WorldWideScience

Sample records for airway diameter behavior

  1. The influence of upper airways diameter on the intensity of obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Jolanta Szymańska

    2014-03-01

    Full Text Available Introduction and Objective. Obstructive sleep apnea (OSA is characterized by at least 5 ten-second-long episodes of apnea or hypopnea, per hour of sleep. This disease may lead to severe, life-threatening complications. Therefore, risk analysis and its influence on disease intensity is crucial for proper implementation of preventive treatments. Objective. To determine the relation between the intensity of OSA expressed in Apnea-Hypopnea Index (AHI, and the anterior-posterior diameter of upper airways at the levels of soft palate and tongue base. Material and Method. Medical records of 41 patients with sleep apnea (AHI>4 diagnosed through polysomnographic examination obstructive were used for the study. The data consisted of: age and gender, polysomnographic examination results (AHI, lateral cephalogram with cephalomertic analysis, together with measurements of the upper and lower pharyngeal depth according to McNamara. Statistical analysis was carried out in accordance with Pearson’s r correlation coefficient test (Statistica 8.0 software package. Results. Analysis of the influence of upper airways diameter on the intensity of OSA showed that the value of upper Airways diameter at the tongue base level had no statistically significant impact on the value of AHI (p=0.795. However, a statistically significant impact of the value of upper airways diameter on the AHI value (p=0.008 at the soft palate level was observed. Patients with OSA have narrowed upper airways diameter. The value of AHI increases with the decrease of upper diameter and is not dependent on a lower diameter value. Patients with a decreased upper airways diameter should be informed about potential breathing disorders during sleep.

  2. Effect of HFNC flow rate, cannula size, and nares diameter on generated airway pressures: an in vitro study.

    Science.gov (United States)

    Sivieri, Emidio M; Gerdes, Jeffrey S; Abbasi, Soraya

    2013-05-01

    Increased use of non-invasive forms of respiratory support such as CPAP and HFNC in premature infants has generated a need for further investigation of the pulmonary effects of such therapies. In a series of in vitro tests, we measured delivered proximal airway pressures from a HFNC system while varying both the cannula flow and the ratio of nasal prong to simulated nares diameters. Neonatal and infant sized nasal prongs (3.0 and 3.7 mm O.D.) were inserted into seven sizes of simulated nares (range: 3-7 mm I.D. from anatomical measurements in 1-3 kg infants) for nasal prong-to-nares ratios ranging from 0.43 to 1.06. The nares were connected to an active test lung set at: TV 10 ml, 60 breaths/min, Ti 0.35 sec, compliance 1.6 ml/cm H₂O and airway resistance 70 cm H₂O/(L/sec), simulating a 1-3 kg infant with moderately affected lungs. A Fisher & Paykel Healthcare HFNC system with integrated pressure relief valve was set to flow rates of 1-6 L/min while cannula and airway pressures and cannula and mouth leak flows were measured during simulated mouth open, partially closed and fully closed conditions. Airway pressure progressively increased with both increasing HFNC flow rate and nasal prong-to-nares ratio. At 6 L/min HFNC flow with mouth open, airway pressures remained 0.9 and 50% mouth leak, airway pressures rapidly increased to 18 cm H₂O at 2 L/min HFNC flow followed by a pressure relief valve limited increase to 24 cm H₂O at 6 L/min. Safe and effective use of HFNC requires careful selection of an appropriate nasal prong-to-nares ratio even with an integrated pressure relief valve. PMID:22825878

  3. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    Science.gov (United States)

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  4. Effects of CNT Diameter on the Uniaxial Stress-Strain Behavior of CNT/Epoxy Composites

    OpenAIRE

    Chang, Y. W.; Yu, N.

    2008-01-01

    The present work studies the effects of the diameter of carbon nanotube (CNT) as well as CNT weight fraction on the uniaxial stress-strain behavior, stiffness, and strength of CNT-reinforced epoxy-matrix composites. The experimental results show that average Young's moduli of 5 wt%-CNT/epoxy composites with a CNT diameter D

  5. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    Energy Technology Data Exchange (ETDEWEB)

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.; Glenny, Robb W.; Minard, Kevin R.; Carson, James P.; Jiao, Xiangmin; Jacob, Richard E.; Cox, Timothy C.; Postlethwait, Edward M.; Corley, Richard A.

    2012-04-24

    We examine a previously published branch-based approach to modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that account for it. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from selfconsistency exist we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. Measurement error has an important impact on the estimated morphometry models and needs to be accounted for in the analysis.

  6. Effects of Initial Pore Diameter on the Oil Absorption Behavior of Potato Chips during Frying Process.

    Science.gov (United States)

    Li, Jinwei; Zhang, Tingting; Liu, Yuanfa; Fan, Liuping

    2016-01-01

    How initial pore diameter in materials affects oil absorption has been rarely studied up to now. Herein, we provided direct data evidence suggesting that the pore diameter prior to frying closely related to the oil absorption behavior. The pore had no significant effect on oil absorption of potato chips (p>0.05) when its diameter was 0.1 and 0.2 mm compared with the control. However, the oil absorption increased with the increasing of pore diameter when it was 0.3-1.2 mm. The oil absorption tended to be saturated at 0.9 mm pore diameter. In addition, we analyzed the moisture content, total oil (TO), surface oil (SO), penetrated surface oil (PSO) and structural oil (STO) contents of potato chips. The results when using palm oil showed that there was no significant difference in moisture, TO and STO contents of samples with pore diameter of 0.1 and 0.2 mm during the whole frying processing respectively compared with the control (p>0.05). When pore diameter was 0.3-1.2 mm, STO and TO contents significantly increased with the rising of the diameter (p0.05). STO fraction gave the greatest contribution to the increment of oil absorption. PMID:27041514

  7. Behavioral training for increasing preschool children's adherence with positive airway pressure: a preliminary study.

    Science.gov (United States)

    Slifer, Keith J; Kruglak, Deborah; Benore, Ethan; Bellipanni, Kimberly; Falk, Lroi; Halbower, Ann C; Amari, Adrianna; Beck, Melissa

    2007-01-01

    Behavioral training was implemented to increase adherence with positive airway pressure (PAP) in 4 preschool children. The training employed distraction, counterconditioning, graduated exposure, differential reinforcement, and escape extinction. A non-concurrent multiple baseline experimental design was used to demonstrate program effects. Initially, the children displayed distress and escape-avoidance behavior when PAP was attempted. With training, all 4 children tolerated PAP while sleeping for age appropriate durations. For the 3 children with home follow-up data, the parents maintained benefits. The results are discussed in relation to behavior principles, child health, and common barriers to PAP adherence.

  8. Evidence that behavioral depression does not influence airway cell influx in allergic rats.

    OpenAIRE

    Marcos A. Varriano; Varriano, Ana A.; Fernanda Datti; Marcelo Datti; Edson Antunes; Nancy A. Teixeira

    2001-01-01

    This study was designated to evaluate the influence of behavioral depression on the airway leukocyte recruitment in allergic animals. To achieve this, total and differential cell counts in bronchoalveolar (BAL) fluid of ovalbumin (OVA)-sensitized and depressed rats was evaluated. Inescapable electric footshock, applied on day 0, 7 and 13 after OVA sensitization, was used as a model to induce depression. In both non-depressed and depressed groups, the number of total and differential cells (eo...

  9. Effects of hunger level and tube diameter on thefeeding behavior of teat-fed dairy calves

    DEFF Research Database (Denmark)

    Herskin, Mette S; Skjøth, Flemming; Jensen, Margit Bak

    2010-01-01

    Behavioral changes caused by variation in hunger have a great potential in health monitoring in dairy cattle. The present experiment used 48 Danish Holstein bull calves with a median age of 33 d. We examined the effect of different levels of hunger (reduced, in which calves were fed 1.5 L of milk...... a 40-min period after morning milk feeding on d 7, 9, and 11 of testing is reported. No significant interactions between tube diameter and hunger level on behavior were found. Reduced tube diameter led to increased latency to empty the teat bucket, increased duration of nutritive sucking, and decreased...... duration of nonnutritive sucking for calves fed via 1.5-mm tubes compared with calves in the 2 other treatments. The duration of nonnutritive sucking increased with increasing level of hunger. Furthermore, calves with reduced hunger showed a lower frequency of butting than calves at the 2 other hunger...

  10. Effects of CNT Diameter on the Uniaxial Stress-Strain Behavior of CNT/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    N. Yu

    2008-01-01

    Full Text Available The present work studies the effects of the diameter of carbon nanotube (CNT as well as CNT weight fraction on the uniaxial stress-strain behavior, stiffness, and strength of CNT-reinforced epoxy-matrix composites. The experimental results show that average Young's moduli of 5 wt%-CNT/epoxy composites with a CNT diameter D<20 nm and D=40∼60 nm are 4.56 GPa and 4.36 GPa, and the average tensile strengths are 52.89 MPa and 46.80 MPa, respectively, which corresponds to a percentage increase of 61.1%, 54.1%, 106%, and 82.3%, respectively. Two micromechanics models are employed and the predicted Young's moduli are benchmarked with the experimental data of MWCNT-reinforced epoxy-matrix composites.

  11. A joint computational respiratory neural network-biomechanical model for breathing and airway defensive behaviors

    Directory of Open Access Journals (Sweden)

    Russell eO'Connor

    2012-07-01

    Full Text Available Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects. Here we describe the model and some aspects of its behavior when linked to a computational brainstem respiratory network model for breathing and airway defensive behavior composed of discrete integrate and fire populations. The network incorporated multiple circuit paths and operations for tuning inspiratory drive suggested by prior work. Results from neuromechanical system simulations included generation of a eupneic-like breathing pattern and the observation that increased respiratory drive and operating volume result in higher peak flow rates during cough, even when the expiratory drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential elimination of the model’s sources of inspiratory drive during cough also suggested a role for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently supported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies with experimental results, and some model limitations are noted.

  12. Annealing Behavior of New Micro-defects in p-type Large-diameter CZ-Si Crystal

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New types of defects in 15.24 cm diameter and 20.32 cm diameter Czochralski silicon crystals were found after SCI cleaning. Their annealing behavior was studied. It was suggested that these defects become larger during high temperature annealing and disappear by annealing at 1250℃.

  13. Behavioral inhibition in rhesus monkeys (Macaca mulatta is related to the airways response, but not immune measures, commonly associated with asthma.

    Directory of Open Access Journals (Sweden)

    Katie Chun

    Full Text Available Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean=1.25 years, n=24 behaviorally inhibited animals, we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+. Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p=0.031, confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation within

  14. Experimental and computational investigations of surfactant physicochemical behavior during conditions emulating the opening of pulmonary airways

    Science.gov (United States)

    Ghadiali, Samir Nuruddin

    2000-10-01

    We have investigated the mechanical influence of surfactant physicochemical properties on the progression of a semi-infinite air bubble in a fluid filled rigid capillary. This system mimics the continual interfacial expansion dynamics that occur during the opening of collapsed pulmonary airways. The goal of this study is to ascertain the surfactant physicochemical properties that are responsible for reducing airway reopening pressures that may damage lung epithelial cells. To accomplish this goal, we have developed experimental and computational models of this system. The experimental model is used to measure the ability of various surfactants to alter the reopening pressure. The non-physiologic surfactant, SDS, is capable of reducing the interfacial stresses that elevate the reopening pressure, the main component of pulmonary surfactant, L-alpha-dipalmitoyl phosphatidylcholine (DPPC), exhibits large stresses, and the clinically relevant surfactant, Infasurf, reduces the reopening pressure but maintains a surface shear or Marangoni stress. Infasurf's behavior suggests that optimal surfactant properties will reduce the reopening pressures that may damage airway epithelial cells while maintaining the Marangoni stress that enhances airway stability. Analysis of the experimental data is based on a modification of previous theoretical models which can not simulate non-equilibrium conditions near the bubble tip. Therefore, we have developed a theoretical model of surfactant effects that is capable of simulating these non-equilibrium dynamics. The coupled governing equations for fluid mechanics, molecular transport, and interfacial dynamics, are solved using a combined boundary element, dual reciprocity boundary element, and finite difference scheme. Scaling of the governing equations yields dimensionless parameters that identify the relative importance of surfactant physicochemical properties. Independent parameter variation studies are used to investigate how individual

  15. Airway statuses and nasopharyngeal airway use for airway obstruction in syndromic craniosynostosis.

    Science.gov (United States)

    Kouga, Takeshi; Tanoue, Koji; Matsui, Kiyoshi

    2014-05-01

    Syndromic craniosynostosis is associated with a high rate of respiratory difficulty, due mainly to midfacial hypoplasia. Nasopharyngeal airway establishment has been reported as the first-line approach to airway obstruction and may obviate the need for a highly invasive tracheotomy. No previous studies have compared airway obstruction status in syndromic craniosynostosis between cases requiring and not requiring airway managements. We focus on nasopharyngeal airway use and airway status outcomes to assess respiratory difficulty in patients with syndromic craniosynostosis. A retrospective data analysis of 51 cases with syndromic craniosynostosis was carried out. We divided 30 of the 51 cases with lateral pharyngeal x-rays taken before operations affecting airway diameters into 2 groups, one with neither nasopharyngeal airway insertion nor tracheotomy and the other with one or both of these interventions, and the mean diameters for 8 indices related to the pharyngeal space were compared. Cases with respiratory difficulty due to nasopharyngeal stenosis and requiring airway managements comprised a significantly higher proportion of those with Pfeiffer syndrome than patients with Crouzon or Apert syndrome. Comparative examination of lateral x-ray cephalometry between cases with neither nasopharyngeal airway insertion nor tracheotomy and cases with one or both revealed oropharyngeal diameters tended to be smaller in those with interventions. Cases requiring nasopharyngeal airway insertion were able to continue nasopharyngeal airway use for more than 1 year and a considerable number avoided tracheotomy. It may be worth considering an oropharyngeal-bypass nasopharyngeal airway before performing a tracheotomy. PMID:24820706

  16. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    Directory of Open Access Journals (Sweden)

    Yongseok Jang

    2014-08-01

    Full Text Available The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3− and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD. Electrochemical impedance spectroscopy (EIS was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  17. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.

