodial e do plasmódio in natura. Os extratos foram ativos contra Staphylococcus aureus (halos=14 mmf) e Mycobacterium smegmatis (halos=12 mmf e 13 mmf). Menor inibição foi observada frente a Bacillus subtilis (halos=10 mmf e 9 mmf) e Pseudomonas aeruginosa (halos=10 mmf e 8 mmf). Escherichia coli apresentou resistência a tod...

  17. Propriedades físicas de lipídios estruturados obtidos de misturas de gordura do leite e óleo de milho

    Directory of Open Access Journals (Sweden)

    Rodrigues Juliana Neves

    2003-01-01

    Full Text Available Através da mistura e interesterificação de óleos e gorduras podem ser obtidos lipídios estruturados, que são compostos que apresentam características físicas, químicas e nutricionais diferentes das dos lipídios que lhes deram origem. Esses novos compostos podem apresentar capacidade de reduzir o risco de doenças, sendo então chamados de "alimentos funcionais". O objetivo deste estudo foi avaliar as propriedades físicas de lipídios estruturados obtidos por interesterificação química a partir de misturas de gordura do leite e óleo de milho. Foram preparadas quatro misturas, nas proporções de 80:20, 60:40, 40:60 e 20:80 de gordura do leite e óleo de milho, respectivamente. As amostras foram submetidas à interesterificação química com catalisador metóxido de sódio. As misturas e os lipídios estruturados obtidos foram avaliados quanto à consistência, conteúdo de gordura sólida e composição em ácidos graxos. Foram obtidos lipídios estruturados contendo teores de até 22% de ácido linoléico pela adição de até 40% de óleo de milho à gordura do leite, que originalmente possuía apenas cerca de 2% deste ácido graxo. A consistência e o conteúdo de gordura sólida foram dependentes da gordura do leite e da interação desta com o óleo de milho. Os coeficientes relativos às interações entre os componentes das misturas foram negativos, demonstrando efeito antagônico, característico de interações eutéticas entre gorduras. Os resultados mostraram relação linear significativa entre o conteúdo de gordura sólida e a consistência das amostras.

  18. Aggregation and Trunking of M2M Traffic via D2D Connections

    DEFF Research Database (Denmark)

    Rigazzi, Giovanni; Kiilerich Pratas, Nuno; Popovski, Petar;

    2015-01-01

    Machine-to-Machine (M2M) communications is one of the key enablers of the Internet of Things (IoT). Billions of devices are expected to be deployed in the near future for novel M2M applications demanding ubiquitous access and global connectivity. In order to cope with the massive number of machines...

  19. Inhibition of influenza M2-induced cell death alleviates its negative contribution to vaccination efficiency.

    Directory of Open Access Journals (Sweden)

    Petr O Ilyinskii

    Full Text Available The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1 was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed.

  20. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    Science.gov (United States)

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID

  1. Evaluación del coeficiente de endurecimiento del acero AISI 1045 deformado por rodillo

    Directory of Open Access Journals (Sweden)

    D. Alcántara

    2011-12-01

    Full Text Available El objetivo del trabajo es determinar el comportamiento del coeficiente de endurecimiento n por la ecuación de Hollomon en muestras cilíndricas de acero AISI 1045, las cuales, después de ser deformadas, se sometieron a ensayos de tracción. Se utiliza un diseño de experimento donde se tienen en cuenta las variables número de revolución (n con 27, 54 y 110 rev/min, fuerza de compresión (P de 500, 1 500 y   2 500 N y avance (S de 0,075; 0,125 y 0,25 mm/rev. Finalmente, aplicando el método de regresión se obtuvo un coeficiente de endurecimiento, el cual se aproxima a la linealidad cuando restringimos el cálculo a rangos de deformación elevados. Este coeficiente de endurecimiento se aplica en la ecuación de Hollomon para determinar el nuevo valor de tensión de fluencia y aplicarlo para el cálculo del trabajo mínimo a realizar en un proceso de deformación en frío empleando rodillo simple.   Palabras clave: Deformación Plástica; tensión; deformación; endurecimiento.The objective of the work is to determine the behavior of the hardening coefficient n by the equation of Hollomon, in cylindrical samples of steel AISI 1045, those which, after the deformed, were subjected to traction rehearsals. He used an experiment design where are kept in mind the revolution number (n with 27, 54 and 110 rev/min, it compression forces (P of 500, 1 500 and 2 500 N and feed (S of 0.075; 0.125 and 0.25 mm/rev. Finally, applying the regression method a hardening coefficient was obtained, which approaches to the linearity when restrict the calculation to high ranges of deformation. This hardening coefficient is applied in the equation of Hollomon for determine the new value of flow tension and to apply in the calculation of the minimum work to carry out in a cold process of deformation using simple roller.   Keywords: Plastic deformation; stress; deformation; hardening.

  2. Genetic control of immune responses to influenza A matrix 2 protein (M2).

    Science.gov (United States)

    Misplon, Julia A; Lo, Chia-Yun; Gabbard, Jon D; Tompkins, S Mark; Epstein, Suzanne L

    2010-08-16

    Vaccines should protect genetically diverse populations. Therefore we tested the candidate "universal" influenza A matrix protein 2 (M2) vaccine in multiple mouse strains. Mice were primed with M2 DNA and boosted with M2 recombinant adenovirus (rAd). C57BL/6 (B6) mice developed no antibody or T-cell response to M2, while BALB/c responded strongly. CBA responses were intermediate. Both MHC and background genes influenced responsiveness. To improve low responses we immunized with adjuvanted peptide-carrier conjugates, or co-immunized with nucleoprotein (NP), which can augment T-cell help. The conjugate vaccine enhanced some outcomes but not others. Co-immunizing with NP improved outcomes over either NP or M2 immunizations alone. These results have implications for vaccination of genetically diverse populations. PMID:20600476

  3. Reliable Radio Access for Massive Machine-to-Machine (M2M) Communication

    DEFF Research Database (Denmark)

    Madueño, Germán Corrales

    Machine-to-Machine (M2M) communication is a term that identifies the emerging paradigm of interconnected systems, machines, and things that communicate and collaborate without human intervention. The characteristics of M2M Communications are small payloads and sporadic transmissions, while the...... service requirements can range from massive number of devices to ultra-reliable. This PhD thesis focuses on novel mechanisms to meet these requirements in a variety of wireless systems, from well-established technologies such as cellular networks, to emerging technologies like IEEE 802.11ah. Today an...... preferable solution for M2M, no mechanisms are in place to guarantee reliable M2M access. Contrary to mainstream solutions that focus on preventing overload, we introduce mechanisms to provide reliable M2M service. We also investigate what cellular networks can do about upcoming smart metering traffic...

  4. Evaluación del comportamiento estructural y de resistencia a la corrosión de armaduras de acero inoxidable austenítico AISI 304 y dúplex AISI 2304 embebidas en morteros de cemento Pórtland

    OpenAIRE

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-01-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the ...

  5. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  6. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangying@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Busby, J.T. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-05-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors.

  7. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization

    International Nuclear Information System (INIS)

    Joining of dissimilar materials is of increasing interest for a wide range of industrial applications. The automotive industry, in particular, views dissimilar materials joining as a gateway for the implementation of lightweight materials. Specifically, the introduction of aluminum alloy parts into a steel car body requires the development of reliable, efficient and economic joining processes. Since aluminum and steel demonstrate different physical, mechanical and metallurgical properties, identification of proper welding processes and practices can be problematic. In this work, inertia friction welding has been used to create joints between a 6061-T6 aluminum alloy and a AISI 1018 steel using various parameters. The joints were evaluated by mechanical testing and metallurgical analysis. Microstructural analyses were done using metallography, microhardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray elemental mapping, focused ion beam (FIB) with ultra high resolution SEM and transmission electron microscopy (TEM) in TEM and STEM modes. Results of these analysis first suggested that joint strengths on the order of 250 MPa could be achieved. In addition, failures were seen in the plasticized layer on the aluminum side of the joint. Further, bond lines were characterized by a thin layer of formed Al-Fe intermetallic. This intermetallic layer averaged roughly 250 nm thick and compositionally appears related to the FeAl and Fe2Al5 phases.

