WorldWideScience

Sample records for airway lung disease

  1. The Lung Microbiome and Airway Disease.

    Science.gov (United States)

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  2. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    Science.gov (United States)

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.

  3. Diffuse cystic lung disease of unexplained cause with coexistent small airway disease: a possible causal relationship?

    Science.gov (United States)

    Rowan, Camilla; Hansell, David M; Renzoni, Elisabetta; Maher, Toby M; Wells, Athol U; Polkey, Michael I; Rehal, Pauline K; Ibrahim, Wanis H; Kwong, Georges Ng Man; Colby, Thomas V; Pistolesi, Massimo; Bigazzi, Francesca; Comin, Camilla E; Nicholson, Andrew G

    2012-02-01

    Diffuse "true" cystic lung disease is rare, and the specificity of high-resolution computed tomography (HRCT) has reduced the need for biopsy. We present 5 patients with similar clinical and HRCT features of cystic lung disease that were sufficiently atypical to warrant surgical lung biopsies that showed coexistent small airway diseases (SAD). There were 4 female patients and 1 male patient with a mean age of 43 years. All were never smokers. Four had symptoms such as dyspnea (1), cough (2), or both (1). HRCTs showed variably sized thin-walled cystic airspaces without zonal distribution, some with prominent vessels in their walls. One case was unilateral. Surgical lung biopsy showed cystic change comprising localized loss of alveolar density with coexistent SADs [chronic bronchiolitis (n=2), eosinophilic bronchiolitis, probable asthma (n=1), and diffuse idiopathic neuroendocrine cell hyperplasia (n=2)]. Two patients who were tested for Birt-Hogg-Dube-related gene mutations proved negative, and all lacked other features of Birt-Hogg-Dube. We hypothesize that chronic damage to small airways may lead to cystic degeneration in a minority of patients. Precedents in relation to Sjogren syndrome and hypersensitivity pneumonitis raise the possibility of a causal association between pathologies in these 2 anatomic compartments, although HRCT data in relation to common SADs indicate that this would be a rare phenomenon. The driving factor remains unknown.

  4. Airway complications after lung transplantation.

    Science.gov (United States)

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  5. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    Directory of Open Access Journals (Sweden)

    Kenneth R Eyring

    Full Text Available Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM model of allergic airway disease, we measured airway hyperresponsiveness (AHR and airway inflammation between mice exposed prenatally to cigarette smoke (CS or filtered air (FA. DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3 are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease.

  6. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    -20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter......Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema...... in causing airway narrowing, the latter most likely due to loss of elastic recoil of surrounding tissue....

  7. [Continuous positive airway pressure and high-frequency independent lung ventilation in patients with chronic obstructive lung diseases].

    Science.gov (United States)

    Fedorova, E A; Vyzhigina, M A; Gal'perin, Iu S; Zhukova, S G; Titov, V A; Godin, A V

    2004-01-01

    The original hypoxemia, hypercapnia, high pulmonary hypertension, high resistance of microcirculation vessels, right volumetric ventricular overload, persistent sub-edema of pulmonary intersticium as well as disparity of ventilation and perfusion between both lungs are the main problems in patients with chronic obstructive disease of the lungs (CODL). Such patients are, as a rule, intolerant to the independent lung collaboration or artificial single-stage ventilation (ASV). Patients with respiratory insufficiency, stages 2 and 3, and with a pronounced impaired type of ventilation have originally a deranged blood gas composition, like hypoxemia or hypercapnia. The application of volume-controllable bi-pulmonary ASV in such patients maintains an adequate gas exchange hemodynamics. However, ASV is accompanied by a significantly reduced gas-exchange function of the single ventilated lung and by essentially worsened intrapulmonary hemodynamics. Therefore, what is needed is to use alternative methods of independent lung ventilation in order to eliminate the gas-exchange impairments and to enable surgical interventions at thoracic organs in such patients (who are intolerant to ASV). A choice of a method and means of oxygen supply to the independent lung is of great importance. The possibility to avoid a high pressure in the airways, while maintaining, simultaneously, an adequate gas exchange, makes the method related with maintaining a constant positive pressure in the airways (CPPA) a priority one in case of CODL patients. The use of constant high-frequency ventilation in the independent lung in patients with obstructive pulmonary lesions does not improve the gas exchange or hemodynamics. Simultaneously, a growing total pulmonary resistance and an increasing pressure in the pulmonary artery are observed. Consequently, the discussed method must not be used for the ventilation support of the independent lung in patients with the obstructive type of the impaired external

  8. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer.

    Science.gov (United States)

    Shaykhiev, Renat; Sackrowitz, Rachel; Fukui, Tomoya; Zuo, Wu-Lin; Chao, Ion Wa; Strulovici-Barel, Yael; Downey, Robert J; Crystal, Ronald G

    2013-09-01

    CXCL14, a recently described epithelial cytokine, plays putative multiple roles in inflammation and carcinogenesis. In the context that chronic obstructive pulmonary disease (COPD) and lung cancer are both smoking-related disorders associated with airway epithelial disorder and inflammation, we hypothesized that the airway epithelium responds to cigarette smoking with altered CXCL14 gene expression, contributing to the disease-relevant phenotype. Using genome-wide microarrays with subsequent immunohistochemical analysis, the data demonstrate that the expression of CXCL14 is up-regulated in the airway epithelium of healthy smokers and further increased in COPD smokers, especially within hyperplastic/metaplastic lesions, in association with multiple genes relevant to epithelial structural integrity and cancer. In vitro experiments revealed that the expression of CXCL14 is induced in the differentiated airway epithelium by cigarette smoke extract, and that epidermal growth factor mediates CXCL14 up-regulation in the airway epithelium through its effects on the basal stem/progenitor cell population. Analyses of two independent lung cancer cohorts revealed a dramatic up-regulation of CXCL14 expression in adenocarcinoma and squamous-cell carcinoma. High expression of the COPD-associated CXCL14-correlating cluster of genes was linked in lung adenocarcinoma with poor survival. These data suggest that the smoking-induced expression of CXCL14 in the airway epithelium represents a novel potential molecular link between smoking-associated airway epithelial injury, COPD, and lung cancer.

  9. Inflammatory bowel disease and airway diseases

    Science.gov (United States)

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-01-01

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact. PMID:27678355

  10. Effect of lung volume on airway luminal area assessed by computed tomography in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Kenta Kambara

    Full Text Available BACKGROUND: Although airway luminal area (Ai is affected by lung volume (LV, how is not precisely understood. We hypothesized that the effect of LV on Ai would differ by airway generation, lung lobe, and chronic obstructive pulmonary disease (COPD severity. METHODS: Sixty-seven subjects (15 at risk, 18, 20, and 14 for COPD stages 1, 2, and 3 underwent pulmonary function tests and computed tomography scans at full inspiration and expiration (at functional residual capacity. LV and eight selected identical airways were measured in the right lung. Ai was measured at the mid-portion of the 3(rd, the segmental bronchus, to 6(th generation of the airways, leading to 32 measurements per subject. RESULTS: The ratio of expiratory to inspiratory LV (LV E/I ratio and Ai (Ai E/I ratio was defined for evaluation of changes. The LV E/I ratio increased as COPD severity progressed. As the LV E/I ratio was smaller, the Ai E/I ratio was smaller at any generation among the subjects. Overall, the Ai E/I ratios were significantly smaller at the 5(th (61.5% and 6(th generations (63.4% and than at the 3(rd generation (73.6%, p<0.001 for each, and also significantly lower in the lower lobe than in the upper or middle lobe (p<0.001 for each. And, the Ai E/I ratio decreased as COPD severity progressed only when the ratio was corrected by the LV E/I ratio (at risk v.s. stage 3 p<0.001, stage 1 v.s. stage 3 p<0.05. CONCLUSIONS: From full inspiration to expiration, the airway luminal area shrinks more at the distal airways compared with the proximal airways and in the lower lobe compared with the other lobes. Generally, the airways shrink more as COPD severity progresses, but this phenomenon becomes apparent only when lung volume change from inspiration to expiration is taken into account.

  11. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  12. LATE AIRWAY CHANGES CAUSED BY CHRONIC REJECTION IN RAT LUNG ALLOGRAFTS

    NARCIS (Netherlands)

    UYAMA, T; Winter, Jobst B.; GROEN, Greetje; WILDEVUUR, Charles R.H.; MONDEN, Y; PROP, J

    1992-01-01

    Airway disease after lung or heart-lung transplantation is one of late major complications, affecting the prognosis of the transplants. Little is known about the causes of airway changes. We performed rat lung transplantation and investigated the late airway changes of the long-term surviving lung g

  13. IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease.

    NARCIS (Netherlands)

    Bai, X.; Ovrutsky, A.R.; Kartalija, M.; Chmura, K.; Kamali, A.; Honda, J.R.; Oberley-Deegan, R.E.; Dinarello, C.A.; Crapo, J.D.; Chang, L.Y.; Chan, E.D.

    2011-01-01

    Lung disease due to Mycobacterium avium complex (MAC) organisms is increasing. A greater understanding of the host immune response to MAC organisms will provide a foundation to develop novel therapies for these recalcitrant infections. IL-32 is a newly described pro-inflammatory cytokine that enhanc

  14. Airway epithelium in obliterative airway disease

    NARCIS (Netherlands)

    Qu, Ning

    2005-01-01

    Lung transplantation is currently the only available treatment for endstage lung disease patients. Despite the success of improved modern lung transplantation with the introduction of new surgical techniques, improved immunosuppressive agents and innovations in managing of acute rejection and infect

  15. Dysfunctional lung anatomy and small airways degeneration in COPD

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2013-01-01

    Full Text Available Clémence Martin, Justine Frija, Pierre-Régis BurgelDepartment of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, FranceAbstract: Chronic obstructive pulmonary disease (COPD is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.Keywords: emphysema, small airways disease, airway mucus, innate immunity, adaptive immunity

  16. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  17. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  18. Fabry disease, respiratory symptoms, and airway limitation

    DEFF Research Database (Denmark)

    Svensson, Camilla Kara; Feldt-Rasmussen, Ulla; Backer, Vibeke

    2015-01-01

    abnormalities in patients with Fabry disease. Electron microscopy of lung biopsy and induced sputum show lamellar inclusion bodies (Zebra bodies) in the cytoplasm of cells in the airway wall. X-ray and CT scan have shown patchy ground-glass pulmonary infiltrations, fibrosis, and air trapping. Fibrosis diagnosed...

  19. 联合气道疾病%Combined airway disease

    Institute of Scientific and Technical Information of China (English)

    闫占峰; 王宁宇

    2012-01-01

    datas of epidemiological, clinical, and immunopathology demonstrate there is an important link between upper and lower airways. The upper airways diseases including the allergy rhinitis, the professional rhinitis, the sleep apnea and hypoventilation syndrome, nose polyposis (with/without aspirin sensitive) , the chronic rhinosinusitis and so on,have an important contacting with lower airways diseases. Understanding how the upper airway does affect the lower airway disease, has the influential role to diagnosis, the treatment and the prognosis. This article made the brief summary on the important relation about among the nose, the paranasal sinus and the lung recent years.

  20. Early Identification of Small Airways Disease on Lung Cancer Screening CT: Comparison of Current Air Trapping Measures

    NARCIS (Netherlands)

    Mets, O.M.; Zanen, P.; Lammers, J.-W.J.; Isgum, I.; Gietema, H.A.; Ginneken, B. van; Prokop, M.; Jong, P. A. de

    2012-01-01

    BACKGROUND : Lung cancer screening CT scans might provide valuable information about air trapping as an early indicator of smoking-related lung disease. We studied which of the currently suggested measures is most suitable for detecting functionally relevant air trapping on low-dose computed tomogra

  1. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will ad

  2. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibro

  3. The Diagnosis and Management of Airway Complications Following Lung Transplantation.

    Science.gov (United States)

    Mahajan, Amit K; Folch, Erik; Khandhar, Sandeep J; Channick, Colleen L; Santacruz, Jose F; Mehta, Atul C; Nathan, Steven D

    2017-03-05

    Airway complications following lung transplantation result in considerable morbidity and are associated with a mortality of 2-4 percent. The incidence of lethal and non-lethal airway complications has decreased since the early experiences with double- and single-lung transplantation. The most common risk factor associated with post-lung transplant airway complications is anastomotic ischemia. Airway complications include development of exophytic granulation tissue, bronchial stenosis, bronchomalacia, airway fistula, endobronchial infection, and anastomotic dehiscence. The broadening array of bronchoscopic therapies has enhanced treatment options for lung transplant recipients with airway complications. This article reviews the risk factors, clinical manifestations, and treatments of airway complications following lung transplantation, and provides our expert opinion where evidence is lacking.

  4. Airway hyperresponsiveness and development of lung function in adolescence and adulthood

    DEFF Research Database (Denmark)

    Harmsen, Lotte; Ulrik, Charlotte Suppli; Porsbjerg, Celeste;

    2014-01-01

    Long-term longitudinal studies of lung function from childhood to adulthood are important in linking our understanding of childhood risk factors to adult disease. Airway hyperresponsiveness has been shown to independently affect lung function growth in studies of adolescence. The objective...... of the study was to test the hypothesis that airway hyperresponsiveness has an independent deleterious effect on lung function in adolescence that extends into adulthood....

  5. The Field of Tissue Injury in the Lung and Airway

    Science.gov (United States)

    Steiling, Katrina; Ryan, John; Brody, Jerome S.; Spira, Avrum

    2009-01-01

    The concept of field cancerization was first introduced over six decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, non-neoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding the impact of the field of injury on clinical diagnostics and therapeutics for smoking-induced lung disease. PMID:19138985

  6. Aspergillus-Related Lung Disease

    Directory of Open Access Journals (Sweden)

    Alia Al-Alawi

    2005-01-01

    Full Text Available Aspergillus is a ubiquitous dimorphic fungus that causes a variety of human diseases ranging in severity from trivial to life-threatening, depending on the host response. An intact host defence is important to prevent disease, but individuals with pre-existing structural lung disease, atopy, occupational exposure or impaired immunity are susceptible. Three distinctive patterns of aspergillus-related lung disease are recognized: saprophytic infestation of airways, cavities and necrotic tissue; allergic disease including extrinsic allergic alveolitis, asthma, allergic bronchopulmonary aspergillosis, bronchocentric granulomatosis and chronic eosinophilic pneumonia; and airway and tissue invasive disease -- pseudomembranous tracheobronchitis, acute bronchopneumonia, angioinvasive aspergillosis, chronic necrotizing aspergillosis and invasive pleural disease. A broad knowledge of these clinical presentations and a high index of suspicion are required to ensure timely diagnosis and treatment of the potentially lethal manifestations of aspergillus-related pulmonary disease. In the present report, the clinical, radiographic and pathological aspects of the various aspergillus-related lung diseases are briefly reviewed.

  7. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy....... AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers)....

  8. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  9. Pharmacogenetics, pharmacogenomics and airway disease

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2001-11-01

    Full Text Available Abstract The availability of a draft sequence for the human genome will revolutionise research into airway disease. This review deals with two of the most important areas impinging on the treatment of patients: pharmacogenetics and pharmacogenomics. Considerable inter-individual variation exists at the DNA level in targets for medication, and variability in response to treatment may, in part, be determined by this genetic variation. Increased knowledge about the human genome might also permit the identification of novel therapeutic targets by expression profiling at the RNA (genomics or protein (proteomics level. This review describes recent advances in pharmacogenetics and pharmacogenomics with regard to airway disease.

  10. Interstitial Lung Diseases

    Science.gov (United States)

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...

  11. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction.

    Science.gov (United States)

    Kaczka, David W; Mitzner, Wayne; Brown, Robert H

    2013-09-01

    Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma.

  12. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  13. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease

    NARCIS (Netherlands)

    Qu, N; de Haan, A; Harmsen, MC; Kroese, FGM; de Leij, LFMH; Prop, J

    2003-01-01

    Background. Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD) w

  14. Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas

    NARCIS (Netherlands)

    Qu, N; de Vos, P; Schelfhorst, M; de Haan, A; Timens, W; Prop, J

    2005-01-01

    Background: The pathogenesis of obliterative bronchiolitis after lung transplantation requires further elucidation. In this study we used rat trachea transplantation to examine the role of epithelium in the progression of obliterative airway disease. Methods: Normal and denuded (i.e., epithelium rem

  15. Airway vascular reactivity and vascularisation in human chronic airway disease

    NARCIS (Netherlands)

    Bailey, Simon R; Boustany, Sarah; Burgess, Janette K; Hirst, Stuart J; Sharma, Hari S; Simcock, David E; Suravaram, Padmini R; Weckmann, Markus

    2009-01-01

    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular

  16. A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

    Directory of Open Access Journals (Sweden)

    von Rechenberg Moritz

    2011-01-01

    Full Text Available Abstract Background A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20 and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Methods Using a high-throughput fluorescence polarization (FP assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM. Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Results Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. Conclusions This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.

  17. 气道表面液转运与囊性纤维化肺病的病因研究%Airway surface liquid transport and pathogenesis research of cystic fibrosis lung disease

    Institute of Scientific and Technical Information of China (English)

    臧传宝; 卢丽丽; 王晓飞

    2009-01-01

    It has been considered that dysfunction of ions and liquid transport in airway epithelia is a main pathogenic factor of genetic cystic fibrosis lung disease. However, the problem about how airway surface liquid transport makes cystic fibrosis lung inflamed and impaired, has been argued in researches. Starting with explaining the cellular mechanisms of airway surface liquid transport, this article reviews the pathologic and genetic characteristics of cystic fibrosis lung disease and the research progress of late years in cystic fibrosis pathogenesis.%呼吸道上皮的离子和液体的转运功能失调,一直被认为是遗传性疾病囊性纤维化肺病的主要致病因素,但学术界对气道表面液转运缺陷如何引致囊性纤维化肺的感染和受损存在不同的观点.本文从解释气道表面液转运的细胞机制入手,综述了囊性纤维化肺病的病理和遗传特征和近年国际上对囊性纤维化肺病病因的研究进展.

  18. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-09-01

    correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC, FEV1/Pre (justified r=-0.308, P<0.001; justified r=-0.295, P=0.001, respectively and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=-0.289, P=0.001; justified r=-0.273, P=0.002, respectively, but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001, the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively. Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion: Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD. Keywords: plasminogen activator inhibitor-1 (PAI-1, chronic obstructive pulmonary disease (COPD, systemic inflammation, small airway obstruction (SAO

  19. Classification of pulmonary airway disease based on mucosal color analysis

    Science.gov (United States)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  20. Patterns of airway involvement in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Ilias; Papanikolaou; Konstantinos; Kagouridis; Spyros; A; Papiris

    2014-01-01

    Extraintestinal manifestations occur commonly in inflammatory bowel diseases(IBD). Pulmonary manifestations(PM) of IBD may be divided in airway disorders, interstitial lung disorders, serositis, pulmonary vasculitis, necrobiotic nodules, drug-induced lung disease, thromboembolic lung disease and enteropulmonary fistulas. Pulmonary involvement may often be asymptomatic and detected solely on the basis of abnormal screening tests. The common embryonic origin of the intestine and the lungs from the primitive foregut, the co-existence of mucosa associated lymphoid tissue in both organs, autoimmunity, smoking and bacterial translocation from the colon to the lungs may all be involved in the pathogenesis of PM in IBD. PM are mainly detected by pulmonary function tests and highresolution computed tomography. This review will focus on the involvement of the airways in the context of IBD, especially stenoses of the large airways, tracheo-bronchitis, bronchiectasis, bronchitis, mucoid impaction, bronchial granulomas, bronchiolitis, bronchiolitis obliterans syndrome and the co-existence of IBD with asthma, chronic obstructive pulmonary disease, sarcoidosis and a1-antitrypsin deficiency.

  1. CT analysis of peripheral airway and lung lesions of patients with asthma and COPD

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takayuki; Tanaka, Hiroshi; Sahara, Shin; Ohnishi, Tetsuro; Abe, Shosaku [Sapporo Medical Univ. (Japan). School of Medicine; Koba, Hiroyuki [Teinekeijinkai Hospital, Sapporo (Japan); Ueno, Kan [Hitachi Medico Technology Corp., Tokyo (Japan)

    2002-12-01

    We compared peripheral airway and lung parenchyma images among patients with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls using high-resolution CT images taken by a multidetector-row CT scanner (Aquillion, Toshiba, Japan). CT images were saved as digital image and communication (DICOM) files and %low attenuation area (LAA) (<-960 Hounsfield Unit) was calculated with the imaging software. %LAA was significantly increased in patients with COPD (p<0.0001) and smokers with stable asthma (p<0.01) as compared with healthy controls. In stable asthma, mucous plugging in the airway sometime appeared, while during asthma exacerbation small nodules and mosaic pattern of peripheral lung field appeared. Since smoker's patients with asthma have hyper-secretion of sputum due to smoking, mucous plugging and airway inflammation may easily occur and consequently air trapping may increase. In the future, image diagnosis of peripheral airway should develop for early detection of airway diseases as a non-invasive examination. On the other hand, micro focus X-ray computed tomography system (Hitachi Medico Technology Co., Japan) can display CT images closely similar to the pictures of microscopic findings and it will be a useful tool to analyze radiologic-pathologic correlations of peripheral airways and lung parenchyma. (author)

  2. Gene-environment interaction from international cohorts: impact on development and evolution of occupational and environmental lung and airway disease.

    Science.gov (United States)

    Gaffney, Adam; Christiani, David C

    2015-06-01

    Environmental and occupational pulmonary diseases impose a substantial burden of morbidity and mortality on the global population. However, it has been long observed that only some of those who are exposed to pulmonary toxicants go on to develop disease; increasingly, it is being recognized that genetic differences may underlie some of this person-to-person variability. Studies performed throughout the globe are demonstrating important gene-environment interactions for diseases as diverse as chronic beryllium disease, coal workers' pneumoconiosis, silicosis, asbestosis, byssinosis, occupational asthma, and pollution-associated asthma. These findings have, in many instances, elucidated the pathogenesis of these highly complex diseases. At the same time, however, translation of this research into clinical practice has, for good reasons, proceeded slowly. No genetic test has yet emerged with sufficiently robust operating characteristics to be clearly useful or practicable in an occupational or environmental setting. In addition, occupational genetic testing raises serious ethical and policy concerns. Therefore, the primary objective must remain ensuring that the workplace and the environment are safe for all.

  3. Association of current smoking with airway inflammation in chronic obstructive pulmonary disease and asymptomatic smokers

    NARCIS (Netherlands)

    Willemse, BWM; ten Hacken, NHT; Rutgers, B; Postma, DS; Timens, W

    2005-01-01

    Background: Inflammation in the airways and lung parenchyma underlies fixed airway obstruction in chronic obstructive pulmonary disease. The exact role of smoking as promoting factor of inflammation in chronic obstructive pulmonary disease is not clear, partly because studies often do not distinguis

  4. Microbiota abnormalities in inflammatory airway diseases - Potential for therapy.

    Science.gov (United States)

    Gollwitzer, Eva S; Marsland, Benjamin J

    2014-01-01

    Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.

  5. Systems physiology of the airways in health and obstructive pulmonary disease.

    Science.gov (United States)

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.

  6. Covered Bronchial Stent Insertion to Manage Airway Obstruction with Hemoptysis Caused by Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sae Ah; Kim, Do Hyeong [Dankook University College of Medicine, Dankook University Hospital, Cheonan (Korea, Republic of); Jen, Gyeong Sik [Bundang CHA General Hospital, CHA University, Seongnam (Korea, Republic of)

    2012-07-15

    Malignant airway obstruction and hemoptysis are common in lung cancer patients. Recently, airway stent is commonly used to preserve airway in malignant airway obstruction. Hemoptysis can be managed through various methods including conservative treatment, endobronchial tamponade, bronchoscopic intervention, embolization and surgery. In our case studies, we sought to investigate the effectiveness of airway stents for re-opening the airway as well as tamponade effects in four patients with malignant airway obstruction and bleeding caused by tumors or lymph node invasions.

  7. Comparison of airway responses in sheep of different age in precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Verena A Lambermont

    Full Text Available Animal models should display important characteristics of the human disease. Sheep have been considered particularly useful to study allergic airway responses to common natural antigens causing human asthma. A rationale of this study was to establish a model of ovine precision-cut lung slices (PCLS for the in vitro measurement of airway responses in newborn and adult animals. We hypothesized that differences in airway reactivity in sheep are present at different ages.Lambs were delivered spontaneously at term (147d and adult sheep lived till 18 months. Viability of PCLS was confirmed by the MTT-test. To study airway provocations cumulative concentration-response curves were performed with different allergic response mediators and biogenic amines. In addition, electric field stimulation, passive sensitization with house dust mite (HDM and mast cells staining were evaluated.PCLS from sheep were viable for at least three days. PCLS of newborn and adult sheep responded equally strong to methacholine and endothelin-1. The responses to serotonin, leukotriene D4 and U46619 differed with age. No airway contraction was evoked by histamine, except after cimetidine pretreatment. In response to EFS, airways in PCLS from adult and newborn sheep strongly contracted and these contractions were atropine sensitive. Passive sensitization with HDM evoked a weak early allergic response in PCLS from adult and newborn sheep, which notably was prolonged in airways from adult sheep. Only few mast cells were found in the lungs of non-sensitized sheep at both ages.PCLS from sheep lungs represent a useful tool to study pharmacological airway responses for at least three days. Sheep seem well suited to study mechanisms of cholinergic airway contraction. The notable differences between newborn and adult sheep demonstrate the importance of age in such studies.

  8. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sync.monash.edu.au; Morgan, K.S.; Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Boucher, R. [CF Research and Treatment Center, University of North Carolina at Chapel Hill (United States); Uesugi, K.; Yagi, N. [SPring-8/JASRI, Hyogo 679-5198 (Japan); Parsons, D.W. [Department of Pulmonary Medicine, Women' s and Children' s Hospital, South Australia 5006 (Australia); Department of Paediatrics, University of Adelaide, South Australia, 5006 (Australia); Women' s and Children' s Health Research Institute, South Australia, 5006 (Australia)

    2008-12-15

    We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of {approx}2 {mu}m. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.

  9. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    Science.gov (United States)

    Paganin, Patrizia; Fiscarelli, Ersilia Vita; Tuccio, Vanessa; Chiancianesi, Manuela; Bacci, Giovanni; Morelli, Patrizia; Dolce, Daniela; Dalmastri, Claudia; De Alessandri, Alessandra; Lucidi, Vincenzina; Taccetti, Giovanni; Mengoni, Alessio; Bevivino, Annamaria

    2015-01-01

    Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the

  10. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    Directory of Open Access Journals (Sweden)

    Patrizia Paganin

    Full Text Available Cystic fibrosis (CF is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S versus those with a substantial decline in lung function (SD. Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1. Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good

  11. Pediatric primary lung adenocarcinoma in the absence of congenital pulmonary airway malformation.

    Science.gov (United States)

    Guddati, Achuta K; Marak, Creticus P

    2012-12-01

    Primary lung adenocarcinoma is a rare entity in the pediatric population, especially in the absence of an underlying congenital pulmonary airway malformation. Primary lung malignancies in pediatric patients are rare and constitute 0.2% of all childhood malignancies. EGFR mutations and congenital airway malformations have been identified as etiological factors in the development of precancerous lesions that eventually progress to malignancy. The availability of genome sequencing and advanced imaging has made it possible to associate primary lung adenocarcinoma with mutations and structural malformations. Early diagnosis with the help of these techniques may result in surgical resection during early stages of the disease and possibly provide definitive treatment. Development of lung adenocarcinoma in pediatric patients in the absence of the above factors has been recorded anecdotally. It is possible that these patients may harbor a yet unknown set of mutations and recording this cases and preserving their tissues is of vital importance in the detection of these yet unknown etiologies.

  12. Detection of a novel stem cell probably involved in normal turnover of the lung airway epithelium.

    Science.gov (United States)

    Ortega-Martínez, Marta; Rodríguez-Flores, Laura E; de-la-Garza-González, Carlos; Ancer-Rodríguez, Jesús; Jaramillo-Rangel, Gilberto

    2015-11-01

    Regeneration of the lung airway epithelium after injury has been extensively studied. In contrast, analysis of its turnover in healthy adulthood has received little attention. In the classical view, this epithelium is maintained in the steady-state by the infrequent proliferation of basal or Clara cells. The intermediate filament protein nestin was initially identified as a marker for neural stem cells, but its expression has also been detected in other stem cells. Lungs from CD1 mice at the age of 2, 6, 12, 18 or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Nestin expression was examined by an immunohistochemical peroxidase-based method. Nestin-positive cells were detected in perivascular areas and in connective tissue that were in close proximity of the airway epithelium. Also, nestin-positive cells were found among the cells lining the airway epithelium. These findings suggest that nestin-positive stem cells circulate in the bloodstream, transmigrate through blood vessels and localize in the lung airway epithelium to participate in its turnover. We previously reported the existence of similar cells able to differentiate into lung chondrocytes. Thus, the stem cell reported here might be a bone marrow-derived mesenchymal stem cell (BMDMSC) able to generate several types of lung tissues. In conclusion, our findings indicate that there exist a BMDMSC in healthy adulthood that participates in the turnover of the lung airway epithelium. These findings may improve our knowledge about the lung stem cell biology and also provide novel approaches to therapy for devastating pulmonary diseases.

  13. Obesity, Metabolic Syndrome, and Airway Disease: A Bioenergetic Problem?

    OpenAIRE

    2014-01-01

    Common pathophysiological mechanisms are increasingly being recognized between obesity, metabolic dysfunction, and airway disease. Obesity increases asthma risk or severity, in multiple studies across the globe. Metabolic changes of obesity such as diabetes or insulin resistance are associated with asthma as well as poorer lung function. Insulin resistance has also been found to increase asthma risk independent of body mass. Conversely, asthma has been associated with abnormal glucose and lip...

  14. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    Science.gov (United States)

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  15. Surgical issues in lung transplantation: options, donor selection, graft preservation, and airway healing.

    Science.gov (United States)

    Daly, R C; McGregor, C G

    1997-01-01

    To present an overview of the surgical issues in lung transplantation, including the historical context and the rationale for choosing a particular procedure for a specific patient, we reviewed and summarized the current medical literature and our personal experience. Several surgical options are available, including single lung transplantation; double lung transplantation; heart-lung transplantation; bilateral, sequential single lung transplantation; and (recently) single lobe transplantation. Although single lung transplantation is preferred for maximal use of the available organs, bilateral lung transplantation is necessary for septic lung diseases and may be appropriate for pulmonary hypertension and bullous emphysema. Heart-lung transplantation is performed for Eisenmenger's syndrome and for primary pulmonary hypertension with severe right ventricular failure. General factors for consideration in assessment of compatibility of the donor and potential recipient include ABO blood group, height (the donor should be within +/- 20% of the recipient's height), and length of the lungs (determined on an anteroposterior chest roentgenogram). Graft preservation and minimal duration of ischemia are important. Complications associated with airway healing are related to ischemia of the donor bronchus. We have addressed the issue of donor bronchial ischemia by direct revascularization of the donor bronchial arteries with use of the recipient's internal thoracic artery. Currently, lung transplantation offers a realistic therapeutic option to patients with end-stage pulmonary parenchymal or vascular disease.

  16. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Hogg, James C; Paré, Peter D; Hackett, Tillie-Louise

    2017-04-01

    The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis.

  17. RAGE: a new frontier in chronic airways disease.

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter A B; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-11-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.

  18. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens;

    2016-01-01

    area percentage (WAP), wall thickness ratio (WTR), and airway diameters. Results: The method was thoroughly evaluated using 8000 manual annotations of airway-artery pairs from 24 full-inspiration pediatric CT scans (12 diseased and 12 controls). Limits of agreement between the automatically...... and manually measured diameters were comparable to interobserver limits of agreement. Differences in automatically obtained WAR, AAR, WAP, and WTR between bronchiectatic subjects and controls were similar as when manual annotations were used: WAR and outer AAR were significantly higher in the bronchiectatic......Purpose: Bronchiectasis and airway wall thickening are commonly assessed in computed tomography (CT) by comparing the airway size with the size of the accompanying artery. Thus, in order to automate the quantification of bronchiectasis and wall thickening following a similar principle...

  19. The Therapeutic Potential of Differentiated Lung Cells from Embryonic Stem Cells in Lung Diseases.

    Science.gov (United States)

    Mokhber Dezfouli, Mohammad Reza; Chaleshtori, Sirous Sadeghian; Dehghan, Mohammad Mehdi; Tavanaeimanesh, Hamid; Baharvand, Hossein; Tahamtani, Yaser

    2017-01-01

    Lung diseases cause great morbidity and mortality. The choice of effective medical treatment is limited and the number of lung diseases are difficult to treat with current treatments. The embryonic stem cells (ESCs) have the potential to differentiate into cell types of all three germinal layers, including lung epithelial cells. So they can be a potential source for new cell therapies for hereditary or acquired diseases of the airways and lungs. One method for treatment of lung diseases is cell therapy and the use of ESCs that can replace the damaged epithelial and endothelial cells. Progress using ESCs has developed slowly for lung regeneration because differentiation of lung cells from ESCs is more difficult as compared to differentiation of other cells. The review studies the therapeutic effects of differentiated lung cells from embryonic stem cells in lung diseases. There are few studies of differentiation of ESCs into a lineage of respiratory and then investigation of this cell in experimental model of lung diseases.

  20. Type II Congenital Pulmonary Airway Malformation in an Esophageal Lung

    Directory of Open Access Journals (Sweden)

    Blanca Estela Martínez-Martínez

    2013-01-01

    Full Text Available A seven-month-old girl, born prematurely (birth weight 1000 g from a twin pregnancy, was admitted to hospital due to recurrent pneumonia and atelectasis. She experienced cough and respiratory distress during feeding. The right hemithorax was smaller than the left, with diminished breath sounds and dullness. Chest x-rays revealed decreased lung volume and multiple radiolucent images in the right lung, as well as overdistention of the left lung. An esophagogram revealed three bronchial branches arising from the lower one-third of the esophagus, corresponding to the right lung and ending in a cul-de-sac. A diagnosis of esophageal lung was established. On bronchography, the right lung was absent and the trachea only continued into the left main bronchus. Echocardiography and angiotomography revealed agenesis of the pulmonary artery right branch. The surgical finding was an esophageal right lung, which was removed; the histopathological diagnosis was type II congenital pulmonary airway malformation in an esophageal lung.

  1. Determinants of lung function and airway hyperresponsiveness in asthmatic children

    DEFF Research Database (Denmark)

    Bisgaard, H; Pedersen, S; Anhøj, J;

    2007-01-01

    Genetic Study (SAGA). RESULTS: The primary analysis studied the association between the lung function and delay of inhaled corticosteroids (ICS) after asthma diagnosis among asthmatic children and young adults with a history of regular ICS treatment (N=919). FEV(1) percent predicted (FEV(1)% pred) was 0......BACKGROUND: Asthma patients exhibit an increased rate of loss of lung function. Determinants to such decline are largely unknown and the modifying effect of steroid therapy is disputed. This cross-sectional study aimed to elucidate factors contributing to such decline and the possible modifying...... effect of steroid treatment. METHODS: We analyzed determinants of lung function and airway hyperresponsiveness (AHR) in a Scandinavian study of 2390 subjects from 550 families. Families were selected for the presence of two or more asthmatic children as part of a genetic study, Scandinavian Asthma...

  2. Multiple cystic lung disease

    Directory of Open Access Journals (Sweden)

    Flavia Angélica Ferreira Francisco

    2015-12-01

    Full Text Available Multiple cystic lung disease represents a diverse group of uncommon disorders that can present a diagnostic challenge due to the increasing number of diseases associated with this presentation. High-resolution computed tomography of the chest helps to define the morphological aspects and distribution of lung cysts, as well as associated findings. The combination of appearance upon imaging and clinical features, together with extrapulmonary manifestations, when present, permits confident and accurate diagnosis of the majority of these diseases without recourse to open-lung biopsy. The main diseases in this group that are discussed in this review are lymphangioleiomyomatosis, pulmonary Langerhans cell histiocytosis and folliculin gene-associated syndrome (Birt–Hogg–Dubé; other rare causes of cystic lung disease, including cystic metastasis of sarcoma, are also discussed. Disease progression is unpredictable, and understanding of the complications of cystic lung disease and their appearance during evolution of the disease are essential for management. Correlation of disease evolution and clinical context with chest imaging findings provides important clues for defining the underlying nature of cystic lung disease, and guides diagnostic evaluation and management.

  3. EDU pretreatment decreases polymorphonuclear leukocyte migration into rat lung airways.

    Science.gov (United States)

    Bassett, D J; Elbon, C L; Ishii, Y; Yang, H; Otterbein, L; Boswell, G A; Kerr, J S

    1994-07-01

    Pretreatment with the heterocyclic compound EDU (N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N'-phenylurea) has previously been shown to reduce polymorphonuclear leukocyte (PMN) infiltration into the airways of ozone-exposed rats. The present study further examined the effects of 1 and 2 days EDU pretreatment on rat lung inflammatory responses by determining PMN infiltration in response to intratracheal instillation with the chemoattractant formyl-norleucine-leucine-phenylalanine (fNLP). Maximal recovery of PMNs by bronchoalveolar lavage was observed 4 hr after fNLP instillation with no alteration in the numbers of recoverable macrophages and lymphocytes. Although 1-day pretreatment with EDU did not affect PMN recovery from fNLP-instilled rat lungs, 2 days of EDU pretreatment prevented PMN infiltration as indicated by PMN recoveries that were similar to those obtained from saline-instilled lungs. Measurements of lung-marginated and interstitial pools of inflammatory cells using collagenase tissue digestion demonstrated no effect of 2 days EDU pretreatment. Although 2 days EDU pretreatment alone did not alter blood PMN content, lung permeability, and the lavage recoveries of inflammatory cells, blood PMN responses to chemotactic stimuli in vitro were impaired. In addition, EDU was shown to directly inhibit PMN chemotaxis and superoxide anion generation in vitro. These data demonstrated that EDU acts by interfering with PMN activation and migration rather than by decreasing PMN availability. EDU, by modulating the inflammatory response, represents a useful compound for preventing PMN-associated amplification of acute lung injuries.

  4. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    Science.gov (United States)

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  5. Prevention of house dust mite induced allergic airways disease in mice through immune tolerance.

    Science.gov (United States)

    Agua-Doce, Ana; Graca, Luis

    2011-01-01

    Allergic airways disease is a consequence of a Th2 response to an allergen leading to a series of manifestations such as production of allergen-specific IgE, inflammatory infiltrates in the airways, and airway hyper-reactivity (AHR). Several strategies have been reported for tolerance induction to allergens leading to protection from allergic airways disease. We now show that CD4 blockade at the time of house dust mite sensitization induces antigen-specific tolerance in mice. Tolerance induction is robust enough to be effective in pre-sensitized animals, even in those where AHR was pre-established. Tolerant mice are protected from airways eosinophilia, Th2 lung infiltration, and AHR. Furthermore, anti-CD4 treated mice remain immune competent to mount immune responses, including Th2, to unrelated antigens. Our findings, therefore, describe a strategy for tolerance induction potentially applicable to other immunogenic proteins besides allergens.

  6. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    Science.gov (United States)

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors.

  7. Lung Compliance and Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    D. Papandrinopoulou

    2012-01-01

    Full Text Available Chronic obstructive pulmonary disease, namely, pulmonary emphysema and chronic bronchitis, is a chronic inflammatory response of the airways to noxious particles or gases, with resulting pathological and pathophysiological changes in the lung. The main pathophysiological aspects of the disease are airflow obstruction and hyperinflation. The mechanical properties of the respiratory system and its component parts are studied by determining the corresponding volume-pressure (P-V relationships. The consequences of the inflammatory response on the lung structure and function are depicted on the volume-pressure relationships.

  8. Automated segmentation of lung airway wall area measurements from bronchoscopic optical coherence tomography imaging

    Science.gov (United States)

    Heydarian, Mohammadreza; Choy, Stephen; Wheatley, Andrew; McCormack, David; Coxson, Harvey O.; Lam, Stephen; Parraga, Grace

    2011-03-01

    Chronic Obstructive Pulmonary Disease (COPD) affects almost 600 million people and is currently the fourth leading cause of death worldwide. COPD is an umbrella term for respiratory symptoms that accompany destruction of the lung parenchyma and/or remodeling of the airway wall, the sum of which result in decreased expiratory flow, dyspnea and gas trapping. Currently, x-ray computed tomography (CT) is the main clinical method used for COPD imaging, providing excellent spatial resolution for quantitative tissue measurements although dose limitations and the fundamental spatial resolution of CT limit the measurement of airway dimensions beyond the 5th generation. To address this limitation, we are piloting the use of bronchoscopic Optical Coherence Tomography (OCT), by exploiting its superior spatial resolution of 5-15 micrometers for in vivo airway imaging. Currently, only manual segmentation of OCT airway lumen and wall have been reported but manual methods are time consuming and prone to observer variability. To expand the utility of bronchoscopic OCT, automatic and robust measurement methods are required. Therefore, our objective was to develop a fully automated method for segmenting OCT airway wall dimensions and here we explore several different methods of image-regeneration, voxel clustering and post-processing. Our resultant automated method used K-means or Fuzzy c-means to cluster pixel intensity and then a series of algorithms (i.e. cluster selection, artifact removal, de-noising) was applied to process the clustering results and segment airway wall dimensions. This approach provides a way to automatically and rapidly segment and reproducibly measure airway lumen and wall area.

  9. Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi; Tiddens, Harm A.W.M. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Erasmus Medical Center, Department of Pediatric Pulmonology and Allergology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wielopolski, Piotr A. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wild, Jim M. [University of Sheffield, Academic Radiology, Sheffield (United Kingdom); Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Departments of Radiology and Medicine, Pulmonary Divisions, Boston, MA (United States); Morana, Giovanni [Ca' Foncello Regional Hospital, Department of Radiology, Treviso (Italy); Lequin, Maarten H. [University Medical Center, Department of Radiology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2015-12-15

    Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intensities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studies of chronic diseases. Moreover, MRI allows assessment of functional aspects of the chest, such as lung perfusion and ventilation, or airways and diaphragm mechanics. In this review, we describe the most common MRI acquisition techniques on the verge of clinical translation, their problems and the possible solutions to make chest MRI feasible in children. (orig.)

  10. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008429 The predictive factors and unfavourable prognostic factors of interstitial lung disease in patients with polymyositis/dermatomyositis. WANG Peizhen(王培珍), et al. Dept Rheumatol & Immunol, Changhai Hosp, Milit Med Univ, Shanghai 200433. Chin J Tuberc Respir Dis 2008;31(6):417-420. Objective To analyze the predictive factors and the unfavourable prognostic factors of interstitial lung disease (ILD) in patients with polymyositis

  11. RESPIRATORY VIRAL-INFECTIONS AGGRAVATE AIRWAY DAMAGE CAUSED BY CHRONIC REJECTION IN RAT LUNG ALLOGRAFTS

    NARCIS (Netherlands)

    WINTER, JB; GOUW, ASH; GROEN, M; WILDEVUUR, C; PROP, J

    1994-01-01

    Airway damage resulting in bronchiolitis obliterans occurs frequently in patients after heart-lung and lung transplantation. Generally, chronic rejection is assumed to be the most important cause of bronchiolitis obliterans. However, viral infections might also be potential causes of airway damage a

  12. Interleukin-1 alpha drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD

    NARCIS (Netherlands)

    Osei, Emmanuel T.; Noordhoek, Jacobine; Hackett, Tillie L.; Spanjer, Anita I. R.; Postma, Dirkje S.; Timens, Wim; Brandsma, Corry-Anke; Heijink, Irene H.

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the

  13. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD

    NARCIS (Netherlands)

    Osei, Emmanuel T; Noordhoek, Jacobien A; Hackett, Tillie L; Spanjer, Anita I R; Postma, Dirkje S; Timens, Wim; Brandsma, Corry-Anke; Heijink, Irene H

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the

  14. Genome-Wide Association Study Identification of Novel Loci Associated with Airway Responsiveness in Chronic Obstructive Pulmonary Disease

    NARCIS (Netherlands)

    Hansel, Nadia N.; Pare, Peter D.; Rafaels, Nicholas; Sin, Don D.; Sandford, Andrew; Daley, Denise; Vergara, Candelaria; Huang, Lili; Elliott, W. Mark; Pascoe, Chris D.; Arsenault, Bryna A.; Postma, Dirkje S.; Boezen, Marieke H.; Bosse, Yohan; van den Berge, Maarten; Hiemstra, Pieter S.; Cho, Michael H.; Litonjua, Augusto A.; Sparrow, David; Ober, Carole; Wise, Robert A.; Connett, John; Neptune, Enid R.; Beaty, Terri H.; Ruczinski, Ingo; Mathias, Rasika A.; Barnes, Kathleen C.

    2015-01-01

    Increased airway responsiveness is linked to lung function decline and mortality in subjects with chronic obstructive pulmonary disease (COPD); however, the genetic contribution to airway responsiveness remains largely unknown. A genome-wide association study (GWAS) was performed using the Illumina

  15. Reflexes from the lungs and airways: historical perspective.

    Science.gov (United States)

    Widdicombe, John

    2006-08-01

    Historical aspects of respiratory reflexes from the lungs and airways are reviewed, up until about 10 yr ago. For most of the 19th century, the possible reflex inputs into the "respiratory center," the position of which had been identified, were very speculative. There was little concept of reflex control of the pattern of breathing. Then, in 1868, Breuer published his paper on "The self-steering of respiration via the Nervus Vagus." For the first time this established the role of vagal inflation and deflation reflexes in determining the pattern of breathing. Head later extended Breuer's work, and Kratschmer laid a similar basis for reflexes from the nose and larynx. Then, 50-60 yr later, the development of the thermionic valve and the oscilloscope allowed recording action potentials from single nerve fibers in the vagus. In 1933, Adrian showed that slowly adapting pulmonary stretch receptors were responsible for the inflation reflex. Later, Knowlton and Larrabee described rapidly adapting receptors and showed that they mediated deep augmented breaths and the deflation reflex. Still later, it was established that rapidly adapting receptors were, at least in part, responsible for cough. In 1954, Paintal began his study of C-fiber receptors (J receptors), work greatly extended by the Coleridges. Since approximately 10 yr ago, when the field of this review stops, there has been an explosion of research on lung and airway receptors, many aspects of which are dealt with in other papers in this series.