    Science.gov (United States)

    Montini-Ballarin, Florencia; Calvo, Daniel; Caracciolo, Pablo C; Rojo, Francisco; Frontini, Patricia M; Abraham, Gustavo A; V Guinea, Gustavo

    2016-07-01

    To these days, the production of a small diameter vascular graft (electrospun bilayered small-diameter vascular grafts made of two different bioresorbable synthetic polymers, segmented poly(ester urethane) and poly(L-lactic acid), that mimic the biomechanical characteristics of elastin and collagen is investigated. A J-shaped response when subjected to internal pressure was observed as a cause of the nanofibrous layered structure, and the materials used. Compliance values were in the order of natural coronary arteries and very close to the bypass gold standard-saphenous vein. The suture retention strength and burst pressure values were also in the range of natural vessels. Therefore, the bilayered vascular grafts presented here are very promising for future application as small-diameter vessel replacements. PMID:26872337

  18. Dispersion behavior of torsional guided waves in a small diameter steel gas pipe

    OpenAIRE

    Zaghari, B.; Humphrey, V; Moshrefi-Torbati, M.

    2013-01-01

    Condition monitoring of gas pipes has been an important issue for gas companies. Failure to accurately identify condition of gas pipes result in numerous problems. Also, producing a condition monitoring system for buried pipelines is challenging. Small pipes (with diameters less than 50 mm) are considered here as most of the literature focuses on larger pipes. Guided wave theory will be introduced alongside a numerical simulation of the relevant dispersion curves of the system. This paper inv...

  19. Ductile fracture behavior of 3-inch diameter carbon steel piping with a circumferential through-wall crack under bending load

    International Nuclear Information System (INIS)

    In order to introduce Leak-Before-Break (LBB) concept into the piping design criteria of the LWR pressure boundary pipings, it is necessary to investigate the pipe fracture behaviors, such as fracture condition and crack opening area, etc. At JAERI, pipe fracture tests of stainless steel and STS42 carbon steel pipes under bending load have been conducted as a part of the LBB research program. This report summarizes the four-point bending test results of 3-inch diameter STS42 carbon steel pipe with a circumferential through-wall crack. Tests were carried out at room temperature. In the tests, the fracture behavior of pipes was investigated to evolute the validity of Net-section collapse criterion, J-R curve and crack opening area. It is shown that the Net-section collapse criterion gives a conservative evaluation for the fracture load of 3-inch diameter carbon steel pipes. (author)

  20. Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Y Liu; S Chen; E Zussman; C Korach; W Zhao; M Rafailovich

    2011-12-31

    Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order of magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.

  1. Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)

    Science.gov (United States)

    Szabari, Margit V.; Kelly, Vanessa J.; Applegate, Matthew B.; Chee, Chunmin; Tan, Khay M.; Hariri, Lida P.; Harris, R. Scott; Winkler, Tilo; Suter, Melissa J.

    2016-03-01

    Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.

  2. Influence of physical fitness and activity behavior on retinal vessel diameters in primary schoolchildren.

    Science.gov (United States)

    Imhof, K; Zahner, L; Schmidt-Trucksäss, A; Faude, O; Hanssen, H

    2016-07-01

    Retinal vessel alterations have been shown to be associated with cardiovascular risk factors and physical inactivity as early as childhood. In this context, the analysis of physical activity in children has solely been based on questionnaire assessments. The study aimed to examine the association of physical fitness performance and self-reported physical activity with retinal vessel diameters in young children. Three hundred ninety-one primary schoolchildren [7.3 years (SD 0.4)] were examined in this cross-sectional study. The primary outcome was endurance performance measured with the 20-m shuttle run. The additional tests consisted of a 20-m sprint, jumping sidewards and balancing backwards. Retinal microcirculation was assessed using a static retinal vessel analyzer. Parents completed questionnaires about physical and sedentary activities. Endurance performance was associated with narrower retinal venular diameters [-0.9 (95%CI: -1.8; -0.1) measuring units (mu)/ unit shuttle run, P = 0.04] and a higher arteriolar to venular ratio [0.003 (-0.001; 0.006)/unit shuttle run, P = 0.06]. The sprint performance was associated with narrower retinal arterioles [4.7 (0.8; 8.6) mu/unit sprint, P = 0.02]. Indoor playing activity correlated with narrower retinal venules [-0.04 (-0.07; -0.01) mu/per unit, P = 0.02]. Our data suggest that objectively measured endurance performance relates with better retinal vessel health in early childhood.

  3. Behavioral Inhibition in Rhesus Monkeys (Macaca mulatta) Is Related to the Airways Response, but Not Immune Measures, Commonly Associated with Asthma

    OpenAIRE

    Katie Chun; Lisa A Miller; Schelegle, Edward S.; Hyde, Dallas M.; Capitanio, John P.

    2013-01-01

    Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta) and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between beha...

  4. Investigating the geometry of pig airways using computed tomography

    Science.gov (United States)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  5. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindrical nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.

  6. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    Science.gov (United States)

    Ding, Shurong; Wang, Qiming; Huo, Yongzhong

    2010-02-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  7. THE EFFECT OF FIBER DIAMETER ON THE DRAWING BEHAVIOR OF GEL-SPUN ULTRA-HIGH-MOLECULAR-WEIGHT POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    PENNING, JP; DEVRIES, AA; PENNINGS, AJ

    1993-01-01

    In the continuous drawing of gel-spun UHMWPE fibres, the diameter of the undrawn fibre appears to have a pronounced effect on its drawing behaviour and on the mechanical properties of the resulting hot-drawn fibres. A highly oriented structure is developed more efficiently upon drawing of thinner fi

  8. Systems-level airway models of bronchoconstriction.

    Science.gov (United States)

    Donovan, Graham M

    2016-09-01

    Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website. PMID:27348217

  9. Interpreting stem diameter changes

    Science.gov (United States)

    Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2009-12-01

    Detecting phloem transport in stem diameter changes Teemu Hölttä1, Sanna Sevanto2, Eero Nikinmaa1 1Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 2Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland Introduction The volume of living cells and xylem conduits vary according to pressures they are subjected to. Our proposition is that the behavior of the inner bark diameter variation which cannot be explained by changes in xylem water status arise from changes in the osmotic concentration of the phloem and cambial growth. Materials and methods Simultaneous xylem and stem diameter measurements were conducted between June 28th to October 4th 2006 in Southern Finland on a 47-year old, 15 meter tall, Scots pine tree (DBH 15 cm) at heights of 1.5 and 10 meters. The difference between the measured inner bark diameter and the inner bark diameter predicted from xylem diameter change with a simple model (assuming there was no change in the osmotic concentration of the phloem) is hypothesized to give the changes in the osmotic concentration of the inner bark. The simple model calculates the radial water exchange between the xylem and phloem driven by the water potential changes in the xylem. Results and Discussion The major signal in the inner bark diameter was the transpiration rate as assumed, but also a signal arising from the change in the osmotic concentration (Fig 1a). The predicted osmotic concentration of the phloem typically increased during the afternoon due to the loading of photosynthesized sugars to the phloem. Inner bark osmotic concentration followed the photosynthesis rate with a 3 and 4 hour time-lag at the top and base, respectively (Fig 1b). The connection between photosynthesis and the predicted change in phloem osmotic concentration was stronger in the upper part of the tree compared to lower part. The changes in the predicted osmotic concentration were not similar every day, indicating that

  10. An investigation into the effects of particle texture, water content and parallel plates' diameters on rheological behavior of fine sediment

    Institute of Scientific and Technical Information of China (English)

    Masoumeh Moayeri Kashani; Lai Sai Hin; Shaliza Binti Ibrahim; Nik Meriam Binti Nik Sulaiman; Fang Yenn Teo

    2016-01-01

    Siltation, a phenomenon resulted from the presence of fine particles in an aqueous environment, dominated by silt and clay, is a known and common environmental issue worldwide. The accumulation of fine sediments engenders murky water with low oxygen levels, which leads to the death of aquatic life. Thus, investigating the physical and mechanical properties of fine sediment by rheological methods has expanded. Rheology is the science of deformation and flow of matter in stress. This survey investigates the rheological behavior of six samples of soil as the fine particles structure (D<63μm) from different regions of Malaysia by using a rotational rheometer with a parallel-plate measuring (using two sizes:25 mm and 50 mm) device to explore the flow and viscoelastic properties of fine particles. The samples were examined in two rheological curve and amplitude sweep test methods to investigate the effect of water content ratio, texture, and structure of particles on rheological properties. It was found that the content of fine sand, clay, and silt had an effect on the stiffness, structural stability, and shear behavior. Thus, the pseudoplastic and viscoelastic behavior are respectively shown. Moreover, the amount of fine sediments present in water i.e. the concentration of these particles, has a direct effect on the rheological curve. A reduction in viscosity of samples with higher concentrations of water has been observed. As a consequence, a considerable quantity of fine sediments are distributed within the water body and remain suspended over the time. As a result, the sedimentation rate slows down. It needs to be asserted that the storage modulus G’ , loss modulus G″, and yield point can vary depending on particle type. The G’ and G″were instigated for samples (70%and 45%concentrations) that demonstrated viscoelastic characteristics using the same rotational rheometer with a parallel-plate measuring device.

  11. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction.

    Science.gov (United States)

    Kaczka, David W; Mitzner, Wayne; Brown, Robert H

    2013-09-01

    Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma. PMID:23813528

  12. Measurement of intraindividual airway tone heterogeneity and its importance in asthma.

    Science.gov (United States)

    Brown, Robert H; Togias, Alkis

    2016-07-01

    While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolution computed tomography at baseline and after maximum bronchodilation with albuterol. Airway tone was defined as the percent difference in airway diameter after albuterol at total lung capacity compared with baseline. The amount of airway tone in each airway varied both within and between subjects. The average airway tone did not differ significantly between the two groups (P = 0.09), but the intraindividual airway tone heterogeneity did (P = 0.016). Intraindividual airway tone heterogeneity was strongly correlated with airway tone (r = 0.78, P < 0.0001). Also, it was negatively correlated with the magnitude of the distension of the airways from functional residual capacity to total lung capacity at both baseline (r = -0.49, P = 0.03) and after maximum bronchodilation (r = -0.51, P = 0.02) in the asthma, but not the healthy group. However, we did not find any relationship between intraindividual airway tone heterogeneity and conventional lung function outcomes. Intraindividual airway tone heterogeneity appears to be an important characteristic of airway pathophysiology in asthma. PMID:27103654

  13. Dysfunctional lung anatomy and small airways degeneration in COPD

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2013-01-01

    Full Text Available Clémence Martin, Justine Frija, Pierre-Régis BurgelDepartment of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, FranceAbstract: Chronic obstructive pulmonary disease (COPD is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.Keywords: emphysema, small airways disease, airway mucus, innate immunity, adaptive immunity

  14. Airway management in trauma

    Directory of Open Access Journals (Sweden)

    Rashid M Khan

    2011-01-01

    Full Text Available Trauma has assumed epidemic proportion. 10% of global road accident deaths occur in India. Hypoxia and airway mismanagement are known to contribute up to 34% of pre-hospital deaths in these patients. A high degree of suspicion for actual or impending airway obstruction should be assumed in all trauma patients. Objective signs of airway compromise include agitation, obtundation, cyanosis, abnormal breath sound and deviated trachea. If time permits, one should carry out a brief airway assessment prior to undertaking definitive airway management in these patients. Simple techniques for establishing and maintaining airway patency include jaw thrust maneuver and/or use of oro- and nas-opharyngeal airways. All attempts must be made to perform definitive airway management whenever airway is compromised that is not amenable to simple strategies. The selection of airway device and route- oral or -nasal, for tracheal intubation should be based on nature of patient injury, experience and skill level.

  15. Triggers of airway inflammation.

    Science.gov (United States)

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms. PMID:3533597

  16. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.

    OpenAIRE

    Folkesson, H G; Matthay, M. A.; Frigeri, A.; Verkman, A.S.

    1996-01-01

    Water movement across the airway epithelium is important for regulation of the volume and composition of airspace fluid. A novel approach is reported here to measure osmotic and diffusional water permeability in intact airways. Small airways (100-200 microns diameter, 1-2 mm length) from guinea pig lung were microdissected and perfused in vitro using concentric glass holding and perfusion pipettes. For measurement of osmotic water permeability (Pf), the airway lumen was perfused wit PBS (300 ...

  17. Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis

    Science.gov (United States)

    Rajendran, Rahul; Banerjee, Arindam

    2015-11-01

    Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.

  18. Inertial and interceptional deposition of fibers in a bifurcating airway.

    Science.gov (United States)

    Zhang, L; Asgharian, B; Anjilvel, S

    1996-01-01

    A computer model of a three-dimensional bifurcating airway was constructed in which the parent and daughter airways had different lengths but equal diameters. A diameter of 0.6 cm was chosen for the airways based on the third generation of Weibel's symmetric lung model. Different bifurcation angles of 60 degrees, 90 degrees, and 120 degrees were studied. Airflow fields in the airway were obtained by a finite-element method (FIDAP, Fluid Dynamics International, Evanston, IL) for Reynolds numbers of 500 and 1000, assuming uniform parent inlet velocities. The equations of motion for fiber transport in the airways were obtained, and deposition by the combined mechanisms of impaction and interception was incorporated. A computer code was developed that utilized the flow field data and calculated fiber transport in the airways using the equations of motion for fibers. Deposition efficiency was obtained by simulating a large number of fibers of various sizes. Fiber entering the daughter airways tended to orient themselves parallel to the flow. A site of enhanced deposition (or hot spot) was observed at the carina. The dominant parameter for the deposition was the fiber Stokes number. Flow Reynolds number and airway bifurcation angle were also found to affect the deposition.