  8. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    International Nuclear Information System (INIS)

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M23C6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  9. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    International Nuclear Information System (INIS)

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values

  10. Surface characterization of stainless steel AISI 316 L in contact with simulated body fluid

    International Nuclear Information System (INIS)

    Titanium and cobalt alloys, as well as some stainless steels, are often used in orthopedic surgery. In the more developed countries, stainless steel is used only for temporary implants since it does not hold up as well as other alloys to corrosion in a physiological medium. Nevertheless, stainless steel alloys are frequently used for permanent implants in developing countries. Therefore, more knowledge about its reaction to corrosion is needed as well as the characteristics of the surface layer generated in a physiological medium in order to control potential toxicity from the release of metallic ions into the organism. The surface films usually have a different composition and chemical state from the base material. The surface characterization of alloys used in orthopedic surgery should not be underestimated, since it heavily influences the behavior of the implant through the relationship of the surface film-tissue and the possible migration of metallic ions from the base metal to the surrounding tissue. This work presents a study of the surface composition and resistance to the corrosion of stainless steel AISI 316L in simulated body fluid (SBF) aired at pH 7.25 and 37oC. The resistance to the corrosion was studied with an electrochemical impedance spectroscopy (EIS) and anodic polarization curves (CW)

  11. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  12. Effects of heat treatment on mechanical properties of modified cast AISI D3 tool steel

    International Nuclear Information System (INIS)

    Highlights: • Secondary hardening occurred when tempered at 500 °C and austenitized at 1050 °C. • Hardness of new steel is about 1 HRC higher than D3 steel, when tempered at 300 °C. • New steel has less bending strength and strain compared with D3 steel. • With increasing hardness wear resistance is improved about 56%. • Linear relationship observed between weight loss and hardness of modified steel. - Abstract: In this research new modified as-cast cold work AISI D3 tool steel was produced by increasing Ti and Nb and decreasing Cr. At first, Cast samples were homogenized at optimized cycle and then austenitized and tempered within the specified temperature ranges. Mechanical properties and wear behavior were determined by performing hardness test, three point bending test and pin on disc wear test. Also, scanning electron microscope was employed to characterize the new modified steel. For the specimens austenitized and tempered at 1050 °C and 500 °C respectively, the secondary hardening effect was observed which was consistent with lower weight loss of pin on disc wear test results. The results show that, the new modified as-cast steel represents hardness and wear resistance equal to or better than that of standard wrought D3 steel, while its strength and toughness are lower than those of wrought steel

  13. Problems in laser repair-cladding a surface AISI D2 heat treated tool steel

    International Nuclear Information System (INIS)

    The aim of the present work is to establish the relationship between laser cladding process parameters (Power, Process Speed and Powder feed rate) and AISI D2 tool steel metallurgical transformations, with the objective of optimizing the processing conditions during real reparation. It has been deposited H13 tool steel powder on some steel substrates with different initial metallurgical status (annealed or tempered) using a coaxial laser cladding system. The microstructure of the laser clad layer and substrate heat affected zone (HAZ) was characterized by Optical microscopy, Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Results show that the process parameters (power, process speed, feed rate) determine the dimensions of the clad layer and are related to the microstructure formation. Although it is simple to obtain geometrically acceptable clads (with the right shape and dimensions) in many cases occur some harmful effects as carbide dilution and non-equilibrium phases formation which modify the mechanical properties of the coating. Specifically, the presence of retained austenite in the substrate-coating interface is directly related to the cooling rate and implies a hardness diminution that must be avoided. It has been checked that initial metallurgical state of the substrate has a big influence in the final result of the deposition. Tempered substrates imply higher laser absorption and heat accumulation than the ones in annealed condition. This produces a bigger HAZ. For this reason, it is necessary to optimize process conditions for each reparation in order to improve the working behaviour of the component. (Author)

  14. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: saeed.kahrobaee@yahoo.com; Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir

    2015-05-15

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe{sub 3}C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated.

  15. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    International Nuclear Information System (INIS)

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe3C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated

  16. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  17. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    The solution treated commercial grade AISI 304L austenitic stainless steel plate was heavily cold rolled to 90% of thickness reduction. Cold rolled specimens were annealed at various temperatures by thermal cycles and isothermal annealing. Strain-induced phase transformations and microstructure studies were carried out both in the cold rolled and annealed conditions. The X-ray diffraction and magnetic measurements were used for phase transformation studies. The transmission electron microscope characterisation revealed that the cyclic thermal process resulted in ultrafine grain austenite formation whereas, the isothermal annealing developed coarser grain size microstructure. The different microstructural evolutions by the above two processes largely influenced the development of the recrystallisation texture. The thermal cycling produced a distinct γ-fibre texture while the isothermal annealing resulted in a cube texture component along with the γ-fibre. The γ-fibre texture evolution was attributed to the over critical subgrains or nuclei and {1 0 0} cube texture to the coarser grains of micrometer size.

  18. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    International Nuclear Information System (INIS)

    Conventional fusion welding of stainless steel foils (<100 μm thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 μm thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of δ-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding

  19. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Science.gov (United States)

    Sudha, C.; Sivai Bharasi, N.; Anand, R.; Shaikh, H.; Dayal, R. K.; Vijayalakshmi, M.

    2010-07-01

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M 23C 6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  20. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, C. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Sivai Bharasi, N. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Anand, R. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Shaikh, H., E-mail: hasan@igcar.gov.i [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Dayal, R.K. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Vijayalakshmi, M. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2010-07-31

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 {mu}m width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 {mu}m width was identified which was found to consist of M{sub 23}C{sub 6} carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  1. Electronic structures and nitride formation on ion-implanted AISI 304L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, G.S.; Son, J.H.; Kim, S.H.; Chae, K.H.; Whang, C.N. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics); Menthe, E.; Rie, K.-T.; Lee, Y.P.

    1999-02-01

    A N[sub 2][sup +] implantation technique was employed to improve the surface hardness of stainless steel, and the electronic structures and nitride formation of the ion-implanted layer were investigated and compared with those produced using other techniques, including plasma nitriding. AISI 304L austenite stainless steel was irradiated by 80 keV N[sub 2][sup +] with a dosage ranging from 1.0 x 10[sup 16] to 1.0 x 10[sup 18] ions cm[sup -2] at room temperature. The formation of various nitrides was confirmed by X-ray diffraction. The quantitative hardness of the samples was measured by using a Knoop microhardness tester. X-ray photoelectron spectroscopy was also carried out to elucidate the chemical states and electronic structures of the ion-implanted layers. The measurements were repeated after post-annealing at 400 C for 1 h in a high vacuum. Changes in phase, chemical state and electronic structures were observed according to the ion dose and heat treatment. (orig.) 12 refs.

  2. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu+ ion. In each essay stayed a displacement velocity was constant of 1x10-9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  3. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  4. Effect of V Notch Shape on Fatigue Life in Steel Beam Made of AISI 1037

    Directory of Open Access Journals (Sweden)

    Qasim Bader

    2014-04-01

    Full Text Available The present work encompasses effect of V notch shape with various geometries and dimensions on fatigue life behavior in steel beam made of Medium Carbon Steel AISI 1037 which has a wide application in industry. Fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for smooth specimens (reference and by use Numerical method (FEA.The fatigue experiments were carried out at room temperature, applying a fully reversed cyclic load with the frequency of (50Hz and mean stress equal to zero (R= -1, on a cantilever rotating-bending fatigue testing machine. The stress ratio was kept constant throughout the experiment. Different instruments have been used in this investigation like Chemical composition analyzer type (Spectromax ,Tensile universal testing machine type (WDW-100E ,Hardness tester type (HSV- 1000 , Fatigue testing machine model Gunt WP 140, Optical Light Microscope (OLM and Scanning Electron Microscope (SEM were employed to examine the fracture features . The results show that there is acceptable error between experimental and numerical works .

  5. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel

    Institute of Scientific and Technical Information of China (English)

    Byeong-Don JOO; Jeong-Hwan JANG; Jae-Ho LEE; Young-Myung SON; Young-Hoon MOON

    2009-01-01

    An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting. Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar. Coating layer was fabricated with various process parameters such as laser power, scan rate and fill spacing. Surface quality and coating thickness were measured and analyzed. Three different surface patterns, such as typeⅠ, typeⅡand type Ⅲ, are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing, 50-350 mm/s of scan rate and 40 μm of fill spacing, 10-150 mm/s of scan rate. The maximum coating thickness is increased with power elevation or scan rate drop, and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.

  6. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  7. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    International Nuclear Information System (INIS)

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed

  8. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    Directory of Open Access Journals (Sweden)

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Full Text Available Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscopy, microhardness test, X-ray diffraction and GDOES. The results showed that there are significant microstructural and morphological differences on the formed layers depending on the quantity of nitrogen and methane added to the plasma nitriding atmosphere. Thicknesses of 10, 5 and 2.5 µm were obtained when the nitrogen content of the gas mixtures were varied. The possibility to obtain a compound layer formed mainly by γ'-Fe4N nitrides was also shown. For all studied plasma nitriding conditions, the presence of a compound layer was recognized as being the responsible to hinder the decarburization on the steel surface. The highest value of surface hardness - 1277HV - were measured in the sample which were nitrided with 3vol.% of CH4.