  16. The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways

    Directory of Open Access Journals (Sweden)

    Olivier Boucherat

    2012-05-01

    Hox genes encode transcription factors controlling complex developmental processes in various organs. Little is known, however, about how HOX proteins control cell fate. Herein, we demonstrate that the goblet cell metaplasia observed in lung airways from Hoxa5−/− mice originates from the transdifferentiation of Clara cells. Reduced CC10 expression in Hoxa5−/− embryos indicates that altered cell specification occurs prior to birth. The loss of Hoxa5 function does not preclude airway repair after naphthalene exposure, but the regenerated epithelium presents goblet cell metaplasia and less CC10-positive cells, demonstrating the essential role of Hoxa5 for correct differentiation. Goblet cell metaplasia in Hoxa5−/− mice is a FOXA2-independent process. However, it is associated with increased Notch signaling activity. Consistent with these findings, expression levels of activated NOTCH1 and the effector gene HEY2 are enhanced in patients with chronic obstructive pulmonary disease. In vivo administration of a γ-secretase inhibitor attenuates goblet cell metaplasia in Hoxa5−/− mice, highlighting the contribution of Notch signaling to the phenotype and suggesting a potential therapeutic strategy to inhibit goblet cell differentiation and mucus overproduction in airway diseases. In summary, the loss of Hoxa5 function in lung mesenchyme impacts on epithelial cell fate by modulating Notch signaling.

  17. Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing

    DEFF Research Database (Denmark)

    Zakharkina, Tetyana; Heinzel, Elke; Koczulla, Rembert A

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease that affects a large number of patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways.......Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease that affects a large number of patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways....

  18. Mode of Glucocorticoid Actions in Airway Disease

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ito

    2006-01-01

    Full Text Available Synthetic glucocorticoids are the most potent anti-inflammatory agents used to treat chronic inflammatory disease, such as asthma. However, a small number (<5% of asthmatic patients and almost all patients with chronic obstructive pulmonary disease (COPD do not respond well, or at all, to glucocorticoid therapy. If the molecular mechanism of glucocorticoid insensitivity is uncovered, it may in turn provide insight into the key mechanism of glucocorticoid action and allow a rational way to implement treatment regimens that restore glucocorticoid sensitivity. Glucocorticoids exert their effects by binding to a cytoplasmic glucocorticoid receptor (GR, which is subjected to post-translational modifications. Receptor phosphorylation, acetylation, nitrosylation, ubiquitinylation, and other modifications influence hormone binding, nuclear translocation, and protein half-life. Analysis of GR interactions to other molecules, such as coactivators or corepressors, may explain the genetic specificity of GR action. Priming with inflammatory cytokine or oxidative/nitrative stress is a mechanism for the glucocorticoid resistance observed in chronic inflammatory airway disease via reduction of corepressors or GR modification. Therapies targeting these aspects of the GR activation pathway may reverse glucocorticoid resistance in patients with glucocorticoid-insensitive airway disease and some patients with other inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease.

  19. Lipocalin2 protects against airway inflammation and hyperresponsiveness in a murine model of allergic airway disease

    DEFF Research Database (Denmark)

    Dittrich, A M; Krokowski, M; Meyer, H-A;

    2010-01-01

    Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways.......Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways....

  20. Accelerated decline in lung function in smoking women with airway obstruction: SAPALDIA 2 cohort study

    Directory of Open Access Journals (Sweden)

    Zemp Elisabeth

    2005-05-01

    Full Text Available Abstract Background The aim was to determine if effects from smoking on lung function measured over 11 years differ between men and women. Methods In a prospective population based cohort study (Swiss Study on Air Pollution and Lung Diseases in Adults current smokers in 1991 (18 – 60 yrs were reassessed in 2002 (n = 1792. Multiple linear regression was used to estimate effects from pack-years of cigarettes smoked to 1991 and mean packs of cigarettes smoked per day between 1991 and 2002 on change in lung volume and flows over the 11 years. Results In both sexes, packs smoked between assessments were related to lung function decline but pack-years smoked before 1991 were not. Mean annual decline in FEV1 was -10.4 mL(95%CI -15.3, -5.5 per pack per day between assessments in men and -13.8 mL(95%CI-19.5,-8.1 in women. Decline per pack per day between 1991 and 2002 was lower in women who smoked in 1991 but quit before 2002 compared to persistent smokers (-6.4 vs -11.6 mL, p = 0.05 but this was not seen in men (-14.3 vs -8.8 mL p = 0.49. Smoking related decline was accelerated in men and women with airway obstruction, particularly in women where decline in FEV1 was three fold higher in participants with FEV1/FVC Conclusion There are differences in effects from smoking on lung function between men and women. Lung function recovers faster in women quitters than in men. Women current smokers with airway obstruction experience a greater smoking related decline in lung function than men.

  1. Inhalational Lung Disease

    Directory of Open Access Journals (Sweden)

    S Kowsarian

    2010-01-01

    Full Text Available Inhalational lung diseases are among the most important occupational diseases. Pneumoconiosis refers to a group of lung diseases result from inhalation of usually inorganic dusts such as silicon dioxide, asbestos, coal, etc., and their deposition in the lungs. The resultant pulmonary disorders depend on the susceptibility of lungs; size, concentration, solubility and fibrogenic properties of the inhaled particles; and duration of exposure. Radiographic manifestations of pneumoconiosis become apparent several years after exposure to the particles. However, for certain types of dusts, e.g., silicone dioxide crystal and beryllium, heavy exposure within a short period can cause an acute disease. Pulmonary involvement in asbestosis is usually in the lower lobes. On the contrary, in silicosis and coal worker pneumoconiosis, the upper lobes are involved predominantly. For imaging evaluation of pneumoconiosis, high-resolution computed tomography (CT is superior to conventional chest x-ray. Magnetic resonance imaging (MRI and positron emission tomography (PET scan are helpful in those with suspected tumoral lesions. In this essay, we reviewed the imaging aspects of inhalational lung disease.

  2. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  3. High resolution lung airway cast segmentation with proper topology suitable for computational fluid dynamic simulations.

    Science.gov (United States)

    Carson, James P; Einstein, Daniel R; Minard, Kevin R; Fanucchi, Michelle V; Wallis, Christopher D; Corley, Richard A

    2010-10-01

    Developing detailed lung airway models is an important step towards understanding the respiratory system. While modern imaging and airway casting approaches have dramatically improved the potential detail of such models, challenges have arisen in image processing as the demand for greater detail pushes the image processing approaches to their limits. Airway segmentations with proper topology have neither loops nor invalid voxel-to-voxel connections. Here we describe a new technique for segmenting airways with proper topology and apply the approach to an image volume generated by magnetic resonance imaging of a silicone cast created from an excised monkey lung.

  4. The Field of Tissue Injury in the Lung and Airway

    OpenAIRE

    Steiling, Katrina; Ryan, John; Brody, Jerome S.; Spira, Avrum

    2008-01-01

    The concept of field cancerization was first introduced over six decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, non-neoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potentia...

  5. Advances research on bronchoscopic lung volume reduction surgery for obstructive airway diseases%内科肺减容术在慢性阻塞性肺疾病最新研究进展

    Institute of Scientific and Technical Information of China (English)

    谢栓栓; 王昌惠

    2013-01-01

    阻塞性呼吸道疾病是多种疾病组成的,但它们都可因炎症导致气道狭窄,从而导致呼吸做功增加.由于其患病人数多,病死率高,严重影响患者的劳动能力和生活质量.不同群体的哮喘、慢性支气管炎和肺气肿最佳治疗策略应该是多方面的,如高危肺气肿患者应包括药物学和非药物方法以及手术治疗.回顾当前支气管镜介入水平,近十年其发展目标是更好地控制哮喘症状和缓解由于不适合肺减容手术的肺气肿患者症状,由此可见,新型支气管镜技术针对气道阻塞性疾病治疗有很大帮助.%Obstructivepulmonary disease is composed of a variety of diseases,nevertheless,they are able to induce the airway narrow and result in increase of work of breathing force.The incidence and mortality are high,which seriously influence the patients' ability to work and quality of life.There are many optimal treatment strategies of asthma,chronic bronchitis,and emphysema in different groups,such as pharmacological and non-pharmacological methods as well as surgery for high-risk patients with emphysema.In recent decades,the development objective of bronchoscopic intervention is to better control asthma symptoms and relieve symptoms of patients with emphysema who are not suitable for the lung volume reduction surgery.This demonstrates that new bronchoscopic techniques will be helpful for treatment of airway obstruction disease in future.

  6. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    Science.gov (United States)

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways.

  7. Host–microbe interactions in distal airways: relevance to chronic airway diseases

    Directory of Open Access Journals (Sweden)

    Clémence Martin

    2015-03-01

    Full Text Available This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans. These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host–microbe (mostly bacteria and viruses interactions in healthy and diseased airways, with a special focus on distal airways.

  8. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice

    Directory of Open Access Journals (Sweden)

    Barfod Kenneth K

    2010-09-01

    exposures to commercial Bt based biopesticides can induce sub-chronic lung inflammation in mice, which may be the first step in the development of chronic lung diseases. Inhalation of Bt aerosols does not induce airway irritation, which could explain why workers may be less inclined to use a filter mask during the application process, and are thereby less protected from exposure to Bt spores.

  9. MiR-221 and miR-130a regulate lung airway and vascular development.

    Directory of Open Access Journals (Sweden)

    Sana Mujahid

    Full Text Available Epithelial-mesenchymal interactions play a crucial role in branching morphogenesis, but very little is known about how endothelial cells contribute to this process. Here, we examined how anti-angiogenic miR-221 and pro-angiogenic miR-130a affect airway and vascular development in the fetal lungs. Lung-specific effects of miR-130a and miR-221 were studied in mouse E14 whole lungs cultured for 48 hours with anti-miRs or mimics to miR-130a and miR-221. Anti-miR 221 treated lungs had more distal branch generations with increased Hoxb5 and VEGFR2 around airways. Conversely, mimic 221 treated lungs had reduced airway branching, dilated airway tips and decreased Hoxb5 and VEGFR2 in mesenchyme. Anti-miR 130a treatment led to reduced airway branching with increased Hoxa5 and decreased VEGFR2 in the mesenchyme. Conversely, mimic 130a treated lungs had numerous finely arborized branches extending into central lung regions with diffusely localized Hoxa5 and increased VEGFR2 in the mesenchyme. Vascular morphology was analyzed by GSL-B4 (endothelial cell-specific lectin immunofluorescence. Observed changes in airway morphology following miR-221 inhibition and miR-130a enhancement were mirrored by changes in vascular plexus formation around the terminal airways. Mouse fetal lung endothelial cells (MFLM-91U were used to study microvascular cell behavior. Mimic 221 treatment resulted in reduced tube formation and cell migration, where as the reverse was observed with mimic 130a treatment. From these data, we conclude that miR-221 and miR-130a have opposing effects on airway and vascular morphogenesis of the developing lung.

  10. SLPI and inflammatory lung disease in females.

    LENUS (Irish Health Repository)

    McKiernan, Paul J

    2012-02-01

    During the course of certain inflammatory lung diseases, SLPI (secretory leucoprotease inhibitor) plays a number of important roles. As a serine antiprotease it functions to protect the airways from proteolytic damage due to neutrophil and other immune cell-derived serine proteases. With respect to infection it has known antimicrobial and anti-viral properties that are likely to contribute to host defence. Another of its properties is the ability to control inflammation within the lung where it can interfere with the transcriptional induction of pro-inflammatory gene expression induced by NF-kappaB (nuclear factor kappaB). Thus, factors that regulate the expression of SLPI in the airways can impact on disease severity and outcome. Gender represents once such idiosyncratic factor. In females with CF (cystic fibrosis), it is now thought that circulating oestrogen contributes, in part, to the observed gender gap whereby females have worse disease and poorer prognosis than males. Conversely, in asthma, sufferers who are females have more frequent exacerbations at times of low-circulating oestrogen. In the present paper, we discuss how SLPI participates in these events and speculate on whether regulatory mechanisms such as post-transcriptional modulation by miRNAs (microRNAs) are important in the control of SLPI expression in inflammatory lung disease.

  11. Volumetric capnography for the evaluation of chronic airways diseases

    Directory of Open Access Journals (Sweden)

    Veronez L

    2014-09-01

    Full Text Available Liliani de Fátima Veronez,1 Monica Corso Pereira,2 Silvia Maria Doria da Silva,2 Luisa Affi Barcaui,2 Eduardo Mello De Capitani,2 Marcos Mello Moreira,2 Ilma Aparecida Paschoalz2 1Department of Physical Therapy, University of Votuporanga (Educational Foundation of Votuporanga, Votuporanga, 2Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP, Campinas, Sao Paulo, BrazilBackground: Obstructive lung diseases of different etiologies present with progressive peripheral airway involvement. The peripheral airways, known as the silent lung zone, are not adequately evaluated with conventional function tests. The principle of gas washout has been used to detect pulmonary ventilation inhomogeneity and to estimate the location of the underlying disease process. Volumetric capnography (VC analyzes the pattern of CO2 elimination as a function of expired volume.Objective: To measure normalized phase 3 slopes with VC in patients with non-cystic fibrosis bronchiectasis (NCB and in bronchitic patients with chronic obstructive pulmonary disease (COPD in order to compare the slopes obtained for the groups.Methods: NCB and severe COPD were enrolled sequentially from an outpatient clinic (Hospital of the State University of Campinas. A control group was established for the NCB group, paired by sex and age. All subjects performed spirometry, VC, and the 6-Minute Walk Test (6MWT. Two comparisons were made: NCB group versus its control group, and NCB group versus COPD group. The project was approved by the ethical committee of the institution. Statistical tests used were Wilcoxon or Student’s t-test; P<0.05 was considered to be a statistically significant difference.Results: Concerning the NCB group (N=20 versus the control group (N=20, significant differences were found in body mass index and in several functional variables (spirometric, VC, 6MWT with worse results observed in the NCB group. In the comparison between

  12. Cystic lung disease: Achieving a radiologic diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Trotman-Dickenson, Beatrice, E-mail: btrotmandickenson@partners.org

    2014-01-15

    Diffuse cystic lung disease represents a diverse group of uncommon disorders with characteristic appearance on high resolution CT imaging. The combination of imaging appearance with clinical features and genetic testing where appropriate permits a confident and accurate diagnosis in the majority of the diseases without recourse for open lung biopsy. The mechanism of cyst development disease is unclear but in some disorders appears to be related to small airways obstruction. These diseases are incurable, with the exception of Langerhans cell histiocytosis which may spontaneously remit or resolve on smoking cessation. Disease progression is unpredictable; in general older patients have a more benign disease, while young patients may progress rapidly to respiratory failure. An understanding of the complications of cystic lung disease and the appearance of disease progression is essential for the management of these patients. A number of these disorders are associated with malignancy, recognition of the potential tumors permits appropriate imaging surveillance. Due to the widespread use of CT, pulmonary cysts are increasingly discovered incidentally in an asymptomatic individual. The diagnostic challenge is to determine whether these cysts represent an early feature of a progressive disease or have no clinical significance. In the elderly population the cysts are unlikely to represent a progressive disease. In individuals <50 years further evaluation is recommended.

  13. Effects of sildenafil on pulmonary hypertension and exercise tolerance in severe cystic fibrosis-related lung disease.

    Science.gov (United States)

    Montgomery, Gregory S; Sagel, Scott D; Taylor, Amy L; Abman, Steven H

    2006-04-01

    Cystic fibrosis (CF) patients with advanced lung disease are at risk for developing pulmonary vascular disease and pulmonary hypertension, characterized by progressive exercise intolerance beyond the exercise-limiting effects of airways disease in CF. We report on a patient with severe CF lung disease who experienced clinically significant improvements in exercise tolerance and pulmonary hypertension without changing lung function during sildenafil therapy.

  14. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  15. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930512 Changes of interleukin—I released bypulmonary alveolar macrophage in patients withinterstitial lung disease.LI Zhenhua(李振华),etal.Respir Dis Instit,China Med Univ,Shengyang,110001.Chin J Tuberc & Respir Dis1993;16(2):90—92.To evaluate the activity of PAM,levels of IL-l released by PAM in patients with ILD(nonsmokers)were measured by usinglipopolysacharide(LPS)stimulation and thymo-cyte proliferation method,with healthy non-smokers as control group.The results showed

  16. Drug induced lung disease - amiodarone in focus

    Directory of Open Access Journals (Sweden)

    Vasić Nada R.

    2014-01-01

    Full Text Available More than 380 medications are known to cause pulmonary toxicity. Selected drugs that are important causes of pulmonary toxicity fall into the following classes: cytotoxic, cardiovascular, anti-inflammatory, antimicrobial, illicit drugs, miscellaneous. The adverse reactions can involve the pulmonary parenchyma, pleura, the airways, pulmonary vascular system, and mediastinum. Drug-induced lung diseases have no pathognomonic clinical, laboratory, physical, radiographic or histological findings. A drug-induced lung disease is usually considered a diagnosis of exclusion of other diseases. The diagnosis of drug-mediated pulmonary toxicity is usually made based on clinical findings. In general, laboratory analyses do not help in establishing the diagnosis. High-resolution computed tomography scanning is more sensitive than chest radiography for defining radiographic abnormalities. The treatment of drug-induced lung disease consists of immediate discontinuation of the offending drug and appropriate management of the pulmonary symptoms. Glucocorticoids have been associated with rapid improvement in gas exchange and reversal of radiographic abnormalities. Before starting any medication, patients should be educated about the potential adverse effects of the drug. Amiodarone is an antiarrhythmic agent used in the treatment of many types of tachyarrhythmia. Amiodarone-caused pulmonary toxicity is a well-known side effect (complication of this medication. The incidence of amiodarone-induced lung disease is approximately 5-7%.

  17. EFFECTS OF CORTICOSTEROIDS ON BRONCHODILATOR ACTION IN CHRONIC OBSTRUCTIVE LUNG-DISEASE

    NARCIS (Netherlands)

    WEMPE, JB; POSTMA, DS; BREEDERVELD, N; KORT, E; VANDERMARK, TW; KOETER, GH

    1992-01-01

    Background Short term treatment corticosteroids does not usually reduce airflow limitation and airway responsiveness in patients with chronic obstructive lung disease. We investigated whether corticosteroids modulate the effects of inhaled salbutamol and ipratropium bromide. Methods Ten non-allergic

  18. Autophagy in lung disease pathogenesis and therapeutics

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2015-04-01

    Full Text Available Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics.

  19. Viral bronchiolitis in young rats causes small airway lesions that correlate with reduced lung function.

    Science.gov (United States)

    Sorkness, Ronald L; Szakaly, Renee J; Rosenthal, Louis A; Sullivan, Ruth; Gern, James E; Lemanske, Robert F; Sun, Xin

    2013-11-01

    Viral illness with wheezing during infancy is associated with the inception of childhood asthma. Small airway dysfunction is a component of childhood asthma, but little is known about how viral illness at an early age may affect the structure and function of small airways. We used a well-characterized rat model of postbronchiolitis chronic airway dysfunction to address how postinfectious small airway lesions affect airway physiological function and if the structure/function correlates persist into maturity. Brown Norway rats were sham- or virus inoculated at 3 to 4 weeks of age and allowed to recover from the acute illness. At 3 to 14 months of age, physiology (respiratory system resistance, Newtonian resistance, tissue damping, and static lung volumes) was assessed in anesthetized, intubated rats. Serial lung sections revealed lesions in the terminal bronchioles that reduced luminal area and interrupted further branching, affecting 26% (range, 13-39%) of the small airways at 3 months of age and 22% (range, 6-40%) at 12 to 14 months of age. At 3 months of age (n = 29 virus; n = 7 sham), small airway lesions correlated with tissue damping (rs = 0.69) but not with Newtonian resistance (rs = 0.23), and Newtonian resistance was not elevated compared with control rats, indicating that distal airways were primarily responsible for the airflow obstruction. Older rats (n = 7 virus; n = 6 sham) had persistent small airway dysfunction and significantly increased Newtonian resistance in the postbronchiolitis group. We conclude that viral airway injury at an early age may induce small airway lesions that are associated quantitatively with small airway physiological dysfunction early on and that these defects persist into maturity.

  20. Aeroparticles, composition and lung diseases

    Directory of Open Access Journals (Sweden)

    Carlos Ivan Falcon-Rodriguez

    2016-01-01

    Full Text Available Urban air pollution is a serious worldwide problem due to its impact on human health. In the past sixty years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently Particulate matter (PM is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: Coarse particles (PM10 in upper airways and fine particles (PM2.5 can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of particulate matter has been associated with different toxicological outcomes on clinical, epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic and biological compounds. All these compounds are capable of modifying several biological activities including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS. These inflammatory mediators can activate different pathways such as MAP-kinases, NF-B, and stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive

  1. Mitochondria in lung disease.

    Science.gov (United States)

    Cloonan, Suzanne M; Choi, Augustine M K

    2016-03-01

    Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell's most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.

  2. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota.

    Science.gov (United States)

    Goddard, Amanda F; Staudinger, Benjamin J; Dowd, Scot E; Joshi-Datar, Amruta; Wolcott, Randall D; Aitken, Moira L; Fligner, Corinne L; Singh, Pradeep K

    2012-08-21

    Recent work using culture-independent methods suggests that the lungs of cystic fibrosis (CF) patients harbor a vast array of bacteria not conventionally implicated in CF lung disease. However, sampling lung secretions in living subjects requires that expectorated specimens or collection devices pass through the oropharynx. Thus, contamination could confound results. Here, we compared culture-independent analyses of throat and sputum specimens to samples directly obtained from the lungs at the time of transplantation. We found that CF lungs with advanced disease contained relatively homogenous populations of typical CF pathogens. In contrast, upper-airway specimens from the same subjects contained higher levels of microbial diversity and organisms not typically considered CF pathogens. Furthermore, sputum exhibited day-to-day variation in the abundance of nontypical organisms, even in the absence of clinical changes. These findings suggest that oropharyngeal contamination could limit the accuracy of DNA-based measurements on upper-airway specimens. This work highlights the importance of sampling procedures for microbiome studies and suggests that methods that account for contamination are needed when DNA-based methods are used on clinical specimens.

  3. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants.

    Science.gov (United States)

    Schittny, J C; Miserocchi, G; Sparrow, M P

    2000-07-01

    Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.

  4. Polymorphisms Associated with Expression of BPIFA1/BPIFB1 and Lung Disease Severity in Cystic Fibrosis

    NARCIS (Netherlands)

    Saferali, Aabida; Obeidat, Ma'en; Berube, Jean-Christophe; Lamontagne, Maxime; Bosse, Yohan; Laviolette, Michel; Hao, Ke; Nickle, David C.; Timens, Wim; Sin, Don D.; Postma, Dirkje S.; Strug, Lisa J.; Gallins, Paul J.; Pare, Peter D.; Bingle, Colin D.; Sandford, Andrew J.

    2015-01-01

    BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are putative innate immune molecules expressed in the upper airways. Because of their hypothesized roles in airway defense, these molecules may contribute to lung disease severity in cystic fibrosis (CF). We interrogated BPIFA1/BPIFB1 single

  5. Lung hyperinflation and its reversibility in patients with airway obstruction of varying severity.

    Science.gov (United States)

    Deesomchok, Athavudh; Webb, Katherine A; Forkert, Lutz; Lam, Yuk-Miu; Ofir, Dror; Jensen, Dennis; O'Donnell, Denis E

    2010-12-01

    The natural history of lung hyperinflation in patients with airway obstruction is unknown. In particular, little information exists about the extent of air trapping and its reversibility to bronchodilator therapy in those with mild airway obstruction. We completed a retrospective analysis of data from individuals with airway obstruction who attended our pulmonary function laboratory and had plethysmographic lung volume measurements pre- and post-bronchodilator (salbutamol). COPD was likely the predominant diagnosis but patients with asthma may have been included. We studied 2,265 subjects (61% male), age 65 ± 9 years (mean ± SD) with a post-bronchodilator FEV(1)/FVC lung hyperinflation, and measured responses to bronchodilation across subgroups stratified by GOLD criteria. In GOLD stage I, vital capacity (VC) and inspiratory capacity (IC) were in the normal range; pre-bronchodilator residual volume (RV), functional residual capacity (FRC) and specific airway resistance were increased to 135%, 119% and 250% of predicted, respectively. For the group as a whole, RV and FRC increased exponentially as FEV(1) decreased, while VC and IC decreased linearly. Regardless of baseline FEV(1), the most consistent improvement following bronchodilation was RV reduction, in terms of magnitude and responder rate. In conclusion, increases (above normal) in airway resistance and plethysmographic lung volumes were found in those with only minor airway obstruction. Indices of lung hyperinflation increased exponentially as airway obstruction worsened. Those with the greatest resting lung hyperinflation showed the largest bronchodilator-induced volume deflation effects. Reduced air trapping was the predominant response to acute bronchodilation across severity subgroups.

  6. Agricultural lung diseases.

    Science.gov (United States)

    Kirkhorn, S R; Garry, V F

    2000-08-01

    Agriculture is considered one of the most hazardous occupations. Organic dusts and toxic gases constitute some of the most common and potentially disabling occupational and environmental hazards. The changing patterns of agriculture have paradoxically contributed to both improved working conditions and increased exposure to respiratory hazards. Animal confinement operations with increasing animal density, particularly swine confinement, have contributed significantly to increased intensity and duration of exposure to indoor air toxins. Ongoing research has implicated bacterial endotoxins, fungal spores, and the inherent toxicity of grain dusts as causes of upper and lower airway inflammation and as immunologic agents in both grain and animal production. Animal confinement gases, particularly ammonia and hydrogen sulfide, have been implicated as additional sources of respiratory irritants. It has become evident that a significant percentage of agricultural workers have clinical symptoms associated with long-term exposure to organic dusts and animal confinement gases. Respiratory diseases and syndromes, including hypersensitivity pneumonitis, organic dust toxic syndrome, chronic bronchitis, mucous membrane inflammation syndrome, and asthmalike syndrome, result from ongoing acute and chronic exposures. In this review we focus upon the emerging respiratory health issues in a changing agricultural economic and technologic environment. Environmental and occupational hazards and exposures will be emphasized rather than clinical diagnosis and treatment. Methods of prevention, from both engineering controls and personal respiratory perspectives, are also addressed.

  7. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    Science.gov (United States)

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  8. Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jun-Chieh J Tsay

    Full Text Available Field of cancerization in the airway epithelium has been increasingly examined to understand early pathogenesis of non-small cell lung cancer. However, the extent of field of cancerization throughout the lung airways is unclear. Here we sought to determine the differential gene and microRNA expressions associated with field of cancerization in the peripheral airway epithelial cells of patients with lung adenocarcinoma. We obtained peripheral airway brushings from smoker controls (n=13 and from the lung contralateral to the tumor in cancer patients (n=17. We performed gene and microRNA expression profiling on these peripheral airway epithelial cells using Affymetrix GeneChip and TaqMan Array. Integrated gene and microRNA analysis was performed to identify significant molecular pathways. We identified 26 mRNAs and 5 miRNAs that were significantly (FDR <0.1 up-regulated and 38 mRNAs and 12 miRNAs that were significantly down-regulated in the cancer patients when compared to smoker controls. Functional analysis identified differential transcriptomic expressions related to tumorigenesis. Integration of miRNA-mRNA data into interaction network analysis showed modulation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway in the contralateral lung field of cancerization. In conclusion, patients with lung adenocarcinoma have tumor related molecules and pathways in histologically normal appearing peripheral airway epithelial cells, a substantial distance from the tumor itself. This finding can potentially provide new biomarkers for early detection of lung cancer and novel therapeutic targets.

  9. Lung alveolar epithelium and interstitial lung disease.

    Science.gov (United States)

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  10. The involvement of glycosaminoglycans in airway disease associated with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    Individuals with cystic fibrosis (CF) present with severe airway destruction and extensive bronchiectasis. It has been assumed that these structural airway changes have occurred secondary to infection and inflammation, but recent studies suggest that glycosaminoglycan (GAG) remodelling may be an important independent parallel process. Evidence is accumulating that not only the concentration, but also sulphation of GAGs is markedly increased in CF bronchial cells and tissues. Increased expression of GAGs and, in particular, heparan sulphate, has been linked to a sustained inflammatory response and neutrophil recruitment to the CF airways. This present review discusses the biological role of GAGs in the lung, as well as their involvement in CF respiratory disease, and their potential as therapeutic targets.

  11. NHLBI viewpoint: Lung health and disease prevention research starting in childhood.

    Science.gov (United States)

    Blaisdell, Carol J; Weinmann, Gail G

    2015-06-01

    Lung health begins in utero when the complex structure of the airway, alveolar, and vascular structures are formed. To really impact the United States and global burden of chronic lung diseases in both adults and children, we must understand normal and abnormal development, the outcomes of disrupted development, and the effects of in utero and postnatal exposures on lung health. With increasing recognition of early life origins of adult diseases,(1) it is important to know what early events and interventions can alter the trajectory of lung development, growth, and decline to help promote lung health and reduce chronic lung disease.

  12. Sarcoidosis of the upper and lower airways.

    Science.gov (United States)

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  13. What Are Asbestos-Related Lung Diseases?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Asbestos-Related Lung Diseases? Asbestos-related lung diseases are ... as the peritoneum (PER-ih-to-NE-um). Asbestos-Related Lung Diseases Figure A shows the location ...

  14. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    Science.gov (United States)

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  15. Selective PDE4 inhibitors as potent anti-inflammatory drugs for the treatment of airway diseases

    Directory of Open Access Journals (Sweden)

    Vincent Lagente

    2005-03-01

    Full Text Available Phosphodiesterases (PDEs are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.

  16. Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model

    Science.gov (United States)

    Van Dijk, Eline M.; Culha, Sule; Menzen, Mark H.; Bidan, Cécile M.; Gosens, Reinoud

    2017-01-01

    Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 μg/ml) or H2O2 (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction

  17. The effects of emphysema on airway disease: Correlations between multi-detector CT and pulmonary function tests in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Yahaba, Misuzu, E-mail: mis_misuzu@yahoo.co.jp; Kawata, Naoko, E-mail: chumito_03@yahoo.co.jp; Iesato, Ken, E-mail: iesato_k@yahoo.co.jp; Matsuura, Yukiko, E-mail: matsuyuki_future@yahoo.co.jp; Sugiura, Toshihiko, E-mail: sugiura@js3.so-net.ne.jp; Kasai, Hajime, E-mail: daikasai6075@yahoo.co.jp; Sakurai, Yoriko, E-mail: yoliri@nifty.com; Terada, Jiro, E-mail: jirotera@chiba-u.jp; Sakao, Seiichiro, E-mail: sakao@faculty.chiba-u.jp; Tada, Yuji, E-mail: ytada@faculty.chiba-u.jp; Tanabe, Nobuhiro, E-mail: ntanabe@faculty.chiba-u.jp; Tatsumi, Koichiro, E-mail: tatsumi@faculty.chiba-u.jp

    2014-06-15

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. Objective: The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. Methods: Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. Results: In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV{sub 1.} No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. Conclusions: A significant correlation exists between airway parameters and FEV{sub 1} in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD.

  18. Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice.

    Science.gov (United States)

    McCann, Jessica R; Mason, Stanley N; Auten, Richard L; St Geme, Joseph W; Seed, Patrick C

    2016-07-01

    Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.

  19. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    Science.gov (United States)

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  20. Expression of lung vascular and airway ICAM-1 after exposure to bacterial lipopolysaccharide

    DEFF Research Database (Denmark)

    Beck-Schimmer, B; Schimmer, R C; Warner, R L

    1997-01-01

    ]anti-ICAM-1 to airway surfaces increased 11-fold in a TNF-alpha-dependent manner. In situ hybridization and immunohistochemical analyses of lung tissue revealed ICAM-1 upregulation in the bronchiolar epithelium and in peribronchiolar smooth muscle. Soluble ICAM-1 could also be detected in bronchoalveolar......Airway instillation of bacterial lipopolysaccharide (LPS) into rat lungs induces neutrophil accumulation, which is known to be intercellular adhesion molecule-1 (ICAM-1)-dependent. In the present study, ICAM-1 messenger RNA (mRNA) of whole lung was found to increase by 20-fold in this inflammatory...... model. This increase was reduced by 81% after treatment of animals with anti-tumor necrosis factor-alpha (TNF-alpha) antibody and by 37% after treatment with anti-interleukin-1 (IL-1) antibody. The same interventions reduced whole-lung ICAM-1 protein by 85% and 25%, respectively. The studies were...

  1. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation

    OpenAIRE

    M. Beaume; Köhler, T; Greub, G; Manuel, O; J-D. Aubert; Baerlocher, L.; Farinelli, L.; Buckling, A.; van Delden, C.

    2017-01-01

    In cystic fibrosis (CF) patients, chronic airway infection by Pseudomonas leads to progressive lung destruction ultimately requiring lung transplantation (LT). Following LT, CF-adapted Pseudomonas strains, potentially originating from the sinuses, may seed the allograft leading to infections and reduced allograft survival. We investigated whether CF-adapted Pseudomonas populations invade the donor microbiota and adapt to the non-CF allograft. We collected sequential Pseudomonas isolates and a...

  2. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  3. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance.

    Science.gov (United States)

    Soroosh, Pejman; Doherty, Taylor A; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H; Croft, Michael

    2013-04-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma.

  4. Smoking and interstitial lung diseases.

    Science.gov (United States)

    Margaritopoulos, George A; Vasarmidi, Eirini; Jacob, Joseph; Wells, Athol U; Antoniou, Katerina M

    2015-09-01

    For many years has been well known that smoking could cause lung damage. Chronic obstructive pulmonary disease and lung cancer have been the two most common smoking-related lung diseases. In the recent years, attention has also focused on the role of smoking in the development of interstitial lung diseases (ILDs). Indeed, there are three diseases, namely respiratory bronchiolitis-associated ILD, desquamative interstitial pneumonia and pulmonary Langerhans cell histiocytosis, that are currently considered aetiologically linked to smoking and a few others which are more likely to develop in smokers. Here, we aim to focus on the most recent findings regarding the role of smoking in the pathogenesis and clinical behaviour of ILDs.

  5. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau

    2014-01-01

    .5%, the alternative approach in 11.2%, and in 20.3% no method was favoured. Airway abnormality measurements obtained with the method on 490 scan pairs from a lung cancer screening trial correlate significantly with lung function and are reproducible; repeat scan R(2) of measures of the airway lumen diameter and wall...

  6. Role of reepithelization in the development of obliterative airway disease after lung transplantation%气道上皮再生对肺移植后闭塞性气道疾病的影响

    Institute of Scientific and Technical Information of China (English)

    徐保彬; 陈昶; 高文; 魏宁; 郑卉; 张容轩

    2008-01-01

    ,从而预防了OAD的发生.%Objective To investigate the role of airway reepithelization in the development of obliterative airway disease (OAD) after lung transplantation. Methods Donor allograft was obtained as Balb/c trachea and its connecting left bronchi, and it was subsequently orthotopically transplanted into recipient C57BL/6 mouse. Both ends of the donor trachea were anastmosed to the recipient in endto-end mode, and the bronchial branch was ligated distally. In the ligated group, the proximal end of the bronchi was ligated; it was otherwise left open in the unligated group. Allografts were harvested on postoperative day 28, and were examined for OAD manifestations, epithelium integrity and differentiation, submucous lymphocyte infiltration, and fibroproliferation. LCR, submucous fibrous tissue area and ciliated epithelium proportion were measured with computerized morphometry. Epithelium phenotype was examined by immunohistochemical stain. Results Tacheal allografts and unligated bronchi maintained luminal patency and integrated epithelium, while ligated bronchial allografts were obliterated with fibrous tissue, which was characteristic of OAD. LCR and lamina propria of the donor trachea and unligated bronchi were significantly higher than normal tracha (P<0. 01 and P < 0. 05 ). However,ciliated epithelium proportion of the tracheal allografts was intermediate between normal trachea and ligated bronchi (P<0. 05 and P<0. 01). Immunohistochernical stain revealed recipient phenotype in both the tracheal and unligated bronchial allografts; no recipient phenotype expression was noted in the ligated bronchial allografts. Conclusion Reepithelization with recipient-drived mucosa prevents OAD development in orthotopic tracheal and unligated bronchial allografts by changing the epithelium phenotype and regulating fibroblasts proliferation in the lamina propria.

  7. Relationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics.

    Science.gov (United States)

    Tgavalekos, N T; Musch, G; Harris, R S; Vidal Melo, M F; Winkler, T; Schroeder, T; Callahan, R; Lutchen, K R; Venegas, J G

    2007-06-01

    Bronchoconstriction in asthma results in patchy ventilation forming ventilation defects (VDefs). Patchy ventilation is clinically important because it affects obstructive symptoms and impairs both gas exchange and the distribution of inhaled medications. The current study combined functional imaging, oscillatory mechanics and theoretical modelling to test whether the degrees of constriction of airways feeding those units outside VDefs were related to the extent of VDefs in bronchoconstricted asthmatic subjects. Positron emission tomography was used to quantify the regional distribution of ventilation and oscillatory mechanics were measured in asthmatic subjects before and after bronchoconstriction. For each subject, ventilation data was mapped into an anatomically based lung model that was used to evaluate whether airway constriction patterns, consistent with the imaging data, were capable of matching the measured changes in airflow obstruction. The degree and heterogeneity of constriction of the airways feeding alveolar units outside VDefs was similar among the subjects studied despite large inter-subject variability in airflow obstruction and the extent of the ventilation defects. Analysis of the data amongst the subjects showed an inverse relationship between the reduction in mean airway conductance, measured in the breathing frequency range during bronchoconstriction, and the fraction of lung involved in ventilation defects. The current data supports the concept that patchy ventilation is an expression of the integrated system and not just the sum of independent responses of individual airways.

  8. LF-15 & T7, synthetic peptides derived from tumstatin, attenuate aspects of airway remodelling in a murine model of chronic OVA-induced allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Karryn T Grafton

    Full Text Available BACKGROUND: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin. METHODS: Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR was then examined using a murine model of chronic OVA-induced allergic airways disease. RESULTS: The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters. CONCLUSION: The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.

  9. NF-kappaB Signaling in Chronic Inflammatory Airway Disease

    Directory of Open Access Journals (Sweden)

    Michael Schuliga

    2015-06-01

    Full Text Available Asthma and chronic obstructive pulmonary disease (COPD are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF-kappaB (NF-κB, is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs, a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression. However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.

  10. Sonic hedgehog signaling in the lung. From development to disease.

    Science.gov (United States)

    Kugler, Matthias C; Joyner, Alexandra L; Loomis, Cynthia A; Munger, John S

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.

  11. Inhaled adrenergics and anticholinergics in obstructive lung disease: do they enhance mucociliary clearance?

    Science.gov (United States)

    Restrepo, Ruben D

    2007-09-01

    Pulmonary mucociliary clearance is an essential defense mechanism against bacteria and particulate matter. Mucociliary dysfunction is an important feature of obstructive lung diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, and bronchiectasis. This dysfunction in airway clearance is associated with accelerated loss of lung function in patients with obstructive lung disease. The involvement of the cholinergic and adrenergic neural pathways in the pathophysiology of mucus hypersecretion suggests the potential therapeutic role of bronchodilators as mucoactive agents. Although anticholinergics and adrenergic agonist bronchodilators have been routinely used, alone or in combination, to enhance mucociliary clearance in patients with obstructive lung disease, the existing evidence does not consistently show clinical effectiveness.

  12. The role of stem cells in airway repair: implications for the origins of lung cancer

    Institute of Scientific and Technical Information of China (English)

    Michael S.Mulvihill; Johannes R.Kratz; Patrick Pham; David M.Jablons; Biao He

    2013-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide.Recently,advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis.Much of this research has focused on the use of the airway repair model to study response to injury.In this review,we discuss the primary evidence of the role that cancer stem cells play in lung cancer development.The implications of a stem cell origin of lung cancer are reviewed,and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.

  13. Camera Embedded Single Lumen Tube as a Rescue Device for Airway Handling during Lung Separation

    DEFF Research Database (Denmark)

    Højberg Holm, Jimmy; Andersen, Claus

    2016-01-01

    for the surgery to proceed (Figure 2). The rest of procedure was uneventful with normal one-lung ventilation and a smooth awakening and extubation. We report a case of unexpected technical difficulties when isolating the lung in pulmonary surgery for lung cancer, a problem that could lead to cancellation......Lung isolation in thoracic surgery will usually be achieved either with a double-lumen tube (DLT) or a bronchial blocker (BB). However, even when conducted by anesthesiologists with particular interest and expertise in thoracic anesthesia, the procedure may be troublesome and time consuming.......Keywords: Thoracic anesthesia; Airway handling; VivaSight; Vivasight-SL; Lobectomy; Camera-embedded tube; Endotracheal; Lung isolation; Video tube Taking the small stature into account, use of a small conventional 35-Fr right sided DLT was planned for the procedure. As it turned out, this tube could not be passed...

  14. Complement system in lung disease.

    Science.gov (United States)

    Pandya, Pankita H; Wilkes, David S

    2014-10-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.

  15. Interstitial lung disease in scleroderma.

    Science.gov (United States)

    Schoenfeld, Sara R; Castelino, Flavia V

    2015-05-01

    Systemic sclerosis is a heterogeneous disease of unknown etiology with limited effective therapies. It is characterized by autoimmunity, vasculopathy, and fibrosis and is clinically manifested by multiorgan involvement. Interstitial lung disease is a common complication of systemic sclerosis and is associated with significant morbidity and mortality. The diagnosis of interstitial lung disease hinges on careful clinical evaluation and pulmonary function tests and high-resolution computed tomography. Effective therapeutic options are still limited. Several experimental therapies are currently in early-phase clinical trials and show promise.

  16. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease.

    Science.gov (United States)

    Starkey, Malcolm R; Nguyen, Duc H; Brown, Alexandra C; Essilfie, Ama-Tawiah; Kim, Richard Y; Yagita, Hideo; Horvat, Jay C; Hansbro, Philip M

    2016-04-01

    Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.

  17. Airway complications and management after lung transplantation: ischemia, dehiscence, and stenosis.

    Science.gov (United States)

    Santacruz, Jose Fernando; Mehta, Atul C

    2009-01-15

    Overall survival rates of lung transplantation have improved since the first human lung transplantation was performed. A decline in the incidence of airway complications (AC) had been a key feature to achieve the current outcomes. Several proposed risk factors to the development of airway complications have been identified, ranging from the surgical technique to the immunosuppressive regimen. There are essentially six different airway complications post-lung transplantation. The most frequently reported complication is bronchial stenosis. Other complications include bronchial dehiscence, exophytic excessive granulation tissue formation, tracheo-bronchomalacia, bronchial fistulas, and endobronchial infections. The management of post-transplant bronchial complications needs a multispecialty team approach. Prevention of some complications may be possible by early and aggressive medical management as well as by using certain surgical techniques for transplantation. Interventional bronchoscopic procedures, including balloon bronchoplasty, cryotherapy, laser photoresection, electrocautery, high-dose endobronchial brachytherapy, and bronchial stents are among the armamentarium. Also, medical management, like antibiotic prophylaxis and therapy for endobronchial infections, or noninvasive positive-pressure ventilation in case of bronchomalacia, are used to treat an AC. In some cases, different surgical approaches are occasionally required. In this article we review the risk factors, the clinical presentation, the diagnostic methods, as well as the management options of the most common AC after lung transplantation.

  18. Lung function tests in neonates and infants with chronic lung disease: lung and chest-wall mechanics.

    Science.gov (United States)

    Gappa, Monika; Pillow, J Jane; Allen, Julian; Mayer, Oscar; Stocks, Janet

    2006-04-01

    This is the fifth paper in a review series that summarizes available data and critically discusses the potential role of lung function testing in infants and young children with acute neonatal respiratory disorders and chronic lung disease of infancy (CLDI). This review focuses on respiratory mechanics, including chest-wall and tissue mechanics, obtained in the intensive care setting and in infants during unassisted breathing. Following orientation of the reader to the subject area, we focused comments on areas of enquiry proposed in the introductory paper to this series. The quality of the published literature is reviewed critically with respect to relevant methods, equipment and study design, limitations and strengths of different techniques, and availability and appropriateness of reference data. Recommendations to guide future investigations in this field are provided. Numerous different methods have been used to assess respiratory mechanics with the aims of describing pulmonary status in preterm infants and assessing the effect of therapeutic interventions such as surfactant treatment, antenatal or postnatal steroids, or bronchodilator treatment. Interpretation of many of these studies is limited because lung volume was not measured simultaneously. In addition, populations are not comparable, and the number of infants studied has generally been small. Nevertheless, results appear to support the pathophysiological concept that immaturity of the lung leads to impaired lung function, which may improve with growth and development, irrespective of the diagnosis of chronic lung disease. To fully understand the impact of immaturity on the developing lung, it is unlikely that a single parameter such as respiratory compliance or resistance will accurately describe underlying changes. Assessment of respiratory mechanics will have to be supplemented by assessment of lung volume and airway function. New methods such as the low-frequency forced oscillation technique, which

  19. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    Science.gov (United States)

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  20. NETs and CF Lung Disease: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Robert D. Gray

    2015-01-01

    Full Text Available Cystic Fibrosis (CF is the most common fatal monogenic disease among Caucasians. While CF affects multiple organ systems, the principle morbidity arises from progressive destruction of lung architecture due to chronic bacterial infection and inflammation. It is characterized by an innate immune defect that results in colonization of the airways with bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa from an early age. Within the airway microenvironment the innate immune cells including epithelial cells, neutrophils, and macrophages have all been implicated in the host defense defect. The neutrophil, however, is the principal effector cell facilitating bacterial killing, but also participates in lung damage. This is evidenced by a disproportionately elevated neutrophil burden in the airways and increased neutrophil products capable of tissue degradation, such as neutrophil elastase. The CF airways also contain an abundance of nuclear material that may be originating from neutrophils. Neutrophil extracellular traps (NETs are the product of a novel neutrophil death process that involves the expulsion of nuclear material embedded with histones, proteases, and antimicrobial proteins and peptides. NETs have been postulated to contribute to the bacterial killing capacity of neutrophils, however they also function as a source of proteases and other neutrophil products that may contribute to lung injury. Targeting nuclear material with inhaled DNase therapy improves lung function and reduces exacerbations in CF and some of these effects may be due to the degradation of NETs. We critically discuss the evidence for an antimicrobial function of NETs and their potential to cause lung damage and inflammation. We propose that CF animal models that recapitulate the human CF phenotype such as the CFTR−/− pig may be useful in further elucidating a role for NETs.