  19. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger;

    2013-01-01

    -dose CT for a period of 5 years (table 1). Images were reconstructed both with high contrast resolution (3 mm, kernel C) for emphysema analysis and with high spatial resolution (1 mm, kernel D) for airway analysis. Images were analysed by in-house developed software designed to segment lungs and localize...... the interior and exterior airway wall surface in three dimensions, and branches were matched in consecutive scans by image registration. Emphysema was defined as attenuation limits were set at

  20. Engineering Airway Epithelium

    Directory of Open Access Journals (Sweden)

    John P. Soleas

    2012-01-01

    Full Text Available Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990. In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.

  1. Engineering Airway Epithelium

    OpenAIRE

    John P. Soleas; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and fun...

  2. Conquering the difficult airway.

    Science.gov (United States)

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  3. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants.

    Science.gov (United States)

    Schittny, J C; Miserocchi, G; Sparrow, M P

    2000-07-01

    Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.

  4. Computed tomography dose and variability of airway dimension measurements: how low can we go?

    International Nuclear Information System (INIS)

    Quantitative CT shows promise as an outcome measure for cystic fibrosis (CF) lung disease in infancy, but must be accomplished at a dose as low as reasonably achievable. To determine the feasibility of ultra-low-dose CT for quantitative measurements of airway dimensions. Two juvenile pigs were anesthetized and their lungs scanned at 25 cm H2O face-mask pressure in apnoea using beam currents of 5, 10, 20, 40 and 100 mAs. The lumen diameters and wall thicknesses of matched airways (n=22) at each dose were measured by two observers using validated software. Measurement variability at each dose was compared to that at 100 mAs (reference dose) for large and small airways (lumen diameter <2.5 mm). Lowering CT dose (mAs) affected measurement variability for lumen diameter of small and large airways (P<0.001) and for wall thickness of small (P<0.001), but not large (P=0.63), airways. To obtain the same measurement variability at 5 mAs as at 100 mAs, four to six small airways or one to three large airways have to be measured and averaged. Quantitative airway measurements are feasible on images obtained at as low as 5 mAs, but more airways need to be measured to compensate for greater measurement variability. (orig.)

  5. Blockage of upper airway

    Science.gov (United States)

    ... is made through the neck into the airway ( tracheostomy or cricothyrotomy). If the obstruction is due to ... team. Related MedlinePlus Health Topics Choking Throat Disorders Tracheal Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  6. Equine recurrent airway obstruction

    OpenAIRE

    Artur Niedźwiedź

    2014-01-01

    Equine Recurrent Airway Obstruction (RAO), also known as heaves or broken wind, is one of the most common disease in middle-aged horses. Inflammation of the airway is inducted by organic dust exposure. This disease is characterized by neutrophilic inflammation, bronchospasm, excessive mucus production and pathologic changes in the bronchiolar walls. Clinical signs are resolved in 3-4 weeks after environmental changes. Horses suffering from RAO are susceptible to allergens throughout their liv...

  7. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J;

    2013-01-01

    BACKGROUND AND OBJECTIVE: Asthma-related morbidity is greater in older compared with younger asthmatics. Airway closure is also greater in older asthmatics, an observation that may be explained by differences in airway inflammation. We hypothesized that in older adult patients with asthma......, neutrophil airway inflammation increases airway closure during bronchoconstriction, while eosinophil airway inflammation increases airway hyperresponsiveness (AHR). METHODS: Asthmatic subjects (n = 26), aged ≥55 years (68% female), were studied, and AHR to 4.5% saline challenge was measured by the response......-dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  8. Role of upper airway ultrasound in airway management.

    Science.gov (United States)

    Osman, Adi; Sum, Kok Meng

    2016-01-01

    Upper airway ultrasound is a valuable, non-invasive, simple, and portable point of care ultrasound (POCUS) for evaluation of airway management even in anatomy distorted by pathology or trauma. Ultrasound enables us to identify important sonoanatomy of the upper airway such as thyroid cartilage, epiglottis, cricoid cartilage, cricothyroid membrane, tracheal cartilages, and esophagus. Understanding this applied sonoanatomy facilitates clinician to use ultrasound in assessment of airway anatomy for difficult intubation, ETT and LMA placement and depth, assessment of airway size, ultrasound-guided invasive procedures such as percutaneous needle cricothyroidotomy and tracheostomy, prediction of postextubation stridor and left double-lumen bronchial tube size, and detecting upper airway pathologies. Widespread POCUS awareness, better technological advancements, portability, and availability of ultrasound in most critical areas facilitate upper airway ultrasound to become the potential first-line non-invasive airway assessment tool in the future. PMID:27529028

  9. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will ad

  10. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I;

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will...

  11. Multiphase flow in large diameter pipes

    OpenAIRE

    Garaev, Damir

    2012-01-01

    Knowledge of multiphase flow is essential for many industries and the vast majority of work on this topic has been done using pipes of 25-50 mm. However, developments in a number of industries, from heat exchangers to large diameter deep water risers need the knowledge to use larger diameter pipes, in which the behavior of multiphase flow may be different from that in smaller diameter pipes. In the present study the experiments in vertical air/water two phase upflow were performed using a...

  12. Airway reconstruction in children

    Directory of Open Access Journals (Sweden)

    Rao Sanjay

    2009-01-01

    Full Text Available Aim/Background : Airway anomalies are infrequent but potentially life threatening in children. A program to care for these difficult children was set up at our institution, and this paper summarizes our experience. Methods: A total of 34 children were enrolled in the program over a period of three years. These children were evaluated as per the standard protocols. Treatment was individualized. Results: Of these 34 children, 28 had their airways restored and are doing well. Four children continue to remain on tracheostomy and two will require long term tracheostomy. There were two deaths. All children are under surveillance as there is a risk of recurrence. Conclusions: Airway anomalies are complex problems with significant morbidity and mortality. Current therapeutic modalities allow for good results. Most children were successfully decannulated and did well.

  13. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  14. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibro

  15. Issues of critical airway management (Which anesthesia; which surgical airway?

    Directory of Open Access Journals (Sweden)

    Fabrizio Giuseppe Bonanno

    2012-01-01

    Full Text Available Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient′s level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator′s training and experience is relevant for indications and performance.

  16. Issues of critical airway management (Which anesthesia; which surgical airway?).

    Science.gov (United States)

    Bonanno, Fabrizio Giuseppe

    2012-10-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient's level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator's training and experience is relevant for indications and performance. PMID:23248494

  17. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    airway and the function of the lungs (decreased residual capacity and aggravated ventilation perfusion mismatch) worse than in lean patients. Proper planning and preparation of airway management is essential, including elevation of the patient's upper body, head and neck. Preoxygenation is mandatory...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  18. Supraglottic airway devices in children

    Science.gov (United States)

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  19. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    Science.gov (United States)

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  20. Small diameter carbon nanopipettes

    Science.gov (United States)

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-01

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 °C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 °C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  1. Small diameter carbon nanopipettes

    International Nuclear Information System (INIS)

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 deg. C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 deg. C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  2. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.

  3. Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation

    OpenAIRE

    Siddiqui Salman; Brightling Christopher E

    2007-01-01

    Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes: ...

  4. Issues of critical airway management (Which anesthesia; which surgical airway?)

    OpenAIRE

    Fabrizio Giuseppe Bonanno

    2012-01-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient′s level of consciousness and hemodynami...

  5. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  6. Managing upper airway obstruction.

    Science.gov (United States)

    Innes, M H

    A complete respiratory obstruction can lead to death in 3 minutes. The first and constant duty of the nurse aider is to check that the person is breathing by looking, listening and feeling. Partial obstruction is no less serious than complete obstruction. The nurse aider, in any situation, should assess the problem and attempt to overcome the airway obstruction using the measures described. PMID:1490067

  7. COMPUTED TOMOGRAPHIC, RADIOGRAPHIC, AND ENDOSCOPIC TRACHEAL DIMENSIONS IN ENGLISH BULLDOGS WITH GRADE 1 CLINICAL SIGNS OF BRACHYCEPHALIC AIRWAY SYNDROME

    NARCIS (Netherlands)

    Kaye, Benjamin M; Boroffka, Susanne A E B; Haagsman, Annika N; Haar, Gert Ter

    2015-01-01

    Tracheal hypoplasia is commonly seen in English Bulldogs affected with brachycephalic airway syndrome. Previously published diagnostic criteria for tracheal hypoplasia in this breed have been a radiographic tracheal diameter:tracheal inlet ratio (TD:TI) < 0.12 or a tracheal diameter:third rib diamet

  8. Upper airway resistance syndrome.

    Science.gov (United States)

    Hasan, N; Fletcher, E C

    1998-07-01

    Many clinicians are familiar with the clinical symptoms and signs of obstructive sleep apnea (OSA). In its most blatant form, OSA is complete airway obstruction with repetitive, prolonged pauses in breathing, arterial oxyhemoglobin desaturation; followed by arousal with resumption of breathing. Daytime symptoms of this disorder include excessive daytime somnolence, intellectual dysfunction, and cardiovascular effects such as systemic hypertension, angina, myocardial infarction, and stroke. It has been recently recognized that increased pharyngeal resistance with incomplete obstruction can lead to a constellation of symptoms identical to OSA called "upper airway resistance syndrome" (UARS). The typical findings of UARS on sleep study are: (1) repetitive arousals from EEG sleep coinciding with a (2) waxing and waning of the respiratory airflow pattern and (3) increased respiratory effort as measured by esophageal pressure monitoring. There may be few, if any, obvious apneas or hypopneas with desaturation, but snoring may be a very prominent finding. Treatment with nasal positive airway pressure (NCPAP) eliminates the symptoms and confirms the diagnosis. Herein we describe two typical cases of UARS. PMID:9676067

  9. Lipids in airway secretions

    International Nuclear Information System (INIS)

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO2, (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors 14C acetate and 14C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway. (author)

  10. Lipids in airway secretions

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, K.R.; DeFeudis O' Sullivan, D.; Opaskar-Hincman, H.; Reid, L.M.

    1987-01-01

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO/sub 2/, (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors /sup 14/C acetate and /sup 14/C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway.

  11. Eosinophilic airway inflammation in COPD

    OpenAIRE

    Saha, Shironjit; Brightling, Christopher E.

    2006-01-01

    Chronic obstructive pulmonary disease is a common condition and a major cause of mortality. COPD is characterized by irreversible airflow obstruction. The physiological abnormalities observed in COPD are due to a combination of emphysema and obliteration of the small airways in association with airway inflammation. The predominant cells involved in this inflammatory response are CD8+ lymphocytes, neutrophils, and macrophages. Although eosinophilic airway inflammation is usually considered a f...

  12. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  13. Pharmacology of airway smooth muscle proliferation

    NARCIS (Netherlands)

    Gosens, Reinoud; Roscioni, Sara S.; Dekkers, Bart G. J.; Pera, Tonio; Schmidt, Martina; Schaafsma, Dedmer; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasi

  14. Predictors of Airway Hyperresponsiveness in Elite Athletes

    DEFF Research Database (Denmark)

    Toennesen, Louise L; Porsbjerg, Celeste; Pedersen, Lars;

    2015-01-01

    INTRODUCTION: Elite athletes frequently experience asthma and airway hyperresponsiveness (AHR). We aimed to investigate predictors of airway pathophysiology in a group of unselected elite summer-sport athletes, training for the summer 2008 Olympic Games, including markers of airway inflammation...

  15. Cholinergic regulation of airway inflammation and remodelling

    NARCIS (Netherlands)

    Kolahian, Saeed; Gosens, Reinoud

    2012-01-01

    Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway disease

  16. The effect of asthma on the perimeter of the airway basement membrane.

    Science.gov (United States)

    Elliot, John G; Budgeon, Charley A; Harji, Salima; Jones, Robyn L; James, Alan L; Green, Francis H

    2015-11-15

    When comparing the pathology of airways in individuals with and without asthma, the perimeter of the basement membrane (Pbm) is used as a marker of airway size, as it is independent of airway smooth muscle shortening or airway collapse. The extent to which the Pbm is itself altered in asthma has not been quantified. The aim of this study was to compare the Pbm from the same anatomical sites in postmortem lungs from subjects with (n = 55) and without (n = 30) asthma (nonfatal or fatal). Large and small airways were systematically sampled at equidistant "levels" from the apical segment of the left upper lobes and anterior and basal segments of the left lower lobes of lungs fixed in inflation. The length of the Pbm was estimated from cross sections of airway at each relative level. Linear mixed models were used to investigate the relationships between Pbm and sex, age, height, smoking status, airway level, and asthma group. The final model showed significant interactions between Pbm and airway level in small (<3 mm) airways, in subjects having asthma (P < 0.0001), and by sex (P < 0.0001). No significant interactions for Pbm between asthma groups were observed for larger airways (equivalent to a diameter of ∼3 mm and greater) or smoking status. Asthma is not associated with remodeling of the Pbm in large airways. In medium and small airways, the decrease in Pbm in asthma (≤20%) would not account for the published differences in wall area or area of smooth muscle observed in cases of severe asthma.