  9. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10-9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  10. Interlaboratory study of the AISI 316L steel tribo-corrosion

    International Nuclear Information System (INIS)

    Seven European laboratories have participated in an interlaboratory study of AISI 316L stainless steel tribo-corrosion. Different tests arrangements have been used (rotating pin-on-disc and disc-on-pin, rotating tube-on-flat, alternating pin-on-flat) depending on the test laboratory. The experimental conditions for the various tests have ranged from: 0.1 to 30 N for normal loads, 1 to 33 Hz for frequency and 5 to 150 mm/sec for linear speed, 0.79 to 25.50 cm2 for electrode surfaces, -244 to -71 mV for corrosion potentials, and -33 to 46 mV for passivation potentials. Data for electrochemical potentials during frictional wear, coefficients of friction, wear rates and wear channel size are tabulated in this article. A dispersion of data is observed between the laboratories for friction coefficients; but this dispersion of data is comparable and even inferior to that obtained in VAMAS interlaboratory tests. Electrochemical tests results also have a convergence that is typical of a previous interlaboratory test program conducted by EFC. A large deviation in coefficients of wear is observed and is also typical of previous VAMAS testing

  11. Tribological Properties of MoSi2 Against AISI10045 Steel Under Sliding Friction

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; ZHANG Hou-an; CHEN Hua-hui

    2006-01-01

    MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.

  12. Investigation of the influential parameters of machining of AISI 304 stainless steel

    Indian Academy of Sciences (India)

    R A Mahdavinejad; S Saeedy

    2011-12-01

    Austenitic stainless steels are hard materials to machine, due to their high strength, high ductility and low thermal conductivity. The last characteristic results in heat concentration at the tool cutting edge. This paper aims to optimize turning parameters of AISI 304 stainless steel. Turning tests have been performed in three different feed rates (0.2, 0.3, 0.4 mm/rev) at the cutting speeds of 100, 125, 150, 175 and 200 m/min with and without cutting fluid. A design of experiments (DOE) and an analysis of variance (ANOVA) have been made to determine the effects of each parameter on the tool wear and the surface roughness. It is being inferred that cutting speed has the main influence on the flank wear and as it increases to 175 m/min, the flank wear decreases. The feed rate has the most important influence on the surface roughness and as it decreases, the surface roughness also decreases. Also, the application of cutting fluid results in longer tool life and better surface finish.

  13. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    Science.gov (United States)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  14. Flaw tolerance of the AISI 403 end fittings of CANDU pressure tubes

    International Nuclear Information System (INIS)

    The fuel channel assemblies in a CANDU nuclear reactor locate and support the fuel bundles in the reactor core and form part of the Primary Heat Transport System. Heavy water coolant flows through each fuel channel and over the fuel bundles to remove the heat generated by the fission reaction. The pressure tube is rolled into the end fitting at each end by a mechanically rolled joint. At the other end of the end fitting there is a seal which is removed to allow on-power refuelling. Thus the material must have a yield strength sufficient to make a leak tight rolled joint and adequate corrosion resistance at the seal face. End fittings are made of AISI 403, a 12% Cr-0.1% steel, which has the combination of properties needed. However, at the strength needed to make the rolled joint the mils lateral expansion (MLE) measured in Charpy tests does not consistently meet toughness requirements of Section III of the ASME Boiler and Pressure Vessel Code. A program was undertaken to demonstrate, by bursting end fittings containing machined flaws, that there was a safety factor of at least 3 at its end-of-life condition. The crack shape used was based on that specified in Appendix G of Section III but the crack was made deeper so that it was located in the region of high residual stress in the rolled joint. The partial thickness defect, a machined slot 17 mm deep and 75 mm long was fatigue sharpened before bursting

  15. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  16. Microstructural evolution of AISI 4340 steel during Direct Metal Deposition process

    International Nuclear Information System (INIS)

    Research highlights: → 4340 steel was successfully deposited using diode laser DMD system on mild steel. → Ferrite, martensite and cementite microstructural phases were identified in the clad. → Lattice parameters of identified phases are shorter than reported lattice parameters. → Microhardness of the clad decreases down the clad layers. → Decrease in microhardness corresponds to degree of tempering of martensite phase. - Abstract: In the current investigation AISI 4340 steel was laser deposited on a rolled mild steel substrate by Direct Metal Deposition (DMD) technology. The microstructural investigation of the clad was performed using optical and electron microscopes and X-ray diffraction techniques. The microstructure consisted of ferrite, martensite and cementite phases. Two types of martensite, lathe-type and plate-type, were observed in the microstructure. Decrease in microhardness values from the top layer to the alloy layer proves that the degree of tempering of the martensite phase increases in the same direction. The lattice parameters of the identified phases were found to be shorter than those reported in literature. The reported parameters in literature are from samples processed under equilibrium conditions.

  17. Effect of two synthetic lubricants on life of AISI 9310 spur gears

    Science.gov (United States)

    Townsend, Dennis P.; Shimski, John

    1991-01-01

    Spur-gear fatigue tests were conducted with two lubricants using a single lot of consumable-electrode vacuum-melted (CVM) AISI 9310 spur gears. The gears were case carburized and hardened to Rockwell C60. The gear pitch diameter was 8.89 cm. The lot of gears was divided into two groups, each of which was tested with a different lubricant. The test lubricants can be classified as synthetic polyol-ester-based lubricants. One lubricant was 30 percent more viscous that the other. Both lubricants have similar pressure viscosity coefficients. Test conditions included a bulk gear temperature of 350 K, a maximum Hertz stress of 1.71 GPa at the pitch line, and a speed of 10,000 rpm. The surface fatigue life of gears tested with one lubricant was approximately 2.4 times that for gears tested with the other lubricant. The lubricant with the 30 percent higher viscosity gave a calculated elastohydrodynamic (EHD) film thickness that was 20 percent higher than the other lubricant. This increased EHD film thickness is the most probable reason for the improvement in surface fatigue life of gears tested with this lubricant over gears tested with the less viscous lubricant.

  18. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels

    International Nuclear Information System (INIS)

    In this work, we analyzed the roughness morphology of indentation microcracks produced by the Vickers microindentation in the iron boride Fe2B. Using the paste boriding process, the boride layers were formed at the surface of AISI 1045 steels. The diffusion processes were carried out with 5 mm of boron paste thickness over the substrate surface at three different temperatures (1193, 1223 and 1273 K) with two different time exposures. The indentations in each Fe2B layer were made using a constant load of 200 g at four different distances from the surface. The fracture behavior of the Fe2B borided phase is found to be brittle in nature. The profiles of microcracks formed at the corners of the indentations were obtained using the scanning electronic microscopy and were analyzed within the framework of fractal geometry. We found that all indentation microcracks display a self-affine invariance characterized by the same roughness (Hurst) exponent H = 0.8 ± 0.1. The effect of the self-affine roughness of indentation microcracks on the measured fracture toughness is discussed within the framework of the mechanics of self-affine cracks. It is pointed out that the arrest of indentation microcracks is controlled by the fractal fracture toughness, which for the Fe2B borided phase is found to be Kfc = 0.42 ± 0.02 MPa m0.75 at all distances from the surface

  19. Changes of surface layer of nitrogen-implanted AISI316L stainless steel

    International Nuclear Information System (INIS)

    The effects of nitrogen ion implantation into AISI316L stainless steel on friction, wear, and microhardness have been investigated at an energy level of 125 keV at a fluence of 1·1017 - 1·1018 N/cm2. The composition of the surface layer was investigated by RBS, XRD (GXRD), SEM and EDX. The friction coefficient and abrasive wear rate of the stainless steel were measured in the atmospheres of air, oxygen, argon, and in vacuum. As follows from the investigations, there is an increase in resistance to frictional wear in the studied samples after implantation; however, these changes are of different characters in various atmospheres. The largest decrease in wear was observed during tests in the air, and the largest reduction in the value of the friction coefficient for all implanted samples was obtained during tests in the argon atmosphere. Tribological tests revealed larger contents of nitrogen, carbon, and oxygen in the products of surface layer wear than in the surface layer itself of the sample directly after implantation