  1. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    Science.gov (United States)

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  2. Usefulness of texture features for segmentation of lungs with severe diffuse interstitial lung disease

    Science.gov (United States)

    Wang, Jiahui; Li, Feng; Li, Qiang

    2010-03-01

    We developed an automated method for the segmentation of lungs with severe diffuse interstitial lung disease (DILD) in multi-detector CT. In this study, we would like to compare the performance levels of this method and a thresholdingbased segmentation method for normal lungs, moderately abnormal lungs, severely abnormal lungs, and all lungs in our database. Our database includes 31 normal cases and 45 abnormal cases with severe DILD. The outlines of lungs were manually delineated by a medical physicist and confirmed by an experienced chest radiologist. These outlines were used as reference standards for the evaluation of the segmentation results. We first employed a thresholding technique for CT value to obtain initial lungs, which contain normal and mildly abnormal lung parenchyma. We then used texture-feature images derived from co-occurrence matrix to further segment lung regions with severe DILD. The segmented lung regions with severe DILD were combined with the initial lungs to generate the final segmentation results. We also identified and removed the airways to improve the accuracy of the segmentation results. We used three metrics, i.e., overlap, volume agreement, and mean absolute distance (MAD) between automatically segmented lung and reference lung to evaluate the performance of our segmentation method and the thresholding-based segmentation method. Our segmentation method achieved a mean overlap of 96.1%, a mean volume agreement of 98.1%, and a mean MAD of 0.96 mm for the 45 abnormal cases. On the other hand the thresholding-based segmentation method achieved a mean overlap of 94.2%, a mean volume agreement of 95.8%, and a mean MAD of 1.51 mm for the 45 abnormal cases. Our new method obtained higher performance level than the thresholding-based segmentation method.

  3. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    950308 Inhibition of mRNA expression of sillicoticcollagen gene by tetrandrine.HE Yuxian(何玉先),etal.Occup Med Instit,CAMS,Beijing,100050.Chin JPrev Med 1995;29(1):18-20.Effects of tetrandrine(TT) on types Ⅰ and Ⅱ col-lagen gene mRNA in lung tissues of silicotic rats werestudied with RNA dot blot and in situ hybridizatin bycDNA coding human and mouse Proα1(Ⅰ) and Proα1(Ⅲ) collagen.Results revealed that types Ⅰ and Ⅲcollagen gene mRNA content in lung tissues of rats ex-posed to silica dust for two to four months was obvi-

  4. Spectrum of fibrosing diffuse parenchymal lung disease.

    Science.gov (United States)

    Morgenthau, Adam S; Padilla, Maria L

    2009-02-01

    The interstitial lung diseases are a heterogeneous group of disorders characterized by inflammation and/or fibrosis of the pulmonary interstitium. In 2002, the American Thoracic Society and the European Respiratory Society revised the classification of interstitial lung diseases and introduced the term diffuse parenchymal lung disease. The idiopathic interstitial pneumonias are a subtype of diffuse parenchymal lung disease. The idiopathic interstitial pneumonias are subdivided into usual interstitial pneumonia (with its clinical counterpart idiopathic interstitial pneumonia), nonspecific interstitial pneumonia, cryptogenic organizing pneumonia, acute interstitial pneumonia, desquamative interstitial pneumonia, respiratory bronchiolitis interstitial lung disease, and lymphocytic pneumonia. Sarcoidosis and hypersensitivity pneumonitis are the 2 most common granulomatous diffuse parenchymal lung diseases. Rheumatoid arthritis, systemic sclerosis, and dermatomyositis/polymyositis (causing antisynthetase syndrome) are diffuse parenchymal lung diseases of known association because these conditions are associated with connective tissue disease. Hermansky-Pudlak syndrome is a rare genetic diffuse parenchymal lung disease characterized by the clinical triad of pulmonary disease, oculocutaneous albinism, and bleeding diathesis. This review provides an overview of the chronic fibrosing diffuse parenchymal lung diseases. Its primary objective is to illuminate the clinical challenges encountered by clinicians who manage the diffuse parenchymal lung diseases regularly and to offer potential solutions to those challenges. Treatment for the diffuse parenchymal lung diseases is limited, and for many patients with end-stage disease, lung transplantation remains the best option. Although much has been learned about the diffuse parenchymal lung diseases during the past decade, research in these diseases is urgently needed.

  5. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    Chronic Obstructive Pulmonary Disease (COPD) is major cause of death and disability world-wide. It affects lung function through destruction of lung tissue known as emphysema and inflammation of airways, leading to thickened airway walls and narrowed airway lumen. Computed Tomography (CT) imaging...... have become the standard with which to assess emphysema extent but airway abnormalities have so far been more challenging to quantify. Automated methods for analysis are indispensable as the visible airway tree in a CT scan can include several hundreds of individual branches. However, automation...... of scan on airway dimensions in subjects with and without COPD. The results show measured airway dimensions to be affected by differences in the level of inspiration and this dependency is again influenced by COPD. Inspiration level should therefore be accounted for when measuring airways, and airway...

  6. Antioxidant supplementation for lung disease in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Lykkesfeldt, Jens

    2014-01-01

    BACKGROUND: Airway infection leads to progressive damage of the lungs in cystic fibrosis and oxidative stress has been implicated in the etiology. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, ß-carotene and selenium) or glutathione may therefore potentially help maintain...... an oxidant-antioxidant balance. Current literature suggests a relationship between oxidative status and lung function. OBJECTIVES: To synthesize existing knowledge of the effect of antioxidants such as vitamin C, vitamin E, ß-carotene, selenium and glutathione in cystic fibrosis lung disease. SEARCH METHODS...... COLLECTION AND ANALYSIS: Two authors independently selected studies, extracted data and assessed the risk of bias in the included studies. We contacted trial investigators to obtain missing information. Primary outcomes are lung function and quality of life; secondary outcomes are oxidative stress...

  7. Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom

    Directory of Open Access Journals (Sweden)

    Yamashiro T

    2015-09-01

    Full Text Available Tsuneo Yamashiro,1 Maho Tsubakimoto,1 Yukihiro Nagatani,2 Hiroshi Moriya,3 Kotaro Sakuma,3 Shinsuke Tsukagoshi,4 Hiroyasu Inokawa,5 Tatsuya Kimoto,5 Ryuichi Teramoto,6 Sadayuki Murayama1 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa; 2Department of Radiology, Shiga University of Medical Science, Otsu; 3Department of Radiology, Ohara General Hospital, Fukushima; 4CT Systems Division, 5Center for Medical Research and Development, Toshiba Medical Systems Corporation, Otawara; 6Corporate Manufacturing Engineering Center, Toshiba Corporation, Yokohama, Japan Background: The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT and our research software. Methods: A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute. This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%. The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results: It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB. From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of

  8. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Istvan; Balashazy, Imre; Farkas, Arpad [KFKI Atomic Energy Research Institute, PO Box 49, 1525 Budapest (Hungary); Hofmann, Werner [University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg (Austria)

    2007-07-01

    The human tracheobronchial system has a very complex structure including cylindrical airway ducts connected by airway bifurcation units. The deposition of the inhaled aerosols within the airways exhibits a very inhomogeneous pattern. The formation of deposition hot spots near the carinal ridge has been confirmed by experimental and computational fluid and particle dynamics (CFPD) methods. In spite of these observations, current radon lung dosimetry models apply infinitely long cylinders as models of the airway system and assume uniform deposition of the inhaled radon progenies along the airway walls. The aim of this study is to investigate the effect of airway geometry and non-uniform activity distributions within bronchial bifurcations on cellular dose distributions. In order to answer these questions, the nuclear doses of the bronchial epithelium were calculated in three different irradiation situations. (1) First, CFPD methods were applied to calculate the distribution of the deposited alpha-emitting nuclides in a numerically constructed idealized airway bifurcation. (2) Second, the deposited radionuclides were randomly distributed along the surface of the above-mentioned geometry. (3) Finally, calculations were made in cylindrical geometries corresponding to the parent and daughter branches of the bifurcation geometry assuming random nuclide activity distribution. In all three models, the same {sup 218}Po and {sup 214}Po surface activities per tissue volumes were assumed. Two conclusions can be drawn from this analysis: (i) average nuclear doses are very similar in all three cases (minor differences can be attributed to differences in the linear energy transfer (LET) spectra) and (ii) dose distributions are significantly different in all three cases, with the highest doses at the carinal ridge in case 3. (authors)

  9. Correlation among regional ventilation, airway resistance and particle deposition in normal and severe asthmatic lungs

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-11-01

    Computational fluid dynamic simulations are performed to investigate flow characteristics and quantify particle deposition with normal and severe asthmatic lungs. Continuity and Navier-Stokes equations are solved with unstructured meshes and finite element method; a large eddy simulation model is adopted to capture turbulent and/or transitional flows created in the glottis. The human airway models are reconstructed from CT volumetric images, and the subject-specific boundary condition is imposed to the 3D ending branches with the aid of an image registration technique. As a result, several constricted airways are captured in CT images of severe asthmatic subjects, causing significant pressure drop with high air speed because the constriction of airways creates high flow resistance. The simulated instantaneous velocity fields obtained are then employed to track transport and deposition of 2.5 μm particles. It is found that high flow resistance regions are correlated with high particle-deposition regions. In other words, the constricted airways can induce high airway resistance and subsequently increase particle deposition in the regions. This result may be applied to understand the characteristics of deposition of pharmaceutical aerosols or bacteria. This work was supported in part by NIH grants R01-HL094315 and S10-RR022421.

  10. Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis.

    Science.gov (United States)

    Simpson, Jodie L; Phipps, Simon; Gibson, Peter G

    2009-10-01

    Obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are major global health issues. Although considered as distinct diseases, airway inflammation is a key underlying pathophysiological process in asthma, COPD and bronchiectasis. Persistent neutrophilic airway inflammation (neutrophilic bronchitis) occurs with innate immune activation and is a feature of each of these airway diseases. Little is known about the mechanisms leading to neutrophilic bronchitis and few treatments are effective in reducing neutrophil accumulation in the airways. There is a similar pattern of inflammatory mediator release and toll like receptor 2 expression in asthma, COPD and bronchiectasis. We propose the existence of an active amplification mechanism, an effector arm of the innate immune system, involving toll like receptor 2, operating in persistent neutrophilic bronchitis. Neutrophil persistence in the airways can occur through a number of mechanisms such as impaired apoptosis, efferocytosis and mucus hypersecretion, all of which are impaired in airways disease. Impairment of neutrophil clearance results in a reduced ability to respond to bacterial infection. Persistent activation of airway neutrophils may result in the persistent activation of the innate immune system resulting in further airway insult. Current therapies are limited for the treatment of neutrophilic bronchitis; possible treatments being investigated include theophylline, statins, antagonists of pro-inflammatory cytokines and macrolide antibiotics. Macrolides have shown great promise in their ability to reduce airway inflammation, and can reduce airway neutrophils, levels of CXCL8 and neutrophil proteases in the airways. Studies also show improvements in quality of life and exacerbation rates in airways diseases.

  11. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930124 The effect of glycosaminoglycans inthe genesis of pulmonary interstitial fibrosis.LIBaoyu(李保玉),et al.Dept Pathol,Jilin MedColl,132001.Chin J Tuberc & Respir Dis 1992;15(4):204-205.The pulmonary interstitial fibrosis was causedby injecting Bleomycin into mouse trachea.Afterthe injection,the volume of glycosaminoglycans(GAG)in bronchoalveolar lavage fluid and lungtissues was increased.The observation underhistochemical stain and electron microscopeshowed that the distribution of GAG in lung tis-sues was varied at different time after the injec-tion,and related to the volume of collagen pro-teins and the formation of pulmonary interstitialfibrosis.

  12. European symposium on precision medicine in allergy and airways diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S

    2015-01-01

    On 14 October 2015, the European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS) and the European Medical Association (EMA) organized a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... suffering from allergies and asthma, more than half of these patients are deprived from adequate diagnosis and treatment. Precision Medicine represents a novel approach in medicine, embracing 4 key features: personalized care based on molecular, immunologic and functional endotyping of the disease......, with participation of the patient in the decision making process of therapeutic actions, and taking into account predictive and preventive aspects of the treatment. Implementation of Precision Medicine into clinical practice may help to achieve the arrest of the Epidemic of Allergies and Chronic Airways Diseases...

  13. European symposium on precision medicine in allergy and airways diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S

    2015-01-01

    On 14 October 2015, the European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS) and the European Medical Association (EMA) organized a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... Effectiveness Group (REG). MEP Sirpa Pietikainen, Chair of the European Parliament Interest Group on Allergy and Asthma, underlined the importance of the need for a better diagnostic and therapeutic approach for patients with Allergies and Chronic Airways Diseases, and encouraged a joint initiative to control...... suffering from allergies and asthma, more than half of these patients are deprived from adequate diagnosis and treatment. Precision Medicine represents a novel approach in medicine, embracing 4 key features: personalized care based on molecular, immunologic and functional endotyping of the disease...

  14. Teaching chronic obstructive airway disease patients usinga metered-dose inhaler

    Institute of Scientific and Technical Information of China (English)

    Ho-Hoi Luk; Po-May Chan; Fong-Fong Lam; Kit-Yu Lau; Sze-Yee Chiu; Yuet-Ling Fung; Janet Pang

    2006-01-01

    @@ Asthma and chronic obstructive airway disease (COAD) are chronic inflammatory disorders of the airways which are usually associated with widespread airway obstruction that is often relieved by treatment. β2-adrenoreceptor agonists and corticosteriods are the mainstay of the management of this disease. The preferred route of administration of these agents is by inhalation.

  15. Interstitial lung disease: Diagnostic approach

    Directory of Open Access Journals (Sweden)

    Kaushik Saha

    2014-01-01

    Full Text Available Interstitial lung disease (ILD is a final common pathway of a broad heterogeneous group of parenchymal lung disorders. It is characterized by progressive fibrosis of the lung leading to restriction and diminished oxygen transfer. Clinically, the presenting symptoms of ILD are non-specific (cough and progressive dyspnea on exertion and are often attributed to other diseases, thus delaying diagnosis and timely therapy. Clues from the medical history along with the clinical context and radiologic findings provide the initial basis for prioritizing diagnostic possibilities for a patient with ILD. An accurate prognosis and optimal treatment strategy for patients with ILDs can only be after an accurate diagnosis. This review will assist pulmonary physicians and medicine specialist in recognition of ILD. Extensive literature search has been made through PubMed and also Book References has been used for writing this review.

  16. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Patel, Bipen D; Coxson, Harvey O; Pillai, Sreekumar G

    2008-01-01

    RATIONALE: It is unclear whether airway wall thickening and emphysema make independent contributions to airflow limitation in chronic obstructive pulmonary disease (COPD) and whether these phenotypes cluster within families. OBJECTIVES: To determine whether airway wall thickening and emphysema (1...

  17. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    Science.gov (United States)

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  18. Pneumoproteins in interstitial lung diseases

    NARCIS (Netherlands)

    Janssen, Rob

    2006-01-01

    The interstitial lung diseases (ILD)s are a diverse group of pulmonary disorders that are classified together because of similar clinical, roentgenographic, physiologic, or pathologic manifestations, compromising over 100 different members that have been broadly classified into several categories. T

  19. In vivo role of platelet-derived growth factor-BB in airway smooth muscle proliferation in mouse lung.

    Science.gov (United States)

    Hirota, Jeremy A; Ask, Kjetil; Farkas, Laszlo; Smith, Jane Ann; Ellis, Russ; Rodriguez-Lecompte, Juan Carlos; Kolb, Martin; Inman, Mark D

    2011-09-01

    Airway smooth muscle (ASM) hyperplasia in asthma likely contributes considerably to functional changes. Investigating the mechanisms behind proliferation of these cells may lead to therapeutic benefit. Platelet-derived growth factor (PDGF)-BB is a well known ASM mitogen in vitro but has yet to be directly explored using in vivo mouse models in the context of ASM proliferation and airway responsiveness. To determine the in vivo influence of PDGF-BB on gene transcripts encoding contractile proteins, ASM proliferation, and airway physiology, we used an adenovirus overexpression system and a model of chronic allergen exposure. We used adenovirus technology to selectively overexpress PDGF-BB in the airway epithelium of mice. Outcome measurements, including airway physiology, real time RT-PCR measurements, proliferating cell nuclear antigen staining, and airway smooth muscle quantification, were performed 7 days after exposure. The same outcome measurements were performed 24 hours and 4 weeks after a chronic allergen exposure model. PDGF-BB overexpression resulted in airway hyperresponsiveness, decreased lung compliance, increased airway smooth muscle cell numbers, positive proliferating cell nuclear antigen-stained airway smooth muscle cells, and a reduction in genes encoding contractile proteins. Chronic allergen exposure resulted in elevations in lung lavage PDGF-BB, which were observed in conjunction with changes in gene transcript expression encoding contractile proteins and ASM proliferation. We demonstrate for the first time in vivo that PDGF-BB induces ASM hyperplasia and changes in lung mechanics in mice and that, during periods of allergen exposure changes in lung, PDGF-BB are associated with changes in airway structure and function.

  20. Rare Lung Diseases: Interstitial Lung Diseases and Lung Manifestations of Rheumatological Diseases.

    Science.gov (United States)

    Ramamurthy, Mahesh Babu; Goh, Daniel Y T; Lim, Michael Teik Chung

    2015-10-01

    The concept of Childhood Interstitial Lung Disease (ChILD) is relatively young. There has been tremendous progress in this field in the last decade. The key advance has been the recognition of interstitial lung diseases that are often distinct and occur mainly in infants. Diagnosis is challenging because the incidence is low and no single center in the world has enough cases to promote experience and clinical skills. This has led to formation of international groups of people interested in the field and the "Children's interstitial and diffuse lung disease research network" (ChILDRN) is one such group which contributed to the progress of this field. Clinically, these disorders overlap with those of other common respiratory disorders. Hence, clinical practice guidelines emphasize the additional role of chest imaging, genetic testing and lung biopsy in the diagnostic evaluation. Genetic testing, in particular, has shown tremendous progress in this field. Being noninvasive, it has the potential to help early recognition in a vast majority. Despite progress, definitive therapeutic modalities are still lacking and supportive care is still the backbone of management in the majority. Early recognition of the definitive diagnosis helps in the management, even if, in a significant number, it helps in avoiding unnecessary therapy. Also discussed in this article, is the pulmonary manifestation of rheumatic diseases in children. The incidence and spectrum of pulmonary involvement in rheumatic conditions vary and can be result of the primary disease or its management or due to an concurrent infection.

  1. European Symposium on Precision Medicine in Allergy and Airways Diseases

    DEFF Research Database (Denmark)

    Muraro, A; Fokkens, W J; Pietikainen, S

    2016-01-01

    The European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS), and the European Medical Association (EMA) organized, on October 14, 2015, a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP...... David Borrelli, and with active participation of the EU Commissioner for Health and Food Safety Vytenis Andriukaitis, MEP Sirpa Pietikainen, Chair of the European Parliament Interest Group on Allergy and Asthma, the European Respiratory Society (ERS), the European Federations of Allergy and Airways...... the most frequently diagnosed chronic noncommunicable diseases in the EU; 30% of the total European population is suffering from allergies and asthma, and more than half are deprived from adequate diagnosis and treatment. Precision medicine represents a novel approach, embracing four key features...

  2. Genome-Wide Association Study Identification of Novel Loci Associated with Airway Responsiveness in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Paré, Peter D.; Rafaels, Nicholas; Sin, Don D.; Sandford, Andrew; Daley, Denise; Vergara, Candelaria; Huang, Lili; Elliott, W. Mark; Pascoe, Chris D.; Arsenault, Bryna A.; Postma, Dirkje S.; Boezen, H. Marike; Bossé, Yohan; van den Berge, Maarten; Hiemstra, Pieter S.; Cho, Michael H.; Litonjua, Augusto A.; Sparrow, David; Ober, Carole; Wise, Robert A.; Connett, John; Neptune, Enid R.; Beaty, Terri H.; Ruczinski, Ingo; Mathias, Rasika A.; Barnes, Kathleen C.

    2015-01-01

    Increased airway responsiveness is linked to lung function decline and mortality in subjects with chronic obstructive pulmonary disease (COPD); however, the genetic contribution to airway responsiveness remains largely unknown. A genome-wide association study (GWAS) was performed using the Illumina (San Diego, CA) Human660W-Quad BeadChip on European Americans with COPD from the Lung Health Study. Linear regression models with correlated meta-analyses, including data from baseline (n = 2,814) and Year 5 (n = 2,657), were used to test for common genetic variants associated with airway responsiveness. Genotypic imputation was performed using reference 1000 Genomes Project data. Expression quantitative trait loci (eQTL) analyses in lung tissues were assessed for the top 10 markers identified, and immunohistochemistry assays assessed protein staining for SGCD and MYH15. Four genes were identified within the top 10 associations with airway responsiveness. Markers on chromosome 9p21.2 flanked by LINGO2 met a predetermined threshold of genome-wide significance (P < 9.57 × 10−8). Markers on chromosomes 3q13.1 (flanked by MYH15), 5q33 (SGCD), and 6q21 (PDSS2) yielded suggestive evidence of association (9.57 × 10−8 < P ≤ 4.6 × 10−6). Gene expression studies in lung tissue showed single nucleotide polymorphisms on chromosomes 5 and 3 to act as eQTL for SGCD (P = 2.57 × 10−9) and MYH15 (P = 1.62 × 10−6), respectively. Immunohistochemistry confirmed localization of SGCD protein to airway smooth muscle and vessels and MYH15 to airway epithelium, vascular endothelium, and inflammatory cells. We identified novel loci associated with airway responsiveness in a GWAS among smokers with COPD. Risk alleles on chromosomes 5 and 3 acted as eQTLs for SGCD and MYH15 messenger RNA, and these proteins were expressed in lung cells relevant to the development of airway responsiveness. PMID:25514360

  3. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation

    Science.gov (United States)

    Beaume, M.; Köhler, T.; Greub, G.; Manuel, O.; Aubert, J-D.; Baerlocher, L.; Farinelli, L.; Buckling, A.; van Delden, C.; Achermann, Rita; Amico, Patrizia; Baumann, Philippe; Beldi, Guido; Benden, Christian; Berger, Christoph; Binet, Isabelle; Bochud, Pierre-Yves; Boely, Elsa; Bucher, Heiner; Bühler, Leo; Carell, Thierry; Catana, Emmanuelle; Chalandon, Yves; Geest, Sabina de; Rougemont, Olivier de; Dickenmann, Michael; Duchosal, Michel; Fehr, Thomas; Ferrari-Lacraz, Sylvie; Garzoni, Christian; Soccal, Paola Gasche; Giostra, Emiliano; Golshayan, Déla; Good, Daniel; Hadaya, Karine; Halter, Jörg; Heim, Dominik; Hess, Christoph; Hillinger, Sven; Hirsch, Hans H.; Hofbauer, Günther; Huynh-Do, Uyen; Immer, Franz; Klaghofer, Richard; Koller, Michael; Laesser, Bettina; Lehmann, Roger; Lovis, Christian; Marti, Hans-Peter; Martin, Pierre Yves; Martinolli, Luca; Meylan, Pascal; Mohacsi, Paul; Morard, Isabelle; Morel, Philippe; Mueller, Ulrike; Mueller, Nicolas J; Mueller-McKenna, Helen; Müller, Antonia; Müller, Thomas; Müllhaupt, Beat; Nadal, David; Pascual, Manuel; Passweg, Jakob; Ziegler, Chantal Piot; Rick, Juliane; Roosnek, Eddy; Rosselet, Anne; Rothlin, Silvia; Ruschitzka, Frank; Schanz, Urs; Schaub, Stefan; Seiler, Christian; Stampf, Susanne; Steiger, Jürg; Stirnimann, Guido; Toso, Christian; Tsinalis, Dimitri; Venetz, Jean-Pierre; Villard, Jean; Wick, Madeleine; Wilhelm, Markus; Yerly, Patrick

    2017-01-01

    In cystic fibrosis (CF) patients, chronic airway infection by Pseudomonas leads to progressive lung destruction ultimately requiring lung transplantation (LT). Following LT, CF-adapted Pseudomonas strains, potentially originating from the sinuses, may seed the allograft leading to infections and reduced allograft survival. We investigated whether CF-adapted Pseudomonas populations invade the donor microbiota and adapt to the non-CF allograft. We collected sequential Pseudomonas isolates and airway samples from a CF-lung transplant recipient during two years, and followed the dynamics of the microbiota and Pseudomonas populations. We show that Pseudomonas invaded the host microbiota within three days post-LT, in association with a reduction in richness and diversity. A dominant mucoid and hypermutator mutL lineage was replaced after 11 days by non-mucoid strains. Despite antibiotic therapy, Pseudomonas dominated the allograft microbiota until day 95. We observed positive selection of pre-LT variants and the appearance of novel mutations. Phenotypic adaptation resulted in increased biofilm formation and swimming motility capacities. Pseudomonas was replaced after 95 days by a microbiota dominated by Actinobacillus. In conclusion, mucoid Pseudomonas adapted to the CF-lung remained able to invade the allograft. Selection of both pre-existing non-mucoid subpopulations and of novel phenotypic traits suggests rapid adaptation of Pseudomonas to the non-CF allograft. PMID:28094327

  4. Neutrophilic airways inflammation in lung cancer: the role of exhaled LTB-4 and IL-8

    Directory of Open Access Journals (Sweden)

    Orlando Silvio

    2011-06-01

    Full Text Available Abstract Background Recent advances in lung cancer biology presuppose its inflammatory origin. In this regard, LTB-4 and IL-8 are recognized to play a crucial role in neutrophil recruitment into airways during lung cancer. Notwithstanding the intriguing hypothesis, the exact role of neutrophilic inflammation in tumour biology remains complex and not completely known. The aim of this study was to give our contribution in this field by investigating LTB-4 and IL-8 in the breath condensate of NSCLC patients and verifying their role in cancer development and progression. Method We enrolled 50 NSCLC patients and 35 controls. LTB-4 and IL-8 concentrations were measured in the breath condensate and the blood of all the subjects under study using EIA kits. Thirty NSCLC patients and ten controls underwent induced sputum collection and analysis. Results LTB-4 and IL-8 resulted higher in breath condensate and the blood of NSCLC patients compared to controls. Significantly higher concentrations were found as the cancer stages progressed. A positive correlation was observed between exhaled IL-8 and LTB-4 and the percentage of neutrophils in the induced sputum. Conclusion The high concentrations of exhaled LTB-4 and IL-8 showed the presence of a neutrophilic inflammation in the airways of NSCLC patients and gave a further support to the inflammatory signalling in lung cancer. These exhaled proteins could represent a suitable non-invasive marker in the diagnosis and monitoring of lung cancer.

  5. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation.

    Science.gov (United States)

    Beaume, M; Köhler, T; Greub, G; Manuel, O; Aubert, J-D; Baerlocher, L; Farinelli, L; Buckling, A; van Delden, C

    2017-01-17

    In cystic fibrosis (CF) patients, chronic airway infection by Pseudomonas leads to progressive lung destruction ultimately requiring lung transplantation (LT). Following LT, CF-adapted Pseudomonas strains, potentially originating from the sinuses, may seed the allograft leading to infections and reduced allograft survival. We investigated whether CF-adapted Pseudomonas populations invade the donor microbiota and adapt to the non-CF allograft. We collected sequential Pseudomonas isolates and airway samples from a CF-lung transplant recipient during two years, and followed the dynamics of the microbiota and Pseudomonas populations. We show that Pseudomonas invaded the host microbiota within three days post-LT, in association with a reduction in richness and diversity. A dominant mucoid and hypermutator mutL lineage was replaced after 11 days by non-mucoid strains. Despite antibiotic therapy, Pseudomonas dominated the allograft microbiota until day 95. We observed positive selection of pre-LT variants and the appearance of novel mutations. Phenotypic adaptation resulted in increased biofilm formation and swimming motility capacities. Pseudomonas was replaced after 95 days by a microbiota dominated by Actinobacillus. In conclusion, mucoid Pseudomonas adapted to the CF-lung remained able to invade the allograft. Selection of both pre-existing non-mucoid subpopulations and of novel phenotypic traits suggests rapid adaptation of Pseudomonas to the non-CF allograft.

  6. Common lung conditions: chronic obstructive pulmonary disease.

    Science.gov (United States)

    Delzell, John E

    2013-06-01

    The etiology of chronic obstructive pulmonary disease (COPD) is chronic lung inflammation. In the United States, this inflammation most commonly is caused by smoking. COPD is diagnosed when an at-risk patient presents with respiratory symptoms and has irreversible airway obstruction indicated by a forced expiratory volume in 1 second/forced vital capacity ratio of less than 0.7. Management goals for COPD include smoking cessation, symptom reduction, exacerbation reduction, hospitalization avoidance, and improvement of quality of life. Stable patients with COPD who remain symptomatic despite using short-acting bronchodilators should start inhaled maintenance drugs to reduce symptoms and exacerbations, avoid hospitalizations, and improve quality of life. A long-acting anticholinergic or a long-acting beta2-agonist (LABA) can be used for initial therapy; these drugs have fewer adverse effects than inhaled corticosteroids (ICS). If patients remain symptomatic despite monotherapy, dual therapy with a long-acting anticholinergic and a LABA, or a LABA and an ICS, may be beneficial. Triple therapy (ie, a long-acting anticholinergic, a LABA, and an ICS) also is used, but it is unclear if triple therapy is superior to dual therapy. Roflumilast, an oral selective inhibitor of phosphodiesterase 4, is used to manage moderate to severe COPD. Continuous oxygen therapy is indicated for patients with COPD who have severe hypoxemia (ie, PaO2 less than 55 mm Hg or an oxygen saturation less than 88% on room air). Nonpharmacologic strategies also are useful to improve patient outcomes. Pulmonary rehabilitation improves dyspnea and quality of life. Pulmonary rehabilitation after an acute exacerbation reduces hospitalizations and mortality, and improves quality of life and exercise capacity. Smoking cessation is the most effective management strategy for reducing morbidity and mortality in patients with COPD. Lung volume reduction surgery, bullectomy, and lung transplantation are

  7. Spirometry utilisation among Danish adults initiating medication targeting obstructive lung disease

    DEFF Research Database (Denmark)

    Koefoed, Mette

    2015-01-01

    with pharmacotherapy targeting obstructive lung disease and only few have additional tests conducted, although the predictive value of respiratory symptoms for diagnosing obstructive lung disease has proven to be low. Spirometry is recommended as the gold standard for confirming obstructive lung disease, and testing...... can also rule out airway obstruction in patients with respiratory symptoms caused by other illnesses, such as heart failure or lung cancer. Initiating medication for obstructive lung disease without spirometry entails the risk of these patients experiencing unnecessary delay in the diagnostic process......-infectious dyspnoea, chronic cough and wheezing are common symptoms in the population. Patients often present with these symptoms in general practice and have a high probability of having obstructive lung diseases. However, there is an indication that the majority of these patients are treated empirically...

  8. Convective dispersion during steady flow in the conducting airways of the human lung.

    Science.gov (United States)

    Fresconi, Frank E; Prasad, Ajay K

    2008-02-01

    The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.

  9. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005206 The pivotal role of CXCR3 in the patho-genesis of bleomycin-induced pulmonary fibrosis. GAO Jin-ming(高金明), Dept Respir Med, PUMC Hosp, PUMC & CAMS, Beijing 100730. Chin J Tu-berc Respir Dis, 2005; 28 (1): 28-32. Objective: To investigate the contribution of chemokine receptor-CXCR3 to the fibrotic disease process induced by bleomycin in CXCR3 gene defi-

  10. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008051 Effects of noninvasive positive pressure ventilation on respiratory muscle fatigue in patients with acute exacerbation of chronic obstructive pulmonary disease:a randomized controlled trial. SUN Lihua(孙丽华),et al.Dept Pulm, Nanjing 1st Hosp, Nanjing Med Univ, Nanjing 210006. Chin J Intern Med 2007;46(12):992-995. Objective To study the effects of noninvasive positive pressure ventilation (NPPV) on respiratory muscle fatigue in patients

  11. Monte-Carlo-Model for the aerosol bolus dispersion in the human lung. Part 2. Model predictions for the diseased lung; Monte-Carlo-Modell der Aerosolbolusdispersion in der menschlichen Lunge. Teil 2. Modellvorhersagen fuer die kranke Lunge

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, R.; Pawlak, E.; Hofmann, W. [Salzburg Univ. (Austria). Abt. fuer Physik und Biophysik

    2007-07-01

    After a mathematical extension of the existing model for the theoretical description of the aerosol bolus dispersion, the behavior of particle pulses in diseased lung structures was simulated. The geometry used for healthy lungs was modified in two aspects: First, a modelling of possible airway obstructions, which usually occur in patients with chronic bronchitis, chronic asthma or cystic fibrosis, was carried out and, second, a theoretical approximation of the emphysema, being observed in lungs of smokers, but also as an accompanying phenomenon in obstructive diseases, was established. According to the modified model, in lungs with airway obstructions the exhaled bolus exhibited a decreased dispersion with respect to healthy subjects, whereas in emphysematous lungs the respective half-width of the peak was increased. Standard deviation and skewness of the bolus were similarly influenced by the modified lung architecture. A combination of airway obstruction and emphysema caused an extensive compensation of individual dispersion effects, complicating a secure distinction from the healthy lung. According to the model, a special diagnostic value may be assigned to the bolus deposition, showing significant deviations from the normal case for all simulated diseases. (orig.)

  12. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Huang, Yvonne J; Sethi, Sanjay; Murphy, Timothy; Nariya, Snehal; Boushey, Homer A; Lynch, Susan V

    2014-08-01

    Specific bacterial species are implicated in the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD). However, recent studies of clinically stable COPD patients have demonstrated a greater diversity of airway microbiota, whose role in acute exacerbations is unclear. In this study, temporal changes in the airway microbiome before, at the onset of, and after an acute exacerbation were examined in 60 sputum samples collected from subjects enrolled in a longitudinal study of bacterial infection in COPD. Microbiome composition and predicted functions were examined using 16S rRNA-based culture-independent profiling methods. Shifts in the abundance (≥ 2-fold, P microbiome could be useful indicators of exacerbation development or outcome.

  13. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  14. Cough in interstitial lung disease.

    Science.gov (United States)

    Garner, Justin; George, Peter M; Renzoni, Elisabetta

    2015-12-01

    Cough in the context of interstitial lung disease (ILD) has not been the focus of many studies. However, chronic cough has a major impact on quality of life in a significant proportion of patients with ILD. For the purpose of this review, we have chosen to highlight some of the more frequently encountered diffuse lung diseases including idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis and systemic sclerosis associated ILD. Many of the underlying mechanisms remain speculative and further research is now required to elucidate the complex pathways involved in the pathogenesis of chronic cough in ILD. This will hopefully pave the way for the identification of new therapeutic agents to alleviate this distressing and often intractable symptom.

  15. Non-neuronal cholinergic system in airways and lung cancer susceptibility.

    Science.gov (United States)

    Saracino, Laura; Zorzetto, Michele; Inghilleri, Simona; Pozzi, Ernesto; Stella, Giulia Maria

    2013-08-01

    In the airway tract acetylcholine (ACh) is known to be the mediator of the parasympathetic nervous system. However ACh is also synthesized by a large variety of non-neuronal cells. Strongest expression is documented in neuroendocrine and in epithelial cells (ciliated, basal and secretory elements). Growing evidence suggests that a cell-type specific Ach expression and release do exist and act with local autoparacrine loop in the non-neuronal airway compartment. Here we review the molecular mechanism by which Ach is involved in regulating various aspects of innate mucosal defense, including mucociliary clearance, regulation of macrophage activation as well as in promoting epithelial cells proliferation and conferring susceptibility to lung carcinoma onset. Importantly this non-neuronal cholinergic machinery is differently regulated than the neuronal one and could be specifically therapeutically targeted.

  16. Regenerative potential of human airway stem cells in lung epithelial engineering.

    Science.gov (United States)

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  17. Use of inhaled anticholinergic agents in obstructive airway disease.

    Science.gov (United States)

    Restrepo, Ruben D

    2007-07-01

    In the last 2 decades, anticholinergic agents have been generally regarded as the first-choice bronchodilator therapy in the routine management of stable chronic obstructive pulmonary disease (COPD) and, to a lesser extent, asthma. Anticholinergics are particularly important bronchodilators in COPD, because the vagal tone appears to be the only reversible component of airflow limitation in COPD. The inhaled anticholinergics approved for clinical use are synthetic quaternary ammonium congeners of atropine, and include ipratropium bromide, oxitropium bromide, and tiotropium bromide. This article reviews the most current evidence for inhaled anticholinergics in obstructive airway disease and summarizes outcomes reported in randomized controlled trials.

  18. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  19. Vitronectin Expression in the Airways of Subjects with Asthma and Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Salazar-Peláez, Lina M.; Abraham, Thomas; Herrera, Ana M.; Correa, Mario A.; Ortega, Jorge E.; Paré, Peter D.; Seow, Chun Y.

    2015-01-01

    Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC), cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls). Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling. PMID:25768308

  20. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Lina M Salazar-Peláez

    Full Text Available Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC, cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls. Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling.

  1. NET balancing: A problem in inflammatory lung diseases

    Directory of Open Access Journals (Sweden)

    Olivia Z Cheng

    2013-01-01

    Full Text Available Neutrophil extracellular traps (NETs are beneficial antimicrobial defense structures that can help fight against invading pathogens in the host. However, recent studies reveal that NETs exert adverse effects in a number of diseases including many lung diseases. Most of the inflammatory lung diseases are characterized with a massive influx of neutrophils into the airways. Neutrophils contribute to the pathology of these diseases. To date, NETs have been identified in the lungs of cystic fibrosis, acute lung injury, allergic asthma and lungs infected with bacteria, virus, or fungi. These microbes and several host factors can stimulate NET formation, or NETosis. Different forms of NETosis have been identified; these NETotic pathways are dependent on the types of stimuli. All of these pathways however appear to result in the formation of NETs with DNA, modified extracellular histones, proteases and cytotoxic enzymes. Some of the NET components are immunogenic and damaging to the host tissue. Innate immune collectins such as pulmonary surfactant protein D (SP-D binds NETs, and enhances the clearance of dying cells and DNA by alveolar macrophages. In many inflammatory lung diseases, bronchoalveolar SP-D levels are altered and its deficiency results in the accumulation of DNA in the lungs. Some of the other therapeutic molecules under consideration for treating NET-related diseases include DNases, antiproteases, myeloperoxidase inhibitors, peptidylarginine deiminase-4 inhibitors and anti-histone antibodies. Too much of the good thing can be a bad thing. Maintaining the right balance of NET formation and reducing the amounts of NETs that accumulate in the tissues are essential for harnessing the power of NETs with minimal damage to the hosts.

  2. Airway epithelial platelet-activating factor receptor expression is markedly upregulated in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2014-08-01

    Full Text Available Shakti Dhar Shukla,1,* Sukhwinder Singh Sohal,1,* Malik Quasir Mahmood,1 David Reid,2 Hans Konrad Muller,1 Eugene Haydn Walters1 1NHMRC Centre for Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia; 2Queensland Institute of Medical Research, Iron Metabolism Laboratory, Brisbane, Queensland, Australia *Shakti Dhar Shukla and Sukhwinder Singh Sohal are joint first authors Background: We recently published that platelet-activating factor receptor (PAFr is upregulated on the epithelium of the proximal airways of current smokers and also in bronchial epithelial cells exposed to cigarette smoke extract. These treated cells also showed upregulation of Streptococcus pneumoniae adhesion. Bacterial wall phosphorylcholine specifically binds to PAFr expressed on airway epithelium, thus facilitating adherence and tissue invasion, which may be relevant to chronic obstructive pulmonary disease (COPD. Moreover, the use of inhaled corticosteroids (ICS in COPD patients is associated with an increased risk of invasive respiratory pneumococcal infections. Objective: In this study, we have investigated whether PAFr expression is especially upregulated in airway epithelium in COPD patients and whether this expression may be modulated by ICS therapy. Methods: We cross-sectionally evaluated PAFr expression in bronchial biopsies from 15 COPD patients who were current smokers (COPD-smokers and 12 COPD-ex-smokers, and we compared these to biopsies from 16 smokers with normal lung function. We assessed immunostaining with anti-PAFr monoclonal antibody. We also used material from a previous double-blinded randomized placebo-controlled 6-month ICS intervention study in COPD patients to explore the effect of ICS on PAFr expression. We employed computer-aided image analysis to quantify the percentage of epithelium stained for PAFr. Results: Markedly enhanced expression of PAFr was found

  3. Targeted therapy of bronchitis in obstructive airway diseases.

    Science.gov (United States)

    Dasgupta, Angira; Neighbour, Helen; Nair, Parameswaran

    2013-12-01

    Guidelines for the management of obstructive airway diseases do not emphasize the measurement of bronchitis to indicate appropriate treatments or monitor response to treatment. Bronchitis is the central component of airway diseases and contributes to symptoms, physiological and structural abnormalities. It can be measured directly and reliably by quantitative assay of spontaneous or induced sputum. The measurement is reproducible, valid, and responsive to treatment and to changes in disease status. Bronchitis may be eosinophilic, neutrophilic, mixed, or paucigranulocytic (eosinophils and neutrophils not elevated). Eosinophilic bronchitis is usually a Th2 driven process and therefore a sputum eosinophilia of greater than 3% usually indicates a response to treatment with corticosteroids or novel therapies directed against Th2 cytokines such as IL-4, IL-5 and IL-13. Neutrophilic bronchitis which is a non-Th2 driven disease is generally a predictor of response to antibiotics and may be a predictor to therapies targeted at pathways that lead to neutrophil recruitment such as IL-8 (eg anti-CXCR2), IL-17 (eg anti-IL17) etc. Paucigranulocytic disease may not warrant anti-inflammatory therapy. Several novel monoclonals and small molecule antagonists have been evaluated in clinical trials with variable results and several more are likely to be discovered in the near future. The success of these agents will depend on appropriate patient selection by accurate phenotyping or characterization of bronchitis.

  4. Rat models of asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Martin, James G; Tamaoka, Meiyo

    2006-01-01

    The rat has been extensively used to model asthma and somewhat less extensively to model chronic obstructive pulmonary disease (COPD). The features of asthma that have been successfully modeled include allergen-induced airway constriction, eosinophilic inflammation and allergen-induced airway hyperresponsiveness. T-cell involvement has been directly demonstrated using adoptive transfer techniques. Both CD4+ and CD8+ T cells are activated in response to allergen challenge in the sensitized rat and express Thelper2 cytokines (IL-4, IL-5 and IL-13). Repeated allergen exposure causes airway remodeling. Dry gas hyperpnea challenge also evokes increases in lung resistance, allowing exercise-induced asthma to be modeled. COPD is modeled using elastase-induced parenchymal injury to mimic emphysema. Cigarette smoke-induced airspace enlargement occurs but requires months of cigarette exposure. Inflammation and fibrosis of peripheral airways is an important aspect of COPD that is less well modeled. Novel approaches to the treatment of COPD have been reported including treatments aimed at parenchymal regeneration.

  5. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease.

    Science.gov (United States)

    Vital, Marius; Harkema, Jack R; Rizzo, Mike; Tiedje, James; Brandenberger, Christina

    2015-01-01

    The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM). After challenge, the animals were sacrificed, blood serum was collected for cytokine analysis, and the lungs were processed for histopathology. Fecal pellets were excised from the colon and subjected to 16S rRNA analysis. The microbial community structure changed with age and allergy development, where alterations in fecal communities from young to old mice resembled those after HDM challenge. Allergic mice had induced serum levels of IL-17A and old mice developed a greater allergic airway response compared to young mice. This study demonstrates that the intestinal bacterial community structure differs with age, possibly contributing to the exaggerated pulmonary inflammatory response in old mice. Furthermore, our results show that the composition of the gut microbiota changes with pulmonary allergy, indicating bidirectional gut-lung communications.

  6. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease

    Directory of Open Access Journals (Sweden)

    Marius Vital

    2015-01-01

    Full Text Available The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM. After challenge, the animals were sacrificed, blood serum was collected for cytokine analysis, and the lungs were processed for histopathology. Fecal pellets were excised from the colon and subjected to 16S rRNA analysis. The microbial community structure changed with age and allergy development, where alterations in fecal communities from young to old mice resembled those after HDM challenge. Allergic mice had induced serum levels of IL-17A and old mice developed a greater allergic airway response compared to young mice. This study demonstrates that the intestinal bacterial community structure differs with age, possibly contributing to the exaggerated pulmonary inflammatory response in old mice. Furthermore, our results show that the composition of the gut microbiota changes with pulmonary allergy, indicating bidirectional gut-lung communications.

  7. Imaging of cystic fibrosis lung disease and clinical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Wielpuetz, M.O.; Eichinger, M.; Kauczor, H.U. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Biederer, J. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Gross-Gerau Community Hospital (Germany). Radiologie Darmstadt; Wege, S. [Heidelberg University Hospital (Germany). Dept. of Pulmonology and Respiratory Medicine; Stahl, M.; Sommerburg, O. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Mall, M.A. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Heidelberg University Hospital (Germany). Dept. of Translational Pulmonology; Puderbach, M. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Hufeland Hospital, Bad Langensalza (Germany). Dept. of Diagnostic and Interventional Radiology

    2016-09-15

    Progressive lung disease in cystic fibrosis (CF) is the life-limiting factor of this autosomal recessive genetic disorder. Increasing implementation of CF newborn screening allows for a diagnosis even in pre-symptomatic stages. Improvements in therapy have led to a significant improvement in survival, the majority now being of adult age. Imaging provides detailed information on the regional distribution of CF lung disease, hence longitudinal imaging is recommended for disease monitoring in the clinical routine. Chest X-ray (CXR), computed tomography (CT) and magnetic resonance imaging (MRI) are now available as routine modalities, each with individual strengths and drawbacks, which need to be considered when choosing the optimal modality adapted to the clinical situation of the patient. CT stands out with the highest morphological detail and has often been a substitute for CXR for regular severity monitoring at specialized centers. Multidetector CT data can be post-processed with dedicated software for a detailed measurement of airway dimensions and bronchiectasis and potentially a more objective and precise grading of disease severity. However, changing to CT was inseparably accompanied by an increase in radiation exposure of CF patients, a young population with high sensitivity to ionizing radiation and lifetime accumulation of dose. MRI as a cross-sectional imaging modality free of ionizing radiation can depict morphological hallmarks of CF lung disease at lower spatial resolution but excels with comprehensive functional lung imaging, with time-resolved perfusion imaging currently being most valuable.

  8. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

    Directory of Open Access Journals (Sweden)

    Ama-Tawiah Essilfie

    2011-10-01

    Full Text Available A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR. Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD. BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate and T lymphocytes (late, adaptive in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.

  9. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases.

  10. Camera Embedded Single Lumen Tube as a Rescue Device for Airway Handling during Lung Separation

    DEFF Research Database (Denmark)

    Højberg Holm, Jimmy; Andersen, Claus

    2016-01-01

    Lung isolation in thoracic surgery will usually be achieved either with a double-lumen tube (DLT) or a bronchial blocker (BB). However, even when conducted by anesthesiologists with particular interest and expertise in thoracic anesthesia, the procedure may be troublesome and time consuming.......Keywords: Thoracic anesthesia; Airway handling; VivaSight; Vivasight-SL; Lobectomy; Camera-embedded tube; Endotracheal; Lung isolation; Video tube Taking the small stature into account, use of a small conventional 35-Fr right sided DLT was planned for the procedure. As it turned out, this tube could not be passed...... beyond the vocal cords because too much resistance was felt. We therefore changed to a smaller DLT, and as a DLT size 28-Fr is only available in a left sided version [1], we opted for this. Unfortunately it turned out, that our fiberoptic broncoscope could not be advanced through an ET of this size...