  17. Three-dimensional relationship between pharyngeal airway and maxillo-facial morphology.

    Science.gov (United States)

    Kikuchi, Yu

    2008-05-01

    In this study, to clarify the influence of the maxillo-mandibular bones and cranium on airway morphology, maxillo-facial morphology in patients with jaw deformation was measured using cephalograms and X-ray CT imaging data. Subjects consisted of 25 adult women in whom cephalograms and X-ray CT were taken to diagnose jaw deformation. The data obtained were classified based on skeletal and facial patterns according to Ricketts analysis, and changes in internal diameter, height and volume of the middle pharyngeal airway were observed. The results showed that the internal diameter of the inferior airway expanded anteriorly when the mandibular bone was in the anterior position, and was slightly constricted and elongated vertically when the mandibular bone was posteriorly rotated. This suggests that airway volume is influenced by the anteroposterior position of the mandibular bone, in that it compensates for decreases in its volume by extending its height inferiorly to cope with posterior deviation of the mandibular bone.

  18. Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2007-06-01

    Full Text Available Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes: eosinophilic, neutrophilic, mixed inflammatory and paucigranulocytic asthma. Recent studies suggest that these subgroups may differ in their etiology, immunopathology and response to treatment. Importantly, novel treatment approaches targeted at specific patterns of airway inflammation are emerging, making an appreciation of subphenotypes particularly relevant. New developments in phenotyping inflammation and other facets of airway disease mean that we are entering an era where careful phenotyping will lead to targeted therapy.

  19. Regional aerosol deposition in human upper airways. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  20. Airway emergencies in cancer

    Directory of Open Access Journals (Sweden)

    Patil Vijaya

    2007-01-01

    Full Text Available Management of airway obstruction is always challenging but more so in cancer setting, as obstruction can lie at any level right from pyriform fossa to low down in medistinum. Morbidity is significant but if not managed properly leads to frightful death by suffocation. These cases need to be evaluated, diagnosed and managed with care, skill, speed and appropriate intervention. With the advent of technology, it has become much easier to manage such situations with a team of specialists involving anesthetist, thoracic surgeon and intensivist.

  1. Paediatric airway management: basic aspects

    DEFF Research Database (Denmark)

    Holm-Knudsen, R J; Rasmussen, L S

    2009-01-01

    children. This paper aims at providing the non-paediatric anaesthesiologist with a set of safe and simple principles for basic paediatric airway management. In contrast to adults, most children with difficult airways are recognised before induction of anaesthesia but problems may arise in all children...

  2. Wheel Diameter and Speedometer Reading

    Science.gov (United States)

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  3. Angular Diameter Distances in Clumpy Friedmann Universes

    OpenAIRE

    Tomita, Kenji

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and d...

  4. Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, P.; Sporring, J.; Ashraf, H.;

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...

  5. Rare Upper Airway Anomalies.

    Science.gov (United States)

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  6. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; de Bruijne, Marleen

    2009-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier that is trai......This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier...... that is trained to differentiate between airway and non-airway voxels. Vessel and airway orientation information are used in the form of a vessel orientation similarity measure, which indicates how similar the orientation of the an airway candidate is to the orientation of the neighboring vessel. The method...

  7. Airway vascular reactivity and vascularisation in human chronic airway disease

    NARCIS (Netherlands)

    Bailey, Simon R; Boustany, Sarah; Burgess, Janette K; Hirst, Stuart J; Sharma, Hari S; Simcock, David E; Suravaram, Padmini R; Weckmann, Markus

    2009-01-01

    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular

  8. Mechanisms of airway responses to esophageal acidification in cats.

    Science.gov (United States)

    Lang, Ivan M; Haworth, Steven T; Medda, Bidyut K; Forster, Hubert; Shaker, Reza

    2016-04-01

    Acid in the esophagus causes airway constriction, tracheobronchial mucous secretion, and a decrease in tracheal mucociliary transport rate. This study was designed to investigate the neuropharmacological mechanisms controlling these responses. In chloralose-anesthetized cats (n = 72), we investigated the effects of vagotomy or atropine (100 μg·kg(-1)·30 min(-1) iv) on airway responses to esophageal infusion of 0.1 M PBS or 0.1 N HCl at 1 ml/min. We quantified 1) diameter of the bronchi, 2) tracheobronchial mucociliary transport rate, 3) tracheobronchial mucous secretion, and 4) mucous content of the tracheal epithelium and submucosa. We found that vagotomy or atropine blocked the airway constriction response but only atropine blocked the increase in mucous output and decrease in mucociliary transport rate caused by esophageal acidification. The mucous cells of the mucosa produced more Alcian blue- than periodic acid-Schiff (PAS)-stained mucosubstances, and the mucous cells of the submucosa produced more PAS- than Alcian blue-stained mucosubstances. Selective perfusion of the different segments of esophagus with HCl or PBS resulted in significantly greater production of PAS-stained mucus in the submucosa of the trachea adjacent to the HCl-perfused esophagus than in that adjacent to the PBS-perfused esophagus. In conclusion, airway constriction caused by esophageal acidification is mediated by a vagal cholinergic pathway, and the tracheobronchial transport response is mediated by cholinergic receptors. Acid perfusion of the esophagus selectively increases production of neutral mucosubstances of the apocrine glands by a local mechanism. We hypothesize that the airway responses to esophageal acid exposure are part of the innate, rather than acute emergency, airway defense system. PMID:26846551

  9. Stellar Diameters and Temperatures IV. Predicting Stellar Angular Diameters

    CERN Document Server

    Boyajian, Tabetha; von Braun, Kaspar

    2013-01-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry (LBOI). We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broad-band color indices. We empirically show for the first time a dependence on metallicity to these relations using Johnson $(B-V)$ and Sloan $(g-r)$ colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations to stellar angular sizes to date.

  10. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Górska K

    2009-12-01

    Full Text Available Abstract Despite a number of important differences in the pathogenesis, course and prognosis of asthma and chronic obstructive pulmonary disease (COPD, these two entities also have common features with airway inflammation being one of them. Airway remodeling is a characteristic feature of asthma, but data on the bronchial wall thickening in COPD patients are still scarce. Aim To assess the relation between the inflammatory cell count in the bronchoalveolar lavage fluid (BALF and thickness of bronchial walls assessed by high resolution computed tomography (HRCT in asthma and COPD patients. Material and methods The study was conducted in 9 patients with mild-to-moderate asthma (M/F 4/5, mean age 35 ± 10 years and 11 patients with mild-to-moderate COPD (M/F 7/4, mean age 57 ± 9 years. In all subjects lung function tests and HRCT scanning of the chest were performed. External (D and internal (L diameters of the airways were assessed at five selected lung levels. The lumen area (AL, wall area (WA, wall thickness (WT and bronchial wall thickness (WT/D ratio were calculated. Eight patients with asthma and 8 patients with COPD underwent fiberoptic bronchoscopy and bronchoalveolar lavage (BAL. Total and differential cell counts were assessed in the BAL fluid. Results Mean FEV1% pred was 80 ± 19%, and 73 ± 20% in asthma and COPD patients, respectively (NS. No significant differences in the total and differential cell counts in BALF were found in patients with asthma and COPD. There were no significant differences in the airway diameter or airway wall thickness. The mean inner airway diameter was 1.4 ± 0.3 and 1.2 ± 0.3 mm and the mean lumen area was 1.8 ± 0.7 and 1.6 ± 0.7 mm2 in asthma and COPD, respectively (NS. Negative correlations between the eosinophil count in BALF and inner airway diameter (r = -0.7, P Conclusions In mild-to-moderate asthma and COPD the airway diameter and thickness are similar. In asthmatics, the airway diameter might be

  11. Surfactant and allergic airway inflammation.

    Science.gov (United States)

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  12. Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment

    DEFF Research Database (Denmark)

    Nørskov, Anders Kehlet; Rosenstock, Charlotte Valentin; Wetterslev, Jørn;

    2013-01-01

    the examination and registration of predictors for difficult mask ventilation with a non-specified clinical airway assessment on prediction of difficult mask ventilation.Method/Design: We cluster-randomized 28 Danish departments of anaesthesia to airway assessment either by the SARI or by usual non......-specific assessment. Data from patients' pre-operative airway assessment are registered in the Danish Anaesthesia Database. Objective scores for intubation and mask ventilation grade the severity of airway managements. The accuracy of predicting difficult intubation and mask ventilation is measured for each group...... reduction equalling a number needed to treat of 180. Sample size estimation is adjusted for the study design and based on standards for randomization on cluster-level. With an average cluster size of 2,500 patients, 70,000 patients will be enrolled over a 1-year trial period. The database is programmed so...

  13. Diameters in preferential attachment models

    OpenAIRE

    Dommers, S.; van der Hofstad, R.; Hooghiemstra, G.

    2010-01-01

    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law degree sequences with a power-law exponent \\tau>2. We prove that the diameter of the PA-...

  14. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction. PMID:25583659

  15. Effect of adrenergic stimulation on clearance from small ciliated airways in healthy subjects.

    Science.gov (United States)

    Svartengren, K; Philipson, K; Svartengren, M; Camner, P

    1998-01-01

    Mucociliary transport is an important clearance mechanism of larger airways, but in the smallest ciliated airways (bronchioles) it may be less effective. The present study aimed at investigating whether clearance from the bronchioles in subjects with healthy airways was stimulated by an adrenergic agonist (terbutaline sulphate). Tracheobronchial clearance was studied twice in 10 healthy subjects after inhalation of 6-micron (aerodynamic diameter) monodisperse Teflon particles labeled with 111In. At one exposure, oral treatment with terbutaline sulphate, known to stimulate clearance in large airways, began immediately after inhalation of the particles. The other exposure was a control measurement. The particles were inhaled at an extremely slow flow, 0.05 L/s, which gave deposition mainly in the small ciliated airways (bronchioles). Lung retention was measured at 0, 24, 48, and 72 h. Clearance was significant every 24 h for both exposures (p terbutaline sulphate, the subjects' pulse rates tended to be higher, but clearance rates did not increase. We found, as expected, no significant correlation between lung retention and lung function in either exposure. This study shows that an adrenergic agonist does not significantly influence overall clearance from the bronchiolar region in healthy subjects. This suggests that mucociliary transport does not significantly contribute to clearance from the smallest ciliated airways. Other mechanisms may be more important for the transportation of mucus from these airways. PMID:9555573

  16. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    have become the standard with which to assess emphysema extent but airway abnormalities have so far been more challenging to quantify. Automated methods for analysis are indispensable as the visible airway tree in a CT scan can include several hundreds of individual branches. However, automation...... of scan on airway dimensions in subjects with and without COPD. The results show measured airway dimensions to be affected by differences in the level of inspiration and this dependency is again influenced by COPD. Inspiration level should therefore be accounted for when measuring airways, and airway...

  17. Role of Small Airways in Asthma.

    Science.gov (United States)

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  18. Diameters in preferential attachment models

    NARCIS (Netherlands)

    Dommers, S.; Van der Hofstad, R.; Hooghiemstra, G.

    2010-01-01

    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-mo

  19. Angular Diameter Distances in Clumpy Friedmann Universes

    CERN Document Server

    Tomita, K

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and distribution of the clumpiness parameter are derived.

  20. The Airway Microbiome at Birth.

    Science.gov (United States)

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  1. The Airway Microbiome at Birth

    Science.gov (United States)

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  2. Air-Q laryngeal airway for rescue and tracheal intubation.

    Science.gov (United States)

    Ads, Ayman; Auerbach, Frederic; Ryan, Kelly; El-Ganzouri, Abdel R

    2016-08-01

    We report the successful use of the Air-Q laryngeal airway (Air-Q LA) as a ventilatory device and a conduit for tracheal intubation to rescue the airway in a patient with difficult airway and tracheal stenosis. This is the first case report of the device to secure the airway after two episodes of hypoxemia in the operating room and intensive care unit. Consent for submission of this case report was obtained from our institution's human studies institutional review board given that the patient died a few months after his discharge from the hospital before his personal consent could be obtained and before preparation of this report. All personal identifiers that could lead to his identification have been removed from this report. A 59-year-old man was scheduled for a flexible and rigid bronchoscopy with possible laser excision of tracheal stenosis. He had a history of hypertension, atrial fibrillation, and diabetes. Assessment of airway revealed a thyromental distance of 6.5 cm, Mallampati class II, and body weight of 110 kg. He had hoarseness and audible inspiratory/expiratory stridor with Spo2 90% breathing room air. After induction and muscle relaxation, tracheal intubation and flexible bronchoscopy were achieved without incident. The patient was then extubated and a rigid bronchoscopy was attempted but failed with Spo2 dropping to 92%; rocuronium 60 mg was given, and reintubation was accomplished with a 7.5-mm endotracheal tube. A second rigid bronchoscopy attempt failed, with Spo2 dropping to 63%. Subsequent direct laryngoscopy revealed a bloody hypopharynx. A size 4.5 Air-Q LA was placed successfully and confirmed with capnography, and Spo2 returned to 100%. The airway was suctioned through the Air-Q LA device, and the airway was secured using a fiberoptic bronchoscope to place an endotracheal tube of 7.5-mm internal diameter. The case was canceled because of edema of the upper airway from multiple attempts with rigid bronchoscopy. The patient was transported

  3. Fluid dynamics in airway bifurcations: III. Localized flow conditions.

    Science.gov (United States)

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.

  4. Treating asthma means treating airway smooth muscle cells

    NARCIS (Netherlands)

    Zuyderduyn, S; Sukkar, M B; Fust, A; Dhaliwal, S; Burgess, J K

    2008-01-01

    Asthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle

  5. Recent advances in airway management in children

    OpenAIRE

    Veyckemans, Francis

    2009-01-01

    Recent anatomic findings, technological progress, and both in vitro and in vivo studies of the pressure generated in the cuff of endotracheal tubes and supraglottic airways should lead to modification of the way we control the pediatric upper airway.