  20. Multiaxial isothermal and thermal cycling tests of AISI 316 L(N) austenitic steel tubes

    International Nuclear Information System (INIS)

    Multiaxial isothermal and thermal cycling tests of tubes made of AISI 316 L(N) austenitic steel are described. The thermal cycling load is generated by periodic induction heating of the outer tube wall and simultaneous continuous cooling by means of water of the inner tube wall. Temperature gradients in excess of 100 K/mm are produced which give rise to fatigue-induced cracks mainly in the inner tube wall. In the tube specimens subjected to isothermal loads, the equibiaxial stress condition typical of thermal cycling tests is to be simulated. This stress load is produced in tubes by superimposing a longitudinal load (tension/compression) upon a circumferential load (internal/external pressures). A new test rig has been built especially for this purpose. The design and mode of operation of the rig as well as the measurement systems, especially for the measurement of circumferential strain, are described. The reference base for the multiaxial tests are uniaxial alternating strain tests of small round solid specimens. The tests are conducted in the LCF range and consequently are strain controlled. The test results obtained to date are presented. In all tests, special attention is paid to the generation and propagation of fatigue-induced cracks. In this connection, the measurement of crack lengths is described. (author)

  1. Microstructural features of hot pressure bonding between stainless steel type AISI-304 L and ziracloy-2

    International Nuclear Information System (INIS)

    The diffusion zone formed after reaching quasi-equilibrium in hot pressure bonding between stainless steel type AISI-304 L and Zircaloy-2 under particular thermal and compressive conditions (1000-11000C and 2-3 atm) contains two distinct layers, each separately localized in the modified stainless steel and Zircaloy matrices. SEM, TEM, X-ray diffraction and microanalysis were used to identify the phase structure and composition of the two diffusion layers. The nature and distribution of phases found in the diffusion layers can be explained in connection with the diffusion mechanisms operating after the initial stages of bond formation and interface disappearance: (a) The strog zirconium diffusion promotes ferrite and ZrCr2 formation in a narrow zone located near the stainless steel matrix. (b) Iron and nickel diffusion over large distances in the Zircaloy matrix leads to the occurrence of a larger zone having a two-phase structure. The light grey phase consists of untransformed α-Zr and a small precentage of high-temperature β-Zr phase. The darker grey phase contains essentially a very high amount of intermetallic bct compounds Zr-Fe-Ni, Zr2Fe and Zr2Ni dispersed in the small residue of Zircaloy matrix. (orig.)

  2. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Je-Kang Du

    2016-03-01

    Full Text Available Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the antibacterial properties, but they are known to damage biofilm. The occurrence of nanoparticles can also improve the antibacterial properties of biomaterials through various methods. In this study, we used Escherichia coli and analyzed the microstructures of American Iron and Steel Institute (AISI 430 stainless steel with a 0.18 mass % N alloy element. During a lower temperature aging, the microstructure of the as-quenched specimen is essentially a ferrite and martensite duplex matrix with some Cr2N precipitates formed. Additionally, the antibacterial properties of the alloy for E. coli ranged from 3% to 60%, consistent with the presence of Cr2N precipitates. When aged at a lower temperature, which resulted in nano-Cr2N precipitation, the specimen possessed the highest antibacterial activity.

  3. Phase Transformations During the Low-Temperature Nitriding of AISI 2205 Duplex Stainless Steel

    Science.gov (United States)

    Yan, Jing; Gu, Tan; Qiu, Shaoyu; Wang, Jun; Xiong, Ji; Fan, Hongyuan

    2015-02-01

    Liquid nitriding of type AISI 2205 duplex stainless steel was conducted at 723 K (450 °C), using one type of novel low-temperature liquid chemical thermo-treatment. The transformation of the nitrided surface microstructure was systematically studied. Experimental results revealed that a nitrided layer formed on the sample surface with the thickness ranging from 3 to 28 μm, depending on nitriding time. After the 2205 duplex stainless steel was subjected to liquid nitriding 723 K (450 °C) for less than 8 hours, the pre-existing ferrite region on the surface transformed into the expanded austenite (S phase) by the infusion of nitrogen atoms, most of which stay in the interstitial sites. Generally, the dominant phase of the nitrided layer was the expanded austenite. When the nitriding time prolonged up to 16 hours, some pre-existing ferrite in expanded austenite was decomposed and ɛ-nitride precipitated subsequently. When the treatment time went up to 40 hours, large amount of ɛ-nitride and CrN precipitates were observed in the pre-existing ferritic region in the expanded austenite. Furthermore, many nitrides precipitated from the pre-austenite region. Acicular nitride was identified by transmission electron microscopy. The thickness of the nitrided layer increased with increasing nitriding time. The growth of the nitrided layer is mainly due to nitrogen diffusion in accordance with the expected parabolic rate law. Liquid nitriding effectively increased the surface hardness of 2205 duplex stainless steel by a factor of 3.

  4. Duplex treatment of 304 AISI stainless steel using rf plasma nitriding and carbonitriding

    International Nuclear Information System (INIS)

    Surface of 304 AISI austenitic stainless steel has been modified using duplex treatment technique of nitriding and carbonitriding. A thick modified nitrided layer, of approximately 20 μm, has been achieved when rf inductively coupled plasma was adjusted at 450 W for processing time of only 10 min. After performing the nitrided layer, the nitrided samples were carbonitrided using the same technique at different acetylene partial pressure ratios ranges from 10% to 70%, the balance was pure nitrogen. Different amount of nitrogen and carbon species are diffused underneath the surface through the nitrided layer during carbonitriding process and are found to be gas composition dependent. The treated samples were characterized by glow discharge optical spectroscopy, X-ray diffractometry, scanning electron microscopy and Vickers microhardness tester. The microstructure of the duplex treated layer indicates the formation of γ-Fe4N, Fe3C, CrN and nitrogen-expanded austenite (γN). The thickness of the duplex treated layer increases with increasing the acetylene partial pressure ratio. The surface microhardness of duplex treated samples has been found to be gas composition dependent and increased by 1.29 fold in comparison to the nitrided sample.

  5. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    Science.gov (United States)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  6. A study on the corrosion Properties of AISI type 316 Stainless Steel Weldment

    International Nuclear Information System (INIS)

    As a study on the corrosion property change at each part near weldment in AISI type 316 Stainless Steel, causes for the decrease of the corrosion resistance, change of the passive tendency and process of pitting were investigated by metallographic and electrochemical techniques. The equilibrium corrosion potentials, the pitting potentials and the current densities in the passive region in 3% NaCl solution at 19-20 .deg. C were studied with the potentiostatic anodic polarization curves. And the shapes of the pits were investigated as soon as the experiment for anodic polarization curve had been finished(i.e. in the transpassive region). The followings are the main conclusions drawn from the above experiments. The decrease of corrosion resistance is caused by the residual stress as well as the thermal effect. The passivity decreased at HAZ, and a certain correlation between the passive potential range and the current density in the passive region was revealed. Pits were most frequently generated at HAZ, and pitting initiated near the grain boundaries

  7. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    International Nuclear Information System (INIS)

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb2C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42±0.52 to 11.78±2.29 μm depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol-1. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness

  8. Microstructure and oxidation behavior of high strength steel AISI 410 implanted with nitrogen ion

    Science.gov (United States)

    Bandriyana, Ismoyo, Agus Hadi; Sujitno, Tjipto; Dimyati, A.

    2016-04-01

    Surface treatment by implantation with nitrogen-ion was performed on the commercial feritic high strength steel AISI 410 which is termed for high temperature applications. The aim of this research was focused on the surface modification to improve its high temperature oxidation property in the early stages. Ion implantation was carried out at acceleration energy of 100 KeV and ion current 10 mA for 30, 60 and 90 minutes. The samples were subjected to the high temperature oxidation test by means of thermogravimetry in a magnetic suspension balance (MSB) at 500 °C for 5 hours. The scanning electron microscopy (SEM), X-ray diffraction spectrometry (XRD) and Vickers Hardness measurement were used for sample characterization. The formation of ferro-nitride phase after implantation did not occur, however a thin layer considered to contain nitrogen interstitials was detected. The oxidation of both samples before and after implantation followed parabolic kinetics indicating inward growth of oxide scale characteristically due to diffusion of oxygen anions towards matrix surface. After oxidation test relativelly stable oxide scales were observed. Oxidation rates decreased proportionally with the increasing of implantation time due to the formation of oxide layer which is considered to be effectiv inhibitor for the oxygen diffusion.