  11. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  12. Lung Cancer and Interstitial Lung Diseases: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Kostas Archontogeorgis

    2012-01-01

    Full Text Available Interstitial lung diseases (ILDs represent a heterogeneous group of more than two hundred diseases of either known or unknown etiology with different pathogenesis and prognosis. Lung cancer, which is the major cause of cancer death in the developed countries, is mainly attributed to cigarette smoking and exposure to inhaled carcinogens. Different studies suggest a link between ILDs and lung cancer, through different pathogenetic mechanisms, such as inflammation, coagulation, dysregulated apoptosis, focal hypoxia, activation, and accumulation of myofibroblasts as well as extracellular matrix accumulation. This paper reviews current evidence on the association between lung cancer and interstitial lung diseases such as idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis, dermatomyositis/polymyositis, rheumatoid arthritis, systemic lupus erythematosus, and pneumoconiosis.

  13. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases

    Directory of Open Access Journals (Sweden)

    Manna Angelo

    2012-12-01

    Full Text Available Summary Fractional exhaled nitric oxide (FeNO is a non invasive method for assessing the inflammatory status of children with airway disease. Different ways to measure FeNO levels are currently available. The possibility of measuring FeNO levels in an office setting even in young children, and the commercial availability of portable devices, support the routine use of FeNO determination in the daily pediatric practice. Although many confounding factors may affect its measurement, FeNO is now widely used in the management of children with asthma, and seems to provide significantly higher diagnostic accuracy than lung function or bronchial challenge tests. The role of FeNO in airway infection (e.g. viral bronchiolitis and common acquired pneumonia, in bronchiectasis, or in cases with diffuse lung disease is less clear. This review focuses on the most recent advances and the current clinical applications of FeNO measurement in pediatric lung disease.

  14. Lung clearance index for monitoring early lung disease in alpha-1-antitrypsin deficiency.

    Science.gov (United States)

    Fuchs, Susanne I; Schwerk, Nicolaus; Pittschieler, Klaus; Ahrens, Frank; Baden, Winfried; Bals, Robert; Fähndrich, Sebastian; Gleiber, Wolfgang; Griese, Matthias; Hülskamp, Georg; Köhnlein, Thomas; Reckling, Ludmilla; Rietschel, Ernst; Staab, Doris; Gappa, Monika

    2016-07-01

    Patients with alpha-1-antitrypsin deficiency (AATD) and a PI-ZZ genotype are at high risk to develop severe emphysema during adulthood. However, little is known about early stages of emphysema and disease manifestation in other PI-types. Spirometry is commonly used for monitoring although early manifestation of emphysema is suspected within the peripheral airways that are not accessible by forced expiratory manoeuvres. We hypothesized that the Lung Clearance Index (LCI) derived from multiple breath nitrogen-washout (N2-washout) is useful to bridge this diagnostic gap. Patients from age 4 years onward and different PI-types performed N2-washout and spirometry. Results were compared to controls. 193 patients (4-79 years, 75% PI-ZZ) and 33 controls (8-60 years) were included. Mean (SD) LCI in patients was 9.1 (3.1) and 6.3 (0.6) in controls (p ≤ 0.001). 47% of adult patients with other than PI-ZZ genotypes and 39% of all patients with normal spirometry had abnormal LCIs. The LCI measured by N2-washout discriminates between patients with AATD and controls, reflects AATD related lung disease in all stages and appears to identify early peripheral lung changes in younger age than spirometry. We conclude that a normal spirometry does not exclude presence of AATD related lung disease even in genotypes other than PI-ZZ.

  15. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications.

    Science.gov (United States)

    Huang, Yvonne J; Lynch, Susan V

    2011-12-01

    Until recently, relationships between evidence of colonization or infection by specific microbial species and the development, persistence or exacerbation of pulmonary disease have informed our opinions of airway microbiology. However, recent applications of culture-independent tools for microbiome profiling have revealed a more diverse microbiota than previously recognized in the airways of patients with chronic pulmonary disease. New evidence indicates that the composition of airway microbiota differs in states of health and disease and with severity of symptoms and that the microbiota, as a collective entity, may contribute to pathophysiologic processes associated with chronic airway disease. Here, we review the evolution of airway microbiology studies of chronic pulmonary disease, focusing on asthma, chronic obstructive pulmonary disease and cystic fibrosis. Building on evidence derived from traditional microbiological approaches and more recent culture-independent microbiome studies, we discuss the implications of recent findings on potential microbial determinants of respiratory health or disease.

  16. IgG4 Related Lung Disease

    Directory of Open Access Journals (Sweden)

    Mihir Patel

    2016-01-01

    Full Text Available IgG4 related disease is a poorly understood immune mediated condition. Lung involvement is rare and difficult to diagnose and can mimic primary lung malignancy on imaging. A patient who was found to have an incidental lung lesion with risk factors for primary pulmonary malignancy is reported.

  17. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, Samuel M.; Gibson, Ronald L. [University of Washington, Department of Pediatrics, Seattle, WA (United States); Effmann, Eric L. [University of Washington School of Medicine, Children' s Hospital and Regional Medical Center, Department of Radiology, Seattle, WA (United States)

    2005-08-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  18. Chlamydophila spp. infection in horses with recurrent airway obstruction: similarities to human chronic obstructive disease

    Directory of Open Access Journals (Sweden)

    Hotzel Helmut

    2008-01-01

    Full Text Available Abstract Background Recurrent airway obstruction (RAO in horses is a naturally occurring dust-induced disease mainly characterized by bronchiolitis which shows histological and pathophysiological similarities to human chronic obstructive pulmonary disease (COPD. In human COPD previous investigations indicated an association with Chlamydophila psittaci infection. The present study was designed (1 to clarify a possible role of this infectious agent in RAO and (2 to investigate the suitability of this equine disorder as a model for human COPD. Methods Clinico-pathological parameters of a total of 45 horses (25 horses with clinical signs of RAO and 20 clinically healthy controls were compared to histological findings in lung tissue samples and infection by Chlamydiaceae using light microscopy, immunohistochemistry, and PCR. Results Horses with clinical signs of RAO vs. controls revealed more inflammatory changes in histology (p = 0.01, and a higher detection rate of Chlamydia psittaci antigens in all cells (p OmpA sequencing identified Chlamydophila psittaci (n = 9 and Chlamydophila abortus (n = 13 in both groups with no significant differences. Within the group of clinically healthy horses subgroups with no changes (n = 15 and slight inflammation of the small airways (n = 5 were identified. Also in the group of animals with RAO subgroups with slight (n = 16 and severe (n = 9 bronchiolitis could be formed. These four subgroups can be separated in parts by the number of cells positive for Chlamydia psittaci antigens. Conclusion Chlamydophila psittaci or abortus were present in the lung of both clinically healthy horses and those with RAO. Immunohistochemistry revealed acute chlamydial infections with inflammation in RAO horses, whereas in clinically healthy animals mostly persistent chlamydial infection and no inflammatory reactions were seen. Stable dust as the known fundamental abiotic factor in RAO is comparable to smoking in human disease. These

  19. Green tea epigallo-catechin-galleate ameliorates the development of obliterative airway disease.

    Science.gov (United States)

    Liang, Olin D; Kleibrink, Bjoern E; Schuette-Nuetgen, Katharina; Khatwa, Umakanth U; Mfarrej, Bechara; Subramaniam, Meera

    2011-09-01

    Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting this may offer therapeutic benefits. As a potent anti-inflammatory agent, epigallo-catechin-galleate (EGCG), a green tea catechin, has been very effective in ameliorating inflammation in a variety of diseases, providing the rationale for its use in this study in a murine heterotopic tracheal allograft model of OB. Mice treated with EGCG had reduced inflammation, with significantly less neutrophil and macrophage infiltration and significantly reduced fibrosis. On further investigation into the mechanisms, inflammatory cytokines keratinocyte (KC), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α), involved in neutrophil recruitment, were reduced in the EGCG-treated mice. In addition, monocyte chemokine monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by EGCG treatment. Antifibrotic cytokine interferon-γ-inducible protein-10 (IP-10) was increased and profibrotic cytokine transforming growth factor-β (TGF-β) was reduced, further characterizing the antifibrotic effects of EGCG. These findings suggest that EGCG has great potential in ameliorating the development of obliterative airway disease.

  20. Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans

    Directory of Open Access Journals (Sweden)

    Sharareh Shojaie

    2015-03-01

    Full Text Available Efficient differentiation of pluripotent cells to proximal and distal lung epithelial cell populations remains a challenging task. The 3D extracellular matrix (ECM scaffold is a key component that regulates the interaction of secreted factors with cells during development by often binding to and limiting their diffusion within local gradients. Here we examined the role of the lung ECM in differentiation of pluripotent cells in vitro and demonstrate the robust inductive capacity of the native lung matrix alone. Extended culture of stem cell-derived definitive endoderm on decellularized lung scaffolds in defined, serum-free medium resulted in differentiation into mature airway epithelia, complete with ciliated cells, club cells, and basal cells with morphological and functional similarities to native airways. Heparitinase I, but not chondroitinase ABC, treatment of scaffolds revealed that the differentiation achieved is dependent on heparan sulfate proteoglycans and its bound factors remaining on decellularized scaffolds.

  1. Inflammatory Lung Disease in Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Claudio De Felice

    2014-01-01

    Full Text Available Rett syndrome (RTT is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2. Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA, upper airway obstruction, and redox status in patients with typical RTT (n = 228 and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228 of patients versus ~18% of healthy controls, with “high” (39.8% and “low” (34.8% patterns dominating over “mixed” (19.6% and “simple mismatch” (5.9% types. Increased plasma levels of non-protein-bound iron (NPBI, F2-isoprostanes (F2-IsoPs, intraerythrocyte NPBI (IE-NPBI, and reduced and oxidized glutathione (i.e., GSH and GSSG were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.

  2. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs.

    Directory of Open Access Journals (Sweden)

    Rebecca Y Petersen

    Full Text Available Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP is being increasingly used clinically to transition preterm infants at birth.To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs.The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF, bronchoalveolar lavage fluid (BAL, right mainstem bronchi and peripheral lung tissue were evaluated for inflammation.Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used.Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep.

  3. Nonallergic rhinitis and its association with smoking and lower airway disease: A general population study

    DEFF Research Database (Denmark)

    Håkansson, Kåre; von Buchwald, Christian; Thomsen, Simon F;

    2011-01-01

    The cause of nonallergic rhinitis (NAR) and its relation to lower airway disease remains unclear. The purpose of this study was to perform a descriptive analysis of the occurrence of rhinitis in a Danish general population with focus on NAR and its association with smoking and lower airway disease....

  4. Facts and promises on lung biomarkers in interstitial lung diseases.

    Science.gov (United States)

    Campo, Ilaria; Zorzetto, Michele; Bonella, Francesco

    2015-08-01

    Interstitial lung diseases (ILDs) are a heterogeneous group of >100 pulmonary disorders. ILDs are characterized by an irreversible architectural distortion and impaired gas exchange; however, there is great variability in the clinical course. ILD diagnosis requires a combination of clinical data, radiological imaging and histological findings (when a lung biopsy is required). At the same time, successful management of ILD patients strictly depends on an accurate and confident diagnosis. In this context, the detection of reliable biomarkers able to identify ILD subtypes, avoiding lung biopsy, as well as the capacity to stratify patients and predict over time the disease course, has become a primary aim for all research studies in this field.

  5. A Case of IgG4-Related Lung Disease Presenting as Interstitial Lung Disease.

    Science.gov (United States)

    Ahn, Jee Hwan; Hong, Sun In; Cho, Dong Hui; Chae, Eun Jin; Song, Joon Seon; Song, Jin Woo

    2014-08-01

    Intrathoracic involvement of immunoglobulin G4 (IgG4)-related disease has recently been reported. However, a subset of the disease presenting as interstitial lung disease is rare. Here, we report a case of a 35-year-old man with IgG4-related lung disease with manifestations similar to those of interstitial lung disease. Chest computed tomography showed diffuse ground glass opacities and rapidly progressive pleural and subpleural fibrosis in both upper lobes. Histological findings showed diffuse interstitial lymphoplasmacytic infiltration with an increased number of IgG4-positive plasma cells. Serum levels of IgG and IgG4 were also increased. The patient was diagnosed with IgG4-related lung disease, treated with anti-inflammatory agents, and showed improvement. Lung involvement of IgG4-related disease can present as interstitial lung disease and, therefore, should be differentiated when evaluating interstitial lung disease.

  6. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications.

    Science.gov (United States)

    Hiemstra, Pieter S; Amatngalim, Gimano D; van der Does, Anne M; Taube, Christian

    2016-02-01

    Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.

  7. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Directory of Open Access Journals (Sweden)

    Zhan-Wei Hu

    2016-01-01

    Conclusions: Long-term exposure to traffic-related air pollution in people who live near major roads in Beijing is associated with lower lung function, airway acidification, and a higher prevalence of chronic cough. EBC pH is a potential useful biomarker for evaluating air pollution exposure.

  8. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry.

    Science.gov (United States)

    Lambert, Andrew R; O'Shaughnessy, Patrick; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2011-01-01

    Regional deposition and ventilation of particles by generation, lobe and lung during steady inhalation in a computed tomography (CT) based human airway model are investigated numerically. The airway model consists of a seven-generation human airway tree, with oral cavity, pharynx and larynx. The turbulent flow in the upper respiratory tract is simulated by large-eddy simulation. The flow boundary conditions at the peripheral airways are derived from CT images at two lung volumes to produce physiologically-realistic regional ventilation. Particles with diameter equal to or greater than 2.5 microns are selected for study because smaller particles tend to penetrate to the more distal parts of the lung. The current generational particle deposition efficiencies agree well with existing measurement data. Generational deposition efficiencies exhibit similar dependence on particle Stokes number regardless of generation, whereas deposition and ventilation efficiencies vary by lobe and lung, depending on airway morphology and airflow ventilation. In particular, regardless of particle size, the left lung receives a greater proportion of the particle bolus as compared to the right lung in spite of greater flow ventilation to the right lung. This observation is supported by the left-right lung asymmetry of particle ventilation observed in medical imaging. It is found that the particle-laden turbulent laryngeal jet flow, coupled with the unique geometrical features of the airway, causes a disproportionate amount of particles to enter the left lung.

  9. Microstructural alterations of sputum in cystic fibrosis lung disease

    Science.gov (United States)

    Duncan, Gregg A.; Jung, James; Joseph, Andrea; Thaxton, Abigail L.; West, Natalie E.; Boyle, Michael P.; Hanes, Justin

    2016-01-01

    The stasis of mucus secretions in the lungs of cystic fibrosis (CF) patients leads to recurrent infections and pulmonary exacerbations, resulting in decreased survival. Prior studies have assessed the biochemical and biophysical features of airway mucus in individuals with CF. However, these measurements are unable to probe mucus structure on microscopic length scales relevant to key players in the progression of CF-related lung disease, namely, viruses, bacteria, and neutrophils. In this study, we quantitatively determined sputum microstructure based on the diffusion of muco-inert nanoparticle probes in CF sputum and found that a reduction in sputum mesh pore size is characteristic of CF patients with reduced lung function, as indicated by measured FEV1. We also discovered that the effect of ex vivo treatment of CF sputum with rhDNase I (Pulmozyme) on microstructure is dependent upon the time interval between the most recent inhaled rhDNase I treatment and the sample collection. Microstructure of mucus may serve as a marker for the extent of CF lung disease and as a parameter for assessing the effectiveness of mucus-altering agents. PMID:27812540

  10. Lung Function, Airway Inflammation, and Polycyclic Aromatic Hydrocarbons Exposure in Mexican Schoolchildren

    Science.gov (United States)

    Barraza-Villarreal, Albino; Escamilla-Nuñez, Maria Consuelo; Schilmann, Astrid; Hernandez-Cadena, Leticia; Li, Zheng; Romanoff, Lovisa; Sjödin, Andreas; Del Río-Navarro, Blanca Estela; Díaz-Sanchez, David; Díaz-Barriga, Fernando; Sly, Peter; Romieu, Isabelle

    2015-01-01

    Objective To determine the association of exposure to polycyclic aromatic hydrocarbons (PAHs) with lung function and pH of exhaled breath condensate (EBC) in Mexican schoolchildren. Methods A pilot study was performed in a subsample of 64 schoolchildren from Mexico City. Lung function and pH of EBC were measured and metabolites of PAHs in urine samples were determined. The association was analyzed using robust regression models. Results A 10% increase in the concentrations of 2-hydroxyfluorene was significantly negatively associated with forced expiratory volume in 1 second (−11.2 mL, 95% CI: −22.2 to −0.02), forced vital capacity (−11.6 mL, 95% CI: −22.9 to −0.2), and pH of EBC (−0.035, 95% CI: −0.066 to −0.005). Conclusion Biomarkers of PAHs exposure were inversely associated with lung function and decrease of ph of EBC as a marker of airway inflammation in Mexican schoolchildren. PMID:24500378

  11. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    Directory of Open Access Journals (Sweden)

    Lominiki Slawo

    2011-03-01

    Full Text Available Abstract Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM. The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs, in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP, non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes.

  12. Lung Disease Including Asthma and Adult Vaccination

    Science.gov (United States)

    ... Healthcare Professionals Lung Disease including Asthma and Adult Vaccination Language: English Español (Spanish) Recommend on Facebook Tweet ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  13. The Effects of High Frequency Oscillatory Flow on Particles' Deposition in Upper Human Lung Airways

    Science.gov (United States)

    Bonifacio, Jeremy; Rahai, Hamid; Taherian, Shahab

    2016-11-01

    The effects of oscillatory inspiration on particles' deposition in upper airways of a human lung during inhalation/exhalation have been numerically investigated and results of flow characteristics, and particles' deposition pattern have been compared with the corresponding results without oscillation. The objective of the investigation was to develop an improved method for drug delivery for Asthma and COPD patients. Previous clinical investigations of using oral airway oscillations have shown enhanced expectoration in cystic fibrosis (CF) patients, when the frequency of oscillation was at 8 Hz with 9:1 inspiratory/expiratory (I:E) ratio. Other investigations on oscillatory ventilation had frequency range of 0.5 Hz to 2.5 Hz. In the present investigations, the frequency of oscillation was changed between 2 Hz to 10 Hz. The particles were injected at the inlet and particle velocity was equal to the inlet air velocity. One-way coupling of air and particles was assumed. Lagrangian phase model was used for transport and depositions of solid 2.5 micron diameter round particles with 1200 kg/m3 density. Preliminary results have shown enhanced PM deposition with oscillatory flow with lower frequency having a higher deposition rate Graduate Assistant.

  14. Novel level-set based segmentation method of the lung at HRCT images of diffuse interstitial lung disease (DILD)

    Science.gov (United States)

    Lee, Jeongjin; Seo, Joon Beom; Kim, Namkug; Park, Sang Ok; Lee, Ho; Shin, Yeong Gil; Kim, Soo-Hong

    2009-02-01

    In this paper, we propose an algorithm for reliable segmentation of the lung at HRCT of DILD. Our method consists of four main steps. First, the airway and colon are segmented and excluded by thresholding(-974 HU) and connected component analysis. Second, initial lung is identified by thresholding(-474 HU). Third, shape propagation outward the lung is performed on the initial lung. Actual lung boundaries exist inside the propagated boundaries. Finally, subsequent shape modeling level-set inward the lung from the propagated boundary can identify the lung boundary when the curvature term was highly weighted. To assess the accuracy of the proposed algorithm, the segmentation results of 54 patients are compared with those of manual segmentation done by an expert radiologist. The value of 1 minus volumetric overlap is less than 5% error. Accurate result of our method would be useful in determining the lung parenchyma at HRCT, which is the essential step for the automatic classification and quantification of diffuse interstitial lung disease.

  15. Preclinical lung disease in early rheumatoid arthritis.

    Science.gov (United States)

    Robles-Perez, Alejandro; Luburich, Patricio; Rodriguez-Sanchon, Benigno; Dorca, Jordi; Nolla, Joan Miquel; Molina-Molina, Maria; Narvaez-Garcia, Javier

    2016-02-01

    Early detection and treatment of lung disease in patients with rheumatoid arthritis (RA) may ameliorate disease progression. The objectives of this study were to investigate the frequency of asymptomatic lung abnormalities in early RA patients and the potential association of positive RA blood reactive biomolecules with lung involvement. A prospective observational study was performed in a cohort of patients with early RA (joint symptoms disease with a baseline chest radiograph (CR) and complete pulmonary function tests (PFTs). In those patients with lung abnormalities on the CR or PFTs, a high-resolution chest computed tomography scan (HRCT) was performed. We included 40 patients (30 women). Altered PFTs were detected in 18 (45%) of these patients. These cases had a diffusion lung transfer capacity of carbon monoxide (DLCO) of disease is present in up to 45% of early RA patients and can be determined by PFTs and ACPA levels.

  16. Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge.

    Science.gov (United States)

    Chvatchko, Y; Kosco-Vilbois, M H; Herren, S; Lefort, J; Bonnefoy, J Y

    1996-12-01

    Airway inflammation plays a central role in the pathogenesis of asthma. However, the precise contribution of all cell types in the development and maintenance of airway hyperreactivity and histopathology during allergic inflammation remains unclear. After sensitization of mice in the periphery, challenge by multiple intratracheal (i.t.) instillations of ovalbumin (OVA) results in eosinophilia, mononuclear cell infiltration, and airway epithelial changes analogous to that seen in asthma (Blyth, D.I., M.S. Pedrick, T.J. Savage, E.M. Hessel, and D. Fattah. 1996. Am. J. Respir. Cell Mol. Biol. 14:425-438). To investigate further the nature of the cellular infiltrate, lungs from OVA-versus saline-treated mice were processed for histology and immunohistochemistry. One of the most striking features observed was the formation of germinal centers within the parenchyma of the inflamed lungs. In addition, follicular dendritic cells (FDCs) bearing OVA on their plasma membranes appeared and, adjacent to these sites, OVA-specific IgG1-, IgE-, and IgA-producing plasma cells emerged. To confirm that antigen-specific immunoglobulins (Ig) were being produced within the parenchyma, plasma cell number and antibody production were quantitated in vitro after isolation of cells from the lung. These assays confirmed that the isotypes observed in situ were a secreted product. As IgE-dependent mechanisms have been implicated as being central to the pathogenesis of bronchial asthma, airway hyperresponsiveness was evaluated. The mice undergoing lung inflammation were hyperresponsive, while the control group remained at baseline. These data demonstrate that antigen-driven differentiation of B cells via induction of an FDC network and germinal centers occurs in the parenchyma of inflamed lungs. These germinal centers would then provide a local source of IgE-secreting plasma cells that contribute to the release of factors mediating inflammatory processes in the lung.

  17. Small airway dysfunction and flow and volume bronchodilator responsiveness in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Pisi R

    2015-06-01

    Full Text Available Roberta Pisi,1 Marina Aiello,1 Andrea Zanini,2 Panagiota Tzani,1 Davide Paleari,3 Emilio Marangio,1 Antonio Spanevello,2,4 Gabriele Nicolini,5 Alfredo Chetta1 1Department of Clinical and Experimental Medicine, University of Parma, Parma, 2Division of Pneumology, IRCCS Rehabilitation Institute of Tradate, Salvatore Maugeri Foundation, Tradate, 3Medical Department, Chiesi Farmaceutici SpA, Parma, 4Department of Clinical and Experimental Medicine, University of Insubria, Varese, 5Corporate Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy Background: We investigated whether a relationship between small airways dysfunction and bronchodilator responsiveness exists in patients with chronic obstructive pulmonary disease (COPD.Methods: We studied 100 (20 female; mean age: 68±10 years patients with COPD (forced expiratory volume in 1 second [FEV1]: 55% pred ±21%; FEV1/forced vital capacity [FVC]: 53%±10% by impulse oscillometry system. Resistance at 5 Hz and 20 Hz (R5 and R20, in kPa·s·L-1 and the fall in resistance from 5 Hz to 20 Hz (R5 – R20 were used as indices of total, proximal, and peripheral airway resistance; reactance at 5 Hz (X5, in kPa·s·L-1 was also measured. Significant response to bronchodilator (salbutamol 400 µg was expressed as absolute (≥0.2 L and percentage (≥12% change relative to the prebronchodilator value of FEV1 (flow responders, FRs and FVC (volume responders, VRs.Results: Eighty out of 100 participants had R5 – R20 >0.03 kPa·s·L-1 (> upper normal limit and, compared to patients with R5 – R20 ≤0.030 kPa·s·L-1, showed a poorer health status, lower values of FEV1, FVC, FEV1/FVC, and X5, along with higher values of residual volume/total lung capacity and R5 (P<0.05 for all comparisons. Compared to the 69 nonresponders and the 8 FRs, the 16 VRs had significantly higher R5 and R5 – R20 values (P<0.05, lower X5 values (P<0.05, and greater airflow obstruction and lung

  18. Association between chronic obstructive pulmonary disease and lung cancer: the missing link

    Institute of Scientific and Technical Information of China (English)

    WANG Zeng-li

    2013-01-01

    Objective This review focuses on current knowledge of specific processes that drive chronic airway inflammation which are important in the pathogenesis of both chronic obstructive pulmonary disease (COPD) and lung cancer.Data sources The data used in this review were obtained mainly from studies reported in the PubMed database (1997-2012) using the terms of COPD and lung cancer.Study selection Data from published articles about prevalence of COPD-lung cancer overlap and mechanism involved in lung cancer development in COPD were identified,retrieved and reviewed.Results COPD prevalence,morbidity and mortality vary and are directly related to the prevalence of tobacco smoking except in developing countries where air pollution resulting from the burning of biomass fuels is also important.COPD is characterized by a chronic inflammation of lower airway and,importantly,the presence of COPD increases the risk of lung cancer up to 4.5 fold among long-term smokers.COPD is by far the greatest risk factor for lung cancer amongst smokers and is found in 50%-90% of patients with lung cancer.Conclusions Both COPD and lung cancer are tobacco smoking-associated chronic diseases that cluster in families and aggravate with age,and 50%-70% of patients diagnosed with lung cancer have declined spirometric evidence of COPD.Understanding and targeting common pathogenic mechanisms for lung cancer and COPD would have potential diagnostic and therapeutic implications for patients with these lung diseases and for people at risk.

  19. Computational modeling of the obstructive lung diseases asthma and COPD.

    Science.gov (United States)

    Burrowes, Kelly Suzanne; Doel, Tom; Brightling, Chris

    2014-11-28

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway obstruction and airflow imitation and pose a huge burden to society. These obstructive lung diseases impact the lung physiology across multiple biological scales. Environmental stimuli are introduced via inhalation at the organ scale, and consequently impact upon the tissue, cellular and sub-cellular scale by triggering signaling pathways. These changes are propagated upwards to the organ level again and vice versa. In order to understand the pathophysiology behind these diseases we need to integrate and understand changes occurring across these scales and this is the driving force for multiscale computational modeling. There is an urgent need for improved diagnosis and assessment of obstructive lung diseases. Standard clinical measures are based on global function tests which ignore the highly heterogeneous regional changes that are characteristic of obstructive lung disease pathophysiology. Advances in scanning technology such as hyperpolarized gas MRI has led to new regional measurements of ventilation, perfusion and gas diffusion in the lungs, while new image processing techniques allow these measures to be combined with information from structural imaging such as Computed Tomography (CT). However, it is not yet known how to derive clinical measures for obstructive diseases from this wealth of new data. Computational modeling offers a powerful approach for investigating this relationship between imaging measurements and disease severity, and understanding the effects of different disease subtypes, which is key to developing improved diagnostic methods. Gaining an understanding of a system as complex as the respiratory system is difficult if not impossible via experimental methods alone. Computational models offer a complementary method to unravel the structure-function relationships occurring within a multiscale, multiphysics system such as this. Here we review the currentstate

  20. Imaging of macrophage-related lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Katharina; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2005-04-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  1. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  2. Tight junctions in pulmonary epithelia during lung inflammation

    OpenAIRE

    Wittekindt, Oliver H.

    2016-01-01

    Inflammatory lung diseases like asthma bronchiale, chronic obstructive pulmonary disease and allergic airway inflammation are widespread public diseases that constitute an enormous burden to the health systems. Mainly classified as inflammatory diseases, the treatment focuses on strategies interfering with local inflammatory responses by the immune system. Inflammatory lung diseases predispose patients to severe lung failures like alveolar oedema, respiratory distress syndrome and acute lung ...

  3. Diagnosis and treatment of cystic lung disease

    Science.gov (United States)

    Park, Sanghoon; Lee, Eun Joo

    2017-01-01

    Cystic lung disease (CLD) is a group of lung disorders characterized by the presence of multiple cysts, defined as air-filled lucencies or low-attenuating areas, bordered by a thin wall (usually Hogg-Dube syndrome, lymphocytic interstitial pneumonia/follicular bronchiolitis, and amyloidosis. PMID:28264540

  4. Is pesticide exposure a cause of obstructive airways disease?

    Directory of Open Access Journals (Sweden)

    Emma Doust

    2014-06-01

    Full Text Available A systematic review was performed to identify any associations between pesticide exposure and the occurrence (both prevalence and incidence of airways disease (asthma and chronic obstructive pulmonary disease and wheezing symptoms. PubMed, MEDLINE, Embase, Scopus, CINAHL, Google Scholar and the Cochrane Database of Systematic Reviews were searched between September 2010 and October 2010 for papers with the inclusion criteria of English language, published after 1990, peer-reviewed and nondietary exposure. From a total of 4390 papers identified, 42 were included after initial assessment of content. After evaluating the included studies for quality, those considered to be at high risk of bias were excluded, leaving a total of 23 relevant papers. Results suggest that exposure to pesticides may be associated with prevalent asthma, but methodological issues, such as cross-sectional/case–control design, measurements of exposure and limited adjustment for confounders, limit the strength of the evidence base in this area. The association between pesticide exposure and asthma appears to be more evident and consistent in children than in adults. Exposure to pesticides may be associated with COPD; however, the strength of evidence for an association with COPD is weaker than for asthma. As the exposure metrics within each health end-point varied across studies, no meta-analyses were carried out.

  5. Occupational rhinitis and occupational asthma; one airway two diseases?

    Science.gov (United States)

    Seed, M. J.; Gittins, M.; DeVocht, F.; Agius, R. M.

    2009-02-01

    The concept of 'one airway, one disease' refers to the frequent comorbidity of asthma and rhinitis. However, only limited research has been done on this association for the diverse range of occupational respiratory sensitisers. The relative frequency of rhinitis was determined for the 15 respiratory sensitisers reported to cause at least 10 cases of rhinitis or asthma to The Health and Occupation Reporting (THOR) network between 1997 and 2006. Of 1408 cases, 1190 were sole diagnoses of asthma, 138 sole diagnoses of rhinitis and in 80 cases asthma coexisted with rhinitis. The six sensitisers for which rhinitis featured in over 15% of cases were all particulates and known to cause release of mast cell mediators, either directly or through IgE antibodies. Four of the other nine sensitisers often exist as vapours and only two have been consistently associated with IgE-mediated disease mechanisms. Particle size did not appear to correlate with the relative frequency of rhinitis. Despite its limitations this study would support the hypothesis that there are at least two mechanistic categories of respiratory sensitisation with rhinitis being relatively more common where the mechanism is IgE-mediated. Particulate nature may be another important factor to consider in future studies.

  6. Occupational rhinitis and occupational asthma; one airway two diseases?

    Energy Technology Data Exchange (ETDEWEB)

    Seed, M J; Gittins, M; De Vocht, F; Agius, R M., E-mail: Martin.seed@manchester.ac.u [Occupational and Environmental Health Research Group, University of Manchester (United Kingdom); Correspondence to Dr Martin Seed, Occupational and Environmental Health Research Group, School of Translational Medicine, Faculty of Medical and Human Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PLl (United Kingdom)

    2009-02-01

    The concept of 'one airway, one disease' refers to the frequent comorbidity of asthma and rhinitis. However, only limited research has been done on this association for the diverse range of occupational respiratory sensitisers. The relative frequency of rhinitis was determined for the 15 respiratory sensitisers reported to cause at least 10 cases of rhinitis or asthma to The Health and Occupation Reporting (THOR) network between 1997 and 2006. Of 1408 cases, 1190 were sole diagnoses of asthma, 138 sole diagnoses of rhinitis and in 80 cases asthma coexisted with rhinitis. The six sensitisers for which rhinitis featured in over 15% of cases were all particulates and known to cause release of mast cell mediators, either directly or through IgE antibodies. Four of the other nine sensitisers often exist as vapours and only two have been consistently associated with IgE-mediated disease mechanisms. Particle size did not appear to correlate with the relative frequency of rhinitis. Despite its limitations this study would support the hypothesis that there are at least two mechanistic categories of respiratory sensitisation with rhinitis being relatively more common where the mechanism is IgE-mediated. Particulate nature may be another important factor to consider in future studies.

  7. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    with reductions in lung mRNA levels of Th2 and Th17 cytokines, as well as chemokines (CCL7, CCL11, CCL24). huApoE4 mice had an intermediate phenotype, with attenuated AHR and IgE production, compared with muApoE mice, whereas airway inflammation and mucous cell metaplasia were not reduced. In contrast, HDM...

  8. Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Löfdahl Claes-Göran

    2011-10-01

    Full Text Available Abstract Background Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF and idiopathic pulmonary fibrosis (IPF has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls. Methods Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients, IPF (21 regions; 7 patients and controls (16 regions; 8 subjects. In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β. Results In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-β, correlated negatively with patient lung function. Conclusions The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further

  9. Lung pressures and gas transport during high-frequency airway and chest wall oscillation.

    Science.gov (United States)

    Khoo, M C; Ye, T H; Tran, N H

    1989-09-01

    The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.

  10. Lung-homing of endothelial progenitor cells and airway vascularization is only partially dependant on eosinophils in a house dust mite-exposed mouse model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nirooya Sivapalan

    Full Text Available Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1, a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.Wild-type (WT BALB/c and eosinophil deficient (PHIL mice were sensitized to house dust mite (HDM using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD and airway methacholine responsiveness (AHR.Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.

  11. Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium

    Science.gov (United States)

    Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.

    2008-03-01

    The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the

  12. Cystic fibrosis lung disease in adult patients.

    Science.gov (United States)

    Vender, Robert L

    2008-04-01

    As the longevity of all patients with cystic fibrosis (CF) continues to increase (median 2005 survival=36.8 years), more adult patients will be receiving their medical care from nonpediatric adult-care providers. Cystic fibrosis remains a fatal disease, with more than 80% of patients dying after the age of 18 years, and most deaths resulting from pulmonary disease. The changing epidemiology requires adult-care providers to become knowledgeable and competent in the clinical management of adults with CF. Physicians must understand the influence of specific genotype on phenotypic disease presentation and severity, the pathogenic factors determining lung disease onset and progression, the impact of comorbid disease factors such as CF-related diabetes and malnutrition upon lung disease severity, and the currently approved or standard accepted therapies used for chronic management of CF lung disease. This knowledge is critical to help alleviate morbidity and improve mortality for the rapidly expanding population of adults with CF.

  13. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  14. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available BACKGROUND: The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. OBJECTIVES: To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS or CLD. METHODS: Bronchoalveolar lavage (BAL fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. RESULTS: Preterm birth was associated with an increase in the proportion of non-classical CD14(+/CD16(+ monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02. Infants with RDS were born with significantly more CD36(+ macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02. At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+ mononuclear phagocytes in the airway (p = 0.03, but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05 or CD36 (p = 0.05 positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. CONCLUSIONS: These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  15. NOD-like receptors in lung diseases

    Directory of Open Access Journals (Sweden)

    Catherine eChaput

    2013-11-01

    Full Text Available The lung is a particularly vulnerable organ at the interface of the body and the exterior environment. It is constantly exposed to microbes and particles by inhalation. The innate immune system needs to react promptly and adequately to potential dangers posed by these microbes and particles, while at the same time avoiding extensive tissue damage. NOD-like receptors (NLRs represent a group of key sensors for microbes and damage in the lung. As such they are important players in various infectious as well as acute and chronic sterile inflammatory diseases, such as pneumonia, chronic obstructive lung disease (COPD, acute lung injury/ARDS, pneumoconiosis and asthma. Activation of most known NLRs leads to the production and release of pro-inflammatory cytokines, and/or to the induction of cell death. We will review NLR functions in the lung during infection and sterile inflammation.

  16. Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Beer, Isabelle; Braitmaier, Peter;

    2010-01-01

    Patients with cystic fibrosis (CF) with Pseudomonas aeruginosa lung infections produce endobronchial mucus plugs allowing growth of obligate anaerobes including Prevotella spp. Whether obligate anaerobes contribute to the pathophysiology of CF lung disease is unknown.......Patients with cystic fibrosis (CF) with Pseudomonas aeruginosa lung infections produce endobronchial mucus plugs allowing growth of obligate anaerobes including Prevotella spp. Whether obligate anaerobes contribute to the pathophysiology of CF lung disease is unknown....

  17. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  18. Exhaled Breath Condensate: A Promising Source for Biomarkers of Lung Disease

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2012-01-01

    Full Text Available Exhaled breath condensate (EBC has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF, validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis.

  19. Upper airway obstruction and pulmonary abnormalities due to lymphoproliferative disease following bone marrow transplantation in children

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, B.D. [Department of Diagnostic Imaging, St. Jude Children`s Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105 (United States)]|[Departments of Radiology and Pediatrics, University of Tennessee, Memphis, Tennessee (United States); Heslop, H.E. [Department of Hematology/Oncology, St. Jude Children`s Research Hospital, Department of Pediatrics, University of Tennessee, Memphis, Tennessee (United States); Kaste, S.C. [Department of Diagnostic Imaging, St. Jude Children`s Research Hospital, Department of Radiology, University of Tennessee, Memphis, Tennessee (United States); Bodner, S. [Department of Pathology, St. Jude Children`s Research Hospital, Department of Pathology, University of Tennessee, Memphis, Tennessee (United States)

    1998-07-01

    We report three patients who developed severe supraglottic airway obstruction due to Epstein-Barr virus lymphoproliferative disease following allogeneic bone marrow transplantation. In addition to enlarged pharyngeal lymphoid tissue seen in all three patients, two had supraglottic airway narrowing and two developed pulmonary lymphoproliferative disease. They were treated with unmanipulated T cells or EBV-specific cytotoxic T lymphocytes. Life-threatening upper airway obstruction is a radiologically detectable complication of allogeneic bone marrow transplantation in children. (orig.) With 3 figs., 1 tab., 12 refs.

  20. Exposure conditions, lung function and airway symptoms in industrial production of wood pellets. A pilot project; Exponeringsfoerhaallanden, lungfunktion och luftvaegsbesaer vid industriell produktion av traepellets. Ett pilotprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Edman, Katja; Loefstedt, Haakan; Berg, Peter; Bryngelsson, I.L.; Fedeli, Cecilia; Selden, Anders [Oerebro Univ. Hospital (Sweden). Yrkes- och miljoemedicinska kliniken; Eriksson, Kaare [Umeaa Univ. Hospital (Sweden); Holmstroem, Mats; Rask- Andersen, Anna [Uppsala Univ. Hospital (Sweden)

    2002-02-01

    The production of wood pellets is a relatively new branch of the Swedish wood industry and has increased during the last years. A pilot study was performed to investigate the prevalence of airway symptoms, lung function and exposure among all 39 men employed in industrial production of wood pellets at six companies. The study included a questionnaire, medical examination, registration of nasal-PEF (peak expiratory flow) during a week, allergy screening (Phadiatop) and lung function (spirometry) before and after work shift. The results were compared with different reference data from other Swedish studies. Exposure measurements of monoterpenes and wood dust on filter and with a data logger (DataRAM) were also performed. The study group reported a higher frequency of cough without phlegm, awakening due to breathlessness and current asthma medication compared with reference data. For five of the six participants with physician-diagnosed asthma the disease debuted before the current employment and the results did not indicate an unusual asthma morbidity. Spirometry showed lower lung function before work shift than expected. However no difference over work shift was observed. A negative and non-significant correlation was seen between time with current work task and lung function. The study group reported a higher frequency of nasal symptoms mostly blockage, sneezing and dryness compared with reference data. The registrations of nasal-PEF did not show any differences between work and spare time. The prevalence of positive Phadiatop (23 %) did not differ from reference data. No association between exposure (wood dust and monoterpenes) and acute effects on lung function was observed. The wood dust exposure (0.16-19 mg/m{sup 3}) was high and 11 of 24 measurements exceeded the present Swedish occupational exposure limit of 2 mg/m{sup 3}. Peak exposures could be identified, e.g. at cleaning of engines with compressed air, with the DataRAM. The exposure to monoterpenes (0

  1. Warning Signs of Lung Disease

    Science.gov (United States)

    ... occurred while processing XML file."); } }); $.ajax({ type: "GET", url: "http://www.lung.org/related-content.xml?related_ ... eventdate = ''; } var title = $(this).find('title').text(); var url = $(this).find('link').text(); var html = ' Event: ' + title + ...

  2. Incense smoke: clinical, structural and molecular effects on airway disease

    Directory of Open Access Journals (Sweden)

    Krishnaswamy Guha

    2008-04-01

    Full Text Available Abstract In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes contains particulate matter (PM, gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs. The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.

  3. Incense smoke: clinical, structural and molecular effects on airway disease.

    Science.gov (United States)

    Lin, Ta-Chang; Krishnaswamy, Guha; Chi, David S

    2008-04-25

    In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home.

  4. Chronic obstructive pulmonary disease - adults - discharge

    Science.gov (United States)

    COPD - adults - discharge; Chronic obstructive airways disease - adults - discharge; Chronic obstructive lung disease - adults - discharge; Chronic bronchitis - adults - discharge; Emphysema - adults - discharge; Bronchitis - ...

  5. Study the level of sputum matrix metalloproteinase-9 and tissue inhibitor metaloprotienase-1 in patients with interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Sherif A. Esa

    2016-01-01

    Results: In this study, we have demonstrated that levels of sputum MMP-9 and TIMP-1 were significantly increased in patients with interstitial lung diseases than normal persons with highly significant statistical differences (p = 0.001. MMP-9 was positively correlated with number of neutrophils in the airway with highly significant statistical difference (p = 0.001.

  6. The long-term programming effect of maternal 25-hydroxyvitamin D in pregnancy on allergic airway disease and lung function in offspring after 20 to 25 years of follow-up

    DEFF Research Database (Denmark)

    Hansen, Susanne; Maslova, Ekaterina; Strøm, Marin;

    2015-01-01

    BACKGROUND: High prenatal vitamin D status has been linked to decreased risk of atopic diseases in early childhood, but whether such relations persist until adulthood has not been explored. OBJECTIVE: We sought to examine the association between maternal 25-hydryxovitamin D (25[OH]D) concentratio...

  7. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations.

    Science.gov (United States)

    Huang, Yvonne J; Kim, Eugenia; Cox, Michael J; Brodie, Eoin L; Brown, Ron; Wiener-Kronish, Jeanine P; Lynch, Susan V

    2010-02-01

    Acute exacerbations of chronic obstructive pulmonary disease (COPD) are a major source of morbidity and contribute significantly to healthcare costs. Although bacterial infections are implicated in nearly 50% of exacerbations, only a handful of pathogens have been consistently identified in COPD airways, primarily by culture-based methods, and the bacterial microbiota in acute exacerbations remains largely uncharacterized. The aim of this study was to comprehensively profile airway bacterial communities using a culture-independent microarray, the 16S rRNA PhyloChip, of a cohort of COPD patients requiring ventilatory support and antibiotic therapy for exacerbation-related respiratory failure. PhyloChip analysis revealed the presence of over 1,200 bacterial taxa representing 140 distinct families, many previously undetected in airway diseases; bacterial community composition was strongly influenced by the duration of intubation. A core community of 75 taxa was detected in all patients, many of which are known pathogens. Bacterial community diversity in COPD airways is substantially greater than previously recognized and includes a number of potential pathogens detected in the setting of antibiotic exposure. Comprehensive assessment of the COPD airway microbiota using high-throughput, culture-independent methods may prove key to understanding the relationships between airway bacterial colonization, acute exacerbation, and clinical outcomes in this and other chronic inflammatory airway diseases.

  8. Rheumatoid arthritis-associated interstitial lung disease

    Directory of Open Access Journals (Sweden)

    Brown KK

    2012-03-01

    Full Text Available Joshua J Solomon, Kevin K BrownAutoimmune Lung Center and Interstitial Lung Disease Program, National Jewish Health, Denver, CO, USAAbstract: Rheumatoid arthritis (RA is a systemic inflammatory disorder affecting 1% of the US population. Patients can have extra-articular manifestations of their disease and the lungs are commonly involved. RA can affect any compartment of the respiratory system and high resolution computed tomography (HRCT of the lung is abnormal in over half of these patients. Interstitial lung disease is a dreaded complication of RA. It is more prevalent in smokers, males, and those with high antibody titers. The pathogenesis is unknown but data suggest an environmental insult in the setting of a genetic predisposition. Smoking may play a role in the pathogenesis of disease through citrullination of protein in the lung leading to the development of autoimmunity. Patients usually present in middle age with cough and dyspnea. Pulmonary function testing most commonly shows reduced diffusion capacity for carbon monoxide and HRCT reveals a combination of reticulation and ground glass abnormalities. The most common pattern on HRCT and histopathology is usual interstitial pneumonia (UIP, with nonspecific interstitial pneumonia seen less frequently. There are no large-scale well-controlled treatment trials. In severe or progressive cases, treatment usually consists of corticosteroids with or without a cytotoxic agent for 6 months or longer. RA interstitial lung disease is progressive; over half of patients show radiographic progression within 2 years. Patients with a UIP pattern on biopsy have a survival similar to idiopathic pulmonary fibrosis.Keywords: rheumatoid arthritis, interstitial lung disease, nonspecific interstitial pneumonia, usual interstitial pneumonia, anti-CCP

  9. Histopathologic approach to the surgical lung biopsy in interstitial lung disease.

    Science.gov (United States)

    Jones, Kirk D; Urisman, Anatoly

    2012-03-01

    Interpretation of lung biopsy specimens is an integral part in the diagnosis of interstitial lung disease (ILD). The process of evaluating a surgical lung biopsy for disease involves answering several questions. Unlike much of surgical pathology of neoplastic lung disease, arriving at the correct diagnosis in nonneoplastic lung disease often requires correlation with clinical and radiologic findings. The topic of ILD or diffuse infiltrative lung disease covers several hundred entities. This article is meant to be a launching point in the clinician's approach to the histologic evaluation of lung disease.