  6. Diameters of Triton and Pluto

    International Nuclear Information System (INIS)

    Upper limits are reported to the thermal IR emission from Triton, the major satellite of Neptune, and Pluto, the outermost planet, that permit significant upper limits to be set on their diameters and also demonstrate that both are high albedo objects. These results exclude the possibility that Triton is the largest planetary satellite and are consistent with the small size of Pluto deduced from other data. (U.K.)

  7. Pharmacogenetics, pharmacogenomics and airway disease

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2001-11-01

    Full Text Available Abstract The availability of a draft sequence for the human genome will revolutionise research into airway disease. This review deals with two of the most important areas impinging on the treatment of patients: pharmacogenetics and pharmacogenomics. Considerable inter-individual variation exists at the DNA level in targets for medication, and variability in response to treatment may, in part, be determined by this genetic variation. Increased knowledge about the human genome might also permit the identification of novel therapeutic targets by expression profiling at the RNA (genomics or protein (proteomics level. This review describes recent advances in pharmacogenetics and pharmacogenomics with regard to airway disease.

  8. The effect of inspiration on airway dimensions measured in CT images from the Danish Lung Cancer Screening Trial

    DEFF Research Database (Denmark)

    Petersen, Jens; Wille, Mathilde; Thomsen, Laura;

    2013-01-01

    of the same subject using image registration. Mixed effect models were used to predict the relative change in lumen diameter (LD) and wall thickness (WT) in airways of generation 0 (trachea) to 6 based on relative changes in the segmented total lung volume (TLV). Results: On average, 1.0, 2.0, 3.9, 7.6, 15...... and Materials: We selected from the Danish Lung Cancer Screening Trial 978 subjects without COPD who were scanned annually for 5 years with low-dose multi-slice CT. Using in-house developed software, the lungs and airways were automatically segmented and corresponding airway branches were found in all scans...

  9. Airway Tree Extraction with Locally Optimal Paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Pedersen, Jesper Johannes Holst;

    2009-01-01

    for tree extraction that can overcome local occlusions. The cost function for obtaining the optimal paths takes into account of an airway probability map as well as measures of airway shape and orientation derived from multi-scale Hessian eigen analysis on the airway probability. Significant improvements...

  10. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    2013-01-01

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remai

  11. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  12. [Airway equipment and its maintenance for a non difficult adult airway management (endotracheal intubation and its alternative: face mask, laryngeal mask airway, laryngeal tube)].

    Science.gov (United States)

    Francon, D; Estèbe, J P; Ecoffey, C

    2003-08-01

    The airway equipment for a non difficult adult airway management are described: endotracheal tubes with a specific discussion on how to inflate the balloon, laryngoscopes and blades, stylets and intubation guides, oral airways, face masks, laryngeal mask airways and laryngeal tubes. Cleaning and disinfections with the maintenance are also discussed for each type of airway management. PMID:12943860

  13. Pharyngeal airway changes following mandibular setback surgery

    Directory of Open Access Journals (Sweden)

    Babu Ramesh

    2005-01-01

    Full Text Available Treatment of dentofacial deformities with jaw osteotomies has an effect on airway anatomy and therefore mandibular setback surgery has the potential to diminish airway size. The purpose of this study was to evaluate the effect of mandibular setback surgery on airway size. 8 consecutive patients were examined prospectively. All patients underwent mandibular setback surgery. Cephalometric analysis was performed preoperatively and 3 months post operatively with particular attention to pharyngeal airway changes. Pharyngeal airway size decreased considerably in all, patients thus predisposing to development of obstructive sleep apnea. Therefore, large anteroposterior discrepancies should be corrected by combined maxillary and mandibular osteotomies.

  14. Inflammatory bowel disease and airway diseases

    Science.gov (United States)

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-01-01

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact. PMID:27678355

  15. Mucus hypersecretion in the airway

    Institute of Scientific and Technical Information of China (English)

    WANG Ke; WEN Fu-qiang; XU Dan

    2008-01-01

    @@ Mucus hypersecretion is a distinguishing feature of Chronic intlammation diseases,such as asthma,1chronic bronchitis.2 bronchiectasis3 and cystic fibrosis.4Mucus hypersecretion leads to impairment of mucociliary clearance,abnormal bacterial plantation,mucus plug in the airway,and dysfunction of gas exchange.5

  16. Sarcoidosis of the upper and lower airways.

    Science.gov (United States)

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed. PMID:22082167

  17. LARYNGEAL CHONDROSARCOMA: SUCCESSFUL USE OF VIDEO LARYNGOSCOPE IN ANTICIPATED DIFFICULT AIRWAY MANAGEMENT.

    Science.gov (United States)

    Dolinaj, Vladimir; Milošev, Sanja; Janjević, Dušanka

    2016-03-01

    Laryngeal chondrosarcoma is a rare mesenchymal tumor, most frequently affecting cricoid cartilage. The objective of this report is to present successful video laryngoscope usage in a patient with anticipated difficult airway who refused awake fiberoptic endotracheal intubation (AFOI). A 59-year-old male patient was admitted in our hospital due to difficulty breathing and swallowing. On clinical examination performed by ENT surgeon, preoperative endoscopic airway examination (PEAE) could not be performed properly due to the patient's uncooperativeness. Computed tomography revealed a spherical tumor that obstructed the subglottic area almost entirely. Due to the narrowed airway, the first choice for the anticipated difficult airway management was AFOI, which the patient refused. Consequently, we decided to perform endotracheal intubation with indirect laryngoscope using a C-MAC video laryngoscope (Karl Storz, Tuttlingen, Germany). Reinforced endotracheal tube (6.0 mm internal diameter) was placed gently between the tumor mass and the posterior wall of the trachea in the first attempt. Confirmation of endotracheal intubation was done by capnography. In a patient with subglottic area chondrosarcoma refusing PEAE and AFOI, video laryngoscope is a particularly helpful device for difficult airway management when difficult airway is anticipated. PMID:27276783

  18. Fluid dynamics in airway bifurcations: I. Primary flows.

    Science.gov (United States)

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    The subject of fluid dynamics within human airways is of great importance for the risk assessment of air pollutants (inhalation toxicology) and the targeted delivery of inhaled pharmacologic drugs (aerosol therapy). As cited herein, experimental investigations of flow patterns have been performed on airway models and casts by a number of investigators. We have simulated flow patterns in human lung bifurcations and compared the results with the experimental data of Schreck (1972). The theoretical analyses were performed using a third-party software package, FIDAP, on the Cray T90 supercomputer. This effort is part of a systematic investigation where the effects of inlet conditions, Reynolds numbers, and dimensions and orientations of airways were addressed. This article focuses on primary flows using convective motion and isovelocity contour formats to describe fluid dynamics; subsequent articles in this issue consider secondary currents (Part II) and localized conditions (Part III). The agreement between calculated and measured results, for laminar flows with either parabolic or blunt inlet conditions to the bifurcations, was very good. To our knowledge, this work is the first to present such detailed comparisons of theoretical and experimental flow patterns in airway bifurcations. The agreement suggests that the methodologies can be employed to study factors affecting airflow patterns and particle behavior in human lungs.

  19. Measurement of Diameter Changes during Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Crepeau, J. C. [Univ. of Idaho, Idaho Falls, ID (United States); Solstad, S. [Inst. for Energy Technologoy, Halden (Norway)

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  20. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    International Nuclear Information System (INIS)

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter

  1. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Pourmehran, O., E-mail: oveis87@yahoo.com; Rahimi-Gorji, M.; Gorji-Bandpy, M., E-mail: gorji@nit.ac.ir; Gorji, T.B.

    2015-11-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter.

  2. Noninvasive clearance of airway secretions.

    Science.gov (United States)

    Hardy, K A; Anderson, B D

    1996-06-01

    Airway clearance techniques are indicated for specific diseases that have known clearance abnormalities (Table 2). Murray and others have commented that such techniques are required only for patients with a daily sputum production of greater than 30 mL. The authors have observed that patients with diseases known to cause clearance abnormalities can have sputum clearance with some techniques, such as positive expiratory pressure, autogenic drainage, and active cycle of breathing techniques, when PDPV has not been effective. Hasani et al has shown that use of the forced exhalatory technique in patients with nonproductive cough still resulted in movement of secretions proximally from all regions of the lung in patients with airway obstruction. It is therefore reasonable to consider airway clearance techniques for any patient who has a disease known to alter mucous clearance, including CF, dyskinetic cilia syndromes, and bronchiectasis from any cause. Patients with atelectasis from mucous plugs and hypersecretory states, such as asthma and chronic bronchitis, patients with pain secondary to surgical procedures, and patients with neuromuscular disease, weak cough, and abnormal patency of the airway may also benefit from the application of airway clearance techniques. Infants and children up to 3 years of age with airway clearance problems need to be treated with PDPV. Manual percussion with hands alone or a flexible face mask or cup and small mechanical vibrator/percussors, such as the ultrasonic devices, can be used. The intrapulmonary percussive ventilator shows growing promise in this area. The high-frequency oscillator is not supplied with vests of appropriate sizes for tiny babies and has not been studied in this group. Young patients with neuromuscular disease may require assisted ventilation and airway oscillations can be applied. CPAP alone has been shown to improve achievable flow rates that will increase air-liquid interactions for patients with these diseases

  3. Low tracheal tumor and airway management: An anesthetic challenge

    Directory of Open Access Journals (Sweden)

    Richa Saroa

    2015-01-01

    Full Text Available We describe a case presenting with tracheal tumor wherein a Microlaryngeal tube was advanced into the trachea distal to the tumor for primary airway control followed by cannulation of both endobronchial lumen with 5.5 mm endotracheal tubes to provide independent lung ventilation post tracheal transection using Y- connector attached to anesthesia machine. The plan was formulated to provide maximal surgical access to the trachea while providing adequate ventilation at the same time. A 32 yrs non smoker male, complaining of cough, progressive dyspnea and hemoptysis was diagnosed to have a broad based mass in the trachea on computed tomography of chest. Bronchoscopy of the upper airway confirmed presence of the mass at a distance of 9 cms from the vocal cords, obstructing the tracheal lumen by three fourth of the diameter. The patient was scheduled to undergo the resection of the mass through anterolateral thoracotomy. We recommend the use of extralong, soft, small sized microlaryngeal surgery tube in tumors proximal to carina, for securing the airway before the transection of trachea and bilateral endobronchial intubation with small sized cuffed endotracheal tubes for maintenance of ventilation after the transection of trachea in patients with mass in the lower trachea.

  4. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    Science.gov (United States)

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers). PMID:24925919

  5. Paediatric airway management: What is new?

    Directory of Open Access Journals (Sweden)

    S Ramesh

    2012-01-01

    Full Text Available Airway management plays a pivotal role in Paediatric Anaesthesia. Over the last two decades many improvements in this area have helped us to overcome this final frontier. From an era where intubation with a conventional laryngoscope or blind nasal intubation was the only tool for airway management, we have come a long way. Today supraglottic airway devices have pride of place in the Operating Room and are becoming important airway devices used in routine procedures. Direct and indirect fibreoptic laryngoscopes and transtracheal devices help us overcome difficult and previously impossible airway situations. These developments mean that we need to update our knowledge on these devices. Also much of our basic understanding of the physiology and anatomy of the paediatric airway has changed. This article attempts to shed light on some of the most important advances/opinions in paediatric airway management like, cuffed endotracheal tubes, supraglottic airway devices, video laryngoscopes, rapid sequence intubation, the newly proposed algorithm for difficult airway management and the role of Ex Utero Intrapartum Treatment (EXIT procedure in the management of the neonatal airway.

  6. Paediatric airway management: What is new?

    Science.gov (United States)

    Ramesh, S; Jayanthi, R; Archana, SR

    2012-01-01

    Airway management plays a pivotal role in Paediatric Anaesthesia. Over the last two decades many improvements in this area have helped us to overcome this final frontier. From an era where intubation with a conventional laryngoscope or blind nasal intubation was the only tool for airway management, we have come a long way. Today supraglottic airway devices have pride of place in the Operating Room and are becoming important airway devices used in routine procedures. Direct and indirect fibreoptic laryngoscopes and transtracheal devices help us overcome difficult and previously impossible airway situations. These developments mean that we need to update our knowledge on these devices. Also much of our basic understanding of the physiology and anatomy of the paediatric airway has changed. This article attempts to shed light on some of the most important advances/opinions in paediatric airway management like, cuffed endotracheal tubes, supraglottic airway devices, video laryngoscopes, rapid sequence intubation, the newly proposed algorithm for difficult airway management and the role of Ex Utero Intrapartum Treatment (EXIT) procedure in the management of the neonatal airway. PMID:23293383

  7. United airway disease: current perspectives

    OpenAIRE

    Giavina-Bianchi P; Aun MV; Takejima P; Kalil J; Agondi RC

    2016-01-01

    Pedro Giavina-Bianchi,* Marcelo Vivolo Aun,* Priscila Takejima, Jorge Kalil, Rosana Câmara Agondi Clinical Immunology and Allergy Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil*These authors contributed equally to this work. Abstract: Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is str...