  9. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  10. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    International Nuclear Information System (INIS)

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain

  11. Corrosion of aluminium, stainless steels and AISI 680 nickel alloy in nitrogen-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kap, I.; Starostin, M.; Shter, G.E.; Grader, G.S. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa (Israel)

    2012-07-15

    Nitrogen-based compounds can potentially be used as alternative non-carbon or low-carbon fuels. Nevertheless, the corrosion of construction materials at high temperatures and pressures in the presence of such fuel has not been reported yet. This work is focused on the corrosion of AISI Al 6061, 1005 carbon steel (CS), 304, 316L, 310 austenitic stainless steels (SS) and 680 nickel alloy in highly concentrated water solution of ammonium nitrate and urea (ANU). The corrosion at 50 C and ambient pressure and at 350 C and 20 bar was investigated to simulate storage and working conditions. Sodium chloride was added to the fuel (0-5 wt%) to simulate industrial fertilizers and accelerated corrosion environment. Heavy corrosion of CS was observed in ANU solution at 50 C, while Al 6061, 304 and 316L SS showed high resistance both to uniform and pitting corrosion in ANU containing 1% of sodium chloride. Addition of 5% sodium chloride caused pitting of Al 6061 but had no influence on the corrosion of SS. Tests in ANU at 350 C and 20 bar showed pitting on SS 304 and 316L and 680 nickel alloy. The highest corrosion resistance was found for SS 310 due to formation of stable oxide film on its surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H3BO3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  13. Designing inhibitors of M2 proton channel against H1N1 swine influenza virus.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: M2 proton channel of H1N1 influenza A virus is the target protein of anti-flu drugs amantadine and rimantadine. However, the two once powerful adamantane-based drugs lost their 90% bioactivity because of mutations of virus in recent twenty years. The NMR structure of the M2 channel protein determined by Schnell and Chou (Nature, 2008, 451, 591-595 may help people to solve the drug-resistant problem and develop more powerful new drugs against H1N1 influenza virus. METHODOLOGY: Docking calculation is performed to build the complex structure between receptor M2 proton channel and ligands, including existing drugs amantadine and rimantadine, and two newly designed inhibitors. The computer-aided drug design methods are used to calculate the binding free energies, with the computational biology techniques to analyze the interactions between M2 proton channel and adamantine-based inhibitors. CONCLUSIONS: 1 The NMR structure of M2 proton channel provides a reliable structural basis for rational drug design against influenza virus. 2 The channel gating mechanism and the inhibiting mechanism of M2 proton channel, revealed by the NMR structure of M2 proton channel, provides the new ideas for channel inhibitor design. 3 The newly designed adamantane-based inhibitors based on the modeled structure of H1N1-M2 proton channel have two pharmacophore groups, which act like a "barrel hoop", holding two adjacent helices of the H1N1-M2 tetramer through the two pharmacophore groups outside the channel. 4 The inhibitors with such binding mechanism may overcome the drug resistance problem of influenza A virus to the adamantane-based drugs.

  14. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  15. Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype.

    Science.gov (United States)

    White, Michael J V; Gomer, Richard H

    2015-01-01

    For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages. PMID:26407067

  16. Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype.

    Directory of Open Access Journals (Sweden)

    Michael J V White

    Full Text Available For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.

  17. Effects of orbital and spin current interference in E1 and M2 nuclear excitations

    Energy Technology Data Exchange (ETDEWEB)

    Goncharova, N. G., E-mail: n.g.goncharova@gmail.com [Moscow State University, Faculty of Physics (Russian Federation)

    2015-12-15

    The interference of contributions from the orbital and spin currents to the E1 and M2 resonances is investigated. The results of the current interference analysis within the shell model are compared with the experimental data.

  18. Segal-Bargmann Transform and Paley-Wiener Theorems on $M(2)$

    Indian Academy of Sciences (India)

    E K Narayanan; Suparna Sen

    2010-04-01

    We study the Segal–Bargmann transform on $M(2)$. The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer’s type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of $M(2)$. We also prove a Paley–Wiener theorem for the inverse Fourier transform.

  19. An Online Delay Efficient Packet Scheduler for M2M Traffic in Industrial Automation

    OpenAIRE

    Kumar, Akshay; Abdelhadi, Ahmed; Clancy, Charles

    2016-01-01

    Some Machine-to-Machine (M2M) communication links particularly those in a industrial automation plant have stringent latency requirements. In this paper, we study the delay-performance for the M2M uplink from the sensors to a Programmable Logic Controller (PLC) in a industrial automation scenario. The uplink traffic can be broadly classified as either Periodic Update (PU) and Event Driven (ED). The PU arrivals from different sensors are periodic, synchronized by the PLC and need to be process...

  20. Service-Oriented Radio Architecture: A Novel M2M Network Architecture for Cognitive Radio Systems

    OpenAIRE

    Xu Dong; Shengqun Wei; Ying Li; Lifeng Wang; Lin Bai

    2012-01-01

    In future cognitive radio networks, a number of spectrum sensors can be distributedly deployed to monitor the surrounding wireless environment, where the machine-to-machine (M2M) technology is considered to provide the interactions among sensors, cognitive engines, and other system modules. Thus, a flexible M2M network architecture is desired to develop cognitive radio networks. As a distributed system framework, service-oriented architecture (SOA) has been well studied to provide the loose c...

  1. Influence of cladding layer field of slab waveguide on M2 factor

    Institute of Scientific and Technical Information of China (English)

    Bin Lin(林斌); Xuejin Wen(文学金); Fuyuan Guo(郭福源)

    2003-01-01

    Based on the theory of semiconductor laser pattern and the non-paraxial vectorial moment theory of lightbeam propagation, the beam quality factor M2 of TE0 propagating mode is analyzed and calculated.The result shows that when both core layer and cladding layer are considered, M2 > 1 is always obtained.Moreover, by analyzing the characteristic of real beams, this result is generalized to the multilayer isotropiclinear slab waveguides.

  2. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. An Optimization Scheme for M2M-Based Patient Monitoring in Ubiquitous Healthcare Domain

    OpenAIRE

    Seoksoo Kim; Dae-Joon Hwang; Jae Young Ahn; Sungmo Jung

    2012-01-01

    In ubiquitous healthcare systems, machine-to-machine (M2M) communication promises large opportunities as it utilizes rapidly developing technologies of large-scale networking of devices for patient monitoring without dependence on human interaction. With the emergence of wireless multimedia sensor networks (WMSNs), M2M communications improve continuous monitoring and transmission and retrieval of multimedia content such as video and audio streams, images, and sensor data from the patient bein...

  4. A novel M2e based flu vaccine formulation for dogs.

    Directory of Open Access Journals (Sweden)

    Denis Leclerc

    Full Text Available BACKGROUND: The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. METHODOLOGY AND PRINCIPAL FINDINGS: The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. CONCLUSIONS AND SIGNIFICANCE: The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs.

  5. Effect of organophosphorus insecticides on phosphorylation of the M2 muscarinic acetylcholine receptor

    Institute of Scientific and Technical Information of China (English)

    Shuyin Li; Liming Zou; Carry Pope

    2008-01-01

    BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2.OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides.DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004.METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [OP32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter.MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the adrenergic receptor.CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein

  6. A Novel M2e Based Flu Vaccine Formulation for Dogs

    Science.gov (United States)

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  7. Immunization with the MAEBL M2 Domain Protects against Lethal Plasmodium yoelii Infection.

    Science.gov (United States)

    Leite, Juliana A; Bargieri, Daniel Y; Carvalho, Bruna O; Albrecht, Letusa; Lopes, Stefanie C P; Kayano, Ana Carolina A V; Farias, Alessandro S; Chia, Wan Ni; Claser, Carla; Malleret, Benoit; Russell, Bruce; Castiñeiras, Catarina; Santos, Leonilda M B; Brocchi, Marcelo; Wunderlich, Gerhard; Soares, Irene S; Rodrigues, Mauricio M; Rénia, Laurent; Costa, Fabio T M

    2015-10-01

    Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection. PMID:26169268

  8. Muscarinic cholinergic receptor (M2 plays a crucial role in the development of myopia in mice

    Directory of Open Access Journals (Sweden)

    Veluchamy A. Barathi

    2013-09-01

    Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2 were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error.