  10. A pathogenic role for the integrin CD103 in experimental allergic airways disease.

    Science.gov (United States)

    Fear, Vanessa S; Lai, Siew Ping; Zosky, Graeme R; Perks, Kara L; Gorman, Shelley; Blank, Fabian; von Garnier, Christophe; Stumbles, Philip A; Strickland, Deborah H

    2016-11-01

    The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD103-knockout (KO) BALB/c mouse model of experimental allergic airways disease (EAAD) to investigate the role of CD103 in disease expression, CD4(+) T-cell activation and DC activation and function in airways and lymph nodes. We found reduced airways hyper-responsiveness and eosinophil recruitment to airways after aerosol challenge of CD103 KO compared to wild-type (WT) mice, although CD103 KO mice showed enhanced serum OVA-specific IgE levels. Following aerosol challenge, total numbers of effector and regulatory CD4(+) T-cell subsets were significantly increased in the airways of WT but not CD103 KO mice, as well as a lack of DC recruitment into the airways in the absence of CD103. While total airway DC numbers, and their in vivo allergen capture activity, were essentially normal in steady-state CD103 KO mice, migration of allergen-laden airway DC to draining lymph nodes was disrupted in the absence of CD103 at 24 h after aerosol challenge. These data support a role for CD103 in the pathogenesis of EAAD in BALB/c mice through local control of CD4(+) T cell and DC subset recruitment to, and migration from, the airway mucosa during induction of allergic inflammation.

  11. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    Directory of Open Access Journals (Sweden)

    Nava Pat

    2011-03-01

    Full Text Available Abstract Background Is Impulse Oscillometry System (IOS a valuable tool to measure respiratory system function in Children? Asthma (A is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC and augmented RIC (aRIC models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B and post- bronchodilation (post-B conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H and Small Airway-Impaired (SAI. The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp and peripheral resistance (Rp tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle" showed good correlations. Conclusions What are the most useful IOS and model parameters? In

  12. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Puchelle, Edith; Zahm, Jean-Marie; Tournier, Jean-Marie; Coraux, Christelle

    2006-11-01

    In chronic obstructive pulmonary disease (COPD), exacerbations are generally associated with several causes, including pollutants, viruses, bacteria that are responsible for an excess of inflammatory mediators, and proinflammatory cytokines released by activated epithelial and inflammatory cells. The normal response of the airway surface epithelium to injury includes a succession of cellular events, varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even complete denudation of the basement membrane. The epithelium then has to repair and regenerate to restore its functions, through several mechanisms, including basal cell spreading and migration, followed by proliferation and differentiation of epithelial cells. In COPD, the remodeling of the airway epithelium, such as squamous metaplasia and mucous hyperplasia that occur during injury, may considerably disturb the innate immune functions of the airway epithelium. In vitro and in vivo models of airway epithelial wound repair and regeneration allow the study of the spatiotemporal modulation of cellular and molecular interaction factors-namely, the proinflammatory cytokines, the matrix metalloproteinases and their inhibitors, and the intercellular adhesion molecules. These factors may be markedly altered during exacerbation periods of COPD and their dysregulation may induce remodeling of the airway mucosa and a leakiness of the airway surface epithelium. More knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to cytoprotective and regenerative therapeutics, allowing the reconstitution of a functional, well-differentiated airway epithelium in COPD.

  13. Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren

    Science.gov (United States)

    Barraza-Villarreal, Albino; Sunyer, Jordi; Hernandez-Cadena, Leticia; Escamilla-Nuñez, Maria Consuelo; Sienra-Monge, Juan Jose; Ramírez-Aguilar, Matiana; Cortez-Lugo, Marlene; Holguin, Fernando; Diaz-Sánchez, David; Olin, Anna Carin; Romieu, Isabelle

    2008-01-01

    Background The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. Objective In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. Methods We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (FeNO), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. Results An increase of 17.5 μg/m3 in the 8-hr moving average of PM2.5 levels (interquartile range) was associated with a 1.08-ppb increase in FeNO [95% confidence interval (CI), 1.01–1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98–1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00–1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter < 2.5 μm in aerodynamic diamter (PM2.5) was significantly inversely associated with forced expiratory volume in 1 sec (FEV1) (p = 0.048) and forced vital capacity (FVC) (p = 0.012) in asthmatic children and with FVC (p = 0.021) in nonasthmatic children. FeNO and FEV1 were inversely associated (p = 0.005) in asthmatic children. Conclusions Exposure to PM2.5 resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children. PMID:18560490

  14. How Can 1+1=3? beta(2)-Adrenergic and Glucocorticoid Receptor Agonist Synergism in Obstructive Airway Diseases

    NARCIS (Netherlands)

    Schmidt, Martina; Michel, Martin C.

    2011-01-01

    For a long time it was believed that beta(2)-adrenergic receptor agonists used in the treatment of obstructive airway diseases worked primarily on airway smooth muscle cells, causing relaxation, whereas glucocorticoids primarily improved airway function via their anti-inflammatory action, indicating

  15. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan.

    Science.gov (United States)

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air "burn pits" lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe-positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health.

  16. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung.

    Science.gov (United States)

    Healy, A M; Morgenthau, L; Zhu, X; Farber, H W; Cardoso, W V

    2000-11-01

    We used whole lung cultures as a model to study blood vessel formation in vitro and to examine the role that epithelial-mesenchymal interactions play during embryonic pulmonary vascular development. Mouse lungs were isolated at embryonic day 11.5 (E11.5) and cultured for up to 4 days prior to blood vessel analysis. Platelet endothelial cell adhesion molecule-1 (PECAM/CD31) and thrombomodulin (TM/CD141) immunolocalization demonstrate that vascular development occurs in lung cultures. The vascular structures identified in lung cultures first appear as a loosely associated plexus of capillary-like structures that with time surround the airways. To investigate the potential role of vascular endothelial cell growth factor (VEGF) during pulmonary neovascularization, we immunolocalized VEGF in embryonic lungs. Our data demonstrate that VEGF is uniformly present in the airway epithelium and the subepithelial matrix of E11.5 lungs. At later time points, E13.5 and E15.5, VEGF is no longer detected in the proximal airways, but is restricted to the branching tips of airways in the distal lung. RT-PCR analysis reveals that VEGF(164) is the predominant isoform expressed in lung cultures. Grafting heparin-bound VEGF(164) beads onto lung explants locally stimulates a marked neovascular response within 48 hr in culture. Semi-quantitative RT-PCR reveals an 18% increase in PECAM mRNA in VEGF(164)-treated whole lung cultures as compared with untreated cultures. The restricted temporal and spatial expression of VEGF suggests that matrix-associated VEGF links airway branching with blood vessel formation by stimulating neovascularization at the leading edge of branching airways.

  17. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable.

  18. [Modern Views on Children's Interstitial Lung Disease].

    Science.gov (United States)

    Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu

    2015-01-01

    Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.

  19. Interstitial lung disease in systemic sclerosis.

    Science.gov (United States)

    Wells, Athol U

    2014-10-01

    Based on international collaborative data, interstitial lung disease is now the most frequent cause of death in systemic sclerosis (SSc), having supplanted renal crisis in that regard. Despite detailed explorations of candidate mediators, no primary pathway in the pathogenesis of interstitial lung disease associated with SSc (SSc-ILD) has been definitively identified and, therefore, treatment with current agents is only partially successful. However, as immunomodulatory agents do, on average, retard progression of lung disease, early identification of SSc-ILD, using thoracic high resolution computed tomography (HRCT), is highly desirable. The decision whether to introduce therapy immediately is often difficult as the balance of risk and benefit favours a strategy of careful observation when lung disease is very limited, especially in long-standing SSc. The threshold for initiating treatment is substantially reduced when lung disease is severe, systemic disease is short in duration or ongoing progression is evident, based on pulmonary function tests and symptoms. This review summarises epidemiology, pathogenesis, difficult clinical problems and management issues in SSc-ILD.

  20. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease.

    Science.gov (United States)

    Britto, Clemente J; Cohn, Lauren

    2015-05-01

    Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.

  1. Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddam

    2011-01-01

    Full Text Available Seyed Javad Moghaddam1, Cesar E Ochoa1,2, Sanjay Sethi3, Burton F Dickey1,41Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Tecnológico de Monterrey School of Medicine, Monterrey, Nuevo León, Mexico; 3Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA; 4Center for Inflammation and Infection, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Chronic obstructive pulmonary disease (COPD is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, inflammation persists and lung function continues to deteriorate. One possible explanation is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable Haemophilus influenzae (NTHi, perpetuates airway injury and inflammation. Furthermore, COPD has also been identified as an independent risk factor for lung cancer irrespective of concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway inflammation that may lead to COPD progression and lung cancer promotion.Keywords: COPD, NTHi, inflammation

  2. The bacterial microbiota in inflammatory lung diseases.

    Science.gov (United States)

    Huffnagle, Gary B; Dickson, Robert P

    2015-08-01

    Numerous lines of evidence, ranging from recent studies back to those in the 1920s, have demonstrated that the lungs are NOT bacteria-free during health. We have recently proposed that the entire respiratory tract should be considered a single ecosystem extending from the nasal and oral cavities to the alveoli, which includes gradients and niches that modulate microbiome dispersion, retention, survival and proliferation. Bacterial exposure and colonization of the lungs during health is most likely constant and transient, respectively. Host microanatomy, cell biology and innate defenses are altered during chronic lung disease, which in turn, alters the dynamics of bacterial turnover in the lungs and can lead to longer term bacterial colonization, as well as blooms of well-recognized respiratory bacterial pathogens. A few new respiratory colonizers have been identified by culture-independent methods, such as Pseudomonas fluorescens; however, the role of these bacteria in respiratory disease remains to be determined.

  3. The Bacterial Microbiota in Inflammatory Lung Diseases

    Science.gov (United States)

    Huffnagle, Gary B.; Dickson, Robert P.

    2016-01-01

    Numerous lines of evidence, ranging from recent studies back to those in the 1920's, have demonstrated that the lungs are NOT bacteria-free during health. We have recently proposed that the entire respiratory tract should be considered a single ecosystem extending from the nasal and oral cavities to the alveoli, which includes gradients and niches that modulate microbiome dispersion, retention, survival and proliferation. Bacterial exposure and colonization of the lungs during health is most likely constant and transient, respectively. Host microanatomy, cell biology and innate defenses are altered during chronic lung disease, which in turn, alters the dynamics of bacterial turnover in the lungs and can lead to longer term bacterial colonization, as well as blooms of well-recognized respiratory bacterial pathogens. A few new respiratory colonizers have been identified by culture-independent methods, such as Pseudomonas fluorescens; however, the role of these bacteria in respiratory disease remains to be determined. PMID:26122174

  4. Towards the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction.

    Directory of Open Access Journals (Sweden)

    Benjamin eMauroy

    2015-08-01

    Full Text Available Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions.We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two adimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation.

  5. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Science.gov (United States)

    Hu, Zhan-Wei; Zhao, Yan-Ni; Cheng, Yuan; Guo, Cui-Yan; Wang, Xi; Li, Nan; Liu, Jun-Qing; Kang, Hui; Xia, Guo-Guang; Hu, Ping; Zhang, Ping-Ji; Ma, Jing; Liu, Ying; Zhang, Cheng; Su, Li; Wang, Guang-Fa

    2016-01-01

    Background: The effects of near-road pollution on lung function in China have not been well studied. We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function, airway inflammation, and respiratory symptoms. Methods: We enrolled 1003 residents aged 57.96 ± 8.99 years living in the Shichahai Community in Beijing. Distances between home addresses and the nearest major roads were measured to calculate home-road distance. We used the distance categories 1, 2, and 3, representing 200 m, respectively, as the dose indicator for traffic-related air pollution exposure. Lung function, exhaled breath condensate (EBC) pH, and interleukin 6 levels were measured. As a follow-up, 398 participants had a second lung function assessment about 3 years later, and lung function decline was also examined as an outcome. We used regression analysis to assess the impacts of home-road distance on lung function and respiratory symptoms. As the EBC biomarker data were not normally distributed, we performed correlation analysis between home-road distance categories and EBC biomarkers. Results: Participants living a shorter distance from major roads had lower percentage of predicted value of forced expiratory volume in 1 s (FEV1% −1.54, 95% confidence interval [CI]: −0.20 to −2.89). The odds ratio for chronic cough was 2.54 (95% CI: 1.57–4.10) for category 1 and 1.97 (95% CI: 1.16–3.37) for category 2, compared with category 3. EBC pH was positively correlated with road distance (rank correlation coefficient of Spearman [rs] = 0.176, P air pollution in people who live near major roads in Beijing is associated with lower lung function, airway acidification, and a higher prevalence of chronic cough. EBC pH is a potential useful biomarker for evaluating air pollution exposure. PMID:27625090

  6. Non-invasive ventilation used as an adjunct to airway clearance treatments improves lung function during an acute exacerbation of cystic fibrosis: a randomised trial

    Directory of Open Access Journals (Sweden)

    Tiffany J Dwyer

    2015-07-01

    Full Text Available Question: During an acute exacerbation of cystic fibrosis, is non-invasive ventilation beneficial as an adjunct to the airway clearance regimen? Design: Randomised controlled trial with concealed allocation and intention-to-treat analysis. Participants: Forty adults with moderate to severe cystic fibrosis lung disease and who were admitted to hospital for an acute exacerbation. Intervention: Comprehensive inpatient care (control group compared to the same care with the addition of non-invasive ventilation during airway clearance treatments from Day 2 of admission until discharge (experimental group. Outcome measures: Lung function and subjective symptom severity were measured daily. Fatigue was measured at admission and discharge on the Schwartz Fatigue Scale from 7 (no fatigue to 63 (worst fatigue points. Quality of life and exercise capacity were also measured at admission and discharge. Length of admission and time to next hospital admission were recorded. Results: Analysed as the primary outcome, the experimental group had a greater rate of improvement in forced expiratory volume in 1 second (FEV1 than the control group, but this was not statistically significant (MD 0.13% predicted per day, 95% CI –0.03 to 0.28. However, the experimental group had a significantly higher FEV1 at discharge than the control group (MD 4.2% predicted, 95% CI 0.1 to 8.3. The experimental group reported significantly lower levels of fatigue on the Schwartz fatigue scale at discharge than the control group (MD 6 points, 95% CI 1 to 11. There was no significant difference between the experimental and control groups in subjective symptom severity, quality of life, exercise capacity, length of hospital admission or time to next hospital admission. Conclusion: Among people hospitalised for an acute exacerbation of cystic fibrosis, the use of non-invasive ventilation as an adjunct to the airway clearance regimen significantly improves FEV1 and fatigue. Trial

  7. Role of lung surfactant in respiratory disease: current knowledge in large animal medicine.

    Science.gov (United States)

    Christmann, U; Buechner-Maxwell, V A; Witonsky, S G; Hite, R D

    2009-01-01

    Lung surfactant is produced by type II alveolar cells as a mixture of phospholipids, surfactant proteins, and neutral lipids. Surfactant lowers alveolar surface tension and is crucial for the prevention of alveolar collapse. In addition, surfactant contributes to smaller airway patency and improves mucociliary clearance. Surfactant-specific proteins are part of the innate immune defense mechanisms of the lung. Lung surfactant alterations have been described in a number of respiratory diseases. Surfactant deficiency (quantitative deficit of surfactant) in premature animals causes neonatal respiratory distress syndrome. Surfactant dysfunction (qualitative changes in surfactant) has been implicated in the pathophysiology of acute respiratory distress syndrome and asthma. Analysis of surfactant from amniotic fluid allows assessment of fetal lung maturity (FLM) in the human fetus and exogenous surfactant replacement therapy is part of the standard care in premature human infants. In contrast to human medicine, use and success of FLM testing or surfactant replacement therapy remain limited in veterinary medicine. Lung surfactant has been studied in large animal models of human disease. However, only a few reports exist on lung surfactant alterations in naturally occurring respiratory disease in large animals. This article gives a general review on the role of lung surfactant in respiratory disease followed by an overview of our current knowledge on surfactant in large animal veterinary medicine.

  8. Lung transplantation for chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Liou TG

    2013-07-01

    Full Text Available Theodore G Liou, Sanjeev M Raman, Barbara C CahillDivision of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USAAbstract: Patients with end-stage chronic obstructive pulmonary disease (COPD comprise the largest single lung disease group undergoing transplantation. Selection of appropriate candidates requires consideration of specific clinical characteristics, prognosis in the absence of transplantation, and likely outcome of transplantation. Increased availability of alternatives to transplantation for end-stage patients and the many efforts to increase the supply of donor organs have complicated decision making for selecting transplant candidates. Many years of technical and clinical refinements in lung transplantation methods have improved survival and quality of life outcomes. Further advances will probably come from improved selection methods for the procedure. Because no prospective trial has been performed, and because of confounding and informative censoring bias inherent in the transplant selection process in studies of the existing experience, the survival effect of lung transplant in COPD patients remains undefined. There is a lack of conclusive data on the impact of lung transplantation on quality of life. For some patients with end-stage COPD, lung transplantation remains the only option for further treatment with a hope of improved survival and quality of life. A prospective trial of lung transplantation is needed to provide better guidance concerning survival benefit, resource utilization, and quality of life effects for patients with COPD.Keywords: outcomes, emphysema, COPD, alpha-1-antitrypsin deficiency, survival, single lung transplant, bilateral sequential single lung transplant, lung volume reduction, referral, guidelines, health related quality of life

  9. The many faces of airway inflammation - Asthma and chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    O'Byrne, PM; Postma, DS

    1999-01-01

    Airway diseases, predominantly asthma and chronic obstructive pulmonary disease (COPD), are among the world's most prevalent diseases. The prevalence of asthma has been incasing over the past 20 yr in most countries where this has been studied, and it affects up to 10% of the populations of most dev

  10. Asbestos-induced lung disease in small-scale clutch manufacturing workers

    Science.gov (United States)

    Gothi, Dipti; Gahlot, Tanushree; Sah, Ram B.; Saxena, Mayank; Ojha, U. C.; Verma, Anand K.; Spalgais, Sonam

    2016-01-01

    Background: The crocidolite variety of asbestos is banned. However, chrysotile, which is not prohibited, is still used in developing countries in making products such as clutch plate. Fourteen workers from a small-scale clutch plate-manufacturing factory were analyzed for asbestos-induced lung disease as one of their colleagues had expired due to asbestosis. Aims: This study was conducted to evaluate the awareness of workers, the prevalence and type of asbestos-induced lung disease, and the sensitivity and specificity of diffusion test. Materials and Methods: History, examination, chest radiograph, spirometry with diffusion, and high resolution computed tomography (HRCT) thorax was performed in all the workers. The diagnosis of asbestos-induced lung disease was suspected on the basis of HRCT. This was subsequently confirmed on transbronchial lung biopsy (TBLB). Results: None of the workers had detailed information about asbestos and its ill effects. Eleven out of 14 (71.42%) workers had asbestos-induced lung disease. All 11 had small airway disease (SAD). Three had SAD alone, 6 had additional interstitial lung disease (ILD), and 2 patients had additional ILD and chronic obstructive pulmonary disease. Sensitivity and specificity of residual volume (RV) or total lung capacity (TLC) for detecting SAD was 90% and 100%, respectively, and that of diffusion capacity of lung for carbon monoxide (DLCO) for detecting ILD was 100%. Conclusion: The awareness about asbestos in small-scale clutch-plate manufacturing industry is poor. The usage of chrysotile should be strictly regulated as morbidity and mortality is high. DLCO and RV/TLC are sensitive and specific in detecting nonmalignant asbestos induced lung disease.

  11. Sex differences in emphysema and airway disease in smokers

    DEFF Research Database (Denmark)

    Camp, Pat G; Coxson, Harvey O; Levy, Robert D

    2009-01-01

    BACKGROUND: The authors of previous reports have suggested that women are more susceptible to cigarette smoke and to an airway-predominant COPD phenotype rather than an emphysema-predominant COPD phenotype. The purpose of this study was to test for sex differences in COPD phenotypes by using high...... a density mask with a cutoff of -950 Hounsfield units to calculate the low-attenuation area percentage (LAA%) and by the fractal value D, which is the slope of a power law analysis defining the relationship between the number and size of the emphysematous lesions. Airway wall thickness was assessed...

  12. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung.

    Science.gov (United States)

    Zhang, Boyang; McDonald, Fiona B; Cummings, Kevin J; Frappell, Peter B; Wilson, Richard J A

    2014-09-15

    In unrestrained whole body plethysmography, tidal volume is commonly determined using the barometric method, which assumes that temperature and humidity changes (the 'barometric component') are solely responsible for breathing-related chamber pressure fluctuations. However, in small animals chamber pressure is also influenced by a 'mechanical component' dependent on airway resistance and airflow. We devised a novel 'mechanical lung' capable of simulating neonatal mouse breathing in the absence of temperature or humidity changes. Using this device, we confirm that the chamber pressure fluctuations produced by breathing of neonatal mice are dominated by the mechanical component, precluding direct quantitative assessment of tidal volume. Recognizing the importance of airway resistance to the chamber pressure signal and the ability of our device to simulate neonatal breathing at different frequencies and tidal volumes, we invented a novel in vivo, non-invasive method for conscious airway resistance and ventilation estimation (CARVE) in neonatal rodents. This technique will allow evaluation of developmental, pathological and pharmaceutical effects on airway resistance.

  13. Diffuse interstitial lung disease: overlaps and uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Simon L.F.; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2010-08-15

    Histopathological analysis of lung biopsy material allows the diagnosis of idiopathic interstitial pneumonias; however, the strength of this diagnosis is sometimes subverted by interobserver variation and sampling. The American Thoracic Society and European Respiratory Society recommendations of 2002 provide a framework for the diagnosis of interstitial lung disease (ILD) and proposed an integrated clinical, radiological and histopathological approach. These recommendations represent a break with tradition by replacing the 'gold standard' of histopathology with the combined 'silver standards' of clinical, imaging and histopathological information. One of the pitfalls of a rigid classification system for the diagnosis of interstitial lung disease is its failure to accommodate the phenomenon of overlapping disease patterns. This article reviews the various ways that interstitial lung disease may be classified and discusses their applicability. In addition the issue of overlap disease patterns is considered in the context of histopathological interobserver variation and sampling error and how a pigeonhole approach to disease classification may overlook these hybrid entities. (orig.)

  14. Lung involvement in systemic connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2008-01-01

    Full Text Available Background/Aim. Systemic connective tissue diseases (SCTD are chronic inflammatory autoimmune disorders of unknown cause that can involve different organs and systems. Their course and prognosis are different. All of them can, more or less, involve the respiratory system. The aim of this study was to find out the frequency of respiratory symptoms, lung function disorders, radiography and high-resolution computerized tomography (HRCT abnormalities, and their correlation with the duration of the disease and the applied treatment. Methods. In 47 non-randomized consecutive patients standard chest radiography, HRCT, and lung function tests were done. Results. Hypoxemia was present in nine of the patients with respiratory symptoms (20%. In all of them chest radiography was normal. In five of these patients lung fibrosis was established using HRCT. Half of all the patients with SCTD had symptoms of lung involvement. Lung function tests disorders of various degrees were found in 40% of the patients. The outcome and the degree of lung function disorders were neither in correlation with the duration of SCTD nor with therapy used (p > 0.05 Spearmans Ro. Conclusion. Pulmonary fibrosis occurs in about 10% of the patients with SCTD, and possibly not due to the applied treatment regimens. Hypoxemia could be a sing of existing pulmonary fibrosis in the absence of disorders on standard chest radiography.

  15. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  16. [Interstitial lung diseases. The pattern is important].

    Science.gov (United States)

    Fink, L

    2014-11-01

    Interstitial lung diseases (ILDs) comprise a number of rare entities with an estimated incidence of 10-25 per 100,000 inhabitants but the incidence greatly increases beyond the age of 65 years. The prognosis depends on the underlying cause. The fibrotic disorders show a set of radiological and histopathological patterns that are distinct but not entirely specific. In the absence of a clear clinical picture and consistent high resolution computed tomography (HRCT) findings, patients are advised to undergo surgical lung biopsies from two or three lung lobes (or transbronchial biopsies) to determine the histopathological pattern. The ILDs are differentiated into disorders of known causes (e.g. collagen vascular disease, drug-related), idiopathic interstitial pneumonia (IIP), granulomatous ILDs (e.g. sarcoidosis) and other forms of ILD (e.g. Langerhans' cell histiocytosis). The IIPs encompass idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia, desquamative interstitial pneumonia, respiratory bronchiolitis-interstitial lung disease, cryptogen organizing pneumonia, lymphocytic interstitial pneumonia and acute interstitial pneumonia. Additionally, a category of unclassified interstitial pneumonia exists. The pathologist has to recognize and address the histopathological pattern. In a multidisciplinary discussion the disorder is allocated to a clinicopathological entity and the histopathological pattern plays a major role in the classification of the entity. Recognition of the underlying pattern and the respective histopathological differential diagnoses is important as the therapy varies depending on the cause and ranges from elimination of the stimulus (if possible) to antifibrotic drug therapy up to preparation for lung transplantation.

  17. Green Tea Epigallo-Catechin-Galleate Ameliorates the Development of Obliterative Airway Disease

    OpenAIRE

    Liang, Olin D.; Kleibrink, Bjoern E.; Schuette-Nuetgen, Katharina; Khatwa, Umakanth U.; Mfarrej, Bechara; Subramaniam, Meera

    2011-01-01

    Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting th...

  18. Rationale and emerging approaches for targeting lung repair and regeneration in the treatment of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Rennard, Stephen I; Wachenfeldt, Karin von

    2011-08-01

    Lung repair and regeneration are appropriate therapeutic targets for the treatment of chronic obstructive pulmonary disease (COPD). Abnormal repair results if fibrosis of the airways is a major contributor to fixed airflow limitation in airway disease. Inadequate repair in the face of tissue injury can contribute to the development of emphysema. With respect to the latter, acute exposure to cigarette smoke can impair repair responses of several cell types in the lung. Fibroblasts cultured from the lungs of patients with emphysema have persistent defects in repair that include modulation of extracellular matrix as well as production of growth factors that modulate other lung parenchymal cells. Some of the deficient repair functions appear to result from insensitivity to TGF-β and overproduction of prostaglandin E. Pharmacologic interventions targeting these pathways have the potential to at least partially reverse the abnormal repair. Alternate strategies that could modulate lung repair and regeneration could target resident or circulating stem/progenitor cells or potentially involve transplantation of new stem cells. Therapy directed at lung repair has the potential to restore lost lung function. In contrast to therapy designed to slow the progression of COPD, it may be much easier and less expensive to demonstrate efficacy for a therapy that restores lung function.

  19. X-Ray based Lung Function measurement–a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    Science.gov (United States)

    Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.

    2016-11-01

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.

  20. Interstitial lung disease probably caused by imipramine.

    Science.gov (United States)

    Deshpande, Prasanna R; Ravi, Ranjani; Gouda, Sinddalingana; Stanley, Weena; Hande, Manjunath H

    2014-01-01

    Drugs are rarely associated with causing interstitial lung disease (ILD). We report a case of a 75-year-old woman who developed ILD after exposure to imipramine. To our knowledge, this is one of the rare cases of ILD probably caused due to imipramine. There is need to report such rare adverse effects related to ILD and drugs for better management of ILD.

  1. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

    Science.gov (United States)

    Kim, Edy Y; Battaile, John T; Patel, Anand C; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H; Benoit, Loralyn A; Byers, Derek E; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W; Morton, Jeffrey D; Castro, Mario; Polineni, Deepika; Patterson, G Alexander; Schwendener, Reto A; Allard, John D; Peltz, Gary; Holtzman, Michael J

    2008-06-01

    To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor-invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell-macrophage innate immune axis.

  2. MORPHOLOGICAL FEATURES OF LUNG STRUCTURE AND FUNCTIONAL ACTIVITY OF THE AIRWAYS OF GUINEA PIGS AFTER LONG-TERM EXPOSURE WITH NANOSIZED MAGNETITE A

    Directory of Open Access Journals (Sweden)

    Ye. Ye. Abramenko

    2013-01-01

    Full Text Available The results of study, in which we examined the influence of nanosized magnetite on breath organs histological structure and contractility activity of the airways of guinea pigs by method of mechanography has been presented. In the lungs of experimental animals an inflammatory response developed as a result of long-term inhalation intake of nanosized magnetite. Also the functional status of the airways changed and appeared as changing of amplitude of contractility response under the action of histamine.

  3. Protein misfolding and obstructive lung disease.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-11-01

    The endoplasmic reticulum has evolved a number of mechanisms to manage the accumulation of incorrectly folded proteins. This results in loss of function of these proteins, but occasionally, in conditions such as α-1 antitrpysin (A1AT) deficiency, the misfolded protein can acquire a toxic gain of function promoting exaggerated ER stress responses and inflammation. Mutations leading to deficiency in a second serine proteinase inhibitor, α-1 antichymotrpysin (ACT), can induce potentially similar consequences. A1AT and ACT deficiencies are associated with chronic obstructive lung disease. Until recently, it was thought that the lung diseases associated with these conditions were entirely due to loss of antiprotease protection in the lung (i.e., loss of function), whereas gain of function was the major cause of the liver disease associated with A1AT deficiency. This paradigm is being increasingly challenged because ER stress is being recognized in bronchial epithelial cells and inflammatory cells normally resident in the lung, giving rise to an inflammatory phenotype that adds to the proteolytic burden associated with these conditions. In this article, we describe the cellular mechanisms that are activated to cope with an increasing burden of misfolded proteins within the ER in A1AT and ACT deficiency, show how these events are linked to inflammation, and outline the therapeutic strategies that can potentially interfere with production of misfolded proteins.

  4. Interstitial lung disease in the connective tissue diseases.

    Science.gov (United States)

    Antin-Ozerkis, Danielle; Rubinowitz, Ami; Evans, Janine; Homer, Robert J; Matthay, Richard A

    2012-03-01

    The connective tissue diseases (CTDs) are inflammatory, immune-mediated disorders in which interstitial lung disease (ILD) is common and clinically important. Interstitial lung disease may be the first manifestation of a CTD in a previously healthy patient. CTD-associated ILD frequently presents with the gradual onset of cough and dyspnea, although rarely may present with fulminant respiratory failure. Infection and drug reaction should always be ruled out. A diagnosis of idiopathic ILD should never be made without a careful search for subtle evidence of underlying CTD. Treatment of CTD-ILD typically includes corticosteroids and immunosuppressive agents.

  5. Transcriptional Activation of Mucin by Pseudomonas aeruginosa Lipopolysaccharide in the Pathogenesis of Cystic Fibrosis Lung Disease

    Science.gov (United States)

    Li, Jian-Dong; Dohrman, Austin F.; Gallup, Marianne; Miyata, Susumu; Gum, James R.; Kim, Young S.; Nadel, Jay A.; Prince, Alice; Basbaum, Carol B.

    1997-02-01

    An unresolved question in cystic fibrosis (CF) research is how mutations of the CF transmembrane conductance regulator, a CI ion channel, cause airway mucus obstruction leading to fatal lung disease. Recent evidence has linked the CF transmembrane conductance regulator mutation to the onset and persistence of Pseudomonas aeruginosa infection in the airways, and here we provide evidence directly linking P. aeruginosa infection to mucus overproduction. We show that P. aeruginosa lipopolysaccharide profoundly upregulates transcription of the mucin gene MUC 2 in epithelial cells via inducible enhancer elements and that this effect is blocked by the tyrosine kinase inhibitors genistein and tyrphostin AG 126. These findings improve our understanding of CF pathogenesis and suggest that the attenuation of mucin production by lipopolysaccharide antagonists and tyrosine kinase inhibitors could reduce morbidity and mortality in this disease.

  6. Legionnaire disease

    Science.gov (United States)

    ... features on this page, please enable JavaScript. Legionnaire disease is an infection of the lungs and airways. It is caused by Legionella bacteria. Causes The bacteria that cause Legionnaire disease have ...

  7. Gastro-oesophageal reflux disease and non-asthma lung disease

    Directory of Open Access Journals (Sweden)

    R. S. Morehead

    2009-12-01

    Full Text Available Gastro-oesophageal reflux disease (GERD is a common disorder in Western countries, and its relationship to airways disorders (e.g. asthma has been well established. Lung diseases other than asthma have also been associated with GERD, but the nature and scope of this relationship has not been fully defined. Diseases that have been associated with GERD include bronchiolitis syndromes, idiopathic pulmonary fibrosis, scleroderma and nontubercular mycobacterial infection. Diagnostic evaluation centres upon proving both reflux and pulmonary aspiration, which may be accomplished in some cases by lung biopsy. However, in many cases a compatible clinical and radiographic picture coupled with proof of proximal reflux by combined oesophageal probe testing may suffice for a provisional diagnosis and allow institution of anti-reflux measures. Proton-pump inhibitors are the medications of choice for GERD; other interventions shown to reduce reflux are weight loss, elevation of the head of the bed and avoidance of recumbency after meals. However, acid suppression therapy does not address non-acid reflux that may be important in disease pathogenesis in select patients, and lifestyle modifications often fail. Laparoscopic fundoplication is the procedure of choice for medically refractory GERD with excellent short-term results with respect to respiratory symptoms associated with GERD; however, long-term studies document a significant percentage of patients requiring ongoing acid suppression therapy.

  8. Intradermal cytosine-phosphate-guanosine treatment reduces lung inflammation but induces IFN-γ-mediated airway hyperreactivity in a murine model of natural rubber latex allergy.

    Science.gov (United States)

    Haapakoski, Rita; Karisola, Piia; Fyhrquist, Nanna; Savinko, Terhi; Wolff, Henrik; Turjanmaa, Kristiina; Palosuo, Timo; Reunala, Timo; Lauerma, Antti; Alenius, Harri

    2011-05-01

    Asthma and other allergic diseases are continuously increasing, causing considerable economic and sociologic burden to society. The hygiene hypothesis proposes that lack of microbial T helper (Th) 1-like stimulation during early childhood leads to increased Th2-driven allergic disorders later in life. Immunostimulatory cytosine-phosphate-guanosine (CpG)-oligodeoxynucleotide motifs are candidate molecules for immunotherapeutic studies, as they have been shown to shift the Th2 response toward the Th1 direction and reduce allergic symptoms. Using natural rubber latex (NRL)-induced murine model of asthma, we demonstrated that intradermal CpG administration with allergen reduced pulmonary eosinophilia, mucus production, and Th2-type cytokines, but unexpectedly induced airway hyperreactivity (AHR) to inhaled methacholine, one of the hallmarks of asthma. We found that induction in AHR was dependent on STAT4, but independent of STAT6 signaling. CpG treatment increased production of IFN-γ in the airways and shifted the ratio of CD4(+):CD8(+) T cells toward CD8(+) dominance. By blocking soluble IFN-γ with neutralizing antibody, AHR diminished and the CD4(+):CD8(+) ratio returned to CD4(+) dominance. These results indicate that increased production of IFN-γ in the lungs may lead to severe side effects, such as enhancement of bronchial hyperreactivity to inhaled allergen. This finding should be taken into consideration when planning prophylaxis treatment of asthma with intradermal CpG injections.

  9. AGER -429T/C is associated with an increased lung disease severity in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Julie Beucher

    Full Text Available The clinical course of cystic fibrosis (CF varies between patients bearing identical CFTR mutations, suggesting the involvement of modifier genes. We assessed the association of lung disease severity with the variant AGER -429 T/C, coding for RAGE, a pro-inflammatory protein, in CF patients from the French CF Gene Modifier Study. We analyzed the lung function of 967 CF patients p.Phe508del homozygous. FEV(1 was analyzed as CF-specific percentile adjusted on age, height and mortality. AGER -429T/C polymorphism was genotyped and its function was evaluated in vitro by measurement of the luciferase activity. AGER -429 minor allele (C was associated with poorer lung function (p = 0.03. In vitro, the promoter activity was higher in cells transfected with AGER -429C compared to cells transfected with the AGER -429T allele (p = 0.016 in BEAS-2B cells. AGER seems to be a modifier gene of lung disease severity in CF, and could be an interesting biomarker of CF airway inflammation. The functional promoter AGER -429C variant is associated with an increased RAGE expression that can lead to an increased lung inflammation and a more severe lung disease.

  10. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice

    Directory of Open Access Journals (Sweden)

    Rothenberg Marc E

    2009-06-01

    Full Text Available Abstract Background Arginase is significantly upregulated in the lungs in murine models of asthma, as well as in human asthma, but its role in allergic airway inflammation has not been fully elucidated in mice. Results In order to test the hypothesis that arginase has a role in allergic airway inflammation we generated arginase I-deficient bone marrow (BM chimeric mice. Following transfer of arginase I-deficient BM into irradiated recipient mice, arginase I expression was not required for hematopoietic reconstitution and baseline immunity. Arginase I deficiency in bone marrow-derived cells decreased allergen-induced lung arginase by 85.8 ± 5.6%. In contrast, arginase II-deficient mice had increased lung arginase activity following allergen challenge to a similar level to wild type mice. BM-derived arginase I was not required for allergen-elicited sensitization, recruitment of inflammatory cells in the lung, and proliferation of cells. Furthermore, allergen-induced airway hyperresponsiveness and collagen deposition were similar in arginase-deficient and wild type mice. Additionally, arginase II-deficient mice respond similarly to their control wild type mice with allergen-induced inflammation, airway hyperresponsiveness, proliferation and collagen deposition. Conclusion Bone marrow cell derived arginase I is the predominant source of allergen-induced lung arginase but is not required for allergen-induced inflammation, airway hyperresponsiveness or collagen deposition.

  11. Astragalin inhibits autophagy-associated airway epithelial fibrosis

    OpenAIRE

    Cho, In-Hee; Choi, Yean-Jung; Gong, Ju-Hyun; Shin, Daekeun; Kang, Min-Kyung; Kang, Young-Hee

    2015-01-01

    Background Fibrotic remodeling of airway and lung parenchymal compartments is attributed to pulmonary dysfunction with an involvement of reactive oxygen species (ROS) in chronic lung diseases such as idiopathic pulmonary fibrosis and asthma. Methods The in vitro study elucidated inhibitory effects of astragalin, kaempferol-3-O-glucoside from leaves of persimmon and green tea seeds, on oxidative stress-induced airway fibrosis. The in vivo study explored the demoting effects of astragalin on ep...

  12. Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Karla Kristine Dames da Silva

    2015-07-01

    Full Text Available OBJECTIVE: Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of this analysis to the diagnosis of chronic obstructive pulmonary disease. METHODS: Twenty healthy individuals and 20 smokers were assessed. The study also included 74 patients with stable chronic obstructive pulmonary disease. We evaluated the mean respiratory impedance (Zm as well as values for the inspiration (Zi and expiration cycles (Ze at the beginning of inspiration (Zbi and expiration (Zbe, respectively. The peak-to-peak impedance (Zpp=Zbe-Zbi and the respiratory cycle dependence (ΔZrs=Ze-Zi were also analyzed. The diagnostic utility was evaluated by investigating the sensitivity, the specificity and the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01888705. RESULTS: Airway obstruction increased the within-breath respiratory impedance parameters that were significantly correlated with the spirometric indices of airway obstruction (R=−0.65, p90%. CONCLUSIONS: We conclude the following: (1 chronic obstructive pulmonary disease introduces higher respiratory cycle dependence, (2 this increase is proportional to airway obstruction, and (3 the within-breath forced oscillation technique may provide novel parameters that facilitate the diagnosis of respiratory abnormalities in chronic obstructive pulmonary disease.

  13. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Institute of Scientific and Technical Information of China (English)

    Zhan-Wei Hu; Yan-Ni Zhao; Yuan Cheng; Cui-Yan Guo; Xi Wang; Nan Li; Jun-Qing Liu

    2016-01-01

    Background:The effects of near-road pollution on lung function in China have not been well studied.We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function,airway inflammation,and respiratory symptoms.Methods:We enrolled 1003 residents aged 57.96 ± 8.99 years living in the Shichahai Community in Beijing.Distances between home addresses and the nearest major roads were measured to calculate home-road distance.We used the distance categories 1,2,and 3,representing <100 m,100-200 m,and >200 m,respectively,as the dose indicator for traffic-related air pollution exposure.Lung function,exhaled breath condensate (EBC) pH,and interleukin 6 levels were measured.As a follow-up,398 participants had a second lung function assessment about 3 years later,and lung function decline was also examined as an outcome.We used regression analysis to assess the impacts of home-road distance on lung function and respiratory symptoms.As the EBC biomarker data were not normally distributed,we performed correlation analysis between home-road distance categories and EBC biomarkers.Results:Participants living a shorter distance from major roads had lower percentage of predicted value of forced expiratory volume in 1 s (FEV1%-1.54,95% confidence interval [CI]:-0.20 to-2.89).The odds ratio for chronic cough was 2.54 (95% CI.:1.57-4.10) for category 1 and 1.97 (95% CI.:1.16-3.37) for category 2,compared with category 3.EBC pH was positively correlated with road distance (rank correlation coefficient of Spearman [rs] =0.176,P < 0.001).Conclusions:Long-term exposure to traffic-related air pollution in people who live near major roads in Beijing is associated with lower lung function,airway acidification,and a higher prevalence of chronic cough.EBC pH is a potential useful biomarker for evaluating air pollution exposure.

  14. Two novel mutations in surfactant protein-C, lung function and obstructive lung disease

    DEFF Research Database (Denmark)

    Baekvad-Hansen, Marie; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne;

    2010-01-01

    Dominant mutations in the surfactant protein-C(SFTPC) gene have been linked with interstitial lung disease. The frequency of lung disease due to SFTPC mutations in the general population is unknown. The aim of this study was to identify novel SFTPC mutations that are associated with lung function...... pulmonary disease or interstitial lung disease. No Y106X heterozygotes suffered from asthma, chronic obstructive pulmonary disease (COPD), or interstitial lung disease. We identified two novel mutations in highly conserved areas of the SFTPC gene, and show that heterozygotes for the mutations have normal...... lung function and are unaffected by COPD and interstitial lung disease. A53T heterozygotes had increased asthma risk, but further research is required to conclusively determine whether this mutation is associated with asthma....

  15. A novel combination of the Arndt endobronchial blocker and the laryngeal mask airway ProSeal™ provides one-lung ventilation for thoracic surgery.

    Science.gov (United States)

    Li, Qiong; Li, Peiying; Xu, Jianghui; Gu, Huahua; Ma, Qinyun; Pang, Liewen; Liang, Weimin

    2014-11-01

    In this study, the feasibility and performance of the combination of the Arndt endobronchial blocker and the laryngeal mask airway (LMA) ProSeal™ in airway establishment, ventilation, oxygenation and lung isolation was evaluated. Fifty-five patients undergoing general anesthesia for elective thoracic surgeries were randomly allocated to group Arndt (n=26) or group double-lumen tube (DLT; n=29). Data concerning post-operative airway morbidity, ease of insertion, hemodynamics, lung collapse, ventilators, oxygenation and ventilation were collected for analysis. Compared with group DLT, group Arndt showed a significantly attenuated hemodynamic response to intubation (blood pressure, 149±31 vs. 115±16 mmHg; heart rate, 86±15 vs. 68±15 bpm), less severe injuries to the bronchus (injury score, 1.4±0.2 vs. 0.4±0.1) and vocal cords (injury score, 1.3±0.2 vs. 0.6±0.1), and lower incidences of post-operative sore throat and hoarseness. Furthermore, the novel combination of the Arndt and the LMA ProSeal showed similar ease of airway establishment, comparable ventilation and oxygenation performance, and an analogous lung isolation effect to DLT. The novel combined use of the Arndt endobronchial blocker and the LMA ProSeal can serve as a promising alternative for thoracic procedures requiring one-lung ventilation. The less traumatic properties and equally ideal lung isolation are likely to promote its use in rapidly spreading minimally invasive thoracic surgeries.

  16. Gastroesophageal Reflux Disease in Children with Interstitial Lung Disease.

    Science.gov (United States)

    Dziekiewicz, M A; Karolewska-Bochenek, K; Dembiński, Ł; Gawronska, A; Krenke, K; Lange, J; Banasiuk, M; Kuchar, E; Kulus, M; Albrecht, P; Banaszkiewicz, A

    2016-01-01

    Gastroesophageal reflux disease is common in adult patients with interstitial lung disease. However, no data currently exist regarding the prevalence and characteristics of the disease in pediatric patients with interstitial lung disease. The aim of the present study was to prospectively assess the incidence of gastroesophageal reflux disease and characterize its features in children with interstitial lung disease. Gastroesophageal reflux disease was established based on 24 h pH-impedance monitoring (MII-pH). Gastroesophageal reflux episodes (GERs) were classified according to widely recognized criteria as acid, weakly acid, weakly alkaline, or proximal. Eighteen consecutive patients (15 boys, aged 0.2-11.6 years) were enrolled in the study. Gastroesophageal reflux disease was diagnosed in a half (9/18) of children. A thousand GERs were detected by MII-pH (median 53.5; IQR 39.0-75.5). Of these, 585 (58.5 %) episodes were acidic, 407 (40.7 %) were weakly acidic, and eight (0.8 %) were weakly alkaline. There were 637 (63.7 %) proximal GERs. The patients in whom gastroesophageal reflux disease was diagnosed had a significantly higher number of proximal and total GERs. We conclude that the prevalence of gastroesophageal reflux disease in children with interstitial lung disease is high; thus, the disease should be considered regardless of presenting clinical symptoms. A high frequency of non-acid and proximal GERs makes the MII-pH method a preferable choice for the detection of reflux episodes in this patient population.

  17. [HRCT patterns of the most important interstitial lung diseases

    NARCIS (Netherlands)

    Schaefer-Prokop, C.M.

    2014-01-01

    Interstitial lung diseases are a mixed group of diffuse parenchymal lung diseases which can have an acute or chronic course. Idiopathic diseases and diseases with an underlying cause (e.g. collagen vascular diseases) share the same patterns. Thin section computed tomography (CT) plays a central role

  18. Early sensitisation and development of allergic airway disease - risk factors and predictors

    DEFF Research Database (Denmark)

    Halken, Susanne

    2003-01-01

    The development and phenotypic expression of allergic airway disease depends on a complex interaction between genetic and several environmental factors, such as exposure to food, inhalant allergens and non-specific adjuvant factors (e.g. tobacco smoke, air pollution and infections). The first mon...... in childhood in high-risk infants and infants with early atopic manifestations....