  8. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Javed [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada); Roa, Wilson [Department of Oncology, University of Alberta, Edmonton, Alta., T6G 1Z2 (Canada); Amirfazli, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada)], E-mail: a.amirfazli@ualberta.ca

    2008-06-15

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  9. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Science.gov (United States)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  10. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    International Nuclear Information System (INIS)

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia

  11. Airway injury during emergency transcutaneous airway access: a comparison at cricothyroid and tracheal sites.

    LENUS (Irish Health Repository)

    Salah, Nazar

    2009-12-01

    Oxygenation via the cricothyroid membrane (CTM) may be required in emergencies, but inadvertent tracheal cannulation may occur. In this study, we compared airway injury between the tracheal and CTM sites using different techniques for airway access.

  12. Airway resistance and deposition of particles in the lung.

    Science.gov (United States)

    Svartengren, M; Philipson, K; Linnman, L; Camner, P

    1984-01-01

    The percentage 24-h lung retention of 4-micrometers monodispersed Teflon particles, aerodynamic diameter about 6 micrometers, was studied twice in 8 healthy nonsmokers. The particles were inhaled at 0.5 liter/sec with maximally deep breaths. Bronchoconstriction was induced by inhalation of a methacholine-bromide aerosol for one exposure before and for the other 20-30 min after the inhalation of the Teflon particles. For both exposures, airway resistance (Raw) was measured with a whole body plethysmograph before and after the induction of the bronchoconstriction and was found on an average to increase with a factor of 2-3. For the exposure when bronchoconstriction was induced after the inhalation of the Teflon particles, Raw and 24-h lung retention correlated significantly. Retention at 24 h was markedly lower when bronchoconstriction was induced before inhalation of the Teflon particles than when bronchoconstriction was induced after, the ranges being 13-24% and 38-68%, respectively. The experimental data agreed well with theoretical data from a lung model wherein the diameters of the airways were varied. The results indicate that the magnitude of bronchoconstriction occurring in real life can protect the alveolar part of the lung by reducing the amount of inhaled particles that deposit there. PMID:6525990

  13. Nasal and bronchial airway reactivity in allergic and non allergic airway inflammation

    OpenAIRE

    Kölbeck, Karl-Gustav

    2003-01-01

    In allergic or asthmatic airways disease, upper and lower airways show a uniform eosinophilic inflammation of the mucosa, and bronchial hyperreactivity is a common finding. To study the co- variation of mucosal reactivity in upper and lower airways, histamine challenges of both sites were performed in a group of patients with allergic rhinitis during non-season. Upper airways were monitored during challenge by the use of rhinostereometry, an optical technique that non-invasi...

  14. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    OpenAIRE

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet ...

  15. The three A's in asthma - airway smooth muscle, airway remodeling & angiogenesis

    OpenAIRE

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet ...

  16. The airway microvasculature and exercise induced asthma.

    OpenAIRE

    Anderson, S. D.; Daviskas, E

    1992-01-01

    It has been proposed that exercise induced asthma is a result of "rapid expansion of the blood volume of peribronchial plexi" (McFadden ER, Lancet 1990;335:880-3). This hypothesis proposes that the development of exercise induced asthma depends on the thermal gradient in the airways at the end of hyperpnoea. The events that result in exercise induced asthma are vasoconstriction and airway cooling followed by reactive hyperaemia. We agree that the airway microcirculation has the potential for ...

  17. Airway and Extracellular Matrix Mechanics in COPD

    OpenAIRE

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond b...

  18. Predominant constitutive CFTR conductance in small airways

    OpenAIRE

    Lytle Christian; Wang Xiaofei; Quinton Paul M

    2005-01-01

    Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known ...

  19. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Lo, P.;

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However...... differences. Results: The segmentation method has been used on 9711 low dose CT images from the Danish Lung Cancer Screening Trial (DLCST). Manual inspection of thumbnail images revealed gross errors in a total of 44 images. 29 were missing branches at the lobar level and only 15 had obvious false positives...... extracted perpendicularly to and in random positions of the centerline in 7 subjects. Results show an average Dice's coefficient of 89%. The COPD gene phantom was scanned with the DLCST protocol and all interior and exterior diameters were estimated within 0.3 mm of their actual values. Limiting...

  20. Airway vascular damage in elite swimmers.

    Science.gov (United States)

    Moreira, André; Palmares, Carmo; Lopes, Cristina; Delgado, Luís

    2011-11-01

    We postulated that high level swimming can promote airway inflammation and thus asthma by enhancing local vascular permeability. We aimed to test this hypothesis by a cross-sectional study comparing swimmers (n = 13, 17 ± 3 years, competing 7 ± 4 years, training 18 ± 3 h per week), asthmatic-swimmers (n = 6, 17 ± 2 years, competing 8 ± 3 years, training 16 ± 4 h per week), and asthmatics (n = 19, 14 ± 3 years). Subjects performed induced sputum and had exhaled nitric oxide, lung volumes, and airway responsiveness determined. Airway vascular permeability index was defined as the ratio of albumin in sputum and serum. Results from the multiple linear regression showed each unit change in airway vascular permeability index was associated with an increase of 0.97% (95%CI: 0.02 to 1.92; p = 0.047) in sputum eosinophilis, and of 2.64% (95%CI:0.96 to 4.31; p = 0.006) in sputum neutrophils after adjustment for confounders. In a general linear model no significant differences between airway vascular permeability between index study groups existed, after controlling for sputum eosinophilis and neutrophils. In conclusion, competitive swimmers training in chlorine-rich pools have similar levels of airway vascular permeability than asthmatics. Although competitive swimming has been associated with asthma, airway inflammation and airway hyperesponsiveness do not seem to be dependent on increased airway vascular permeability. PMID:21669516

  1. Cholinergic Regulation of Airway Inflammation and Remodelling

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    2012-01-01

    Full Text Available Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

  2. AIRWAY VISUALIZATION: EYES SEE WHAT MIND KNOWS.

    Science.gov (United States)

    Sorbello, Massimiliano; Frova, Giulio; Zdravković, Ivana

    2016-03-01

    Airway management is basic for anesthesia practice, and sometimes it can represent a really dramatic scenario for both the patient and the physicians. Laryngoscopy has been the gold standard of airway visualization for more than 60 years, showing its limitations and failure rates with time. New technology has made available an opportunity to move the physician's eye inside patient airways thanks to video laryngoscopy and video assisted airway management technique. Undoubtedly, we have entered a new era of high resolution airway visualization and different approach in airway instrumentation. Nevertheless, each new technology needs time to be tested and considered reliable, and pitfalls and limitations may come out with careful and long lasting analysis, so it is probably not the right time yet to promote video assisted approach as a new gold standard for airway visualization, despite the fact that it certainly offers some new prospects. In any case, whatever the visualization approach, no patient dies because of missed airway visualization or failed intubation, but due to failed ventilation, which remains without doubt the gold standard of any patient safety goal and airway management technique.

  3. Particle diameter influences adhesion under flow.

    OpenAIRE

    Shinde Patil, V R; Campbell, C. J.; Yun, Y.H.; Slack, S M; Goetz, D J

    2001-01-01

    The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with ...

  4. Airway Smooth Muscle Growth in Asthma: Proliferation, Hypertrophy, and Migration

    OpenAIRE

    Bentley, J. Kelley; Hershenson, Marc B.

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narro...

  5. Pediatric cardiac catheterization procedure with dexmedetomidine sedation: Radiographic airway patency assessment

    Directory of Open Access Journals (Sweden)

    Ashwini Thimmarayappa

    2015-01-01

    Full Text Available Aims: The aim of the study was to measure airway patency objectively during dexmedetomidine sedation under radiographic guidance in spontaneously breathing pediatric patients scheduled for cardiac catheterization procedures. Subjects and Methods: Thirty-five patients in the age group 5-10 years scheduled for cardiac catheterization procedures were enrolled. All study patients were given loading dose of dexmedetomidine at 1 mg/kg/min for 10 min and then maintenance dose of 1.5 mg/kg/h. Radiographic airway patency was assessed at the start of infusion (0 min and after 30 min. Antero-posterior (AP diameters were measured manually at the nasopharyngeal and retroglossal levels. Dynamic change in airway between inspiration and expiration was considered a measure of airway collapsibility. Patients were monitored for hemodynamics, recovery time and complications. Statistical Analysis: Student paired t-test was used for data analysis. P < 0.05 was considered significant. Results: Minimum and maximum AP diameters were compared at 0 and 30 min. Nasopharyngeal level showed significant reduction in the minimum (6.27 ± 1.09 vs. 4.26 ± 1.03, P < 0.0001 and maximum (6.51 ± 1.14 vs. 5.99 ± 1.03, P < 0.0001 diameters. Similarly retroglossal level showed significant reduction in the minimum (6.98 ± 1.09 vs. 5.27 ± 1.15, P < 0.0001 and maximum (7.49 ± 1.22 vs. 6.92 ± 1.12, P < 0.0003 diameters. The degree of collapsibility was greater at 30 min than baseline ( P < 0.0001. There was a significant decrease in heart rate ( P < 0.0001, and the average recovery time was 39.86 ± 12.22 min. Conclusion: Even though airway patency was maintained in all children sedated with dexmedetomidine, there were significant reductions in the upper airway dimensions measured, so all precautions to manage the airway failure should be taken.

  6. Long-term clearance from small airways in subjects with ciliary dysfunction

    Directory of Open Access Journals (Sweden)

    Hjelte Lena

    2006-05-01

    Full Text Available Abstract The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD inhaled 111 Indium labelled Teflon particles of 4.2 μm geometric and 6.2 μm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24 was higher (p 24 with slow inhalation flow was 73.9 ± 1.9 % compared to 68.9 ± 7.5 % with normal inhalation flow in the three PCD subjects exposed twice. During day 7–21 the three PCD subjects exposed twice cleared 9 % with normal flow, probably representing predominantly alveolar clearance, compared to 19 % with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.

  7. MWD tool for deep, small diameter boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  8. Extraction of Airways from CT (EXACT'09)

    NARCIS (Netherlands)

    Lo, P.; Ginneken, B. van; Reinhardt, J.M.; Tarunashree, Y.; Jong, P.A. de; Irving, B.; Fetita, C.; Ortner, M.; Pinho, R.; Sijbers, J.; Feuerstein, M.; Fabijanska, A.; Bauer, C.; Beichel, R.; Mendoza, C.S.; Wiemker, R.; Lee, J. van der; Reeves, A.P.; Born, S.; Weinheimer, O.; Rikxoort, E.M. van; Tschirren, J.; Mori, K.; Odry, B.; Naidich, D.P.; Hartmann, I.J.; Hoffman, E.A.; Prokop, M.; Pedersen, J.H.; Bruijne, M. de

    2012-01-01

    This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference stand

  9. Diagnostic tools assessing airway remodelling in asthma.

    Science.gov (United States)

    Manso, L; Reche, M; Padial, M A; Valbuena, T; Pascual, C

    2012-01-01

    Asthma is an inflammatory disease of the lower airways characterised by the presence of airway inflammation, reversible airflow obstruction and airway hyperresponsiveness and alterations on the normal structure of the airways, known as remodelling. Remodelling is characterised by the presence of metaplasia of mucous glands, thickening of the lamina reticularis, increased angiogenesis, subepithelial fibrosis and smooth muscle hypertrophy/hyperplasia. Several techniques are being optimised at present to achieve a suitable diagnosis for remodelling. Diagnostic tools could be divided into two groups, namely invasive and non-invasive methods. Invasive techniques bring us information about bronchial structural alterations, obtaining this information directly from pathological tissue, and permit measure histological modification placed in bronchi layers as well as inflammatory and fibrotic cell infiltration. Non-invasive techniques were developed to reduce invasive methods disadvantages and measure airway remodelling-related markers such as cytokines, inflammatory mediators and others. An exhaustive review of diagnostic tools used to analyse airway remodelling in asthma, including the most useful and usually employed methods, as well as the principal advantages and disadvantages of each of them, bring us concrete and summarised information about all techniques used to evaluate alterations on the structure of the airways. A deep knowledge of these diagnostic tools will make an early diagnosis of airway remodelling possible and, probably, early diagnosis will play an important role in the near future of asthma. PMID:22236733

  10. Extraction of Airways from CT (EXACT’09)

    DEFF Research Database (Denmark)

    Lo, Pechin; Ginneken, Bram van; Reinhardt, Joseph M.;

    2012-01-01

    This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standar...

  11. Management of the Difficult Paediatric Airway with a Simple Fiberoptic-Assisted Laryngoscope: A Report of Two Cases with Pierre Robin and Patau’s (Trisomy 13) Syndrome

    OpenAIRE

    Kılıçaslan, Alper; Erol, Atilla; Topal, Ahmet; Et, Tayfun; Otelcioğlu, Şeref

    2014-01-01

    Airway management of children with congenital craniofacial anomalies is a challenge for paediatric anaesthesiologists. We do not have any video-assisted airway device in our department for difficult paediatric intubations. We decided to attach a regular fiberoptic (outer diameter; 3.7 mm, Karl Storz, Germany) scope to a conventional Macintosh Laryngoscope (size 1). We describe two cases of Pierre Robin and Patau’s (Trisomy 13) syndrome successfully intubated with a fiberoptic-assisted laryngo...

  12. The genus Prevotella in cystic fibrosis airways.

    Science.gov (United States)

    Field, Tyler R; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2010-08-01

    Airway disease resulting from chronic bacterial colonization and consequential inflammation is the leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Although traditionally considered to be due to only a few pathogens, recent re-examination of CF airway microbiology has revealed that polymicrobial communities that include many obligate anaerobes colonize lower airways. The purpose of this study was to examine Prevotella species in CF airways by quantitative culture and phenotypic characterization. Expectorated sputum was transferred to an anaerobic environment immediately following collection and examined by quantitative microbiology using a variety of culture media. Isolates were identified as facultative or obligate anaerobes and the later group was identified by 16S rRNA sequencing. Prevotella spp. represented the majority of isolates. Twelve different species of Prevotella were recovered from 16 patients with three species representing 65% of isolates. Multiple Prevotella species were often isolated from the same sputum sample. These isolates were biochemically characterized using Rapid ID 32A kits (BioMérieux), and for their ability to produce autoinducer-2 and beta-lactamases. Considerable phenotypic variability between isolates of the same species was observed. The quantity and composition of Prevotella species within a patients' airway microbiome varied over time. Our results suggest that the diversity and dynamics of Prevotella in CF airways may contribute to airway disease.