  9. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes

    Science.gov (United States)

    Chimal-Ramírez, G. Karina; Espinoza-Sánchez, Nancy Adriana; Chávez-Sánchez, Luis; Arriaga-Pizano, Lourdes

    2016-01-01

    Macrophages facilitate breast cancer progression. Macrophages were initially classified as M1 or M2 based on their distinct metabolic programs and then expanded to include antitumoral (M1) and protumoral (M2) activities. However, it is still uncertain what markers define the pro- and antitumoral phenotypes and what conditions lead to their formation. In this study, monocytic cell lines and primary monocytes were subjected to commonly reported protocols of M1/M2 polarization and conditions known to engage monocytes into protumoral functions. The results showed that only IDO enzyme and CD86 M1 markers were upregulated correlating with M1 polarization. TNF-α, CCR7, IL-10, arginase I, CD36, and CD163 were expressed indistinguishably from M1 or M2 polarization. Similarly, protumoral engaging resulted in upregulation of both M1 and M2 markers, with conditioned media from the most aggressive breast cancer cell line promoting the greatest changes. In spite of the mixed phenotype, M1-polarized macrophages exhibited the highest expression/secretion of inflammatory mediators, many of which have previously been associated with breast cancer aggressiveness. These data argue that although the existence of protumoral macrophages is unquestionable, their associated phenotypes and the precise conditions driving their formation are still unclear, and those conditions may need both M1 and M2 stimuli. PMID:27376091

  10. Study into the Applicability of Laser Beam Quality Factor M2

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; TIAN Xiao-hong; XIN Jian-guo

    2006-01-01

    The applicable condition of single-frequency laser beam quality factor M2 is studied. Any real single-frequency laser beam can be classified as Gaussian mode and non-Gaussian mode according to the transverse field distribution. Non-Gaussian transverse field distribution can be analytically expressed as the sum of Hermite-Gaussian functions. The propagation function and M2 factor expression for non-Gaussian mode can be obtained by the second moment definition of laser beam spot. The analytical results show, the same as that of Gaussian mode, that the propagation function follows the hyperbolic law and the value of M2 factor is a constant for non-Gaussian mode. But, different non-Gaussian field distributions may have the same M2 value. That means M2 factor cannot reflect the quality of non-Gaussian laser beams correctly. We conclude that the M2 factor is applicable only to ideal Gaussian laser beam generated by stable resonators.

  11. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    Science.gov (United States)

    Czub, Elzbieta; Nowak, Jan K.; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the receiver operating characteristic curves plotted for the two tests in differentiating rotaviral from bacterial AD. The sensitivity and specificity of M2-PK at optimal cut-off (20 U/g) were 75.9% and 71.4%, respectively. M2-PK and FC had similar values in distinguishing between children with AD caused by rotavirus and Salmonella enteritidis. The performance of both tests in hospitalized patients did not meet the needs of everyday clinical practice. Moreover, no advantage of fecal tests over the measurement of CRP was documented. PMID:24759699

  12. Novel spirothiazamenthane inhibitors of the influenza A M2 proton channel.

    Science.gov (United States)

    Arns, Steve; Balgi, Aruna D; Shimizu, Yoko; Pfeifer, Tom A; Kumar, Nag; Shidmoossavee, Fahimeh S; Sun, Sharon; Tai, Sheldon S-H; Agafitei, Olga; Jaquith, James B; Bourque, Elyse; Niikura, Masahiro; Roberge, Michel

    2016-09-14

    The development of treatments for influenza that inhibit the M2 proton channel without being susceptible to the widespread resistance mechanisms associated with the adamantanes is an ongoing challenge. Using a yeast high-throughput yeast growth restoration assay designed to identify M2 channel inhibitors, a single screening hit was uncovered. This compound (3), whose structure was incorrectly identified in the literature, is an inhibitor with similar potency to amantadine against WT M2. A library of derivatives of 3 was prepared and activity against WT M2 and the two principal mutant strains (V27A and S31N) was assessed in the yeast assay. The best compounds were further evaluated in an antiviral plaque reduction assay using engineered WT, V27A and S31N M2 influenza A strains with otherwise identical genetic background. Compound 63 was found to inhibit all three virus strains in this cell based antiviral assay at micromolar concentrations, possibly through a mechanism other than M2 inhibition. PMID:27187859

  13. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser; Caracteristicas dimensionales de soldadura formadas sobre el acero AISI 1045 mediante la aplicacion del laser diodo de alta potencia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-07-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs.

  14. Comparative study of the microbiological corrosion among an AISI 304L and an API X65; Estudio comparativo de la corrosion microbiologica entre un AISI 304L y un API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Gonzalez F, E. [ITT, Toluca, Estado de Mexico (Mexico)

    2004-07-01

    Metallic samples of AISI 304L sensitized and API X65, were subjected to the action of an inoculated media with reductive sulphate microorganisms (SBR), carrying out electrochemical evaluations by means of the techniques of Polarization Resistance (RP), Tafel extrapolation (ET) and Electrochemical Noise (RE). The generated information was complemented with the analysis and diagnostic of the present damage in the surfaces exposed in both metals. The used electrochemical techniques allow to determine the corrosion velocities associated to each system, establishing that the uniform corrosion is not affected by the effect of the microorganisms; however, electrochemical noise, evidenced the formation of stings associated to the presence of bacteria. (Author)

  15. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    OpenAIRE

    Pavel Michel Almaguer‐Zaldivar; Roberto Andrés Estrada-Cingualbres

    2015-01-01

    Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con ...

  16. Evaluation of Microstructure and Mechanical Properties of Laser Beam Welded AISI 409M Grade Ferritic Stainless Steel%Evaluation of Microstructure and Mechanical Properties of Laser Beam Welded AISI 409M Grade Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; V Balasubramanian

    2012-01-01

    The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced at a welding speed of 3 000 mm/min. The joints were subjected to optical microscope, scanning electron fractographe, microhardness, transverse and longitudinal tensile, bend and charpy impact toughness testing. The coarse ferrite grains in the base metal were changed into dendritic grains as a result of rapid solidification of laser beam welds. Tensile testing indicates overmatching of the weld metal is relative to the base metal. The joints also exhibited acceptable impact toughness and bend strength properties.

  17. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L; Influencia de la atmosfera de sinterizacion en las propiedades mecanicas de los aceros P/M AISI 430L

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, F. J.; Martinez, C.; Costes, M. T.; Ruiz, J. M.; Garcia, L. E.; Corpas, F.

    2014-04-01

    It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties. (Author)

  18. Comportamiento tribológico del acero AISI W112 con endurecimiento lineal mediante laser de ND:YAG.L. // Tribological behavior of AISI W112 steel with lineal hardening by means of ND:YAG laser.

    Directory of Open Access Journals (Sweden)

    R. Sagaró

    2001-07-01

    Full Text Available Para disminuir el desgaste en los sistemas tribológicos frecuentemente se acostumbra a endurecer localmente aquellaszonas sometidas a desgaste. En el presente trabajo, para incrementar la dureza y la resistencia al desgaste del acero AISIW112 se empleó un láser de Nd:YAG. Las características de fricción y desgaste del acero AISI W112 en condiciones decontacto deslizante en fricción seca con el acero 65MN4 fueron evaluadas para tratamientos convencionales luego de suirradiación con láser. En el trabajo se presentan además las transformaciones que ocurren durante el tratamiento con láser,así como la influencia de los parámetros operacionales del láser en la profundidad de la capa endurecida y lascaracterísticas tribológicas. El trabajo experimental corroboró que la resistencia al desgaste del acero AISI W112 es variasveces superior en comparación con los tratamientos convencionales.Palabras claves: Comportamiento tribológico, endurecimiento lineal, tratamiento superficial con láser._______________________________________________________________________________Abstract.Diminishing wear in tribological systems is usually done by locally hardening those areas subject to wear. In this paper ispresented the increasing of hardness and resistance to wear of AISI W112 steel by means of a Nd:YAG laser. Thecharacteristics of friction and wear of AISI W112 steel under sliding contact in dry friction conditions with the 65MN4steel were evaluated for conventional treatments and after laser irradiation. In the work are presented the transformationsthat take place during the laser treatment, as well as the influence of the laser operational parameters in the depth of thehardened layer and the tribological characteristics. The experimental work corroborated that the resistance to wear of AISIW112 steel is several times superior in comparison with conventional treatments.Key words: Tribological behavior , lineal hardening, laser superficial

  19. ESTUDIO DE LA SINERGIA CORROSIÓN-EROSIÓN DE RECUBRIMIENTOS DUROS DE TiN Y CrN OBTENIDOS SOBRE ACERO AISI 1045

    OpenAIRE

    HARVEY PAYÁN; WILLIAM APERADOR; ALEJANDRO VARGAS

    2008-01-01

    En este trabajo se presentan los resultados del estudio de los efectos sinergeticos de la corrosión-erosión en recubrimientos duros de TiN y CrN obtenidos sobre acero AISI 1045 por medio de la técnica de pulverización catódica con magnetrón y se hace una comparación con los resultados mostrados por un acero inoxidable comercial AISI 316 y el acero AISI 1045 sin recubrimiento. El proceso de deposición física de vapor (Physical Vapor Deposition), contribuye ampliamente a la aplicación de pelícu...