  19. Association between airway obstruction and peripheral arterial stiffness in elderly patients with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    付志方

    2014-01-01

    Objective To evaluate the relationship between se-verity of airway obstruction and peripheral arterial stiffness in patients with chronic obstructive pulmonary disease(COPD).Methods 81 COPD patients[aged(78.32±6.98)yrs,73 males,8 females]from Jan2008 to Oct 2012 were enrolled in Geriatric Department

  20. Role of Innate Lymphoid Cells in Lung Disease

    Directory of Open Access Journals (Sweden)

    SayedMehran Marashian

    2015-10-01

    Full Text Available  Innate lymphoid cells (ILCs are identified as novel population of hematopoietic cells which protect the body by coordinating the innate immune response against a wide range of threats including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 cells, are found throughout the body including the brain. ILCs are morphologically similar to lymphocytes, express and release high levels of T-helper (Th1, Th2 and Th17 cytokines but do not express classical cell-surface markers that are associated with other immune cell lineages.Three types of ILCs (ILC1, 2 & 3 have been reported depending upon the cytokines produced. ILC1 cells encompass natural killer (NK cells and interferon (IFN-g releasing cells; ILC2 cells release the Th2 cytokines, IL-5, IL-9 and IL-13 in response to IL-25 and IL-33; and ILC3 cells which release IL-17 and IL-22. ILC2 cells have been implicated inmucosal reactions occurring in animal models of allergic asthma and virus-induced lung disorders resulting in the regulation of airway remodeling and tissue homeostasis.There is evidence for increased ILC2 cell numbers in allergic responses in man but little is known about the role of ILCs in chronic obstructive pulmonary disease (COPD. Further understanding of the characteristics of ILCs such as their origin, location and phenotypes and function would help to clarify the role of these cells in the pathogenesis of various lung diseases.In this review we will focus on the role of ILC2 cells and consider their origin, function,location and possible role in the pathogenesis of the chronic inflammatory disorders such as asthma and COPD.   

  1. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice

    OpenAIRE

    Poole, Jill A.; Wyatt, Todd A; Oldenburg, Peter J.; Elliott, Margaret K.; West, William W.; Sisson, Joseph H.; Von Essen, Susanna G.; Romberger, Debra J.

    2009-01-01

    Organic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs. repetitive dust-induced airway inflammation in mice by intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 wk. Dust exposure resulted in inc...

  2. Obstructive lung disease models: what is valid?

    Science.gov (United States)

    Ferdinands, Jill M; Mannino, David M

    2008-12-01

    Use of disease simulation models has led to scrutiny of model methods and demand for evidence that models credibly simulate health outcomes. We sought to describe recent obstructive lung disease simulation models and their validation. Medline and EMBASE were used to identify obstructive lung disease simulation models published from January 2000 to June 2006. Publications were reviewed to assess model attributes and four types of validation: first-order (verification/debugging), second-order (comparison with studies used in model development), third-order (comparison with studies not used in model development), and predictive validity. Six asthma and seven chronic obstructive pulmonary disease models were identified. Seven (54%) models included second-order validation, typically by comparing observed outcomes to simulations of source study cohorts. Seven (54%) models included third-order validation, in which modeled outcomes were usually compared qualitatively for agreement with studies independent of the model. Validation endpoints included disease prevalence, exacerbation, and all-cause mortality. Validation was typically described as acceptable, despite near-universal absence of criteria for judging adequacy of validation. Although over half of recent obstructive lung disease simulation models report validation, inconsistencies in validation methods and lack of detailed reporting make assessing adequacy of validation difficult. For simulation modeling to be accepted as a tool for evaluating clinical and public health programs, models must be validated to credibly simulate health outcomes of interest. Defining the required level of validation and providing guidance for quantitative assessment and reporting of validation are important future steps in promoting simulation models as practical decision tools.

  3. CT based computerized identification and analysis of human airways: a review.

    Science.gov (United States)

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M; Gur, David

    2012-05-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  4. CT based computerized identification and analysis of human airways: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David [Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213 (United States); School of Computing, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Radiology, Henan Provincial People' s Hospital, Zhengzhou 450003 (China); Department of Medicine, University of Pittsburgh, 580 S. Aiken Avenue, Suite 400, Pittsburgh, Pennsylvania 15232 (United States); Department of Pharmacology and Chemical Biology, Hillman Cancer Center, Pittsburgh, Pennsylvania 15213 (United States); Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, PA 15213 (United States)

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  5. The association between combined non-cystic fibrosis bronchiectasis and lung cancer in patients with chronic obstructive lung disease

    Directory of Open Access Journals (Sweden)

    Kim YW

    2015-05-01

    Full Text Available Yeon Wook Kim,1 Kwang-Nam Jin,2 Eun Young Heo,3 Sung Soo Park,3 Hee Soon Chung,3 Deog Kyeom Kim31Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; 2Department of Radiology, Seoul National University College of Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea; 3Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of KoreaBackground: Whereas the epidemiological association between lung cancer and chronic obstructive pulmonary disease (COPD, a chronic inflammatory respiratory disease, is well known, limited studies have examined the association between lung cancer and non-cystic fibrosis bronchiectasis, a representative chronic airway inflammatory disease. This study evaluated the association between bronchiectasis and lung cancer in patients with COPD.Methods: A matched case–control study was conducted in a referral hospital in South Korea. Among COPD patients with moderate to very severe airflow limitation (forced expiratory volume in one second/forced vital capacity <0.7 and forced expiratory volume in one second ≤70% [% predicted] who underwent chest computed tomography (CT between January 1, 2010 and May 30, 2013, patients with lung cancer and controls matched for age, sex, and smoking history were selected. The risk of lung cancer was assessed according to the presence of underlying bronchiectasis confirmed by chest CT.Results: The study enrolled 99 cases and 198 controls. Combined bronchiectasis on chest CT was inversely associated with the risk of lung cancer compared with controls (odds ratio [OR] 0.25, 95% confidence interval [CI] 0.12–0.52, P<0.001. Significant associations were found in

  6. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    Science.gov (United States)

    2014-01-01

    21 (1994) 119–136. [26] J.C. Hogg , P.T. Macklem, W.M. Thurlbeck, Site and nature of airway obstruction in chronic obstructive lung disease, N. Engl...Mayo, S.C. Lam, J.D. Cooper, J.C. Hogg , Small- airway obstruction and emphysema in chronic obstructive pulmonary disease, N. Engl. J. Med. 365 (2011

  7. Pulmonary hypertension in chronic interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Antonella Caminati

    2013-09-01

    Full Text Available Pulmonary hypertension (PH is a common complication of interstitial lung diseases (ILDs, particularly in idiopathic pulmonary fibrosis and ILD associated with connective tissue disease. However, other lung diseases, such as combined pulmonary fibrosis and emphysema syndrome, pulmonary Langerhans cell histiocytosis, and lymphangioleiomyomatosis, may also include PH in their clinical manifestations. In all of these diseases, PH is associated with reduced exercise capacity and poor prognosis. The degree of PH in ILDs is typically mild-to-moderate. However, some of these patients may develop a disproportionate increase in PH that cannot be justified solely by hypoxia and parenchymal injury: this condition has been termed “out-of-proportion” PH. The pathogenesis of PH in these diseases is various, incompletely understood and may be multifactorial. The clinical suspicion (i.e. increased dyspnoea, low diffusion capacity and echocardiographic assessment are the first steps towards proper diagnosis of PH; however, right heart catheterisation remains the current gold standard for diagnosis of PH. At present, no specific therapies have been approved for the treatment of PH in patients with ILDs.

  8. Is Previous Respiratory Disease a Risk Factor for Lung Cancer?

    NARCIS (Netherlands)

    Denholm, Rachel; Schüz, Joachim; Straif, Kurt; Stücker, Isabelle; Jöckel, Karl-Heinz; Brenner, Darren R; De Matteis, Sara; Boffetta, Paolo; Guida, Florence; Brüske, Irene; Wichmann, Heinz-Erich; Landi, Maria Teresa; Caporaso, Neil; Siemiatycki, Jack; Ahrens, Wolfgang; Pohlabeln, Hermann; Zaridze, David; Field, John K; McLaughlin, John; Demers, Paul; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Dumitru, Rodica Stanescu; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Kendzia, Benjamin; Peters, Susan; Behrens, Thomas; Vermeulen, Roel; Brüning, Thomas; Kromhout, Hans; Olsson, Ann

    2014-01-01

    Rationale: Previous respiratory diseases have been associated with increased risk of lung cancer. Respiratory conditions often co-occur and few studies have investigated multiple conditions simultaneously. Objectives: Investigate lung cancer risk associated with chronic bronchitis, emphysema, tuberc

  9. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  10. Unclassifiable interstitial lung disease: A review.

    Science.gov (United States)

    Skolnik, Kate; Ryerson, Christopher J

    2016-01-01

    Accurate classification of interstitial lung disease (ILD) requires a multidisciplinary approach that incorporates input from an experienced respirologist, chest radiologist and lung pathologist. Despite a thorough multidisciplinary evaluation, up to 15% of ILD patients have unclassifiable ILD and cannot be given a specific diagnosis. The objectives of this review are to discuss the definition and features of unclassifiable ILD, identify the barriers to ILD classification and outline an approach to management of unclassifiable ILD. Several recent studies have described the characteristics of these patients; however, there are inconsistencies in the definition and terminology of unclassifiable ILD due to limited research in this population. Additional studies are required to determine the appropriate evaluation and management of patients with unclassifiable ILD.

  11. Acute exacerbations of fibrotic interstitial lung disease.

    Science.gov (United States)

    Churg, Andrew; Wright, Joanne L; Tazelaar, Henry D

    2011-03-01

    An acute exacerbation is the development of acute lung injury, usually resulting in acute respiratory distress syndrome, in a patient with a pre-existing fibrosing interstitial pneumonia. By definition, acute exacerbations are not caused by infection, heart failure, aspiration or drug reaction. Most patients with acute exacerbations have underlying usual interstitial pneumonia, either idiopathic or in association with a connective tissue disease, but the same process has been reported in patients with fibrotic non-specific interstitial pneumonia, fibrotic hypersensitivity pneumonitis, desquamative interstitial pneumonia and asbestosis. Occasionally an acute exacerbation is the initial manifestation of underlying interstitial lung disease. On biopsy, acute exacerbations appear as diffuse alveolar damage or bronchiolitis obliterans organizing pneumonia (BOOP) superimposed upon the fibrosing interstitial pneumonia. Biopsies may be extremely confusing, because the acute injury pattern can completely obscure the underlying disease; a useful clue is that diffuse alveolar damage and organizing pneumonia should not be associated with old dense fibrosis and peripheral honeycomb change. Consultation with radiology can also be extremely helpful, because the fibrosing disease may be evident on old or concurrent computed tomography scans. The aetiology of acute exacerbations is unknown, and the prognosis is poor; however, some patients survive with high-dose steroid therapy.

  12. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Jeffrey D. [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Lawrence, Yaacov R. [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Appel, Sarit; Landau, Efrat; Ben-David, Merav A.; Rabin, Tatiana; Benayun, Maoz; Dubinski, Sergey; Weizman, Noam; Alezra, Dror; Gnessin, Hila; Goldstein, Adam M.; Baidun, Khader [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Segel, Michael J.; Peled, Nir [Department of Pulmonary Medicine, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Symon, Zvi, E-mail: symonz@sheba.health.gov.il [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2015-10-01

    Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test. CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.

  13. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells.

    Science.gov (United States)

    Liu, Yao-Zhong; Roy-Engel, Astrid M; Baddoo, Melody C; Flemington, Erik K; Wang, Guangdi; Wang, He

    2016-03-01

    The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people

  14. Excessive dynamic airway collapse in a small cohort of chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    C Represas-Represas

    2015-01-01

    The percentage of collapse at each anatomic level was as follows: Aortic arch, 16.1% (SD, 13.6%; carina, 19.4% (SD, 15.9%; and bronchus intermedius, 21.7% (SD, 16.1%. At the point of maximal collapse, the percentage of collapse was 26.8% (SD, 16%. EDAC was demonstrated at any of the three anatomical points in five patients, corresponding to 9.4% (95% CI, 3.1% to 20.6% of the sample and affecting the three anatomical points in only two cases. A statistically significant correlation was only found with the total lung capacity (TLC. CONCLUSIONS: The prevalence of EDAC observed in a sample of patients with different levels of COPD severity is low. The degree of dynamic central airway collapse was not related to the patient′s epidemiological or clinical features, and did not affect lung function, symptoms, capacity for effort, or quality of life.

  15. Pemphigus vulgaris-associated interstitial lung disease.

    Science.gov (United States)

    Bai, Yi-Xiu; Chu, Jin-Gang; Xiao, Ting; Chen, Hong-Duo

    2016-07-01

    Autoimmune bullous diseases (AIBDs)-associated interstitial lung disease (ILD) is extremely rare. Pemphigus vulgaris (PV) is an intraepidermal autoimmune blistering disease caused by circulating autoantibodies against desmoglein. To date, PV-associated ILD has rarely been reported in English literature. We report a rare association of PV and ILD. A 53-year-old Chinese female with PV for 8 months developed ILD after a relapse of PV for 2 months due to discontinuation of oral prednisone by herself. She was successfully treated by systemic methylprednisolone. Taken previously reported bullous pemphigoid-associated ILD and linear IgA/IgG bullous dermatosis-associated ILD together, in general, AIBDs-associated ILD occurs when AIBDs relapse or are not controlled, responds well to systemic corticosteroids, and has a relatively better prognosis when compared with rheumatoid arthritis- or dermatomyositis-associated ILD.

  16. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection

    Science.gov (United States)

    Wu, Kangyun; Byers, Derek E.; Jin, Xiaohua; Agapov, Eugene; Alexander-Brett, Jennifer; Patel, Anand C.; Cella, Marina; Gilfilan, Susan; Colonna, Marco; Kober, Daniel L.; Brett, Tom J.

    2015-01-01

    Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13–dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5–12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease. PMID:25897174

  17. New approaches to the modulation of inflammatory processes in airway disease models: ATS 2001, May 18-23, San Francisco

    Directory of Open Access Journals (Sweden)

    Hele David J

    2001-07-01

    Full Text Available Abstract The 97th American Thoracic Society meeting proved to be an excellent meeting, providing a wealth of new information on inflammatory diseases of the airways. Once again there appeared to be an increased emphasis on chronic obstructive pulmonary disease (COPD with most of the major drug companies concentrating a large part of their efforts in this field. An assessment of the new British Thoracic Society guidelines, which are designed to promote better management of COPD, was also presented at the meeting. Potential new treatments for inflammatory diseases of the airways including COPD were described, ranging from phase III trial data with GlaxoSmithKline's PDE4 inhibitor, Cilomilast (Ariflo® to the development of AstraZeneca's novel dual dopamine D2-receptor/β2-adrenoreceptor agonist, Viozan™. Of particular interest was Byk Gulden's Ciclesonide, a new corticosteroid with equivalent efficacy to the market leaders but with an improved safety profile. The same company also presented data on their PDE4 inhibitor, Roflumilast, which is now in phase II/III. Bayer presented data on their PDE4 inhibitor, BAY 19-8004, in a smoking animal model and claimed greater anti-inflammatory efficacy than with a steroid. Asta Medica (now known as Elbion also described a new potent PDE4 inhibitor, AWD 12-281, with anti-inflammatory activity. In the bronchodilator field, an analysis of data from a one-year trial with Boehringer Ingelheim's Tiotropium revealed a possible improvement in lung function in COPD patients; this needs to be confirmed in a specifically designed study. Inhibitors of p38 (c-Jun NH2-terminal kinase and syk kinase were also discussed as anti-inflammatory agents with potential in the treatment of COPD and asthma. GlaxoSmithKline's p38 kinase inhibitor, SB 239063, appeared to be the most advanced of these with clinical data expected in two to three years. Lyn kinase was also discussed as a novel target for inflammatory airway diseases.

  18. CLINICAL PROFILE OF INTERSTITIAL LUNG DISEASES CASES

    Directory of Open Access Journals (Sweden)

    Gagiya Ashok K

    2012-02-01

    Full Text Available Background: There are very few studies are done on interstitial lung diseases (ILD in India. Methods: We conducted a retrospective study of 30 patients of high resolution computed tomography (HRCT proven interstitial lung diseases in tertiary care centre. Results: Most common etiological causes of ILD were occupational (46.62%, Rheumatoid Arthritis (13.32%, and idiopathic pulmonary fibrosis (33.33 %. Majority were in age group 40-49 years (mean age-45.23 years and 66.5% male patients. Common symptoms were breathlessness on exertion (100%, dry cough (43.29%, anorexia (50% and joint pain (16.65%. Clubbing and bilateral crepitations were present in 50% and 63.27% of patients respectively. X- ray chest showed reticulo-nodular pattern (60%. Restrictive pattern (96.57% was present in majority patients in spirometry. Conclusion: Availability of non-invasive investigations like HRCT chest has increased our early recognitions of ILDs. Association of ILD in patients with autoimmune diseases must be ruled out. [National J of Med Res 2012; 2(1.000: 2-4

  19. [Interstitial lung disease in rheumatoid arthritis].

    Science.gov (United States)

    Froidevaux-Janin, Sylvie; Dudler, Jean; Nicod, Laurent P; Lazor, Romain

    2011-11-23

    Interstitial lung disease (ILD) is found in up to 30% of patients with rheumatoid arthritis (RA) and is clinically manifest in 5 to 10%, resulting in significant morbidity and mortality. The most frequent histopathological forms are usual interstitial pneumonia and nonspecific interstitial pneumonia. Another recently described presentation is combined pulmonary fibrosis and emphysema. Similarly to idiopathic pulmonary fibrosis, acute exacerbation of ILD may occur in RA and is associated with severe prognosis. Smoking is a known risk factor of RA and may also play a role in the pathogenesis of RA-associated ILD, in combination with genetic and immunologic mechanisms. Several treatments of RA may also lead to drug-induced ILD.

  20. RPR 106541, a novel, airways-selective glucocorticoid: effects against antigen-induced CD4+ T lymphocyte accumulation and cytokine gene expression in the Brown Norway rat lung.

    Science.gov (United States)

    Underwood, S L; Raeburn, D; Lawrence, C; Foster, M; Webber, S; Karlsson, J A

    1997-10-01

    1. The effects of a novel 17-thiosteroid, RPR 106541, were investigated in a rat model of allergic airway inflammation. 2. In sensitized Brown Norway rats, challenge with inhaled antigen (ovalbumin) caused an influx of eosinophils and neutrophils into the lung tissue and airway lumen. In the lung tissue there was also an accumulation of CD4+ T lymphocytes and increased expression of mRNA for interleukin-4 (IL-4) and IL-5, but not interferon-gamma (IFN-gamma). These findings are consistent with an eosinophilia orchestrated by activated Th2-type cells. 3. RPR 106541 (10-300 microg kg[-1]), administered by intratracheal instillation into the airways 24 h and 1 h before antigen challenge, dose-dependently inhibited cell influx into the airway lumen. RPR 106541 (100 microg kg[-1]) caused a significant (PRPR 106541 was approximately 7 times and 4 times more potent than budesonide and fluticasone propionate, respectively. 4. When tested at a single dose (300 microg kg[-1]), RPR 106541 and fluticasone each caused a significant (PRPR 106541 and fluticasone (300 microg kg[-1]), but not budesonide (300 microg kg[-1]), significantly (PRPR 106541 (300 microg kg[-1]) also significantly (PRPR 106541 in this model, which mimics important aspects of airway inflammation in human allergic asthmatics, suggests that this glucocorticoid may be useful in the treatment of bronchial asthma.

  1. [Pneumococcal vaccination in obstructive lung diseases -- what can we expect?].

    Science.gov (United States)

    Rose, M; Lode, H; de Roux, A; Zielen, S

    2005-03-01

    Many countries' guidelines recommend pneumococcal vaccination for patients suffering from obstructive airway disease. This paper reviews the literature as to immunogenicity and safety of this immunization. There is no evidence for a negative effect of pneumococcal vaccination on these patients. Only a few data exist on the preventive impact of pneumococcal vaccination as to exacerbations of obstructive airway diseases. Existing studies mostly took up this question as a side aspect. The effect in children and adults appears limited. On the other hand, the pneumococcal conjugate vaccine prevents life-threatening invasive infections in children younger than 5 years, and pneumococcal polysaccharide vaccine protects healthy adults against bacteriaemic pneumonia. Thus, pneumococcal vaccination of patients suffering from obstructive airway disease is recommendable.

  2. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    Science.gov (United States)

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  3. Bullous lung diseases as a risk factor for lung cancer: A case report

    Directory of Open Access Journals (Sweden)

    Nagorni-Obradović Ljudmila

    2016-01-01

    Full Text Available Introduction. A possible association between lung cancer and bullous lung disease has been suggested and recently supported by the results of genetic studies. Case report. A previously healthy 43-year-old man, smoker, was diagnosed with bullous lung disease at the age of 31 years. He was followed up for 12 years when lung cancer (adenocarcinoma was found at the site. In the meantime, he was treated for recurrent respiratory infections. Conclusion. There is the need for active approach in following up the patients with pulmonary bulla for potential development of lung cancer.

  4. Invasive Aspergillus infections in hospitalized patients with chronic lung disease

    Directory of Open Access Journals (Sweden)

    Wessolossky M

    2013-05-01

    Full Text Available Mireya Wessolossky,1 Verna L Welch,2 Ajanta Sen,1 Tara M Babu,1 David R Luke21Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA, USA; 2Medical Affairs, Pfizer Inc, Collegeville, PA, USABackground: Although invasive pulmonary aspergillosis (IPA is more prevalent in immunocompromised patients, critical care clinicians need to be aware of the occurrence of IPA in the nontraditional host, such as a patient with chronic lung disease. The purpose of this study was to describe the IPA patient with chronic lung disease and compare the data with that of immunocompromised patients.Methods: The records of 351 patients with Aspergillus were evaluated in this single-center, retrospective study for evidence and outcomes of IPA. The outcomes of 57 patients with chronic lung disease and 56 immunocompromised patients were compared. Patients with chronic lung disease were defined by one of the following descriptive terms: emphysema, asthma, idiopathic lung disease, bronchitis, bronchiectasis, sarcoid, or pulmonary leukostasis.Results: Baseline demographics were similar between the two groups. Patients with chronic lung disease were primarily defined by emphysema (61% and asthma (18%, and immunocompromised patients primarily had malignancies (27% and bone marrow transplants (14%. A higher proportion of patients with chronic lung disease had a diagnosis of IPA by bronchoalveolar lavage versus the immunocompromised group (P < 0.03. The major risk factors for IPA were found to be steroid use in the chronic lung disease group and neutropenia and prior surgical procedures in the immunocompromised group. Overall, 53% and 69% of chronic lung disease and immunocompromised patients were cured (P = 0.14; 55% of chronic lung patients and 47% of immunocompromised patients survived one month (P = 0.75.Conclusion: Nontraditional patients with IPA, such as those with chronic lung disease, have outcomes and mortality similar to that in the

  5. An intranasal selective antisense oligonucleotide impairs lung cyclooxygenase-2 production and improves inflammation, but worsens airway function, in house dust mite sensitive mice

    Directory of Open Access Journals (Sweden)

    Pujols Laura

    2008-11-01

    Full Text Available Abstract Background Despite its reported pro-inflammatory activity, cyclooxygenase (COX-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM-sensitized mice in which we mimicked altered regulation of COX-2. Methods Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production. Results We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE2 in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged. Conclusion Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.

  6. Reduced levels of maternal progesterone during pregnancy increase the risk for allergic airway diseases in females only.

    Science.gov (United States)

    Hartwig, Isabel R V; Bruenahl, Christian A; Ramisch, Katherina; Keil, Thomas; Inman, Mark; Arck, Petra C; Pincus, Maike

    2014-10-01

    Observational as well as experimental studies support that prenatal challenges seemed to be associated with an increased risk for allergic airway diseases in the offspring. However, insights into biomarkers involved in mediating this risk are largely elusive. We here aimed to test the association between endogenous and exogenous factors documented in pregnant women, including psychosocial, endocrine, and life style parameters, and the risk for allergic airway diseases in the children later in life. We further pursued to functionally test identified factors in a mouse model of an allergic airway response. In a prospectively designed pregnancy cohort (n = 409 families), women were recruited between the 4th and 12th week of pregnancy. To investigate an association between exposures during pregnancy and the incidence of allergic airway disease in children between 3 and 5 years of age, multiple logistic regression analyses were applied. Further, in prenatally stressed adult offspring of BALB/c-mated BALB/c female mice, asthma was experimentally induced by ovalbumin (OVA) sensitization. In addition to the prenatal stress challenge, some pregnant females were treated with the progesterone derivative dihydrodydrogesterone (DHD). In humans, we observed that high levels of maternal progesterone in early human pregnancies were associated with a decreased risk for an allergic airway disease (asthma or allergic rhinitis) in daughters (adjusted OR 0.92; 95% confidence interval [CI] 0.84 to 1.00) but not sons (aOR 1.02, 95% CI 0.94-1.10). In mice, prenatal DHD supplementation of stress-challenged dams attenuated prenatal stress-induced airway hyperresponsiveness exclusively in female offspring. Reduced levels of maternal progesterone during pregnancy-which can result from high stress perception-increase the risk for allergic airway diseases in females but not in males. Key messages: Lower maternal progesterone during pregnancy increases the risk for allergic airway disease

  7. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    Science.gov (United States)

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  8. Relationships between respiratory and airway resistances and activity-related dyspnea in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Plantier L

    2012-03-01

    Full Text Available Bruno Mahut1,2, Aurore Caumont-Prim3,4, Laurent Plantier1,5, Karine Gillet-Juvin1,6, Etienne Callens1, Olivier Sanchez5,6, Brigitte Chevalier-Bidaud3, Plamen Bokov1, Christophe Delclaux1,5,71Assistance Publique – Hôpitaux de Paris (AP-HP, Hôpital Européen Georges Pompidou, Service de Physiologie – Clinique de la Dyspnée, F-75015 Paris, France; 2Cabinet La Berma, 4 avenue de la Providence; F-92160 Antony, France; 3AP-HP, Hôpital Européen Georges Pompidou, Unité d'Épidémiologie et de Recherche Clinique, F-75015 Paris, France; 4INSERM, Centre d'Investigation Épidémiologique 4, F-75015 Paris, France; 5Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75015 Paris, France; 6AP-HP, Hôpital Européen Georges Pompidou, Service de Pneumologie; F-75015 Paris, France; 7CIC 9201 Plurithématique, Hôpital Européen Georges Pompidou, F-75015 Paris, FranceBackground: The aims of the study were: (1 to compare numerical parameters of specific airway resistance (total, sRawtot, effective, sRaweff and at 0.5 L • s-1, sRaw0.5 and indices obtained from the forced oscillation technique (FOT: resistance extrapolated at 0 Hz [Rrs0 Hz], mean resistance [Rrsmean], and resistance/frequency slope [Rrsslope] and (2 to assess their relationships with dyspnea in chronic obstructive pulmonary disease (COPD.Methods: A specific statistical approach, principal component analysis that also allows graphic representation of all correlations between functional parameters was used. A total of 108 patients (mean ± SD age: 65 ± 9 years, 31 women; GOLD stages: I, 14; II, 47; III, 39 and IV, 8 underwent spirometry, body plethysmography, FOT, and Medical Research Council (MRC scale assessments.Results: Principal component analysis determined that the functional parameters were described by three independent dimensions (airway caliber, lung volumes and their combination, specific resistance and that resistance parameters of the two techniques

  9. Multi-detector computed tomography imaging of large airway pathology:A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Tejeshwar Singh Jugpal; Anju Garg; Gulshan Rai Sethi; Mradul Kumar Daga; Jyoti Kumar

    2015-01-01

    The tracheobronchial tree is a musculo-cartilagenous framework which acts as a conduit to aerate the lungs and consequently the entire body. A large spectrum of pathological conditions can involve the trachea and bronchial airways. These may be congenital anomalies, infections, post-intubation airway injuries, foreign body aspiration or neoplasms involving the airway. Appropriate management of airway disease requires an early and accurate diagnosis. In this pictorial essay review, we will comprehensively describe the various airway pathologies and their imaging findings by multi-detector computed tomography.

  10. Rituximab-induced interstitial lung disease

    DEFF Research Database (Denmark)

    Naqibullah, Matiuallah; Shaker, Saher B; Bach, Karen S

    2015-01-01

    Rituximab (RTX), a mouse/human chimeric anti-CD20 IgG1 monoclonal antibody has been effectively used as a single agent or in combination with chemotherapy regimen to treat lymphoma since 1997. In addition, it has been used to treat idiopathic thrombocytopenic purpura, systemic lupus erythematous......, rheumatoid arthritis, and autoimmune hemolytic anemia. Recently, RTX has also been suggested for the treatment of certain connective tissue disease-related interstitial lung diseases (ILD) and hypersensitivity pneumonitis. Rare but serious pulmonary adverse reactions are reported. To raise awareness about...... this serious side effect of RTX treatment, as the indication for its use increases with time, we report five cases of probable RTX-ILD and discuss the current literature on this potentially lethal association....

  11. Normal Expiratory Flow Rate and Lung Volumes in Patients with Combined Emphysema and Interstitial Lung Disease: A Case Series and Literature Review

    Directory of Open Access Journals (Sweden)

    Karen L Heathcote

    2011-01-01

    Full Text Available Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  12. Unevenness of lung perfusion images and pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Anazawa, Yoshiki; Miki, Makoto; Konno, Kiyoshi; Motomiya, Masakichi (Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer)

    1989-07-01

    The purpose of the study was to quantify the unevenness of perfusion distribution in the lungs in conjunction with underlying lung pathology. Twenty-one parameters as described previously were defined out of horizontal radioactive count profiles on perfusion lung image data taken in 64x64 matrixes. Principal component analysis has revealed that the 1st component or Z1 is represented by AREA, the area of the lung, and ANG, the slope of the mean count profile, Z2, by N, the number of peaks, Z3 and Z4, by YG and XG, the barycentric coordinates of count distribution, Z5, by MAC, the maximal count and Z6, by CSD, the degree of scatter in count from the peak count. How those parameters differ in each lung pathology has been determined from 657 lung perfusion image data. In pulmonary emphysema, the lung volumes are larger than those in normal subjects. The AREA and ANG were consequently larger in value and N was also significantly larger, indicating the increased regional alveolar pressure and the compressed or destroyed vascular beds. In diffuse panbronchiolitis (DPB), N was increased probably because the distal airways were either narrowed or obstructed by inflammatory processes inducing regional alveolar hypoxia and/or alveolar hyperinflation. In fibrosis, both AREA and N were significantly smaller. In congestive heart failure with postcapillary pulmonary hypertension, YG was smaller probably because of 'reversal of perfusion'. In pulmonary sarcoidosis, an increase in YG was the only abnormality. (author).

  13. Flow characteristics in the airways of a COPD patient with a saber-sheath trachea

    Science.gov (United States)

    Jin, Dohyun; Choi, Haecheon; Lee, Changhyun; Choi, Jiwoong; Kim, Kwanggi

    2016-11-01

    The chronic obstructive pulmonary disease (COPD) is a lung disease characterized by the irreversible airflow limitation caused by the damaged small airways and air sacs. Although COPD is not a disease of the trachea, many patients with COPD have saber-sheath tracheas. The effects of this morphological change in the trachea geometry on airflow are investigated in the present study. An unstructured finite volume method is used for the simulations during tidal breathing in normal and COPD airways, respectively. During inspiration, local large pressure drop is observed in the saber-sheath region of the COPD patient. During expiration, vortical structures are observed at the right main bronchus of the COPD airway, while the flow in the normal airway remains nearly laminar. High wall shear stress exists at convex regions of both airways during inspiration and expiration. However, due to the morphological changes in the COPD airway, relatively higher wall shear stress is observed in the patient airways.

  14. Influence of inspiratory flow rate, particle size, and airway caliber on aerosolized drug delivery to the lung.

    Science.gov (United States)

    Dolovich, M A

    2000-06-01

    A number of studies in the literature support the use of fine aerosols of drug, inhaled at low IFRs to target peripheral airways, with the objective of improving clinical responses to inhaled therapy (Fig. 8). Attempts have been made to separate response due to changes in total administered dose or the surface concentration of the dose from response due to changes in site of deposition--both are affected by the particle size of the aerosol, with IFR additionally influencing the latter. The tools for measuring dose and distribution have improved over the last 10-15 years, and thus we should expect greater accuracy in these measurements for assessing drug delivery to the lung. There are still issues, though, in producing radiolabeled (99m)technetium aerosols that are precise markers for the pharmaceutical product being tested and in quantitating absolute doses deposited in the lung. PET isotopes may provide the means for directly labelling a drug and perhaps can offer an alternative for making these measurements in the future, but deposition measurements should not be used in isolation; protocols should incorporate clinical tests to provide parallel therapeutic data in response to inhalation of the drug by the various patient populations being studied.

  15. Gene Editing and Genetic Lung Disease. Basic Research Meets Therapeutic Application.

    Science.gov (United States)

    Alapati, Deepthi; Morrisey, Edward E

    2017-03-01

    Although our understanding of the genetics and pathology of congenital lung diseases such as surfactant protein deficiency, cystic fibrosis, and alpha-1 antitrypsin deficiency is extensive, treatment options are lacking. Because the lung is a barrier organ in direct communication with the external environment, targeted delivery of gene corrective technologies to the respiratory system via intratracheal or intranasal routes is an attractive option for therapy. CRISPR/Cas9 gene-editing technology is a promising approach to repairing or inactivating disease-causing mutations. Recent reports have provided proof of concept by using CRISPR/Cas9 to successfully repair or inactivate mutations in animal models of monogenic human diseases. Potential pulmonary applications of CRISPR/Cas9 gene editing include gene correction of monogenic diseases in pre- or postnatal lungs and ex vivo gene editing of patient-specific airway stem cells followed by autologous cell transplant. Strategies to enhance gene-editing efficiency and eliminate off-target effects by targeting pulmonary stem/progenitor cells and the assessment of short-term and long-term effects of gene editing are important considerations as the field advances. If methods continue to advance rapidly, CRISPR/Cas9-mediated gene editing may provide a novel opportunity to correct monogenic diseases of the respiratory system.

  16. Airway Remodelling in Asthma and COPD: Findings, Similarities, and Differences Using Quantitative CT

    Directory of Open Access Journals (Sweden)

    Gaël Dournes

    2012-01-01

    Full Text Available Airway remodelling is a well-established feature in asthma and chronic obstructive lung disease (COPD, secondary to chronic airway inflammation. The structural changes found on pathological examination of remodelled airway wall have been shown to display similarities but also differences. Computed tomography (CT is today a remarkable tool to assess airway wall morphology in vivo since submillimetric acquisitions over the whole lung volume could be obtained allowing 3D evaluation. Recently, CT-derived indices extracted from CT images have been described and are thought to assess airway remodelling. This may help understand the complex mechanism underlying the remodelling process, which is still not fully understood. This paper summarizes the various methods described to quantify airway remodelling in asthma and COPD using CT, and similarities and differences between both diseases will be emphasized.

  17. Respiratory failure due to infliximab induced interstitial lung disease.

    Science.gov (United States)

    Kakavas, Sotiris; Balis, Evangelos; Lazarou, Vasiliki; Kouvela, Marousa; Tatsis, Georgios

    2013-01-01

    Although poorly understood, interstitial lung disease has been reported as a possible complication of tumor necrosis factor alpha inhibitors. We report a case of interstitial lung disease in a 64-year-old man with psoriasis 3 weeks after the initiation of infliximab treatment. The patient had received two fortnightly infusions of infliximab following a short course of methotrexate. Thoracic computed tomography showed bilateral ground glass and interstitial infiltrates, while the results of microbiology and immunologic workup were negative. Likewise, bronchoalveolar lavage detected neither typical nor atypical pathogens. Infliximab-induced interstitial lung injury was suspected and corticosteroid therapy was administered which resulted in rapid clinical and radiological improvement. This is one of the few reported cases of interstitial lung disease due to infliximab in the psoriasis population. The patient had no pre-existing lung pathology, while his previous exposure to methotrexate was minimal and was not temporally associated with the induction of interstitial lung disease.

  18. Airway malacia in chronic obstructive pulmonary disease: prevalence, morphology and relationship with emphysema, bronchiectasis and bronchial wall thickening

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola; Rastelli, Andrea; Schembri, Valentina; Filippo, Massimo de [University of Parma, Department of Clinical Sciences, Section of Radiology, Parma (Italy); Chetta, Alfredo [University of Parma, Department of Clinical Sciences, Section of Respiratory Diseases, Parma (Italy); Fasano, Luca; Pacilli, Angela Maria [Policlinico Sant' Orsola-Malpighi, Unita Operativa di Fisiopatologia Respiratoria, Bologna (Italy); Di Scioscio, Valerio; Bartalena, Tommaso; Zompatori, Maurizio [University of Bologna, Department of Radiology, Cardiothoracic Institute, Policlinico S.Orsola-Malpighi, Bologna (Italy)

    2009-07-15

    The aim of this study was to determine the prevalence of airway malacia and its relationship with ancillary morphologic features in patients with chronic obstructive pulmonary disease (COPD). A retrospective review was performed of a consecutive series of patients with COPD who were imaged with inspiratory and dynamic expiratory multidetector computed tomography (MDCT). Airway malacia was defined as {>=}50% expiratory reduction of the airway lumen. Both distribution and morphology of airway malacia were assessed. The extent of emphysema, extent of bronchiectasis and severity of bronchial wall thickness were quantified. The final study cohort was comprised of 71 patients. Airway malacia was seen in 38 of 71 patients (53%), and such proportion was roughly maintained in each stage of COPD severity. Almost all tracheomalacia cases (23/25, 92%) were characterised by an expiratory anterior bowing of the posterior membranous wall. Both emphysema and bronchiectasis extent did not differ between patients with and without airway malacia (p > 0.05). Bronchial wall thickness severity was significantly higher in patients with airway malacia and correlated with the degree of maximal bronchial collapse (p < 0.05). In conclusion, we demonstrated a strong association between airway malacia and COPD, disclosing a significant relationship with bronchial wall thickening. (orig.)

  19. Morphogenesis and morphometric scaling of lung airway development follows phylogeny in chicken, quail, and duck embryos

    Directory of Open Access Journals (Sweden)

    Daniel Tzou

    2016-05-01

    Full Text Available Abstract Background New branches within the embryonic chicken lung form via apical constriction, in which epithelial cells in the primary bronchus become trapezoidal in shape. These branches form at precise locations along the primary bronchus that scale relative to the size of the organ. Here, we examined the extent to which this scaling relationship and branching mechanism are conserved within lungs of three species of birds. Findings Analyzing the development of embryonic lungs from chicken, quail, and duck, as well as lungs explanted and cultured ex vivo, revealed that the patterns of branching are remarkably conserved. In particular, secondary bronchi form at identical positions in chicken and quail, the patterns of which are indistinguishable, consistent with the close evolutionary relationship of these two species. In contrast, secondary bronchi form at slightly different positions in duck, the lungs of which are significantly larger than those of chicken and quail at the same stage of development. Confocal analysis of fixed specimens revealed that each secondary bronchus forms by apical constriction of the dorsal epithelium of the primary bronchus, a morphogenetic mechanism distinct from that used to create branches in mammalian lungs. Conclusions Our findings suggest that monopodial branching off the primary bronchus is driven by apical constriction in lungs of chicken, quail, and duck. The relative positions at which these branches form are also conserved relative to the evolutionary relationship of these species. It will be interesting to determine whether these mechanisms hold in more distant species of birds, and why they differ so significantly in mammals.

  20. Lamb Model of Respiratory Syncytial Virus–Associated Lung Disease: Insights to Pathogenesis and Novel Treatments

    Science.gov (United States)

    Ackermann, Mark R.

    2014-01-01

    Preterm birth is a risk factor for respiratory syncytial virus (RSV) bronchiolitis and hospitalization. The pathogenesis underlying this is not fully understood, and in vivo studies are needed to better clarify essential cellular features and molecular mechanisms. Such studies include analysis of lung tissue from affected human infants and various animal models. The preterm and newborn lamb lung has developmental, structural, cellular, physiologic, and immunologic features similar to that of human infants. Also, the lamb lung is susceptible to various strains of RSV that infect infants and cause similar bronchiolar lesions. Studies in lambs suggest that viral replication in airways (especially bronchioles) is extensive by 4 days after infection, along with bronchiolitis characterized by degeneration and necrosis of epithelial cells, syncytial cell formation, neutrophil infiltration, epithelial cell hypertrophy and hyperplasia, and innate and adaptive immune responses. RSV bronchiolitis greatly affects airflow and gaseous exchange. RSV disease severity is increased in preterm lambs compared with full-term lambs; similar to human infants. The lamb is conducive to experimental assessment of novel, mechanistic therapeutic interventions such as delivery of vascular endothelial growth factor and enhancement of airway epithelial oxidative responses, Club (Clara) cell protein 10, and synthesized compounds such as nanobodies. In contrast, exposure of the fetal ovine lung in vivo to ethanol, a risk factor for preterm birth, reduces pulmonary alveolar development and surfactant protein A expression. Because the formalin-inactivated RSV vaccination enhances some inflammatory responses to RSV infection in lambs, this model has the potential to assess mechanisms of formalin-inactivated RSV enhanced disease as well as newly developed vaccines. PMID:24936027

  1. Muscarinic receptors on airway mesenchymal cells : Novel findings for an ancient target

    NARCIS (Netherlands)

    Meurs, Herman; Dekkers, Bart G. J.; Maarsingh, Harm; Halayko, Andrew J.; Zaagsma, Johan; Gosens, Reinoud

    2013-01-01

    Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M-1, M-2 and M-3 receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contract

  2. The nerve growth factor and its receptors in airway inflammatory diseases.

    Science.gov (United States)

    Freund-Michel, V; Frossard, N

    2008-01-01

    The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.

  3. The relationship between inspiratory lung function parameters and airway hyper-responsiveness in subjects with mild to moderate COPD

    NARCIS (Netherlands)

    S.K. Ramlal (Sunil); F.J. Visser (Frank); W.C.J. Hop (Wim); B. Staffhorst (Bas); P.N.R. Dekhuijzen (Richard); Y.F. Heijdra (Yvonne)

    2012-01-01

    textabstractBackground: The aim of this study was to evaluate the effects of increasing doses of inhaled histamine on the forced expiratory volume in one second (FEV 1), inspiratory lung function parameters (ILPs) and dyspnea in subjects with mild to moderate chronic obstructive pulmonary disease (C

  4. Structural and functional lung disease in primary ciliary dyskinesia

    NARCIS (Netherlands)

    F. Santamaria (Francesca); S. Montella (Silvia); H.A.W.M. Tiddens (Harm); G. Guidi (Guido); V. Casotti (Valeria); M. Maglione (Marco); P.A. de Jong (Pim)

    2008-01-01

    textabstractBackground: High-resolution CT (HRCT) scan data on primary ciliary dyskinesia (PCD) related lung disease are scarce. Study objectives: We evaluated the lung disease in children and adults with PCD by a modified Brody composite HRCT scan score to assess the prevalence of the structural ab

  5. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  6. Hard metal lung disease in an oil industry worker.

    Science.gov (United States)

    Bezerra, Patrícia Nunes; Vasconcelos, Ana Giselle Alves; Cavalcante, Lílian Loureiro Albuquerque; Marques, Vanessa Beatriz de Vasconcelos; Nogueira, Teresa Neuma Albuquerque Gomes; Holanda, Marcelo Alcantara

    2009-12-01

    Hard metal lung disease, which manifests as giant cell interstitial pneumonia, is caused by exposure to hard metal dust. We report the case of an oil industry worker diagnosed with hard metal lung disease. The diagnosis was based on the clinical, radiological and anatomopathological analysis, as well as on pulmonary function testing.

  7. Heterogeneity of mononuclear phagocytes in interstitial lung diseases

    NARCIS (Netherlands)

    H.C. Hoogsteden (Henk)

    1990-01-01

    textabstractInterstitial lung diseases are a heterogeneous group of illnesses with different pathogeneses. In interstitial lung diseases there often is an increased influx of cells from the peripheral blood (PB) to the interstitium and alveoli. Besides the increase in total cell numbers, often marke

  8. Smart Technology in Lung Disease Clinical Trials.

    Science.gov (United States)

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research.

  9. 11.5.Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930305 Immunoenzymatic labeling of mono-clonal antibodies for surface antigens of T—cellby using immune complexes of APAAP in pa-tients with interstitial lung disease.HOU Xian-ming(侯显明),et al.Respir Dis Res Instit,Chi-na Med Univ,Shenyang,110001.Chin J InternMed 1992;31(12):748—751.The use of unlabeled antibody bridging tech-nique with alkaline phosphatase moncional an-tialkaline phosphatase (APAAP) complexesmakes it possible to solve the problem of shortdurability of immunofluorescent staining and theproblem of nonspecific endogenous enzyme in-terference of blood cells with immunoperoxidasemethod.The technique of APAAP allows saris-

  10. Bronchoscopic cryobiopsy for the diagnosis of diffuse parenchymal lung disease.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kropski

    Full Text Available BACKGROUND: Although in some cases clinical and radiographic features may be sufficient to establish a diagnosis of diffuse parenchymal lung disease (DPLD, surgical lung biopsy is frequently required. Recently a new technique for bronchoscopic lung biopsy has been developed using flexible cryo-probes. In this study we describe our clinical experience using bronchoscopic cryobiopsy for diagnosis of diffuse lung disease. METHODS: A retrospective study of subjects who had undergone bronchoscopic cryobiopsy for evaluation of DPLD at an academic tertiary care center from January 1, 2012 through January 15, 2013 was performed. The procedure was performed using a flexible bronchoscope to acquire biopsies of lung parenchyma. H&E stained biopsies were reviewed by an expert lung pathologist. RESULTS: Twenty-five eligible subjects were identified. With a mean area of 64.2 mm(2, cryobiopsies were larger than that typically encountered with traditional transbronchial forceps biopsy. In 19 of the 25 subjects, a specific diagnosis was obtained. In one additional subject, biopsies demonstrating normal parenchyma were felt sufficient to exclude diffuse lung disease as a cause of dyspnea. The overall diagnostic yield of bronchoscopic cryobiopsy was 80% (20/25. The most frequent diagnosis was usual interstitial pneumonia (UIP (n = 7. Three of the 25 subjects ultimately required surgical lung biopsy. There were no significant complications. CONCLUSION: In patients with suspected diffuse parenchymal lung disease, bronchoscopic cryobiopsy is a promising and minimally invasive approach to obtain lung tissue with high diagnostic yield.