  13. Definition of Beam Diameter for Electron Beam Welding

    International Nuclear Information System (INIS)

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the 'beam diameter'. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  14. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Jens; Raket, Lars Lau; Nielsen, Mads [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Wille, Mathilde M.W.; Dirksen, Asger [University of Copenhagen, Department of Respiratory Medicine, Gentofte Hospital, Hellerup (Denmark); Feragen, Aasa [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, Tuebingen (Germany); Pedersen, Jesper H. [Rigshospitalet, University Hospital of Copenhagen, Department of Cardio-Thoracic Surgery RT, Copenhagen (Denmark); Bruijne, Marleen de [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Erasmus MC Rotterdam, Departments of Medical Informatics and Radiology, Rotterdam (Netherlands)

    2014-09-15

    To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3-7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7 %). Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. (orig.)

  15. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    International Nuclear Information System (INIS)

    To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3-7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7 %). Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. (orig.)

  16. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma.

    Science.gov (United States)

    Van der Velden, Joanne; Harkness, Louise M; Barker, Donna M; Barcham, Garry J; Ugalde, Cathryn L; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A; Tokanovic, Ana; Burgess, Janette K; Snibson, Kenneth J

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  17. Vessel-guided airway tree segmentation: A voxel classification approach

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Pedersen, Jesper J H; Lo, Pechin Chien Pau;

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...

  18. Shrinking plastic tubing and nonstandard diameters

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S.

    1980-01-01

    Process allows larger-than-normal postshrink diameters without splitting. Tetrafluoroethylene tubing on mandrel is supported within hot steel pipe by several small diameter coil sections. Rising temperature of mandrel is measured via thermocouple so assembly can be removed without overshrinking (and splitting) of tubing.

  19. 7 CFR 51.2850 - Diameter.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Diameter. Diameter means the greatest dimension measured at right angles to a straight line running...

  20. 7 CFR 51.651 - Diameter.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...) Definitions § 51.651 Diameter. Diameter means the greatest dimension measured at right angles to a line...

  1. 7 CFR 51.712 - Diameter.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... § 51.712 Diameter. Diameter means the greatest dimension measured at right angles to a line from...

  2. Nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Lamwers, Stephanie; Tepel, Martin;

    2012-01-01

    Obstructive sleep apnoea (OSA) is linked to increased cardiovascular risk. This risk can be reduced by nasal continuous positive airway pressure (nCPAP) treatment. As OSA is associated with an increase of several vasoconstrictive factors, we investigated whether nCPAP influences the digital volume...... pulse wave. We performed digital photoplethysmography during sleep at night in 94 consecutive patients who underwent polysomnography and 29 patients treated with nCPAP. Digital volume pulse waves were obtained independently of an investigator and were quantified using an algorithm for continuous.......01; n = 94) and the arousal index (Spearman correlation, r = 0.21; p CPAP treatment, the AHI was significantly reduced from 27 ± 3 events · h(-1) to 4 ± 2 events · h(-1) (each n = 29; p

  3. Airways disorders and the swimming pool.

    Science.gov (United States)

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. PMID:23830132

  4. Emergency surgical airway management in Denmark

    DEFF Research Database (Denmark)

    Rosenstock, C V; Kehlet Nørskov, Anders; Wetterslev, J;

    2016-01-01

    general anaesthesia and tracheal intubation from the DAD from June 1, 2008 to March 15, 2014. Difficult airway management involving an ESA was retrieved for analysis and compared with hospitals files. Two independent reviewers evaluated airway management according to the ASAs'2003 practice guideline...... per thousand (95% CI; 1.0-2.4). A Supraglottic Airway Device and/or the administration of a neuromuscular blocking agent before ESA were used as a rescue in 6/27 and 13/27 of the patients, respectively. In 19/27 patients ENT surgeons performed the ESA's and anaesthetists attempted 6/27 of the ESAs...

  5. Leukocyte trafficking in alveoli and airway passages

    Directory of Open Access Journals (Sweden)

    Doerschuk Claire M

    2000-10-01

    Full Text Available Abstract Many pulmonary diseases preferentially affect the large airways or the alveoli. Although the mechanisms are often particular to each disease process, site-specific differences in leukocyte trafficking and the regulation of inflammation also occur. Differences in the process of margination, sequestration, adhesion, and migration occur that can be attributed to differences in anatomy, hemodynamics, and the expression of proteins. The large airways are nourished by the bronchial circulation, whereas the pulmonary circulation feeds the distal lung parenchyma. The presence of different cell types in large airways from those in alveoli might contribute to site-specific differences in the molecular regulation of the inflammatory process.

  6. Photoacoustic determination of blood vessel diameter

    Science.gov (United States)

    Kolkman, Roy G. M.; Klaessens, John H. G. M.; Hondebrink, Erwin; Hopman, Jeroen C. W.; de Mul, Frits F. M.; Steenbergen, Wiendelt; Thijssen, Johan M.; van Leeuwen, Ton G.

    2004-10-01

    A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-to-peak time (tgrpp) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual vessel diameter showed that the diameter could be approximated by 2ctgrpp, with c the speed of sound in blood. Using this relation, the lateral diameter could also precisely be determined. In vivo imaging and monitoring of changes in vessel diameters was feasible. Finally, acoustic time traces were recorded while flushing a vessel in the rabbit ear with saline, which proved that the main contribution to the laser-induced pressure transient is caused by blood inside the vessel and that the vessel wall gives only a minor contribution.

  7. Photoacoustic determination of blood vessel diameter

    International Nuclear Information System (INIS)

    A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-to-peak time (τpp) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual vessel diameter showed that the diameter could be approximated by 2cτpp, with c the speed of sound in blood. Using this relation, the lateral diameter could also precisely be determined. In vivo imaging and monitoring of changes in vessel diameters was feasible. Finally, acoustic time traces were recorded while flushing a vessel in the rabbit ear with saline, which proved that the main contribution to the laser-induced pressure transient is caused by blood inside the vessel and that the vessel wall gives only a minor contribution

  8. Airway resistance at maximum inhalation as a marker of asthma and airway hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    O'Connor George T

    2011-07-01

    Full Text Available Abstract Background Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin is abnormally elevated in subjects with airway hyperresponsiveness. Methods The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol and bronchoconstriction (methacholine. A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values. Results Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004. Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 min % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively. Also, 80% of the subjects with baseline Rmin min > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic. Conclusions These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.

  9. Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells

    OpenAIRE

    Deborah H Strickland; Stumbles, Philip A.; Zosky, Graeme R.; Subrata, Lily S.; Thomas, Jenny A.; Turner, Debra J.; Sly, Peter D.; Holt, Patrick G.

    2006-01-01

    An important feature of atopic asthma is the T cell–driven late phase reaction involving transient bronchoconstriction followed by development of airways hyperresponsiveness (AHR). Using a unique rat asthma model we recently showed that the onset and duration of the aeroallergen-induced airway mucosal T cell activation response in sensitized rats is determined by the kinetics of functional maturation of resident airway mucosal dendritic cells (AMDCs) mediated by cognate interactions with CD4+...

  10. Protease-activated receptor 2 mediates mucus secretion in the airway submucosal gland.

    Directory of Open Access Journals (Sweden)

    Hyun Jae Lee

    Full Text Available Protease-activated receptor 2 (PAR2, a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca(2+-sensitive dye Fura2-AM was used to determine intracellular Ca(2+ concentration ([Ca(2+](i by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP elevated intracellular Ca(2+ and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca(2+ and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca(2+-dependent and cystic fibrosis transmembrane conductance regulator-independent.

  11. Nasal airway responses to nasal continuous positive airway pressure breathing: An in-vivo pilot study.

    Science.gov (United States)

    White, David E; Bartley, Jim; Shakeel, Muhammad; Nates, Roy J; Hankin, Robin K S

    2016-06-14

    The nasal cycle, through variation in nasal airflow partitioning, allows the upper airway to accommodate the contrasting demands of air conditioning and removal of entrapped air contaminants. The purpose of this study was to investigate the influence of nasal continuous positive airway pressure (nCPAP) breathing has on both nasal airflow partitioning and nasal geometry. Using a custom-made nasal mask, twenty healthy participants had the airflow in each naris measured during normal nasal breathing followed by nCPAP breathing. Eight participants also underwent magnetic resonance imaging (MRI) of the nasal region during spontaneous nasal breathing, and then nCPAP breathing over a range of air pressures. During nCPAP breathing, a simultaneous reduction in airflow through the patent airway together with a corresponding increase in airway flow within the congested nasal airway were observed in sixteen of the twenty participants. Nasal airflow resistance is inversely proportional to airway cross-sectional area. MRI data analysis during nCPAP breathing confirmed airway cross-sectional area reduced along the patent airway while the congested airway experienced an increase in this parameter. During awake breathing, nCPAP disturbs the normal inter-nasal airflow partitioning. This could partially explain the adverse nasal drying symptoms frequently reported by many users of this therapy. PMID:27173595

  12. Fluid dynamics in airway bifurcations: II. Secondary currents.

    Science.gov (United States)

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    As the second component of a systematic investigation on flows in bifurcations reported in this journal, this work focused on secondary currents. The first article addressed primary flows and the third discusses localized conditions (both in this issue). Secondary flow patterns were studied in two lung bifurcation models (Schreck, 1972) using FIDAP with the Cray T90 supercomputer. The currents were examined at different prescribed distances distal to the carina. Effects of inlet conditions, Reynolds numbers, and diameter ratios and orientations of airways were addressed. The secondary currents caused by the presence of the carina and inclination of the daughter tubes exhibited symmetric, multivortex patterns. The intensities of the secondary currents became stronger for larger Reynolds numbers and larger angles of bifurcation.

  13. Virtual Airway Skills Trainer (VAST) Simulator

    Science.gov (United States)

    DEMIREL, Doga; YU, Alexander; HALIC, Tansel; SANKARANARAYANAN, Ganesh; RYASON, Adam; SPINDLER, David; BUTLER, Kathryn L.; CAO, Caroline; PETRUSA, Emil; MOLINA, Marcos; JONES, Dan; DE, Suvranu; DEMOYA, Marc; JONES, Stephanie

    2016-01-01

    This paper presents a simulation of Virtual Airway Skill Trainer (VAST) tasks. The simulated tasks are a part of two main airway management techniques; Endotracheal Intubation (ETI) and Cricothyroidotomy (CCT). ETI is a simple nonsurgical airway management technique, while CCT is the extreme surgical alternative to secure the airway of a patient. We developed identification of Mallampati class, finding the optimal angle for positioning pharyngeal/mouth axes tasks for ETI and identification of anatomical landmarks and incision tasks for CCT. Both ETI and CCT simulators were used to get physicians’ feedback at Society for Education in Anesthesiology and Association for Surgical Education spring meetings. In this preliminary validation study, total 38 participants for ETI and 48 for CCT performed each simulation task and completed pre and post questionnaires. In this work, we present the details of the simulation for the tasks and also the analysis of the collected data from the validation study. PMID:27046559

  14. Role of platelets in allergic airway inflammation.

    Science.gov (United States)

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  15. Central airways remodeling in COPD patients

    Directory of Open Access Journals (Sweden)

    Pini L

    2014-09-01

    Full Text Available Laura Pini,1 Valentina Pinelli,2 Denise Modina,1 Michela Bezzi,3 Laura Tiberio,4 Claudio Tantucci1 1Unit of Respiratory Medicine, Department of Clinical and Experimental Sciences, University of Brescia, 2Department of Respiratory Medicine, Spedali Civili di Brescia, 3Department Bronchoscopy, Spedali Civili di Brescia, 4Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy Background: The contribution to airflow obstruction by the remodeling of the peripheral airways in chronic obstructive pulmonary disease (COPD patients has been well documented, but less is known about the role played by the large airways. Few studies have investigated the presence of histopathological changes due to remodeling in the large airways of COPD patients. Objectives: The aim of this study was to verify the presence of airway remodeling in the central airways of COPD patients, quantifying the airway smooth muscle (ASM area and the extracellular matrix (ECM protein deposition, both in the subepithelial region and in the ASM, and to verify the possible contribution to airflow obstruction by the above mentioned histopathological changes. Methods: Biopsies of segmental bronchi spurs were performed in COPD patients and control smoker subjects and immunostained for collagen type I, versican, decorin, biglycan, and alpha-smooth muscle actin. ECM protein deposition was measured at both subepithelial, and ASM layers. Results: The staining for collagen I and versican was greater in the subepithelial layer of COPD patients than in control subjects. An inverse correlation was found between collagen I in the subepithelial layer and both forced expiratory volume in 1 second and ratio between forced expiratory volume in 1 second and forced vital capacity. A statistically significant increase of the ASM area was observed in the central airways of COPD patients versus controls. Conclusion: These findings indicate that airway remodeling also affects

  16. Measuring Electrospun Nanofibre Diameter: a Novel Approach

    Institute of Scientific and Technical Information of China (English)

    M. Ziabari; V. Mottaghitalab; S. T. McGovern; A. K. Haghi

    2008-01-01

    @@ A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements axe identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?.-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters.