  20. Nondestructive measurement of the residual stress TiN thin film coated on AISI 304 substrate by x-ray stress analyzer

    Science.gov (United States)

    Zhang, Y. K.; Feng, A. X.; Lu, J. Z.; Kong, D. J.; Tang, C. P.

    2006-01-01

    Titanium nitride films are deposited on AISI 304 steel with a hollow-cathode-discharge (HCD) ion-plating technique. The status of residual stresses in TiN thin film coated on AISI304 substrate by HCD is studied by x-ray diffraction stress analyzer. By analyzing morphology of the residual stress of TiN thin film at interface between TiN film and AISI 304 substrate, the adhering mechanism of TiN thin film is understood as follows: the mechanical interlocking had important contribution to the adhesion strength, the thermal stress is the major factor which resulting TiN thin film peeling off spontaneously. The results show that the value of thin film is -210MPa~-650Mpa, and the thermal stress is compressive, the intrinsic stress is tensile, origins of the residual stress are primarily discussed.

  1. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations

    International Nuclear Information System (INIS)

    Highlights: • Resistance spot welding of AISI 316L stainless steel sheets. • Microstructure prediction by the use of Schaeffler and Pseudo-binary diagrams. • Non-equilibrium phases including skeletal, acicular and lathy delta ferrite formed. • Mechanical characterization of weld nuggets including peak load and failure energy. • Different failure modes were found at various welding currents. - Abstract: In this paper, we aim to optimize welding parameters namely welding current and time in resistance spot welding (RSW) of the austenitic stainless steel sheets grade AISI 316L. Afterward, effect of optimum welding parameters on the resistance spot welding properties and microstructure of AISI 316L austenitic stainless steel sheets has been investigated. Effect of welding current at constant welding time was considered on the weld properties such as weld nugget size, tensile–shear load bearing capacity of welded materials, failure modes, failure energy, ductility, and microstructure of weld nuggets as well. Phase transformations that took place during weld thermal cycle were analyzed in more details including metallographic studies of welding of the austenitic stainless steels. Metallographic images, mechanical properties, electron microscopy photographs and micro-hardness measurements showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Backscattered electron scanning microscopic images (BE-SEM) showed various types of delta ferrite in weld nuggets. Three delta ferrite morphologies consist of skeletal, acicular and lathy delta ferrite morphologies formed in resistance spot welded regions as a result of non-equilibrium phases which can be attributed to the fast cooling rate in RSW process and consequently, prediction and explanation of the obtained morphologies based on Schaeffler, WRC-1992 and Pseudo-binary phase diagrams would be a difficult task

  2. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Science.gov (United States)

    Fulger, Manuela; Mihalache, Maria; Ohai, Dumitru; Fulger, Stefan; Valeca, Serban Constantin

    2011-08-01

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  3. Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters

    Energy Technology Data Exchange (ETDEWEB)

    Rokosz, Krzysztof; Hryniewicz, Tadeusz [Politechnika Koszalinska, Division of Surface Electrochemistry, Raclawicka 15-17, PL 75-620 Koszalin (Poland); Raaen, Steiner [NTNU Trondheim, Institute of Physics, Trondheim (Norway)

    2012-09-15

    The aim of the paper is to present the changes in the surface film composition on AISI 316L stainless steel (SS) after electropolishing (EP) and magnetoelectropolishing (MEP) in a broad range of the process conditions. The X-ray photoelectron spectroscopy surface analyses were performed to reveal the effect of MEP. The EP process has been performed under natural convection (in a stagnant electrolyte), much above the polarization plateau. A series of experiments were carried out on AISI 316L SS samples in accordance with the five-level composite rotary statistical plan with the variables being the magnetic field intensity B (mT), and the anodic current density i (A dm{sup -2}). XP high resolution spectra have been obtained on AISI 316L SS surface concerning Fe 2p, Cr 2p, O 1s, S 2p, P 2p, and C 1s, respectively. The Cr:Fe ratio regarding both metallic M and compound X was also studied and calculated. At the end, the summary results of Cr/Fe = f(B, i) in relation to the corrosion potential, have been compared. The conclusions, concerning the selection of MEP process conditions, regarding the optimum Cr/Fe ratio and corrosion behavior, have been formulated. It was found the Cr:Fe ratio well correlates with the pitting corrosion potential. MEP process can modify not only the rate of dissolution to a determined extent, but also control the corrosion behavior and Cr:Fe ratio results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Energy Technology Data Exchange (ETDEWEB)

    Fulger, Manuela, E-mail: manuela.fulger@nuclear.ro [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Mihalache, Maria; Ohai, Dumitru [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Fulger, Stefan [University Politechnica Bucharest, Splaiul Independentei Street, No. 313, Bucharest 060042 (Romania); Valeca, Serban Constantin [University of Pitesti, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2011-08-15

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  5. Evaluación del grado de sensibilización en el acero inoxidable AISI

    Directory of Open Access Journals (Sweden)

    González, O.

    2003-12-01

    Full Text Available Austenitic stainless steel, when heat-treated at 550-850 °C, became susceptible to intergranular corrosion in acids. This phenomenon, know as sensitization, it is result from the precipitation of chrome carbides in the grain boundary, making these areas less resistant to corrosion. Two different electrochemical reactivation tests are compared with a destructive test and related to the classification of its respective microstructures. It was established a quantitative methodology to evaluate the degree of sensitization in AISI 304 and also to compare the correspondence of the results with the data of the automatic and portable EPR device for non-destructive field measurement of the degree of sensitization. The used electrochemical techniques were the EPR (Electrochemical Potentiokinetic Reactivation or single loop test and the PRP (Pasivation Reactivation Potentiokinetic or double loop test. The destructive test used was boiling, 120 h ferric sulfate-50 % sulfuric acid, according to the standard practices ASTM A-262 practices B. The classifications of each structures were according to the standard practices ASTM A-262 practices B.

    El acero inoxidable austenítico, cuando se calienta en un rango de temperatura entre 550 y 850 °C es susceptible a corrosión intergranular en ácidos. Este fenómeno, conocido como sensibilización, es resultado de la precipitación de carburos de cromo en el límite de grano, haciendo esas áreas menos resistentes a la corrosión. Se comparan dos pruebas diferentes de reactivación electroquímica con una prueba destructiva, relacionándolas con su respectiva microestructura. Se estableció una metodología cuantitativa para evaluar el grado de sensibilización del acero AISI 304 y se comparó con los datos generados de una herramienta no destructiva de campo, automática y portátil, para medir el grado de sensibilización. Las técnicas electroquímicas usadas fueron: la EPR (Reactivación electroqu

  6. AVALIAÇÃO DA QUALIDADE NUTRICIONAL DA PROTEÍNA DA FARINHA TEMPEH, PRODUTO FERMENTADO, OBTIDO A PARTIR DA SOJA

    OpenAIRE

    Suely Gomes TAVARES; Choiti KIYAN

    2009-01-01

    Foram realizados estudos para avaliar a eficiência protéica de farinha de tempeh, produto fermentado, "não convencional", obtido a partir da soja. Os métodos utilizados, como o Coeficiente de Eficácia Protélca (PER), a Razão Protéica Líquida (NPR) e a Utilização de Nitrogênio (NU), avaliam o ganho de peso pela quantidade de proteína ingerida. Os valores encontrados para esses índices foram: PER 4,30 e 1,90; NPR 5,11 e 3,13; NU 5,55 e 3,32, respectivamente, para as die...

  7. Effect of Cl– on the corrosive wear of AISI 321 stainless steel in H2SO4 solution

    Indian Academy of Sciences (India)

    Yanliang Huang; Xiaoxia Jiang; Sizuo Li

    2003-06-01

    The effect of Cl– on the corrosive wear behaviour of AISI 321 stainless steel in H2SO4 solution was studied via the corrosive wear rate, the load bearing capacity of passive film and the relationship between pitting and corrosive wear. There is a critical load at natural potential, below which the corrosive wear rate is slightly lowered by Cl–, while above which is increased. At natural potential there are more pits at low load than that at a higher one in the wear tracks and the pits are also deeper. The load bearing capacity is lowered by Cl– at passive region and then the corrosive wear rate increased.