  11. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jen R

    2012-09-01

    Full Text Available Rachel Jen,1 Stephen,1 Rennard,2 Don D Sin1,31Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada; 2Internal Medicine Section of Pulmonary and Critical Care, Nebraska Medical Center, Omaha, NE, USA; 3Institute of Heart and Lung Health and the UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, CanadaBackground: Chronic obstructive pulmonary disease (COPD is characterized by chronic inflammation in the small airways. The effect of inhaled corticosteroids (ICS on lung inflammation in COPD remains uncertain. We sought to determine the effects of ICS on inflammatory indices in bronchial biopsies and bronchoalveolar lavage fluid of patients with COPD.Methods: We searched Medline, Embase, Cinahl, and the Cochrane database for randomized, controlled clinical trials that used bronchial biopsies and bronchoalveolar lavage to evaluate the effects of ICS in stable COPD. For each chosen study, we calculated the mean differences in the concentrations of inflammatory cells before and after treatment in both intervention and control groups. These values were then converted into standardized mean differences (SMD to accommodate the differences in patient selection, clinical treatment, and biochemical procedures that were employed across the original studies. If significant heterogeneity was present (P < 0.1, then a random effects model was used to pool the original data; otherwise, a fixed effects model was used.Results: We identified eight original studies that met the inclusion criteria. Four studies used bronchial biopsies (n = 102 participants and showed that ICS were effective in reducing CD4 and CD8 cell counts (SMD, −0.52 units and −0.66 units, 95% confidence interval. The five studies used bronchoalveolar lavage fluid (n = 309, which together showed that ICS reduced neutrophil and lymphocyte counts (SMD, −0.64 units and −0.64 units, 95% confidence interval. ICS on the other hand

  12. Airway cellular response to two different immunosuppressive regimens in lung transplant recipients

    NARCIS (Netherlands)

    Slebos, DJ; Kauffman, HF; Koeter, GH; Verschuuren, EAM; van der Bij, W; Postma, DS

    2005-01-01

    A number of new immunosuppressive drugs have become available in transplant medicine. We investigated the effects of two different immunosuppressive protocols on bronchoalveolar lavage fluid cellular characteristics in 34 lung transplant recipients who were treated with anti-thymocyte globulin induc

  13. The role of Sox2 on lung epithelial airway epithelial differentiation

    NARCIS (Netherlands)

    J.K. Ochieng (Joshua)

    2014-01-01

    markdownabstract__Abstract__ The foregut is crucial for development of respiratory organs including the lungs. Foregut morphogenesis starts around embryonic day 8.0 in mouse when the endoderm epithelial sheet folds ventrally during gastrulation [1,2]. At embryonic day 9.0, the ventral folding is ac

  14. REPLACEMENT OF DENDRITIC CELLS IN THE AIRWAYS OF RAT LUNG ALLOGRAFTS

    NARCIS (Netherlands)

    UYAMA, T; Winter, Jobst; SAKIYAMA, S; MONDEN, Y; GROEN, Greetje; PROP, J

    1993-01-01

    It is unknown whether dendritic cells are able to migrate normally from the recipient into the allogeneic lung graft. Using monoclonal antibodies to major histocompatibility complex class II antigens (OX6 for both donor and recipient types; HIS19 for recipient type), we studied the replacement of do

  15. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease.

    Directory of Open Access Journals (Sweden)

    David B Hill

    Full Text Available In human airways diseases, including cystic fibrosis (CF and chronic obstructive pulmonary disease (COPD, host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%, is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE cultures. Guided by sputum from healthy (1.5-2.5 wt% and diseased (COPD, CF; 5 wt% subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel. These findings have significant implications for: (1 penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2 diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.

  16. Computed tomography of pulmonary changes in rheumatoid arthritis: carcinoembryonic antigen (CEA) as a marker of airway disease.

    Science.gov (United States)

    Koch, Milene Caroline; Pereira, Ivânio Alves; Nobre, Luiz Felipe Souza; Neves, Fabricio Souza

    2016-04-01

    Rheumatoid arthritis (RA) classically affects the joints, but can present extra-articular manifestations, including pulmonary disease. The present study aimed to identify possible risk factors or laboratory markers for lung involvement in RA, particularly the presence of rheumatoid factor (RF), anti-citrullinated peptide antibodies (ACPA), and tumor markers, by correlating them with changes observed on chest high-resolution computerized tomography (HRCT). This cross-sectional study involved RA patients who were examined and questioned by a specialist physician and later subjected to chest HRCT and blood collection for measurement of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), ACPA (anti-vimentin and/or anti-CCP3), and the tumor markers carcinoembryonic antigen (CEA), CA 125, CA 15-3, and CA 19-9. A total of 96 patients underwent chest HRCT. The most frequent findings were bronchial thickening (27/28.1 %) and bronchiectasis (25/26 %). RF was present in 63.2 % of patients (55/87), and ACPA (anti-vimentin or anti-CCP3) was present in 72.7 % of patients (64/88). CEA levels were high in 14 non-smokers (37.8 %) and 23 smokers (62.2 %). CA-19-9 levels were high in 6 of 86 patients (7.0 %), CA 15-3 levels were high in 3 of 85 patients (3.5 %), and CA 125 levels were high in 4 of 75 patients (5.3 %). Multivariate analysis indicated a statistically significant association between high CEA levels and the presence of airway changes in patients with RA (p = 0.048). CEA can serve as a predictor of lung disease in RA and can help identify individuals who require more detailed examination for the presence of respiratory disorders.

  17. Chest physiotherapy in preterm infants with lung diseases

    Directory of Open Access Journals (Sweden)

    Cota Francesco

    2010-09-01

    Full Text Available Abstract Background In neonatology the role of chest physiotherapy is still uncertain because of the controversial outcomes. Methods The aim of this study was to test the applicability in preterm infants of 'reflex rolling', from the Vojta method, in preterm neonates with lung pathology, with particular attention to the effects on blood gases and oxygen saturation, on the spontaneous breathing, on the onset of stress or pain. The study included 34 preterm newborns with mean gestational age of 30.5 (1.6 weeks - mean (DS - and birth weight of 1430 (423 g - mean (DS -, who suffered from hyaline membrane disease, under treatment with nasal CPAP (continuous positive airways pressure, or from pneumonia, under treatment with oxygen-therapy. The neonates underwent phase 1 of 'reflex rolling' according to Vojta method three times daily. Respiratory rate, SatO2, transcutaneous PtcCO2 e PtcO2 were monitored; in order to evaluate the onset of stress or pain following the stimulations, the NIPS score and the PIPP score were recorded; cerebral ultrasound scans were performed on postnatal days 1-3-5-7, and then weekly. Results In this population the first phase of Vojta's 'reflex rolling' caused an increase of PtcO2 and SatO2 values. No negative effects on PtcCO2 and respiratory rate were observed, NIPS and PIPP stress scores remained unmodified during the treatment; in no patient the intraventricular haemorrhage worsened in time and none of the infants developed periventricular leucomalacia. Conclusions Our experience, using the Vojta method, allows to affirm that this method is safe for preterm neonates, but further investigations are necessary to confirm its positive effects and to evaluate long-term respiratory outcomes.

  18. Pediatric Interstitial Lung Disease Masquerading as Difficult Asthma: Management Dilemmas for Rare Lung Disease in Children

    Directory of Open Access Journals (Sweden)

    EY Chan

    2005-01-01

    Full Text Available Idiopathic nontransplant-related childhood bronchiolitis obliterans is an uncommon disease. Most patients present with chronic recurrent dyspnea, cough and wheezing, which are also features of asthma, by far a much more common condition. The present case study reports on a six-year-old girl who presented to a tertiary care centre with recurrent episodes of respiratory distress on a background of baseline tachypnea, chronic hypoxemia and exertional dyspnea. Her past medical history revealed significant lung disease in infancy, including respiratory syncytial virus bronchiolitis and repaired gastroesophageal reflux. She was treated for 'asthma exacerbations' throughout her early childhood years. Bronchiolitis obliterans was subsequently diagnosed with an open lung biopsy. She did not have sustained improvement with systemic corticosteroids, hydroxychloroquine or clarithromycin. Cardiac catheterization confirmed the presence of secondary pulmonary hypertension. Treatment options remain a dilemma for this patient because there is no known effective treatment for this condition, and the natural history is not well understood. The present case demonstrates the need for careful workup in 'atypical asthma', and the urgent need for further research into the rare lung diseases of childhood.

  19. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    Science.gov (United States)

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N

    2014-01-01

    Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  20. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    Directory of Open Access Journals (Sweden)

    Jennifer A Phan

    Full Text Available Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B. Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils, increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance. We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  1. Coupled cellular therapy and magnetic targeting for airway regeneration.

    Science.gov (United States)

    Ordidge, Katherine L; Gregori, Maria; Kalber, Tammy L; Lythgoe, Mark F; Janes, Sam M; Giangreco, Adam

    2014-06-01

    Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.

  2. Long-term Exposure to PM10 and NO2 in Association with Lung Volume and Airway Resistance in the MAAS Birth Cohort

    OpenAIRE

    2013-01-01

    Background: Findings from previous studies on the effects of air pollution exposure on lung function during childhood have been inconsistent. A common limitation has been the quality of exposure data used, and few studies have modeled exposure longitudinally throughout early life. Objectives: We sought to study the long-term effects of exposure to particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) and to nitrogen dioxide (NO2) on specific airway resistance (sRaw) and forced expira...

  3. Antioxidant trace elements in serum of draft horses with acute and chronic lower airway disease.

    Science.gov (United States)

    Youssef, Mohamed Ahmed; El-Khodery, Sabry Ahmed; Ibrahim, Hussam Mohamed Mohamed

    2012-12-01

    The aim of the present study was to evaluate the oxidative stress level and antioxidant trace elements status associated with lower airway disease in draft horses. For this purpose, venous blood samples were obtained from draft horses exhibiting signs of lower respiratory tract disorders (n = 83) and from control group (n = 20). Serum trace elements including selenium (Se), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) were assayed. Serum malondialdehyde (MDA) and low-density lipoprotein (LDL) levels as well as plasma hydrogen peroxides (H₂O₂) concentration and activity of plasma glutathione reductase (GR), glutathione-S-transferase (GST) and catalase (CAT) were measured. There was a significant (p horses compared with healthy ones, but the Cu/Zn ratio and Mn were increased (p horses compared with acute cases, but Mn was increased (p horses. However, there was a significant (p horses with chronic respiratory disease compared to acute cases, but CAT activity was decreased (p horses with acute lower airway disease, there was a negative correlation between GR and H₂O₂ (r = -0.458), and LDL and CAT (r = -0.816). However, in chronic disease, a negative correlation was recorded between Se and MDA (r = -0.590). The results of the present study indicate that oxidative stress, with alteration of antioxidant trace element levels, is a feature of respiratory disease in draft horses.

  4. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers - Is There a Specific Role for Mast Cells?

    Directory of Open Access Journals (Sweden)

    Yvonne Nussbaumer-Ochsner

    Full Text Available Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath.Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test, measurement of fractional exhaled nitric oxide (FeNO and pH/8-isoprostane in exhaled breath condensate (EBC. Lung tissue sections containing cancer-free large (LA and small airways (SA were stained for inflammatory cells. Mucosal (MCT respectively connective tissue mast cells (MCTC and interleukin-17A (IL-17A expression by mast cells was analysed using a double-staining protocol.The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances. IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39, for the FEV1% pred. (rs= 0.37 and for FEV1/FVC ratio (rs=0.38 with MCT in SA (P<0.05 for all instances. 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44, there was no correlation for pH or FeNO with cellular distribution in SA.Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking-induced lung injury, despite the

  5. Driving performance in patients with chronic obstructive lung disease, interstitial lung disease and healthy controls

    DEFF Research Database (Denmark)

    Prior, Thomas Skovhus; Troelsen, Thomas Tværmose; Hilberg, Ole

    2015-01-01

    INTRODUCTION: Cognitive deficits in patients suffering from chronic obstructive pulmonary disease (COPD) have been described and hypoxaemia has been addressed as a possible cause. Cognitive functions in patients with interstitial lung disease (ILD) are not well studied. These patients are taking....... METHODS: 16 patients with COPD (8 receivers and 8 non-receivers of long-term oxygen therapy (LTOT)), 8 patients with ILD (consisting of idiopathic interstitial pneumonias) and 8 healthy controls were tested in a driving simulator. Each test lasted 45 min. In the oxygen intervention part of the study...

  6. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta.

    Science.gov (United States)

    Joetham, Anthony; Takeda, Katsuyuki; Takada, Katsuyuki; Taube, Christian; Miyahara, Nobuaki; Matsubara, Shigeki; Matsubara, Satoko; Koya, Toshiyuki; Rha, Yeong-Ho; Dakhama, Azzeddine; Gelfand, Erwin W

    2007-02-01

    Peripheral tolerance to allergens is mediated in large part by the naturally occurring lung CD4(+)CD25(+) T cells, but their effects on allergen-induced airway responsiveness have not been well defined. Intratracheal, but not i.v., administration of naive lung CD4(+)CD25(+) T cells before allergen challenge of sensitized mice, similar to the administration of the combination of rIL-10 and rTGF-beta, resulted in reduced airway hyperresponsiveness (AHR) and inflammation, lower levels of Th2 cytokines, higher levels of IL-10 and TGF-beta, and less severe lung histopathology. Significantly, CD4(+)CD25(+) T cells isolated from IL-10(-/-) mice had no effect on AHR and inflammation, but when incubated with rIL-10 before transfer, suppressed AHR, and inflammation, and was associated with elevated levels of bronchoalveolar lavage TGF-beta levels. By analogy, anti-TGF-beta treatment reduced regulatory T cell activity. These data identify naturally occurring lung CD4(+)CD25(+) T cells as capable of regulating lung allergic responses in an IL-10- and TGF-beta-dependent manner.

  7. Detection of DNA Aneuploidy in Exfoliated Airway Epithelia Cells of Sputum Specimens by the Automated Image Cytometry and Its Clinical Value in the Identification of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    杨健; 周宜开

    2004-01-01

    To evaluate the value of detecton of DNA aneuploidy in exfoliated airway epithelia cells of sputum specimens by the automated image cytometry for the identification of lung cancer, 100patients were divided into patient group (50 patients with lung cancer)and control group (30 patients with tuberculosis and 20 healthy people). Sputum was obtained for the quantitative analysis of DNA content of exfoliated airway epithelial cells with the automated image cytometry, together with the examinations of brush cytology and conventional sputum cytology. Our results showed that DNA aneuploidy (DI>2.5 or 5c) was found in 20 out of 50 sputum samples of lung cancer, 1 out of 30 sputum samples from tuberculosis patients, and none of 20 sputum samples from healthy people. The positive rates of conventional sputum cytology and brush cytology were 16 % and 32 %,which was lower than that of DNA aneuploidy detection by the automated image cytometry (P<0.01 ,P>0.05). Our study showed that automated image cytometry, which uses DNA aneuploidy as a marker for tumor, can detect the malignant cells in sputum samples of lung cancer and it is a sensitive and specific method serving as a complement for the diagnosis of lung cancer.

  8. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Fischer Axel

    2006-06-01

    Full Text Available Abstract Hypersecretion and chronic phlegm are major symptoms of chronic obstructive pulmonary disease (COPD but animal models of COPD with a defined functional hypersecretion have not been established so far. To identify an animal model of combined morphological signs of airway inflammation and functional hypersecretion, rats were continuously exposed to different levels of sulfur dioxide (SO2, 5 ppm, 10 ppm, 20 ppm, 40 ppm, 80 ppm for 3 (short-term or 20–25 (long-term days. Histology revealed a dose-dependent increase in edema formation and inflammatory cell infiltration in short-term-exposed animals. The submucosal edema was replaced by fibrosis after long-term-exposure. The basal secretory activity was only significantly increased in the 20 ppm group. Also, stimulated secretion was significantly increased only after exposure to 20 ppm. BrdU-assays and AgNOR-analysis demonstrated cellular metaplasia and glandular hypertrophy rather than hyperplasia as the underlying morphological correlate of the hypersecretion. In summary, SO2-exposure can lead to characteristic airway remodeling and changes in mucus secretion in rats. As only long-term exposure to 20 ppm leads to a combination of hypersecretion and airway inflammation, only this mode of exposure should be used to mimic human COPD. Concentrations less or higher than 20 ppm or short term exposure do not induce the respiratory symptom of hypersecretion. The present model may be used to characterize the effects of new compounds on mucus secretion in the background of experimental COPD.

  9. Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: Current and future perspectives

    Directory of Open Access Journals (Sweden)

    Noora Louhelainen

    2008-08-01

    Full Text Available Noora Louhelainen1, Marjukka Myllärniemi1, Irfan Rahman2, Vuokko L Kinnula11Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; 2Department of Environmental Medicine and the Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USAAbstract: The pathogenesis of asthma and chronic obstructive pulmonary disease (COPD has been claimed to be attributable to increased systemic and local oxidative stress. Detection of the oxidant burden and evaluation of their progression and phenotypes by oxidant biomarkers have proved challenging and difficult. A large number of asthmatics are cigarette smokers and smoke itself contains oxidants complicating further the use of oxidant biomarkers. One of the most widely used oxidant markers in asthma is exhaled nitric oxide (NO, which plays an important role in the pathogenesis of asthma and disease monitoring. Another oxidant marker that has been widely investigated in COPD is 8-isoprostane, but it is probably not capable of differentiating asthma from COPD, or even sensitive in the early assessment of these diseases. None of the current biomarkers have been shown to be better than exhaled NO in asthma. There is a need to identify new biomarkers for obstructive airway diseases, especially their differential diagnosis. A comprehensive evaluation of oxidant markers and their combinations will be presented in this review. In brief, it seems that additional analyses utilizing powerful tools such as genomics, metabolomics, lipidomics, and proteomics will be required to improve the specificity and sensitivity of the next generation of biomarkers.Keywords: sputum, condensate, smoking, nitric oxide, 8-isoprostane, biomarker

  10. Promotion of Lung Health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases

    OpenAIRE

    Camargo, Carlos A.; Budinger, G. R. Scott; Escobar, Gabriel J.; Hansel, Nadia N.; Corrine K Hanson; Gary B Huffnagle; Buist, A. Sonia

    2014-01-01

    Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes “health promotion” (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate “normal” age-related declines—not only for spirometry but across multiple measures of lung health. In...

  11. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants

    Directory of Open Access Journals (Sweden)

    Díaz-Sánchez David

    2009-12-01

    Full Text Available Abstract Introduction Air pollutant exposure has been associated with an increase in inflammatory markers and a decline in lung function in asthmatic children. Several studies suggest that dietary intake of fruits and vegetables might modify the adverse effect of air pollutants. Methods A total of 158 asthmatic children recruited at the Children's Hospital of Mexico and 50 non-asthmatic children were followed for 22 weeks. Pulmonary function was measured and nasal lavage collected and analyzed every 2 weeks. Dietary intake was evaluated using a 108-item food frequency questionnaire and a fruit and vegetable index (FVI and a Mediterranean diet index (MDI were constructed. The impact of these indices on lung function and interleukin-8 (IL-8 and their interaction with air pollutants were determined using mixed regression models with random intercept and random slope. Results FVI was inversely related to IL-8 levels in nasal lavage (p 1 (test for trend p 1 and FVC as was with MDI and ozone for FVC. No effect of diet was observed among healthy children. Conclusion Our results suggest that fruit and vegetable intake and close adherence to the Mediterranean diet have a beneficial effect on inflammatory response and lung function in asthmatic children living in Mexico City.

  12. Alveolar flows of the developing lungs:from embryonic to early childhood airways

    Science.gov (United States)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josue

    2014-11-01

    At the onset of life in utero the respiratory system is simply a liquid-filled duct. With our first breath, alveoli are filled with air and become a significant port of entry for airborne particles. As such, alveolar lining is nearly fully functional at birth, though lung development continues during childhood as structural changes increase alveolar surface area to optimize ventilation. We hypothesize that such fluid dynamical changes potentially affect two phenomena occurring within alveoli: (i) flow patterns in airspaces at distinct stages of both in- and ex-utero life and (ii) fate of inhaled particles ex-utero. To investigate these phenomena, we combine experimental and numerical approaches where (i) microfluidic in vitro devices mimic liquid flows across the epithelium of fetal airspaces, and (ii) computational simulations are employed to examine particle transport and deposition in the deep alveolated regions of infants' lungs. Our approaches capture anatomically-inspired geometries based on morphometrical data, as well as physiological flows, including the convective-diffusive nature of submicron particle transport in alveolar regions.Overall, we investigate respiratory flows in alveolar regions of developing lungs, from early embryonic stages to late childhood

  13. Differential effects of allergen challenge on large and small airway reactivity in mice.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways. Balb/C mice were sensitised (days 0, 14 and challenged (3 times/week, 6 weeks with ovalbumin. Airway reactivity was compared with saline-challenged controls in vivo assessing whole lung resistance, and in vitro measuring the force of tracheal contraction and the magnitude/rate of small airway narrowing within lung slices. Increased airway inflammation, epithelial remodelling and fibrosis were evident following allergen challenge. In vivo hyperresponsiveness to methacholine was maintained in isolated trachea. In contrast, methacholine induced slower narrowing, with reduced potency in small airways compared to controls. In vitro incubation with IL-1/TNFα did not alter reactivity. The hyporesponsiveness to methacholine in small airways within lung slices following chronic ovalbumin challenge was unexpected, given hyperresponsiveness to the same agonist both in vivo and in vitro in tracheal preparations. This finding may reflect the altered interactions of small airways with surrounding parenchymal tissue after allergen challenge to oppose airway narrowing and closure.

  14. The role of fibrocytes in sickle cell lung disease.

    Directory of Open Access Journals (Sweden)

    Joshua J Field

    Full Text Available BACKGROUND: Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of sickle cell lung disease. METHODOLOGY/PRINCIPAL FINDINGS: Fibrocytes were quantified and characterized in subjects with sickle cell disease or healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4 ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung collagen content and improved lung compliance and histology. CONCLUSIONS: These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell lung disease.

  15. 25-Hydroxyvitamin D, IL-31, and IL-33 in Children with Allergic Disease of the Airways

    Directory of Open Access Journals (Sweden)

    Anna Bonanno

    2014-01-01

    Full Text Available Low vitamin D is involved in allergic asthma and rhinitis. IL-31 and IL-33 correlate with Th2-associated cytokines in allergic disease. We investigated whether low vitamin D is linked with circulating IL-31 and IL-33 in children with allergic disease of the airways. 25-Hydroxyvitamin D [25(OH Vit D], IL-31, and IL-33 plasma levels were measured in 28 controls (HC, 11 allergic rhinitis (AR patients, and 35 allergic asthma with rhinitis (AAR patients. We found significant lower levels of 25(OH Vit D in AR and in AAR than in HC. IL-31 and IL-33 plasma levels significantly increased in AAR than HC. IL-31 and IL-33 positively correlated in AR and AAR. 25(OH Vit D deficient AAR had higher levels of blood eosinophils, exacerbations, disease duration, and total IgE than patients with insufficient or sufficient 25(OH Vit D. In AAR 25(OH Vit D levels inversely correlated with total allergen sIgE score and total atopy index. IL-31 and IL-33 did not correlate with 25(OH Vit D in AR and AAR. In conclusion, low levels of 25(OH Vit D might represent a risk factor for the development of concomitant asthma and rhinitis in children with allergic disease of the airways independently of IL-31/IL-33 Th2 activity.

  16. Dependence of forced vital capacity manoeuvre on time course of preceding inspiration in patients with restrictive lung disease.

    Science.gov (United States)

    Koulouris, N G; Rapakoulias, P; Rassidakis, A; Dimitroulis, J; Gaga, M; Milic-Emili, J; Jordanoglou, J

    1997-10-01

    In normal subjects and patients with airway obstruction, flows during a forced vital capacity (FVC) manoeuvre are higher after a fast inspiration without an end-inspiratory pause (manoeuvre 1) as compared to a slow inspiration with an end-expiratory pause of approximately 5 s (manoeuvre 2). In this study, we investigated the influence of these manoeuvres on maximal expiratory volume-time and flow-volume curves in patients with restrictive lung disease. Eleven patients with restrictive lung disease were studied. Their average (+/-SD) lung function test results were: FVC=55+/-12% predicted value, forced expiratory volume in one second (FEV1) 52+/-20% pred, FEV1/FVC 85+/-6%, total lung capacity 55+/-8% pred, and carbon monoxide transfer factor 47+/-18% pred. The patients performed the two FVC manoeuvres in random order. We compared the ensuing spirograms and maximal expiratory flow-volume curves from which peak expiratory flow, FEV1, FEV1/FVC, maximal mid-expiratory flow, and maximal flows were computed. All spirometric indices were significantly higher with manoeuvre 1 than 2. Maximal expiratory flows at the same lung volume were also significantly higher with manoeuvre 1 than 2, in all patients. Routine spirometric indices, obtained during a forced vital capacity manoeuvre depend on the time course of the preceding inspiration in patients with restrictive lung disease. Therefore, the forced vital capacity manoeuvre should be standardized if used in clinical, epidemiological and research studies.

  17. Emergency airway puncture - slideshow

    Science.gov (United States)

    ... presentations/100113.htm Emergency airway puncture - series—Normal anatomy To ... larynx is a tubular structure in the neck, through which air passes to the lungs. The thryoid and cricoid cartilage form the narrowest ...

  18. Myofibroblast expression in airways and alveoli is affected by smoking and COPD

    OpenAIRE

    Karvonen, Henna M; Lehtonen, Siri T.; Harju, Terttu; Sormunen, Raija T.; Lappi-Blanco, Elisa; Mäkinen, Johanna M.; Laitakari, Kirsi; Johnson, Shirley; Kaarteenaho, Riitta L.

    2013-01-01

    Background Chronic obstructive pulmonary disease (COPD) is characterized by structural changes in alveoli and airways. Our aim was to analyse the numbers of alpha-smooth muscle actin (α-SMA) positive cells, as a marker of myofibroblasts, in different lung compartments in non-smokers and smokers with normal lung function or COPD. Methods α-SMA, tenascin-C (Tn-C) and EDA-fibronectin in alveolar level and airways were assayed by immunohistochemistry and quantified by image analysis. Immunohistoc...

  19. Rheumatoid arthritis associated interstitial lung disease: a review

    Directory of Open Access Journals (Sweden)

    Deborah Assayag

    2014-04-01

    Full Text Available Rheumatoid arthritis is a common inflammatory disease affecting about 1% of the population. Interstitial lung disease is a serious and frequent complication of rheumatoid arthritis. Rheumatoid arthritis associated interstitial lung disease (RA-ILD is characterized by several histopathologic subtypes. This article reviews the proposed pathogenesis and risk factors for RA-ILD. We also outline the important steps involved in the work-up of RA-ILD and review the evidence for treatment and prognosis.

  20. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  1. Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease

    Directory of Open Access Journals (Sweden)

    Winter Tobias

    2008-04-01

    Full Text Available Abstract Background The surfactant proteins B (SP-B and C (SP-C are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. Methods We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. Results SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. Conclusion Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.

  2. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  3. Estimation of pulmonary hypertension in lung and valvular heart diseases by perfusion lung scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). School of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hirosi; Koizumi, Tomonori; Kubo, Keisi; Sekiguchi, Morie; Yano, Kesato

    1999-06-01

    To estimate pulmonary hypertension, we measured postural differences in pulmonary blood flow for the lateral decubitus positions on perfusion lung scintigrams with Tc-99 m macro-aggregated albumin, applying the method devised by Tanaka et al (Eur J Nucl Med 17: 320-326, 1990). Utilizing a scintillation camera coupled to a minicomputer system, changes in the distribution of pulmonary blood flow caused by gravitational effects, namely, changes in the total count ratios for the right lung versus the left lung in the right and left lateral decubitus positions (R/L), were obtained for 44 patients with lung disease, 95 patients with valvular heart disease, and 23 normal subjects. Mean standard deviation in the R/L ratios was 3.09{+-}1.28 for the normal subjects, 1.97{+-}0.89 for the patients with lung disease, and 1.59{+-}0.59 for the patients with valvular heart disease. The R/L ratios correlated with mean pulmonary arterial pressure and cardio-thoracic ratios in the lung disease and valvular heart disease groups, with pulmonary arteriolar resistance in the former, and with pulmonary capillary wedge pressure in the latter. Defining pulmonary hypertension (>20 mmHg) as an R/L ratio of less than 1.81, which is the mean-1 standard deviation for normal subjects, the sensitivity and the specificity of the R/L ratio for the diagnosis of pulmonary hypertension were 62.9% and 76.2%, respectively, for the lung disease patients, and 80.3% and 61.8%, respectively, for the valvular heart disease patients. This method seems to be useful for the pathophysiologic evaluation of pulmonary perfusion in cases of lung disease and valvular heart disease. (author)

  4. Inflammatory airway features and hypothalamic-pituitary adrenal axis function in asthmatic rats combined with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    CAI Cui; CAO Yu-xue; ZHANG Hong-ying; LE Jing-jing; DONG Jing-cheng; CUI Yan; XU Chang-qing; LIU Bao-jun; WU Jin-feng; DUAN Xiao-hong

    2010-01-01

    Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD.Methods Brown Norway (BN) rats were used to model the inflammatory airway diseases of BA, COPD and COPD+BA.These three models were compared and evaluated with respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function.Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P <0.05).Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.

  5. MicroRNAs in inflammatory lung disease--master regulators or target practice?

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-01-01

    MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS\\/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.

  6. MicroRNAs in inflammatory lung disease - master regulators or target practice?

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-10-28

    Abstract MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS\\/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.

  7. Comorbidities in obstructive lung disease in Korea: data from the fourth and fifth Korean National Health and Nutrition Examination Survey

    Directory of Open Access Journals (Sweden)

    Park HJ

    2015-08-01

    Full Text Available Hee Jin Park, Ah Young Leem, Sang Hoon Lee, Ju Han Song, Moo Suk Park, Young Sam Kim, Se Kyu Kim, Joon Chang, Kyung Soo Chung Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Institute of Chest Disease, Yonsei University College of Medicine, Seoul, South Korea Background: Comorbidities can occur frequently in patients with chronic obstructive pulmonary disease (COPD and can influence mortality and morbidity independently. It is increasingly recognized that many patients with COPD have comorbidities that have a major impact on their quality of life and survival. Therefore, we investigated the prevalence of comorbidities in Korean COPD populations. Methods: We used data obtained in the 6 years of the fourth and fifth Korean National Health and Nutrition Examination Survey (KNHANES IV and V. Among 50,405 subjects, 16,151 subjects aged ≥40 years who performed spirometry adequately were included in this study. Airway obstruction was defined as forced expiratory volume in 1 second/forced vital capacity <0.7, and the Global Initiative For Chronic Obstructive Lung Disease stage was used to evaluate the severity of airway obstruction. Statistical analyses were performed using SAS 9.2. Results: Among the 16,151 subjects (43.2% male, 56.8% female; mean age: 57.1 years for men and 57.2 years for women, 13.1% had obstructive lung function; 11.3%, restrictive lung function; and 75.6%, normal lung function. Among individuals with obstructive lung function, 45.3%, 49.4%, and 5.3% had mild, moderate, and severe and very severe airflow limitation. The prevalence of hypertension, diabetes mellitus (DM, underweight, and hypertriglyceridemia was higher in the obstructive lung function group than in the normal lung function group (49.6% vs 35.2%; 16.8% vs 10.5%; 3.3% vs 1.3%; 19.7% vs 17.0%. According to the severity of airway obstruction, hypertension and underweight were more common as severity increased

  8. Update in diagnosis and management of interstitial lung disease.

    Science.gov (United States)

    Mikolasch, Theresia A; Garthwaite, Helen S; Porter, Joanna C

    2016-12-01

    The field of interstitial lung disease (ILD) has undergone significant evolution in recent years, with an increasing incidence and more complex, ever expanding disease classification. In their most severe forms, these diseases lead to progressive loss of lung function, respiratory failure and eventually death. Despite notable advances, progress has been challenged by a poor understanding of pathological mechanisms and patient heterogeneity, including variable progression. The diagnostic pathway is thus being continually refined, with the introduction of tools such as transbronchial cryo lung biopsy and a move towards genetically aided, precision medicine. In this review, we focus on how to approach a patient with ILD and the diagnostic process.

  9. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13.

    Directory of Open Access Journals (Sweden)

    Masanori Sawada

    Full Text Available IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases including pulmonary infection, pulmonary fibrosis, lung injury and chronic obstructive pulmonary disease (COPD. However, it is unknown whether IL-18 plays any role in the pathogenesis of asthma. We hypothesized that overexpression of mature IL-18 protein in the lungs may exacerbate disease activities of asthma. We established lung-specific IL-18 transgenic mice on a Balb/c genetic background. Female mice sensitized- and challenged- with antigen (ovalbumin were used as a mouse asthma model. Pulmonary inflammation and emphysema were not observed in the lungs of naïve transgenic mice. However, airway hyperresponsiveness and airway inflammatory cells accompanied with CD4(+ T cells, CD8(+ T cells, eosinophils, neutrophils, and macrophages were significantly increased in ovalbumin-sensitized and challenged transgenic mice, as compared to wild type Balb/c mice. We also demonstrate that IL-18 induces IFN-γ, IL-13, and eotaxin in the lungs of ovalbumin-sensitized and challenged transgenic mice along with an increase in IL-13 producing CD4(+ T cells. Treatment with anti-CD4 monoclonal antibody or deletion of the IL-13 gene improves ovalbumin-induced airway hyperresponsiveness and reduces airway inflammatory cells in transgenic mice. Overexpressing the IL-18 protein in the lungs induces type 1 and type 2 cytokines and airway inflammation, and results in increasing airway hyperresponsiveness via CD4(+ T cells and IL-13 in asthma.

  10. Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing.

    Directory of Open Access Journals (Sweden)

    Tetyana Zakharkina

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive, inflammatory lung disease that affects a large number of patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways.The aim of this study was to analyze the detailed structure of microbial communities found in the lungs of healthy individuals and patients with COPD. Nine COPD patients as compared and 9 healthy individuals underwent flexible bronchoscopy and BAL was performed. Bacterial nucleic acids were subjected to terminal restriction fragment (TRF length polymorphism and clone library analysis. Overall, we identified 326 T-RFLP band, 159 in patients and 167 in healthy controls. The results of the TRF analysis correlated partly with the data obtained from clone sequencing. Although the results of the sequencing showed high diversity, the genera Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus constituted the major part of the core microbiome found in both groups. A TRF band possibly representing Pseudomonas sp. monoinfection was associated with a reduction of the microbial diversity. Non-cultural methods reveal the complexity of the pulmonary microbiome in healthy individuals and in patients with COPD. Alterations of the microbiome in pulmonary diseases are correlated with disease.

  11. Photodynamic Therapy (PDT) with Chemotherapy for Advanced Lung Cancer with Airway Stenosis.

    Science.gov (United States)

    Kimura, Masakazu; Miyajima, Kuniharu; Kojika, Masakazu; Kono, Takafumi; Kato, Harubumi

    2015-10-23

    Intractable advanced lung cancer can be treated palliatively with photodynamic therapy (PDT) combined with chemotherapy to remove central and peripheral (lobar or segmental bronchi) bronchial stenosis and obstruction. We present data for 12 (eight men, four women) consecutive patients with 13 advanced non-small cell lung carcinomas in whom curative operations were contraindicated, who underwent PDT combined with chemotherapy for local control of the intraluminal lesions. The mean age was 73.3 years (range, 58-80 years), and the stages of cancer were IIA-IV. The median stenosis rates before treatment, one week post-treatment, and one month post-treatment were 60% (range, 30%-100%), 15% (range, 15%-99%), and 15% (range 15%-60%), respectively. The mean and median survival times were 9.3 and 5.9 months, respectively. The overall 1-year survival rate was 30.0%. No PDT-related morbidity or mortality occurred. In this single-institution study, all patients experienced improved symptoms and quality of life at one week after treatment; furthermore, an objective response was evidenced by the substantial increase in the openings of the bronchial lumen and prevention of obstructive pneumonia. Therefore, PDT with chemotherapy was useful and safe for the treatment of bronchial obstruction.

  12. THE ROLE OF MICROBIAL COMMUNITIES OF AIRWAYS IN PATHOGENESIS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    Directory of Open Access Journals (Sweden)

    S. V. Fedosenko

    2014-01-01

    Full Text Available This review summarizes the results of studies on the composition of microbial communities in the airways of healthy subjects and in patients with chronic obstructive pulmonary disease. Modern technologies of molecular-genetic identification methods of microorganisms allow to perform a deep analysis  of  the  respiratory  microbiom.  It  is  of  considerable  interest  to  determine  the  role  of  the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the efficacy of current therapy.

  13. Peak inspiratory flow rate measurement by using In-Check DIAL for the different inhaler devices in elderly with obstructive airway diseases

    Science.gov (United States)

    Kawamatawong, Theerasuk; Khiawwan, Supattra; Pornsuriyasak, Prapaporn

    2017-01-01

    Background Inhaler device technique is a common cause of treatment failure in patients with asthma and chronic obstructive pulmonary disease. Dry powder inhaler (DPI) requires optimal peak inspiratory flow rate (PIFR) for drug delivery. Low PIFR generation is common in the elderly. Patient lung function and intrinsic inhaler resistance are factors for determining generated PIFR and drug delivery from DPI. Objectives We aimed to identify the PIFR of the older (aged >60 years) and the younger (aged ≤60 years) patients with obstructive airway diseases for the different inhaler devices (Turbuhaler® and Accuhaler). Patients and methods A cross-sectional study was conducted from January to December 2014. Patients with obstructive airway diseases were recruited. Spirometry was performed. PIFR was measured by using an In-Check DIAL device. Individual PIFR values for each inhaler device were obtained for three consecutive measurements and then averaged. Results A total of 139 patients diagnosed with obstructive lung diseases (asthma, n = 109; chronic obstructive pulmonary disease, n = 30) were recruited. Of these, 71 patients (51%) were >60 years. The PIFR generated by the patients who were ≤60 years for nonresistance mode was not different from that generated by those aged >60 years (115.0 ± 15.2 L/min vs 115.4 ± 13.3 L/min, p = 0.86). Regarding the DPI, PIFR generated from the older group was significantly lower than that generated from the younger group for Turbuhaler (72.5 ± 18.8 L/min vs 82.4 ± 21.1 L/min, p = 0.01), but the PIFR generated was not significantly different between the older and the younger groups for the Accuhaler (93.8 ± 22.9 L/min vs 99.4 ± 24.2 L/min, p = 0.86). The low peak expiratory flow rate and PIFR from spirometry were associated with the suboptimal PIFR measured by using In-Check DIAL. Discussion Optimal PIFR is critical for DPI use in the elderly; appropriate DPI selection is essential for management. In-Check DIAL may be useful for

  14. CT in the diagnosis of interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, C.J.; Mueller, N.L.

    1985-09-01

    The computed tomographic (CT) appearance of interstitial lung disease was assessed in 23 patients with known interstitial disease. These included seven patients with fibrosing alveolitis, six with silicosis, two with hypersensitivity pneumonitis, three with lymphangitic spread of tumor, two with sarcoidosis, one with rheumatoid lung disease, and two with neurofibromatosis. The CT appearance of the interstitial changes in the different disease entities was assessed. Nodules were a prominent CT feature in silicosis, sarcoidosis, and lymphangitic spread of malignancy. Distribution of nodules and associated interlobular septal thickening provided further distinguishing features in these diseases. Reticular densities were the predominant CT change in fibrosing alveolitis, rheumatoid lung disease, and extrinsic allergic alveolitis. CT can be useful in the investigation of selected instances of interstitial pulmonary disease.

  15. Automatic lobar segmentation for diseased lungs using an anatomy-based priority knowledge in low-dose CT images

    Science.gov (United States)

    Park, Sang Joon; Kim, Jung Im; Goo, Jin Mo; Lee, Doohee

    2014-03-01

    Lung lobar segmentation in CT images is a challenging tasks because of the limitations in image quality inherent to CT image acquisition, especially low-dose CT for clinical routine environment. Besides, complex anatomy and abnormal lesions in the lung parenchyma makes segmentation difficult because contrast in CT images are determined by the differential absorption of X-rays by neighboring structures, such as tissue, vessel or several pathological conditions. Thus, we attempted to develop a robust segmentation technique for normal and diseased lung parenchyma. The images were obtained with low-dose chest CT using soft reconstruction kernel (Sensation 16, Siemens, Germany). Our PC-based in-house software segmented bronchial trees and lungs with intensity adaptive region-growing technique. Then the horizontal and oblique fissures were detected by using eigenvalues-ratio of the Hessian matrix in the lung regions which were excluded from airways and vessels. To enhance and recover the faithful 3-D fissure plane, our proposed fissure enhancing scheme were applied to the images. After finishing above steps, for careful smoothening of fissure planes, 3-D rolling-ball algorithm in xyz planes were performed. Results show that success rate of our proposed scheme was achieved up to 89.5% in the diseased lung parenchyma.

  16. Germinal Center Formation and Local Immunoglobulin E (IgE) Production in the Lung after an Airway Antigenic Challenge

    OpenAIRE

    1996-01-01

    Airway inflammation plays a central role in the pathogenesis of asthma. However, the precise contribution of all cell types in the development and maintenance of airway hyperreactivity and histopathology during allergic inflammation remains unclear. After sensitization of mice in the periphery, challenge by multiple intratracheal (i.t.) instillations of ovalbumin (OVA) results in eosinophilia, mononuclear cell infiltration, and airway epithelial changes analogous to that seen in asthma (Blyth...

  17. Pulmonary hypertension in chronic obstructive and interstitial lung diseases

    DEFF Research Database (Denmark)

    Andersen, Charlotte U; Mellemkjær, Søren; Nielsen-Kudsk, Jens Erik

    2013-01-01

    , and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which...... is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific...... treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However...

  18. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  19. Perioperative Management of Interscalene Block in Patients with Lung Disease

    Directory of Open Access Journals (Sweden)

    Eric S. Schwenk

    2013-01-01

    Full Text Available Interscalene nerve block impairs ipsilateral lung function and is relatively contraindicated for patients with lung impairment. We present a case of an 89-year-old female smoker with prior left lung lower lobectomy and mild to moderate lung disease who presented for right shoulder arthroplasty and insisted on regional anesthesia. The patient received a multimodal perioperative regimen that consisted of a continuous interscalene block, acetaminophen, ketorolac, and opioids. Surgery proceeded uneventfully and postoperative analgesia was excellent. Pulmonary physiology and management of these patients will be discussed. A risk/benefit discussion should occur with patients having impaired lung function before performance of interscalene blocks. In this particular patient with mild to moderate disease, analgesia was well managed through a multimodal approach including a continuous interscalene block, and close monitoring of respiratory status took place throughout the perioperative period, leading to a successful outcome.

  20. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  1. An integrated approach in the diagnosis of smoking-related interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Sergio Harari

    2012-09-01

    Full Text Available Cigarette smoke consists of several chemical compounds with a variety of effects in many organs. In the lung, apart being the main cause of chronic obstructive pulmonary disease, carcinoma and idiopathic spontaneous pneumothorax, tobacco smoke is associated with interstitial lung diseases (ILDs, including respiratory bronchiolitis-associated ILD (RB-ILD, desquamative interstitial pneumonia (DIP, pulmonary Langerhans’ cell histiocytosis (PLCH, idiopathic pulmonary fibrosis, acute eosinophilic pneumonia, ILD in rheumatoid arthritis and pulmonary haemorrhage in Goodpasture syndrome. This review will focus on the diseases with a stronger epidemiological association with tobacco smoke, namely RB-ILD, DIP and PLCH. Although the exact pathogenetic evidence linking smoking with these disorders is still not completely understood, there is growing evidence that tobacco smoke targets the terminal or respiratory bronchioles in these diseases, and the differences are reflective of the degree of severity of small airway and parenchymal reaction to the smoke exposure. Despite considerable clinical, radiological and histological overlap between RB-ILD, DIP and PLCH, it is useful to retain the separate classifications for prognostic and therapeutic implications.

  2. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Li

    Full Text Available To develop stem/progenitor cell-based therapy for cystic fibrosis (CF lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4(+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4(+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4(- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4(+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs serotypes, AAV2 and AAV8, capable of transducing α6β4(+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4(+ epithelial cells significantly rescued defects in Cl(- transport. Therefore, targeting the α6β4(+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.

  3. Smoking-related interstitial lung diseases; Interstitielle Lungenerkrankungen bei Rauchern

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Inst. fuer Roentgendiagnostik

    2007-03-15

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis.

  4. European Symposium on Precision Medicine in Allergy and Airways Diseases: Report of the European Union Parliament Symposium (October 14, 2015).

    Science.gov (United States)

    Muraro, A; Fokkens, W J; Pietikainen, S; Borrelli, D; Agache, I; Bousquet, J; Costigliola, V; Joos, G; Lund, V J; Poulsen, L K; Price, D; Rolland, C; Zuberbier, T; Hellings, P W

    2016-05-01

    The European Academy of Allergy and Clinical Immunology (EAACI), the European Rhinologic Society (ERS), and the European Medical Association (EMA) organized, on October 14, 2015, a symposium in the European Parliament in Brussels on Precision Medicine in Allergy and Airways Diseases, hosted by MEP David Borrelli, and with active participation of the EU Commissioner for Health and Food Safety Vytenis Andriukaitis, MEP Sirpa Pietikainen, Chair of the European Parliament Interest Group on Allergy and Asthma, the European Respiratory Society (ERS), the European Federations of Allergy and Airways Diseases Patients Associations (EFA), the Global Allergy and Asthma European Network (Ga2len), Allergic Rhinitis and Its Impact on Asthma (ARIA), and the Respiratory Effectiveness Group (REG). The socioeconomic impact of allergies and chronic airways diseases cannot be underestimated, as they represent the most frequently diagnosed chronic noncommunicable diseases in the EU; 30% of the total European population is suffering from allergies and asthma, and more than half are deprived from adequate diagnosis and treatment. Precision medicine represents a novel approach, embracing four key features: personalized care based on molecular, immunologic, and functional endotyping of the disease, with participation of the patient in the decision-making process of therapeutic actions, and considering predictive and preventive aspects of the treatment. Implementation of precision medicine into clinical practice may help to achieve the arrest of the epidemic of allergies and chronic airways diseases. Participants underscored the need for optimal patient care in Europe, supporting joint action plans for disease prevention, patient empowerment, and cost-effective treatment strategies.

  5. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.

    Science.gov (United States)

    Hartl, Dominik; Latzin, Philipp; Hordijk, Peter; Marcos, Veronica; Rudolph, Carsten; Woischnik, Markus; Krauss-Etschmann, Susanne; Koller, Barbara; Reinhardt, Dietrich; Roscher, Adelbert A; Roos, Dirk; Griese, Matthias

    2007-12-01

    Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

  6. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx

    OpenAIRE

    Marsh, R. L.; Kaestli, M; Chang, A. B.; Binks, M. J.; Pope, C E; Hoffman, L. R.; Smith-Vaughan, H C

    2016-01-01

    Background Invasive methods requiring general anaesthesia are needed to sample the lung microbiota in young children who do not expectorate. This poses substantial challenges to longitudinal study of paediatric airway microbiota. Non-invasive upper airway sampling is an alternative method for monitoring airway microbiota; however, there are limited data describing the relationship of such results with lung microbiota in young children. In this study, we compared the upper and lower airway mic...

  7. Undifferentiated connective tissue disease-associated interstitial lung disease: changes in lung function.

    Science.gov (United States)

    Kinder, Brent W; Shariat, Cyrus; Collard, Harold R; Koth, Laura L; Wolters, Paul J; Golden, Jeffrey A; Panos, Ralph J; King, Talmadge E

    2010-04-01

    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a > or = 5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27-53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an "idiopathic" interstitial pneumonia.

  8. Adult stem cells underlying lung regeneration.

    Science.gov (United States)

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  9. Early diagnosis of asthma in young children by using non-invasive biomarkers of airway inflammation and early lung function measurements: study protocol of a case-control study

    Directory of Open Access Journals (Sweden)

    Jöbsis Quirijn

    2009-06-01

    Full Text Available Abstract Background Asthma is the most common chronic disease in childhood, characterized by chronic airway inflammation. There are problems with the diagnosis of asthma in young children since the majority of the children with recurrent asthma-like symptoms is symptom free at 6 years, and does not have asthma. With the conventional diagnostic tools it is not possible to differentiate between preschool children with transient symptoms and children with asthma. The analysis of biomarkers of airway inflammation in exhaled breath is a non-invasive and promising technique to diagnose asthma and monitor inflammation in young children. Moreover, relatively new lung function tests (airway resistance using the interrupter technique have become available for young children. The primary objective of the ADEM study (Asthma DEtection and Monitoring study, is to develop a non-invasive instrument for an early asthma diagnosis in young children, using exhaled inflammatory markers and early lung function measurements. In addition, aetiological factors, including gene polymorphisms and gene expression profiles, in relation to the development of asthma are studied. Methods/design A prospective case-control study is started in 200 children with recurrent respiratory symptoms and 50 control subjects without respiratory symptoms. At 6 years, a definite diagnosis of asthma is made (primary outcome measure on basis of lung function assessments and current respiratory symptoms ('golden standard'. From inclusion until the definite asthma diagnosis, repeated measurements of lung function tests and inflammatory markers in exhaled breath (condensate, blood and faeces are performed. The study is registered and ethically approved. Discussion This article describes the study protocol of the ADEM study. The new diagnostic techniques applied in this study could make an early diagnosis of asthma possible. An early and reliable asthma diagnosis at 2–3 years will have

  10. Occupational obstructive airway diseases in Germany: Frequency and causes in an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Latza, U.; Baur, X. [University of Hamburg, Hamburg (Germany)

    2005-08-01

    Occupational inhalative exposures contribute to a significant proportion of obstructive airway diseases (OAD), namely chronic obstructive pulmonary disease (COPD) and asthma. The number of occupational OAD in the German industrial sector for the year 2003 are presented. Other analyses of surveillance data were retrieved from Medline. Most confirmed reports of OAD are cases of sensitizer induced occupational asthma (625 confirmed cases) followed by COPD in coal miners (414 cases), irritant induced occupational asthma (156 cases), and isocyanate asthma (54 cases). Main causes of occupational asthma in Germany comprise flour/flour constituents (35.9%), food/feed dust (9.0%), and isocyanates (6.5%). Flour and grain dust is a frequent cause of occupational asthma in most European countries and South Africa. Isocyanates are still a problem worldwide. Although wide differences in the estimated incidences between countries exist due to deficits in the coverage of occupational OAD, the high numbers necessitate improvement of preventive measures.

  11. Histamine airway hyper-responsiveness and mortality from chronic obstructive pulmonary disease : a cohort study

    NARCIS (Netherlands)

    Hospers, JJ; Postma, DS; Rijcken, B; Weiss, ST; Schouten, JP

    2000-01-01

    Background Smoking and airway lability, which is expressed by histamine airway hyper-responsiveness, are known risk factors for development of respiratory symptoms. Smoking is also associated with increased mortality risks. We studied whether airway hyper-responsiveness is associated with increased

  12. Mycobacterium abscessus Lung Disease in a Patient with Kartagener Syndrome.

    Science.gov (United States)

    Kim, Jung Hoon; Song, Won Jun; Jun, Ji Eun; Ryu, Duck Hyun; Lee, Ji Eun; Jeong, Ho Jung; Jeong, Suk Hyeon; Kang, Hyung Koo; Kim, Jung Soo; Lee, Hyun; Chon, Hae Ri; Jeon, Kyeongman; Kim, Dohun; Kim, Jhingook; Koh, Won-Jung

    2014-09-01

    Primary ciliary dyskinesia (PCD) is characterized by the congenital impairment of mucociliary clearance. When accompanied by situs inversus, chronic sinusitis and bronchiectasis, PCD is known as Kartagener syndrome. The main consequence of impaired ciliary function is a reduced mucus clearance from the lungs, and susceptibility to chronic respiratory infections due to opportunistic pathogens, including nontuberculous mycobacteria (NTM). There has been no report of NTM lung disease combined with Kartagener syndrome in Korea. Here, we report an adult patient with Kartagener syndrome complicated with Mycobacterium abscessus lung disease. A 37-year-old female presented to our hospital with chronic cough and sputum. She was ultimately diagnosed with M. abscessus lung disease and Kartagener syndrome. M. abscessus was repeatedly isolated from sputum specimens collected from the patient, despite prolonged antibiotic treatment. The patient's condition improved and negative sputum culture conversion was achieved after sequential bilateral pulmonary resection.

  13. ROLE OF TRANS BRON CHIAL LUNG BIOPSY IN DIFFUSE PARENCHYMAL LUNG DISEASES

    Directory of Open Access Journals (Sweden)

    Methuku

    2015-08-01

    Full Text Available Diffuse parenchyma lung disease (DPLD encompasses a hetero - geneous group of disorders, characterized by a spectrum of inflammatory and fibrotic changes affecting alveolar walls and air spaces. They comprise over 200 entities and include a wide spectrum of diseases, many uncommon and many of unknown etiology. The incidence and prevalence rates of DPLD have not been precisely estimated due to difficulties in ascertaining a specific diagnosis on a specific disease. MATERIAL & METHODS : Prospective observational study done on 20 adult patients with radiologically diffuse parenchymal lung disease admitted between January 2010 and May 2015 in Govt. General & Chest Hospital, Hyderabad were subjected for Transbronchial Lung Biopsy via flexible fibreoptic bronchoscopy, without fluoroscopic guidance. RESULTS : Out of 20 patients studied adequate lung tissue was obtained in 15 patients, yield of the procedure was 75%. Out of 15 patient’s histopathological diagnosis of chronic interstitial pneumonia is seen in 5 members, interstitial fibrosis is seen in 4 members, non caseating granulomas seen in 4 members, pulmonary alveolar protenosis was seen in 1 member and normal lung histopathology was seen in 1 members. Diagnostic yield of the procedure was 93.3% and overall diagnostic yield was 70%. Two patients developed post procedure pneumothorax. Both of them underwent closed - tube thoracostomy, lung expanded well and ICD was removed in 4 days. No significant bleeding was observed in any patient. No mortality was observed after the procedure . CONCLUSIONS : Transbronchial lung biopsy through flexible bronchoscopy is a simple, safe and effective procedure for the diagnosis of diffuse parenchymal lung diseases. Complications were observed in only few patients out of twenty, which were successfully managed with ICD.

  14. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation.

    Science.gov (United States)

    Bartlett, Nathan W; Walton, Ross P; Edwards, Michael R; Aniscenko, Juliya; Caramori, Gaetano; Zhu, Jie; Glanville, Nicholas; Choy, Katherine J; Jourdan, Patrick; Burnet, Jerome; Tuthill, Tobias J; Pedrick, Michael S; Hurle, Michael J; Plumpton, Chris; Sharp, Nigel A; Bussell, James N; Swallow, Dallas M; Schwarze, Jurgen; Guy, Bruno; Almond, Jeffrey W; Jeffery, Peter K; Lloyd, Clare M; Papi, Alberto; Killington, Richard A; Rowlands, David J; Blair, Edward D; Clarke, Neil J; Johnston, Sebastian L

    2008-02-01

    Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.

  15. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    Science.gov (United States)

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  16. [Severe interstitial lung disease from pathologic gastroesophageal reflux in children].

    Science.gov (United States)

    Ahrens, P; Weimer, B; Hofmann, D

    1999-07-01

    Interstitial lung diseases comprise a heterogeneous group of pulmonary conditions that cause restrictive lung disease of poor prognosis, especially if growth failure, pulmonary hypertension and fibrosis appears. We report on the case of a girl of 11 years of age who suffered from severe nonallergic asthma in early childhood and who developed severe interstitial pulmonary disease caused by gastro-oesophageal reflux at the age of 8 years. This diagnosis was established by lung biopsy, bronchoalveolar lavage and a high amount of lipid-laden alveolar macrophages, 2-level pH measurement and oesophageal biopsy. Because therapy with oral and inhaled steroids failed and Omeprazol showed benificial effects, hemifundoplication according to THAL was performed. At present the lung function is clearly normal and there is no need of any medicaments. Following the history, we can assume the pathological gastro-oesophageal reflux to be the cause of the disease. It is important to state that there were no typical symptoms at any time pointing to gastro-oesophageal reflux disease. The development of pulmonary disease by pathological reflux is very often caused by "silent aspiration". Very typically there are no symptoms such as vomiting, heartburn and pain but only signs of chronic lung disease.

  17. Airway inflammation in COPD after long-term withdrawal of inhaled corticosteroids

    NARCIS (Netherlands)

    Kunz, Lisette I Z; Ten Hacken, Nick H T; Lapperre, Thérèse S; Timens, Wim; Kerstjens, Huib A M; van Schadewijk, Annemarie; Vonk, Judith M; Sont, Jacob K; Snoeck-Stroband, Jiska B; Postma, Dirkje S; Sterk, Peter J; Hiemstra, Pieter S

    2017-01-01

    Long-term treatment with inhaled corticosteroids (ICS) might attenuate lung function decline and decrease airway inflammation in a subset of patients with chronic obstructive pulmonary disease (COPD), and discontinuing ICS treatment could result in further lung function decline. We hypothesised that

  18. Up-Regulation of Endothelin Receptors Induced by Cigarette Smoke — Involvement of MAPK in Vascular and Airway Hyper-Reactivity

    Directory of Open Access Journals (Sweden)

    Yaping Zhang

    2010-01-01

    Full Text Available Cigarette smoke exposure is well known to cause cardiovascular and airway diseases, both of which are leading causes of death and disability in the world. However, the molecular mechanisms that link cigarette smoke to cardiovascular and airway diseases are not fully understood. Vascular and airway hyper-reactivity plays an important role in the pathogenesis of cardiovascular and airway diseases. Recent studies have demonstrated that endothelin receptor up-regulation mediates vascular and airway hyper-reactivity in response to endothelin-1 (ET-1, endothelin receptor agonist in cardiovascular and airway diseases. In the vasculature and airways, the main functional consequences of up-regulated endothelin receptors by cigarette smoke exposure are enhanced contraction and proliferation of the smooth muscle cells, which subsequently result in abnormal contraction (spasm and adverse proliferation (remodeling of the vasculature and airways. The structural alteration by adverse remodeling involves changes in cell growth, cell death, cell migration, and production or degradation of the extracellular matrix. This review focuses on cigarette smoke exposure that induces activation of intracellular mitogen-activated protein kinase (MAPK and subsequently results in the up-regulation of endothelin receptors in the vasculature and airways, which mediates vascular and airway hyper-reactivity, one of the important pathogenic characteristics of cardiovascular and airway diseases. Understanding the molecular mechanisms of how cigarette smoke causes up-regulation of endothelin receptors in the vasculature and airways may provide new strategies for the treatment of cigarette smoke—associated cardiovascular and lung diseases.

  19. Local immunotherapy in experimental murine lung inflammation

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Caroline Uebel, Sonja Koch, Anja Maier, Nina Sopel, Anna Graser, Stephanie Mousset & Susetta Finotto ### Abstract Innovative local immunotherapy for severe lung diseases such as asthma, chronic obstructive pulmonary disease or lung cancer requires a successful delivery to access the desired cellular target in the lung. An important route is the direct instillation into the airways in contrast to delivery through the digestive tract. This protocol details a method to deliv...

  20. Respiratory care year in review 2011: long-term oxygen therapy, pulmonary rehabilitation, airway management, acute lung injury, education, and management.

    Science.gov (United States)

    Dunne, Patrick J; Macintyre, Neil R; Schmidt, Ulrich H; Haas, Carl F; Jones-Boggs Rye, Kathy; Kauffman, Garry W; Hess, Dean R

    2012-04-01

    For the busy clinician, educator, or manager, it is becoming an increasing challenge to filter the literature to what is relevant to one's practice and then update one's practice based on the current evidence. The purpose of this paper is to review the recent literature related to long-term oxygen therapy, pulmonary rehabilitation, airway management, acute lung injury and acute respiratory distress syndrome, respiratory care education, and respiratory care management. These topics were chosen and reviewed in a manner that is most likely to have interest to the readers of Respiratory Care.

  1. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties...... differences in DC stimulating properties of bacteria associated with the airway microbiota....... of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella...

  2. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA and World Allergy Organization (WAO document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA and Global Allergy and Asthma European Network (GA2LEN

    Directory of Open Access Journals (Sweden)

    F. Braido

    2016-10-01

    Full Text Available Abstract Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD has led INTERASMA (Global Asthma Association and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled

  3. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA(2)LEN).

    Science.gov (United States)

    Braido, F; Scichilone, N; Lavorini, F; Usmani, O S; Dubuske, L; Boulet, L P; Mosges, R; Nunes, C; Sanchez-Borges, M; Ansotegui, I J; Ebisawa, M; Levi-Schaffer, F; Rosenwasser, L J; Bousquet, J; Zuberbier, T; Canonica, G Walter; Cruz, A; Yanez, A; Yorgancioglu, A; Deleanu, D; Rodrigo, G; Berstein, J; Ohta, K; Vichyanond, P; Pawankar, R; Gonzalez-Diaz, S N; Nakajima, S; Slavyanskaya, T; Fink-Wagner, A; Loyola, C Baez; Ryan, D; Passalacqua, G; Celedon, J; Ivancevich, J C; Dobashi, K; Zernotti, M; Akdis, M; Benjaponpitak, S; Bonini, S; Burks, W; Caraballo, L; El-Sayed, Z Awad; Fineman, S; Greenberger, P; Hossny, E; Ortega-Martell, J A; Saito, H; Tang, M; Zhang, L

    2016-01-01

    Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA(2)LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect

  4. Scintigraphic studies of inflammation in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Line, B.R. (Albany Medical College, New York (USA))

    1991-09-01

    67Ga lung scintigraphy is an established means to assess alveolar inflammation in a wide variety of diffuse lung diseases. It can be used to monitor the extent and activity of the alveolitis during the course of the disease and as a follow-up evaluation to therapy. Although the mechanism of 67Ga localization is not established firmly, the isotope appears to act as a tracer for disturbed protein and cellular fluxes within the interstitium and alveolar spaces. The radiolabeled aerosol study may also be applied to the study of these fluxes as a reflection of inflammation and injury. Although Tc-DTPA clearance studies are highly sensitive to lung injury, they may be too nonspecific to separate lung injury from other physiologic processes effectively. 117 references.

  5. Quantification of neutrophil migration into the lungs of patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Ruparelia, Prina; Summers, Charlotte; Chilvers, Edwin R. [University of Cambridge School of Clinical Medicine, Department of Respiratory Medicine, Cambridge (United Kingdom); Szczepura, Katherine R. [University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Solanki, Chandra K.; Balan, Kottekkattu [Cambridge University Hospitals NHS Foundation Trust, Nuclear Medicine, Addenbrooke' s Hospital, Cambridge (United Kingdom); Newbold, Paul [AstraZeneca R and D Charnwood, Loughborough (United Kingdom); Bilton, Diana [Papworth Hospital NHS Foundation Trust, Cystic Fibrosis and Lung Defence Unit, Papworth Everard (United Kingdom); Peters, A.M. [University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Brighton Sussex Medical School, Brighton (United Kingdom)

    2011-05-15

    To quantify neutrophil migration into the lungs of patients with chronic pulmonary obstructive disease (COPD). Neutrophil loss via airways was assessed by dedicated whole-body counting 45 min, 24 h and 2, 4, 7 and 10 days after injection of very small activities of {sup 111}In-labelled neutrophils in 12 healthy nonsmokers, 5 healthy smokers, 16 patients with COPD (of whom 7 were ex-smokers) and 10 patients with bronchiectasis. Lung accumulation of {sup 99m}Tc-labelled neutrophils was assessed by sequential SPECT and Patlak analysis in six COPD patients and three healthy nonsmoking subjects. Whole body {sup 111}In counts, expressed as percentages of 24 h counts, decreased in all subjects. Losses at 7 days (mean {+-} SD) were similar in healthy nonsmoking subjects (5.5 {+-} 1.5%), smoking subjects (6.5 {+-} 4.4%) and ex-smoking COPD patients (5.8 {+-} 1.5%). In contrast, currently smoking COPD patients showed higher losses (8.0 {+-} 3.0%) than healthy nonsmokers (p = 0.03). Two bronchiectatic patients lost 25% and 26%, indicating active disease; mean loss in the remaining eight was 6.9 {+-} 2.5%. The rate of accumulation of {sup 99m}Tc-neutrophils in the lungs, determined by sequential SPECT, was increased in COPD patients (0.030-0.073 min{sup -1}) compared with healthy nonsmokers (0-0.002 min{sup -1}; p = 0.02). In patients with COPD, sequential SPECT showed increased lung accumulation of {sup 99m}Tc-labelled neutrophils, while whole-body counting demonstrated subsequent higher losses of {sup 111}In-labelled neutrophils in patients who continued to smoke. Sequential SPECT as a means of quantifying neutrophil migration deserves further evaluation. (orig.)

  6. Relationship among bacterial colonization, airway inflam- mation, and bronchodilator response in patients with stable chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Bronchodilator reversibility, a response of airway to bronchodilator, occurred in 64% of stable patients with chronic obstructive pulmonary disease (COPD).1 In patients with COPD who have a significant response to bronchodilators, a clinical and functional response to inhaled corticosteroids is similar to that in asthmatics.2

  7. SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE

    Science.gov (United States)

    SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE. D. M. Brass, J. D. Savov, *S. H. Gavett, ?C. George, D. A. Schwartz. Duke Univ Medical Center Durham, NC, *U.S. E.P.A. Research Triangle Park, NC, ?Univ of Iowa,...

  8. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout...... or pharmacologic blockade would prevent the development of OAD....

  9. Expiratory high-resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hiroaki [St. Marianna Univ. School of Medicine, Kawasaki, Kanagawa (Japan)

    2000-08-01

    Expiratory high-resolution computed tomography (HRCT) is a powerful adjunct to inspiratory HRCT in the diagnosis of diffuse lung disease (DLD), revealing air-trapping even when the inspiratory scan is normal. Expiratory scans are also useful in the differentiation of inhomogeneous lung opacity, which is not uncommon in various types of DLD. The history and technique of expiratory HRCT are described as well as the basic understanding of lung attenuation and the diagnostic value of expiratory scans DLD. The clinical significance of the presence of expiratory air-trapping in the absence of inspiratory scan abnormality is also presented. (author)

  10. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease

    OpenAIRE

    Oh, Dong Kyu; Kim, You-sun; Oh, Yeon-Mok

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have...

  11. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13.

    Science.gov (United States)

    Noverr, Mairi C; Falkowski, Nicole R; McDonald, Rod A; McKenzie, Andrew N; Huffnagle, Gary B

    2005-01-01

    Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota ("microflora"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stable increases in levels of gastrointestinal enteric bacteria and Candida. Using this model, we have previously demonstrated that microbiota disruption can drive the development of a CD4 T-cell-mediated airway allergic response to mold spore challenge in immunocompetent C57BL/6 mice without previous systemic antigen priming. The studies presented here address important questions concerning the universality of the model. To investigate the role of host genetics, we tested BALB/c mice. As with C57BL/6 mice, microbiota disruption promoted the development of an allergic response in the lungs of BALB/c mice upon subsequent challenge with mold spores. In addition, this allergic response required interleukin-13 (IL-13) (the response was absent in IL-13(-/-) mice). To investigate the role of antigen, we subjected mice with disrupted microbiota to intranasal challenge with ovalbumin (OVA). In the absence of systemic priming, only mice with altered microbiota developed airway allergic responses to OVA. The studies presented here demonstrate that the effects of microbiota disruption are largely independent of host genetics and the nature of the antigen and that IL-13 is required for the airway allergic response that follows microbiota disruption.

  12. [Occupational lung diseases other than asbestos- and indium-related disease].

    Science.gov (United States)

    Kimura, Kiyonobu; Nakano, Ikuo; Ohtsuka, Yosinori; Igarashi, Takeshi; Okamoto, Kenzo

    2014-02-01

    In our country, pneumoconiosis used to hold an overwhelmingly majority in respiratory occupational lung diseases. Although the number of pneumoconiosis cases has been decreasing certainly, new cases have been arising even today. In addition, in place of pneumoconiosis or asbestos-related diseases, occupational asthma has become the most common forms of occupational lung disease in many industrialized countries. Occupational asthma has been implicated in 9 to 15% of adult asthma in the United States. Although the environmental causes of occupational lung disease are clear, the mechanisms of the diseases are not fully understood and need to be further elucidated.

  13. Idiopathic airway-centered interstitial fibrosis: report of two cases

    Institute of Scientific and Technical Information of China (English)

    YI Xiang-hua; CHU Hai-qing; CHENG Xiao-ming; LUO Ben-fang; LI Hui-ping

    2007-01-01

    @@ Airway-centered interstitial fibrosis (ACIF), a novel form of diffuse interstitial lung disease (ILD) of unknown cause, was recently presented.1 There is no final conclusion on its property and denomination, and it might be a new type of idiopathic interstitial pneumonia (ⅡP).

  14. Beyond TGFβ : Novel ways to target airway and parenchymal fibrosis

    NARCIS (Netherlands)

    Boorsma, C. E.; Dekkers, B. G. J.; van Dijk, E. M.; Kumawat, K.; Richardson, J.; Burgess, J.K.; John, A. E.

    2014-01-01

    Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of

  15. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  16. Estimation of {sup 123}I-metaiodobenzylguanidine lung uptake in heart and lung diseases. With reference to lung uptake ratio and decrease of lung uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). School of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hiroshi; Koizumi, Tomonori; Sekiguchi, Morie; Gomi, Tsutomu; Yano, Kesato; Itoh, Atsuko

    1997-11-01

    {sup 123}I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was performed in 64 patients with heart and lung diseases. Distribution of MIBG in the chest was evaluated by planar images, using counts ratios of the heart to the mediastinum (H/M) and the unilateral lung to the mediastinum (Lu/M). Most of patients with heart diseases showed obvious lung uptake of MIBG. The ratios of H/M were 1.75{+-}0.20 in the group without heart failure and 1.55{+-}0.19 in the group with heart failure. The ratios of Lu/M in the right and left lung were 1.56{+-}0.16 and 1.28{+-}0.16 in the group without heart failure. And those were 1.45{+-}0.16 and 1.19{+-}0.15 in the group with heart failure. But 3 patients complicated with chronic pulmonary emphysema and one patient with interstitial pneumonia due to dermatomyositis showed markedly decreased lung uptake. The ratios of Lu/M in the right and left lung of these patients were 1.20, 1.17; 1.17, 1.13; 1.01, 0.97 and 1.27, 0.94, respectively. These results suggest that the lung uptake of MIBG may reflect the state of pulmonary endothelial cell function in clinical situations, considering that it has been demonstrated that MIBG may be useful as a marker of pulmonary endothelial cell function in the isolated rat lung. (author)

  17. Cholinergic regulation of airway inflammation and remodelling

    NARCIS (Netherlands)

    Kolahian, Saeed; Gosens, Reinoud

    2012-01-01

    Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway disease

  18. Spray cryotherapy (SCT): institutional evolution of techniques and clinical practice from early experience in the treatment of malignant airway disease

    Science.gov (United States)

    Turner, J. Francis; Parrish, Scott

    2015-01-01

    Background Spray cryotherapy (SCT) was initially developed for gastroenterology (GI) endoscopic use in the esophagus. In some institutions where a device has been utilized by GI, transition to use in the airways by pulmonologists and thoracic surgeons occurred. Significant differences exist, however, in the techniques for safely using SCT in the airways. Methods We describe the early experience at Walter Reed National Military Medical Center from 2011 to 2013 using SCT in patients with malignant airway disease and the evolution of our current techniques and clinical practice patterns for SCT use in patients. In November 2013 enrollment began in a multi-institutional prospective SCT registry in which we are still enrolling and will be reported on separately. Results Twenty-seven patients that underwent 80 procedures (2.96 procedures/patient). The average age was 63 years with a range of 20 to 87 years old. The average Eastern Cooperative Oncology Group (ECOG) status was 1.26. All malignancies were advanced stage disease. All procedures were performed in the central airways. Other modalities were used in combination with SCT in 31 (39%) of procedures. Additionally 45 of the 80 (56%) procedures were performed in proximity to a silicone, hybrid, or metal stent. Three complications occurred out of the 80 procedures. All three were transient hypoxia that limited continued SCT treatments. These patients were all discharged from the bronchoscopy recovery room to their pre-surgical state. Conclusions SCT can be safely used for treatment of malignant airway tumor (MAT) in the airways. Understanding passive venting of the nitrogen gas produced as the liquid nitrogen changes to gas is important for safe use of the device. Complications can be minimized by adopting strict protocols to maximize passive venting and to allow for adequate oxygenation in between sprays. PMID:26807288

  19. Unusual progression and subsequent improvement in cystic lung disease in a child with radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael S. [Monroe Carell Jr. Children' s Hospital at Vanderbilt, Department of Pediatrics, Nashville, TN (United States); Chadha, Ashley D. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Carroll, Clinton M.; Borinstein, Scott C. [Vanderbilt University School of Medicine, Division of Hematology and Oncology, Department of Pediatrics, Nashville, TN (United States); Young, Lisa R. [Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Department of Pediatrics, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Nashville, TN (United States); Vanderbilt University School of Medicine, Division of Pulmonary Medicine, Nashville, TN (United States)

    2015-07-15

    Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. (orig.)

  20. CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Hiroshi; Kang, Eun-Young; Kwong, S. [Univ. of British Columbia and Vancouver Hospital and Health Sciences Centre (Canada)] [and others

    1996-03-01

    Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodes (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.

  1. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model

    Science.gov (United States)

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu

    2016-01-01

    Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  2. Defective lung macrophage function in lung cancer ± chronic obstructive pulmonary disease (COPD/emphysema)-mediated by cancer cell production of PGE2?

    Science.gov (United States)

    Dehle, Francis C; Mukaro, Violet R; Jurisevic, Craig; Moffat, David; Ahern, Jessica; Hodge, Greg; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2013-01-01

    In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective 'efferocytosis'), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells. We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis. Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown. Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.

  3. Temperature effects on outpatient visits of respiratory diseases, asthma, and chronic airway obstruction in Taiwan

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-07-01

    This study evaluated the risk of outpatient visits for respiratory diseases, asthma, and chronic airway obstruction not elsewhere classified (CAO) associated with ambient temperatures and extreme temperature events from 2000 to 2008 in Taiwan. Based on geographical and socioeconomics characteristics, this study divided the whole island into seven areas. A distributed lag non-linear model was used to estimate the area-disease-specific cumulative relative risk (RR), and random-effect meta-analysis was used to estimate the pooled RR of outpatient visits, from lag 0 to lag 7 days, associated with daily temperature, and added effects of prolonged extreme heat and cold for population of all ages, the elderly and younger than 65 years. Pooled analyses showed that younger population had higher outpatient visits for exposing to low temperature of 18 °C, with cumulative 8-day RRs of 1.36 (95 % confidence interval (CI) 1.31-1.42) for respiratory diseases, 1.10 (95 % CI 1.03-1.18) for asthma, and 1.12 (95 % CI 1.02-1.22) for CAO. The elderly was more vulnerable to high temperature of 30 °C with the cumulative 8-day RR of 1.08 (95 % CI 1.03-1.13) for CAO. Elevated outpatient visits for all respiratory diseases and asthma were associated with extreme heat lasting for 6 to 8 days. On the contrary, the extreme cold lasting more than 8 days had significant negative association with outpatient visits of all respiratory diseases. In summary, elderly patients of respiratory diseases and CAO are vulnerable to high temperature. Cold temperature is associated with all types of respiratory diseases for younger patients.

  4. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    airway and the function of the lungs (decreased residual capacity and aggravated ventilation perfusion mismatch) worse than in lean patients. Proper planning and preparation of airway management is essential, including elevation of the patient's upper body, head and neck. Preoxygenation is mandatory...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...... pressure, noninvasive ventilation and physiotherapy....

  5. Is airway inflammation in chronic obstructive pulmonary disease (COPD) a risk factor for cardiovascular events?

    Science.gov (United States)

    Calverley, Peter M A; Scott, Stephen

    2006-12-01

    Cardiovascular disease (CVD) is a very common cause of death in patients with chronic obstructive pulmonary disease (COPD). Smoking is a well-described risk factor for both COPD and CVD, but CVD in patients with COPD is likely to be due to other factors in addition to smoking. Inflammation may be an important common etiological link between COPD and CVD, being well described in both diseases. It is hypothesized that in COPD a "spill-over" of local airway inflammation into the systemic circulation could contribute to increased CVD in these patients. Inhaled corticosteroids (ICS) have well-documented anti-inflammatory effects and are commonly used for the treatment of COPD, but their effects on cardiovascular endpoints and all-cause mortality have only just started to be examined. A recent meta-analysis has suggested that ICS may reduce all-cause mortality in COPD by around 25%. A case-controlled study specifically examined the effects of ICS on myocardial infarction and suggested that ICS may decrease the incidence of MI by as much as 32%. A large multicenter prospective randomized trial (Towards a Revolution in COPD Health [TORCH]) is now ongoing and will examine the effect of fluticasone propionate in combination with salmeterol on all-cause mortality.

  6. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Oh, Dong Kyu; Kim, You-Sun; Oh, Yeon-Mok

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have been undertaken, to try and regenerate destroyed lungs in animal models of COPD. Both the cell and drug therapies show promising results. However, in contrast to the successes in laboratories, no clinical trials have exhibited satisfactory efficacy, although they were generally safe and tolerable. In this article, we review the previous experimental and clinical trials, and summarize the recent advances in lung regeneration therapy for COPD. Furthermore, we discuss the current limitations and future perspectives of this emerging field.

  7. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties o

  8. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways.

    Science.gov (United States)

    Vucic, Emily A; Chari, Raj; Thu, Kelsie L; Wilson, Ian M; Cotton, Allison M; Kennett, Jennifer Y; Zhang, May; Lonergan, Kim M; Steiling, Katrina; Brown, Carolyn J; McWilliams, Annette; Ohtani, Keishi; Lenburg, Marc E; Sin, Don D; Spira, Avrum; Macaulay, Calum E; Lam, Stephen; Lam, Wan L

    2014-05-01

    DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.

  9. Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)

    Science.gov (United States)

    Szabari, Margit V.; Kelly, Vanessa J.; Applegate, Matthew B.; Chee, Chunmin; Tan, Khay M.; Hariri, Lida P.; Harris, R. Scott; Winkler, Tilo; Suter, Melissa J.

    2016-03-01

    Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.

  10. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Keet Mary

    2006-03-01

    Full Text Available Abstract Background Lung disease in cystic fibrosis (CF patients is dominated by chronic inflammation with an early and inappropriate influx of neutrophils causing airway destruction. Congenic C57BL/6 CF mice develop lung inflammatory disease similar to that of patients. In contrast, lungs of congenic BALB/c CF mice remain unaffected. The basis of the neutrophil influx to the airways of CF patients and C57BL/6 mice, and its precipitating factor(s (spontaneous or infection induced remains unclear. Methods The lungs of 20-day old congenic C57BL/6 (before any overt signs of inflammation and BALB/c CF mouse lines maintained in sterile environments were investigated for distinctions in the neutrophil chemokines S100A8 and S100A9 by quantitative RT-PCR and RNA in situ hybridization, that were then correlated to neutrophil numbers. Results The lungs of C57BL/6 CF mice had spontaneous and significant elevation of both neutrophil chemokines S100A8 and S100A9 and a corresponding increase in neutrophils, in the absence of detectable pathogens. In contrast, BALB/c CF mouse lungs maintained under identical conditions, had similar elevations of S100A9 expression and resident neutrophil numbers, but diverged in having normal levels of S100A8. Conclusion The results indicate early and spontaneous lung inflammation in CF mice, whose progression corresponds to increased expression of both S100A8 and S100A9, but not S100A9 alone. Moreover, since both C57BL/6 and BALB/c CF lungs were maintained under identical conditions and had similar elevations in S100A9 and neutrophils, the higher S100A8 expression in the former (or suppression in latter is a result of secondary genetic influences rather than environment or differential infection.

  11. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    Science.gov (United States)

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency.

  12. Bleb Point: Mimicker of Pneumothorax in Bullous Lung Disease

    Directory of Open Access Journals (Sweden)

    Gelabert, Christopher

    2015-05-01

    Full Text Available In patients presenting with severe dyspnea, several diagnostic challenges arise in distinguishing the diagnosis of pneumothorax versus several other pulmonary etiologies like bullous lung disease, pneumonia, interstitial lung disease, and acute respiratory distress syndrome. Distinguishing between large pulmonary bullae and pneumothorax is of the utmost importance, as the acute management is very different. While multiple imaging modalities are available, plain radiographs may be inadequate to make the diagnosis and other advanced imaging may be difficult to obtain. Ultrasound has a very high specificity for pneumothorax. We present a case where a large pulmonary bleb mimics the lung point and therefore inaccurately suggests pneumothorax. [West J Emerg Med. 2015;16(3:447–449.

  13. Approaches to prevent the patients with chronic airway diseases from exacerbation in the haze weather.

    Science.gov (United States)

    Ren, Jin; Li, Bo; Yu, Dan; Liu, Jing; Ma, Zhongsen

    2016-01-01

    Haze weather is becoming one of the biggest problems in many big cities in China. It triggers both public anxiety and official concerns. Particulate matter (PM) plays the most important role in causing the adverse health effects. Chemical composition of PM2.5 includes primary particles and secondary particles. The toxicological mechanisms of PM2.5 to the human body include the oxidative stress, inflammation and carcinogenesis. Short or long-term exposure to PM (especially PM2.5) can cause a series of symptoms including respiratory symptoms such as cough, wheezing and dyspnea as well as other symptoms. There are positive associations between PM2.5 and mortality due to a number of causes. PM2.5 is considered to contribute to the onset of asthma, the exacerbation of chronic obstructive pulmonary disease (COPD) in haze weather. Some approaches including outdoor health care, indoor health care and preventive medications can prevent the patients with chronic airway diseases from exacerbations.

  14. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    Science.gov (United States)

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-04-05

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema.

  15. Regulation and Functional Significance of Airway Surface Liquid pH

    Directory of Open Access Journals (Sweden)

    Coakley RD

    2001-07-01

    Full Text Available In gastrointestinal tissues, cumulative evidence from both in vivo and in vitro studies suggests a role for the cystic fibrosis transmembrane conductance regulator (CFTR in apical epithelial bicarbonate conductance. Abnormal lumenal acidification is thus hypothesized to play a role in the genesis of cystic fibrosis (CF pancreatic disease. However, consensus regarding CFTR's participation in pH regulation of airway surface liquid (ASL and thus the contribution of ASL pH to the etiology of CF lung disease, is lacking. The absence of data reflects difficulties in both sampling ASL in vivo and modeling ASL biology in vitro. Here we evaluate the evidence in support of a lumenal acidification hypothesis in the CF lung, summarize current knowledge of pH regulation in the normal airway and illustrate how hyper-acidified airway secretions could contribute to the pathogenesis of CF lung disease.

  16. Lung Dendritic cells: Targets for therapy in allergic disease

    NARCIS (Netherlands)

    B.N.M. Lambrecht (Bart)

    2008-01-01

    textabstractDendritic cells are crucial in determining the functional outcome of allergen encounter in the lung. Antigen presentation by myeloid DCs leads to Th2 sensitization typical of allergic disease, whereas antigen presentation by plasmacytoid DCs serves to dampen inflammation. It is increasin

  17. Rheumatoid interstitial lung disease presenting as cor pulmonale

    Directory of Open Access Journals (Sweden)

    Acharya Sourya

    2010-01-01

    Full Text Available Rheumatiod arthritis (RA is a multisystem connective tissue disorder. The predominant presentation is polyarticular, symmetric peripheral arthritis with relative sparing of axial skeleton. Inflammatory synovitis is the pathologic hallmark. Extra-articular manifestations of RA can involve several other organ systems and amongst them pulmonary manifestations occur commonly. We report a case of rheumatoid interstitial lung disease presenting as cor pulmonale.

  18. Rheumatoid interstitial lung disease presenting as cor pulmonale.

    Science.gov (United States)

    Acharya, Sourya; Mahajan, S N; Shukla, Samarth; Diwan, S K; Banode, Pankaj; Kothari, Nirmesh

    2010-10-01

    Rheumatiod arthritis (RA) is a multisystem connective tissue disorder. The predominant presentation is polyarticular, symmetric peripheral arthritis with relative sparing of axial skeleton. Inflammatory synovitis is the pathologic hallmark. Extra-articular manifestations of RA can involve several other organ systems and amongst them pulmonary manifestations occur commonly. We report a case of rheumatoid interstitial lung disease presenting as cor pulmonale.

  19. Occupational lung diseases and the mining industry in Mongolia.

    Science.gov (United States)

    Lkhasuren, Oyuntogos; Takahashi, Ken; Dash-Onolt, Lkhamsuren

    2007-01-01

    Mining production has accounted for around 50% of the gross industrial product in Mongolia since 1998. Dust-induced chronic bronchitis and pneumoconiosis currently account for the largest relative share (67.8%) of occupational diseases in Mongolia, and cases are increasing annually. In 1967-2004, medically diagnosed cases of occupational diseases in Mongolia numbered 7,600. Of these, 5,154 were confirmed cases of dust-induced chronic bronchitis and pneumoconiosis. Lung diseases and other mining-sector health risks pose major challenges for Mongolia. Gold and coal mines, both formal and informal, contribute significantly to economic growth, but the prevalence of occupational lung diseases is high and access to health care is limited. Rapid implementation of an effective national program of silicosis elimination and pneumoconiosis reduction is critical to ensure the health and safety of workers in this important sector of the Mongolian economy.

  20. Rare Lung Diseases III: Pulmonary Langerhans’ Cell Histiocytosis

    Directory of Open Access Journals (Sweden)

    Stephen C Juvet

    2010-01-01

    Full Text Available Pulmonary Langerhans’ cell histiocytosis (PLCH is an unusual cystic lung disease that is also characterized by extrapulmonary manifestations. The current review discusses the presenting features and relevant diagnostic testing and treatment options for PLCH in the context of a clinical case. While the focus of the present article is adult PLCH and its pulmonary manifestations, it is important for clinicians to distinguish the adult and pediatric forms of the disease, as well as to be alert for possible extrapulmonary complications. A major theme of the current series of articles on rare lung diseases has been the translation of insights gained from fundamental research to the clinic. Accordingly, the understanding of dendritic cell biology in this disease has led to important advances in the care of patients with PLCH.

  1. Occupational lung diseases and the mining industry in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Lkhasuren, O.; Takahashi, K.; Dash-Onolt, L. [Health Science University of Mongolia, Ulaanbaatar (Mongolia)

    2007-04-15

    Mining production has accounted for around 50% of the gross industrial product in Mongolia since 1998. Dust-induced chronic bronchitis and pneumoconiosis currently account for the largest relative share (67.8%) of occupational diseases in Mongolia, and cases are increasing annually. In 1967-2004, medically diagnosed cases of occupational diseases in Mongolia numbered 7,600. Of these, 5,154 were confirmed cases of dust-induced chronic bronchitis and pneumoconiosis. Lung diseases and other mining-sector health risks pose major challenges for Mongolia. Gold and coal mines, both formal and informal, contribute significantly to economic growth, but the prevalence of occupational lung diseases is high and access to health care is limited. Rapid implementation of an effective national program of silicosis elimination and pneumoconiosis reduction is critical to ensure the health and safety of workers in this important sector of the Mongolian economy.

  2. Precision cut lung slices : An in vitro model to study the role of Tgfβ1 and muscarinic receptors in airway remodeling

    NARCIS (Netherlands)

    Oenema, Tjitske; Maarsingh, Harm; Smit, Marieke; Groothuis, Genoveva; Meurs, Hermanus; Gosens, Reinoud

    2012-01-01

    RATIONALE: Airway remodelling in chronic asthma is characterized by thickening of the airway wall, including thickening of the smooth muscle layer. Although studies using cellular and molecular models have provided important insights into the mechanisms that underpin airway remodelling, limitations

  3. Interstitial lung disease induced by alectinib (CH5424802/RO5424802).

    Science.gov (United States)

    Ikeda, Satoshi; Yoshioka, Hiroshige; Arita, Machiko; Sakai, Takahiro; Sone, Naoyuki; Nishiyama, Akihiro; Niwa, Takashi; Hotta, Machiko; Tanaka, Tomohiro; Ishida, Tadashi

    2015-02-01

    A 75-year-old woman with anaplastic lymphoma kinase (ALK)-rearranged Stage IV lung adenocarcinoma was administered the selective anaplastic lymphoma kinase inhibitor, alectinib, as a third-line treatment in a Phase 1-2 study. On the 102nd day, chest computed tomography showed diffuse ground glass opacities. Laboratory data revealed high serum levels of KL-6, SP-D and lactate dehydrogenase without any clinical symptoms. There was no evidence of infection. Marked lymphocytosis was seen in bronchoalveolar lavage fluid analysis, and transbronchial lung biopsy showed mild thickening of alveolar septa and lymphocyte infiltration. Interstitial lung disease was judged to be related to alectinib based on improvements in imaging findings and serum biomarkers after discontinuation of alectinib. To our knowledge, this is the first reported case of alectinib-induced interstitial lung disease. Alectinib is a promising drug for ALK-rearranged non-small cell lung cancer. Clinical trials of this selective anaplastic lymphoma kinase inhibitor will facilitate the meticulous elucidation of its long-term safety profile.

  4. COPD in Nonsmokers: Reports from the Tunisian Population-Based Burden of Obstructive Lung Disease Study.

    Directory of Open Access Journals (Sweden)

    Meriam Denguezli

    Full Text Available It's currently well known that smoking and increasing age constitute the most important risk factors for chronic obstructive pulmonary disease (COPD. However, little is known about COPD among nonsmokers. The present study aimed to investigate prevalence, risk factors and the profiles of COPD among nonsmokers based on the Tunisian Burden of Obstructive Lung Disease (BOLD study.807 adults aged 40 years+ were randomly selected from the general population. We collected information about history of respiratory disease, risk factors for COPD and quality of life. Post-bronchodilator spirometry was performed for assessment of COPD. COPD diagnostic was based on the post-bronchodilator FEV1/FVC ratio, according to the Global Initiative for Obstructive Lung Disease (GOLD guidelines. The lower limit of normal (LLN was determined as an alternative threshold for the FEV1/FVC ratio.Among 485 nonsmokers, 4.7% met the criteria for GOLD grade I and higher COPD. These proportions were similar even when the LLN was used as a threshold. None of the nonsmokers with COPD reported a previous doctor diagnosis of COPD compared to 7.1% of smokers. Nonsmokers accounted for 45.1% of the subjects fulfilling the GOLD spirometric criteria of COPD. Nonsmokers were predominately men and reported more asthma problems than obstructed smokers. Among nonsmokers significantly more symptoms and higher co-morbidity were found among those with COPD. Increasing age, male gender, occupational exposure, lower body mass index and a previous diagnosis of asthma are associated with increased risk for COPD in nonsmokers. This study confirms previous evidence that nonsmokers comprise a substantial proportion of individuals with COPD. Nonsmokers with COPD have a specific profile and should, thus, receive far greater attention to prevent and treat chronic airway obstruction.

  5. COPD in Nonsmokers: Reports from the Tunisian Population-Based Burden of Obstructive Lung Disease Study

    Science.gov (United States)

    Denguezli, Meriam; Daldoul, Hager; Harrabi, Imed; Gnatiuc, Louisa; Coton, Sonia; Burney, Peter; Tabka, Zouhair

    2016-01-01

    Background It’s currently well known that smoking and increasing age constitute the most important risk factors for chronic obstructive pulmonary disease (COPD). However, little is known about COPD among nonsmokers. The present study aimed to investigate prevalence, risk factors and the profiles of COPD among nonsmokers based on the Tunisian Burden of Obstructive Lung Disease (BOLD) study. Methods 807 adults aged 40 years+ were randomly selected from the general population. We collected information about history of respiratory disease, risk factors for COPD and quality of life. Post-bronchodilator spirometry was performed for assessment of COPD. COPD diagnostic was based on the post-bronchodilator FEV1/FVC ratio, according to the Global Initiative for Obstructive Lung Disease (GOLD) guidelines. The lower limit of normal (LLN) was determined as an alternative threshold for the FEV1/FVC ratio. Results and Conclusions Among 485 nonsmokers, 4.7% met the criteria for GOLD grade I and higher COPD. These proportions were similar even when the LLN was used as a threshold. None of the nonsmokers with COPD reported a previous doctor diagnosis of COPD compared to 7.1% of smokers. Nonsmokers accounted for 45.1% of the subjects fulfilling the GOLD spirometric criteria of COPD. Nonsmokers were predominately men and reported more asthma problems than obstructed smokers. Among nonsmokers significantly more symptoms and higher co-morbidity were found among those with COPD. Increasing age, male gender, occupational exposure, lower body mass index and a previous diagnosis of asthma are associated with increased risk for COPD in nonsmokers. This study confirms previous evidence that nonsmokers comprise a substantial proportion of individuals with COPD. Nonsmokers with COPD have a specific profile and should, thus, receive far greater attention to prevent and treat chronic airway obstruction. PMID:27010214

  6. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone

    OpenAIRE

    Gallos, George; Townsend, Elizabeth; Yim, Peter; Virag, Laszlo; Zhang, Yi; Xu, Dingbang; Bacchetta, Matthew; Emala, Charles W.

    2012-01-01

    Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the ab...

  7. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  8. NGS meta data analysis for identification of SNP and INDEL patterns in human airway transcriptome: A preliminary indicator for lung cancer

    Directory of Open Access Journals (Sweden)

    Sathya B.

    2015-03-01

    Full Text Available High-throughput sequencing of RNA (RNA-Seq was developed primarily to analyze global gene expression in different tissues. It is also an efficient way to discover coding SNPs and when multiple individuals with different genetic backgrounds were used, RNA-Seq is very effective for the identification of SNPs. The objective of this study was to perform SNP and INDEL discoveries in human airway transcriptome of healthy never smokers, healthy current smokers, smokers without lung cancer and smokers with lung cancer. By preliminary comparative analysis of these four data sets, i