  8. THE EVALUATION OF TOOL WEAR IN THE MACHINING AISI 1050 STEEL HARDENED UP TO 53 HRC WITH COATED CARBIDE TOOL

    OpenAIRE

    MOTORCU, Ali Rıza

    2006-01-01

    In this study, the machining of AISI 1050 steel which is hardened up to 53 HRC is carried out with two carbide tool materials (three layer coated carbide of TP100 containing Ti (C, N)/Al2O3/TiN and (multi layer coated carbide of TP1000 containing Ti (C, N)/Al2O3/ Ti (C, N)/TiN. Cutting tests are performed with constant depth of cut and feed rate under dry cutting conditions. The flank wear is examined using an optical microscope. Tool life curves and Taylor Tool Life Equation constants (n, C)...

  9. The influence of the martensitic transformation on the fatigue of an AISI type 316 metastable stainless steel

    International Nuclear Information System (INIS)

    The influence of the martensitic transformation on the process of pulse tension fatigue of a AISI type 316 metastable stainless steel was studied at 250 and 1960c. The fatigue tests were performed on annealed and cold worked specimens in order to separate the effects of static transformation, dynamic transformation and work hardening. The fatigue limits obtained from the corresponding Wohler curves were compared for the different test conditions. The results showed that the fatigue is not affected by the dynamically induced martensite. On the other hand the static martensite, previously induced, appears to decrease the resistance to fatigue. The reasons for these effects are discussed. (Author)

  10. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    International Nuclear Information System (INIS)

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 ± 60 nm with an almost fully-austenitic structure.

  11. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, M.; Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A., E-mail: ahmad_k@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandari, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-11-15

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 {+-} 60 nm with an almost fully-austenitic structure.

  12. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser

    International Nuclear Information System (INIS)

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs

  13. The Effects of Cutting Tool Coating on the Surface Roughness of AISI 1015 Steel Depending on Cutting Parameters

    OpenAIRE

    Hasan GÖKKAYA

    2006-01-01

    The effects of a number of cutting tool coating materials on the surface quality of workpieces, depending on various cutting parameters, were investigated. AISI 1015 steel was processed without cooling on a lathe using 4 different cemented carbide cutting tools, i.e. uncoated, coated with AlTiN and coated with TiAlN using the PVD technique, and one with 3-layer coatings (outermost being TiN) applied by the CVD technique. Among the cutting parameters, the depth of cut was kept constan...

  14. AISI 304 stainless steel disintegration using a water jet intensified by mechanical vibrations with frequency of 20kHz

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klich, Jiří; Foldyna, Josef; Hloch, Sergej; Cárach, J.

    Belgrade: TEAM International Society, Faculty of Mechanical Engineering, University of Belgrade, 2015 - (Sedmak, A.), s. 320-323 ISBN 978-86-7083-877-2. [International Scientific and Expert Conference TEAM 2015 /7./. Belgrade (RS), 15.10.2015-16.10.2015] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : pulsating water jet * disintegration * mass material removal * AISI 304 stainless steel Subject RIV: JQ - Machines ; Tools http://johanyak.hu/files/u1/publi/G_J_Survey_on_Intrusion_TEAM_2015.pdf

  15. EBSD karakterisering av et austenittisk rustfritt AISI 304 stål under in situ deformasjon ved ulike temperaturer

    OpenAIRE

    Wenn, Maia

    2014-01-01

    Denne masteroppgaven kartlegger martensittdannelsen i et austenittisk rustfritt stål som følge av ytre påkjenninger i form av temperatur og spenning. Dette er gjort ved hjelp av in situ deformasjon i skanning elektronmikroskop (SEM) i kombinasjon med diffraksjon av tilbakespredte elektroner (EBSD). Stålet som er undersøkt er AISI 304, som er et austenittisk rustfritt stål med en fullstendig austenittisk struktur. Stålet ble undersøkt ved tre forskjelli...

  16. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    The influence of rare earth addition in weld metal, on the microstructure and oxidation behaviour of AISI 316L stainless steel in dry air under isothermal condition at 973 K for 240 h is reported. Rare earth metal (REM) doped weld metal zone exhibits better oxidation resistance during isothermal holding as compared to base metal and undoped weld metal zone of 316L. Presence of both Ce and Nb in weld metal shows superior oxidation resistance than with Ce alone. TIG weld microstructures are presented by optical microscopy. The morphologies of the scales and nature of their adherence to the alloy substrates, and scale spallation have been characterized by SEM and EDAX

  17. Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L

    OpenAIRE

    Eltawahni, Hayat; Hagino, M.; Benyounis, Khaled; Inoue, T; Olabi, Abdul-Ghani

    2012-01-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The width of laser cut or kerf, quality of the cut edges and the operating cost are affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the work-piece material. In this paper CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. Design of experiment (DOE) was implemented by applying Box-Behnken de...

  18. Investigation And Optimization Of EDM Process Of AISI 4140 Alloy Steel Using Various Tool Electrodes: A Review Paper

    Directory of Open Access Journals (Sweden)

    Kishor Lal ,

    2014-11-01

    Full Text Available The purpose of this research work is to determine the optimized settings of key machining factors like pulse on time, discharge current and duty cycle for AISI 4140 alloy steel using various tool electrodes. The output responses will be measured are material removal rate (MRR,surface roughness(SR and tool wear rate(TWR. Mathematical models are proposed for the above are L27 orthogonal array. The micro structural changes in the work piece after machining process will also be examined by the use of SEM.

  19. Characteristics of sintered HA coating deposited by chemical method on AISI 316L substrate

    International Nuclear Information System (INIS)

    Graphical abstract: Potentiodynamic polarization curves of various conditions tested in Ringer’s solution at 37 ± 1 °C. - Highlights: • Sintering resulted in a well-dispersed HA-coating. • Sintering of HA resulted in a slightly higher surface roughness. • Sintering improved the coating/substrate adhesion. • Sintering of HA-coated samples possessed higher corrosion resistance. - Abstract: Hydroxyapatite (HA) coating is widely applied for biomaterials because of its chemical similarity to the mineral component of bones. The bioactive nature of HA coating enhances the formation of strong chemical bonds with surrounding bones. The present work is aimed at investigating the effects of sintering at 500, 600 and 700 °C on the crystallization and adhesive properties of HA coating, deposited by chemical method on AISI 316L stainless steel substrate. The properties of HA coating were studied by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and standard tensile adhesion test. In addition, the corrosion behavior after heat treatments was evaluated in Ringer’s solution at 37 °C as a simulated body fluid. The results refer to a good enhancement of the crystallization of the HA coating sintered at 700 °C. The adhesive strength of as-coated (AC) material increased from 8.3 MPa to 12.2, 16.8 and 19.8 MPa after sintering at 500, 600 and 700 °C, respectively. The corrosion rate of the as-coated material reduced sharply from 0.405 to 0.094 μA cm−2 after sintering at 700 °C

  20. Modeling of liquid phase formation by solid-solid interaction of Zircaloy and AISI 316 Steel

    International Nuclear Information System (INIS)

    Two models were developed in order to describe the eutectic interaction between Zircaloy-4 and AISI 316 stainless steel, in the temperature range 1000 - 1300 C degree. The aim of the models is to simulate what could happen in the nucleus of a power reactor in an eventual transient high temperature accident. Entry data correspond to the instantaneous positions of the Zircaloy-4 / liquid and stainless steel / liquid inter phases, obtained from experimental data. The hypothesis corresponding to the first model are: that the liquid phase growths by diffusion of the main elements of each alloy in the liquid (Fe and Zr), that there is no interaction between these elements during diffusion, that the diffusion or convection in the solid state is not considered, and that volume changes are negligible during fusion and interdiffusion. Concentrations at the solid/liquid inter phases and the effective diffusion coefficients for Zr and Fe in the liquid can be obtained. The model allows to calculate the formation kinetics for the liquid phase as measured by Zr oxide layers of 0, 10, 20 and 50 microns initial width, formed on the Zircaloy in order to simulate the operating conditions of a reactor. Incubation times for the onset of the reaction, observed experimentally in pre-oxidized samples, were calculated taking into account the oxide dissolution. The second model considers diffusion of Fe in Zircaloy since Fe is a fast diffuser in Zr. As in the first model, concentrations at the solid/liquid inter phases as well as the effective diffusion coefficients for Fe and Zr in the liquid, are calculated. The results obtained in this case depend on the Fe concentration at the solid/liquid interphase at the solid Zircaloy side, and on the Fe diffusivity in Zircaloy-4, which was estimated by the Fe diffusivity in Zr. (author)