  17. Anaesthesia and airway management in mucopolysaccharidosis

    OpenAIRE

    Walker, Robert; Belani, Kumar G.; Braunlin, Elizabeth A.; Bruce, Iain A.; Hack, Henrik; Harmatz, Paul R.; Jones, Simon; Rowe, Richard; Solanki, Guirish A.; Valdemarsson, Barbara

    2012-01-01

    This paper provides a detailed overview and discussion of anaesthesia in patients with mucopolysaccharidosis (MPS), the evaluation of risk factors in these patients and their anaesthetic management, including emergency airway issues. MPS represents a group of rare lysosomal storage disorders associated with an array of clinical manifestations. The high prevalence of airway obstruction and restrictive pulmonary disease in combination with cardiovascular manifestations poses a high anaesthetic ...

  18. Dynamic Properties of Human Bronchial Airway Tissues

    OpenAIRE

    Wang, Jau-Yi; Mesquida, Patrick; Pallai, Prathap; Corrigan, Chris J; Lee, Tak H

    2011-01-01

    Young's Modulus and dynamic force moduli were measured on human bronchial airway tissues by compression. A simple and low-cost system for measuring the tensile-strengh of soft bio-materials has been built for this study. The force-distance measurements were undertaken on the dissected bronchial airway walls, cartilages and mucosa from the surgery-removed lungs donated by lung cancer patients with COPD. Young's modulus is estimated from the initial slope of unloading force-displacement curve a...

  19. Leukocyte trafficking in alveoli and airway passages

    OpenAIRE

    Doerschuk Claire M

    2000-01-01

    Abstract Many pulmonary diseases preferentially affect the large airways or the alveoli. Although the mechanisms are often particular to each disease process, site-specific differences in leukocyte trafficking and the regulation of inflammation also occur. Differences in the process of margination, sequestration, adhesion, and migration occur that can be attributed to differences in anatomy, hemodynamics, and the expression of proteins. The large airways are nourished by the bronchial circula...

  20. Small Airway Dysfunction and Abnormal Exercise Responses

    Science.gov (United States)

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  1. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  2. Interleukin-20 promotes airway remodeling in asthma.

    Science.gov (United States)

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  3. Ultrasound: A novel tool for airway imaging

    Directory of Open Access Journals (Sweden)

    Siddharthkumar Bhikhabhai Parmar

    2014-01-01

    Full Text Available Context: The scope of ultrasound is emerging in medical science, particularly outside traditional areas of radiology practice. Aims: We designed this study to evaluate feasibility of bedside sonography as a tool for airway assessment and to describe sonographic anatomy of airway. Settings and Design: A prospective, clinical study. Materials and Methods: We included 100 adult, healthy volunteers of either sex to undergo airway imaging systemically starting from floor of the mouth to the sternal notch in anterior aspect of neck by sonography. Results: We could visualize mandible and hyoid bone as a bright hyperechoic structure with hypoechoic acoustic shadow underneath. Epiglottis, thyroid cartilage, cricoid cartilage, and tracheal rings appeared hypoechoic. Vocal cords were visualized through thyroid cartilage. Interface between air and mucosa lining the airway produced a bright hyperechoic linear appearance. Artifacts created by intraluminal air prevented visualization of posterior pharynx, posterior commissure, and posterior wall of trachea. Conclusions: Ultrasound is safe, quick, noninvasive, repeatable, and bedside tool to assess the airway and can provide real-time dynamic images relevant for several aspects of airway management.

  4. Growth of nanostructures with controlled diameter

    Science.gov (United States)

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  5. TRPA1 is a major oxidant sensor in murine airway sensory neurons.

    Science.gov (United States)

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-05-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca(2+) influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1(-/-) mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide-induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  6. Appendiceal diameter: CT versus sonographic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Orscheln, Emily S. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati, OH (United States); Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2016-03-15

    Ultrasound and CT are the dominant imaging modalities for assessment of suspected pediatric appendicitis, and the most commonly applied diagnostic criterion for both modalities is appendiceal diameter. The classically described cut-off diameter for the diagnosis of appendicitis is 6 mm when using either imaging modality. To demonstrate the fallacy of using the same cut-off diameter for both CT and US in the diagnosis of appendicitis. We conducted a retrospective review of patients younger than 18 years who underwent both US and CT of the appendix within 24 h. The shortest transverse dimension of the appendix was measured at the level of the proximal, mid and distal appendix on US and CT images. We compared mean absolute difference in appendiceal diameter between US and CT, using the paired t-test. We reviewed exams of 155 children (58.7% female) with a mean age of 11.3 ± 4.2 years; 38 of the children (24.5%) were diagnosed with appendicitis. The average time interval between US and CT was 7.0 ± 5.4 h. Mean appendiceal diameter measured by CT was significantly larger than that measured by US in cases without appendicitis (5.3 ± 1.0 mm vs. 4.7 ± 1.1 mm, P < 0.0001) and in cases with appendicitis (8.3 ± 2.2 mm vs. 7.0 ± 2.0 mm, P < 0.0001). Mean absolute diameter difference at any location along the appendix was 1.3-1.4 mm in normal appendices and 2 mm in cases of appendicitis. Measured appendiceal diameter differs between US and CT by 1-2 mm, calling into question use of the same diameter cut-off (6 mm) for both modalities for the diagnosis of appendicitis. (orig.)

  7. Turbulator Diameter and Drag on a Sphere

    Directory of Open Access Journals (Sweden)

    Nicholas Robson

    2009-01-01

    Full Text Available A sphere with turbulators of varying diameter was pulled through water with constant force. The relationship between the diameter of the turbulators and the ball’s total coefficient of drag was determined. The maximum drag reduction was found with turbulators of 0.002 m. The drag reduction was less for turbulators of sizes 0.004 m and 0.005 m.

  8. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    Science.gov (United States)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  9. Origins of increased airway smooth muscle mass in asthma.

    Science.gov (United States)

    Berair, Rachid; Saunders, Ruth; Brightling, Christopher E

    2013-01-01

    Asthma is characterized by both chronic inflammation and airway remodeling. Remodeling--the structural changes seen in asthmatic airways--is pivotal in the pathogenesis of the disease. Although significant advances have been made recently in understanding the different aspects of airway remodeling, the exact biology governing these changes remains poorly understood. There is broad agreement that, in asthma, increased airway smooth muscle mass, in part due to smooth muscle hyperplasia, is a very significant component of airway remodeling. However, significant debate persists on the origins of these airway smooth muscle cells. In this review article we will explore the natural history of airway remodeling in asthma and we will discuss the possible contribution of progenitors, stem cells and epithelial cells in mesenchymal cell changes, namely airway smooth muscle hyperplasia seen in the asthmatic airways. PMID:23742314

  10. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  11. Lipocalin2 protects against airway inflammation and hyperresponsiveness in a murine model of allergic airway disease

    DEFF Research Database (Denmark)

    Dittrich, A M; Krokowski, M; Meyer, H-A;

    2010-01-01

    Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways.......Allergen-induced bronchial asthma is a chronic airway disease that involves the interplay of various genes with environmental factors triggering different inflammatory pathways....

  12. 75 FR 13079 - Action Affecting Export Privileges; MAHAN AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan...

    Science.gov (United States)

    2010-03-18

    ... Secretary Jackson issued an Order adding Blue Airways FZE and Blue Airways, both of Dubai, United Arab... conduct illustrates its refusal to comply with the TDO or U.S. export control laws.\\6\\ \\6\\ My findings are... full written statement in support of the appeal with the Office of the Administrative Law Judge,...

  13. Full Airway Drainage by Fiber Bronchoscopy Through Artificial Airway in the Treatment of Occult Traumatic Atelectasis.

    Science.gov (United States)

    Zhao, Xue Hong; Zhang, Yun; Liang, Zhong Yan; Zhang, Shao Yang; Yu, Wen Qiao; Huang, Fang-Fang

    2015-12-01

    The objective of this study is to investigate the effects of full airway drainage by fiber bronchoscopy through artificial airway in the treatment of traumatic atelectasis with occult manifestations. From May 2006 to May 2011, 40 cases of occult traumatic atelectasis were enrolled into our prospective study. Group A (n = 18) received drainage by nasal bronchoscope; group B underwent airway drainage by fiber bronchoscopy through artificial airway (n = 22). The effects of treatment were evaluated by the incidence of adult respiratory distress syndrome (ARDS), lung abscess, and the average length of hospital stay. Compared with nasal fiber-optic treatment, airway drainage by fiber bronchoscopy through artificial airway reduced the incidence of ARDS (p = 0.013) and lung abscess (p = 0.062) and shortened the mean length of stay (p = 0.018). Making the decision to create an artificial airway timely and carry out lung lavage by fiber bronchoscopy through artificial airway played a significant role in the treatment of occult traumatic atelectasis.

  14. Nucleotide-mediated airway clearance.

    Science.gov (United States)

    Schmid, Andreas; Clunes, Lucy A; Salathe, Mathias; Verdugo, Pedro; Dietl, Paul; Davis, C William; Tarran, Robert

    2011-01-01

    A thin layer of airway surface liquid (ASL) lines the entire surface of the lung and is the first point of contact between the lung and the environment. Surfactants contained within this layer are secreted in the alveolar region and are required to maintain a low surface tension and to prevent alveolar collapse. Mucins are secreted into the ASL throughout the respiratory tract and serve to intercept inhaled pathogens, allergens and toxins. Their removal by mucociliary clearance (MCC) is facilitated by cilia beating and hydration of the ASL by active ion transport. Throughout the lung, secretion, ion transport and cilia beating are under purinergic control. Pulmonary epithelia release ATP into the ASL which acts in an autocrine fashion on P2Y(2) (ATP) receptors. The enzymatic network describes in Chap. 2 then mounts a secondary wave of signaling by surface conversion of ATP into adenosine (ADO), which induces A(2B) (ADO) receptor-mediated responses. This chapter offers a comprehensive description of MCC and the extensive ramifications of the purinergic signaling network on pulmonary surfaces. PMID:21560046

  15. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    Science.gov (United States)

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  16. Collagen fibril diameter and leather strength.

    Science.gov (United States)

    Wells, Hannah C; Edmonds, Richard L; Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T; Haverkamp, Richard G

    2013-11-27

    The main structural component of leather and skin is type I collagen in the form of strong fibrils. Strength is an important property of leather, and the way in which collagen contributes to the strength is not fully understood. Synchrotron-based small angle X-ray scattering (SAXS) is used to measure the collagen fibril diameter of leather from a range of animals, including sheep and cattle, that had a range of tear strengths. SAXS data were fit to a cylinder model. The collagen fibril diameter and tear strength were found to be correlated in bovine leather (r(2) = 0.59; P = 0.009), with stronger leather having thicker fibrils. There was no correlation between orientation index, i.e., fibril alignment, and fibril diameter for this data set. Ovine leather showed no correlation between tear strength and fibril diameter, nor was there a correlation across a selection of other animal leathers. The findings presented here suggest that there may be a different structural motif in skin compared with tendon, particularly ovine skin or leather, in which the diameter of the individual fibrils contributes less to strength than fibril alignment does.

  17. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  18. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  19. Acoustic simulation of a patient's obstructed airway.

    Science.gov (United States)

    van der Velden, W C P; van Zuijlen, A H; de Jong, A T; Lynch, C T; Hoeve, L J; Bijl, H

    2016-01-01

    This research focuses on the numerical simulation of stridor; a high pitched, abnormal noise, resulting from turbulent airflow and vibrating tissue through a partially obstructed airway. Characteristics of stridor noise are used by medical doctors as indication for location and size of the obstruction. The relation between type of stridor and the various diseases associated with airway obstruction is unclear; therefore, simply listening to stridor is an unreliable diagnostic tool. The overall aim of the study is to better understand the relationship between characteristics of stridor noise and localization and size of the obstruction. Acoustic analysis of stridor may then in future simplify the diagnostic process, and reduce the need for more invasive procedures such as laryngoscopy under general anesthesia. In this paper, the feasibility of a coupled flow, acoustic and structural model is investigated to predict the noise generated by the obstruction as well as the propagation of the noise through the airways, taking into account a one-way coupled fluid, structure, and acoustic interaction components. The flow and acoustic solver are validated on a diaphragm and a simplified airway model. A realistic airway model of a patient suffering from a subglottic stenosis, derived from a real computed tomography scan, is further analyzed. Near the mouth, the broadband noise levels at higher frequencies increased with approximately 15-20 dB comparing the stridorous model with the healthy model, indicating stridorous sound.

  20. Macrophage adaptation in airway inflammatory resolution

    Directory of Open Access Journals (Sweden)

    Manminder Kaur

    2015-09-01

    Full Text Available Bacterial and viral infections (exacerbations are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte–macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition.

  1. Kinins, airway obstruction, and anaphylaxis.

    Science.gov (United States)

    Kaplan, Allen P

    2010-01-01

    Anaphylaxis is a term that implies symptoms that are present in many organs, some of which are potentially fatal. The pathogenic process can either be IgE-dependent or non-IgE-dependent; the latter circumstance may be referred to as anaphylactoid. Bradykinin is frequently responsible for the manifestations of IgE-independent reactions. Blood levels may increase because of overproduction; diseases such as the various forms of C1 inhibitor deficiency (hereditary or acquired) or hereditary angioedema with normal C1 inhibitor are examples in this category. Blood levels may also increase because of an abnormality in bradykinin metabolism; the angioedema due to ACE inhibitors is a commonly encountered example. Angioedema due to bradykinin has the potential to cause airway obstruction and asphyxia as well as severe gastrointestinal symptoms simulating an acute abdomen. Formation of bradykinin in plasma is a result of a complex interaction among proteins such as factor XII, prekallikrein, and high molecular weight kininogen (HK) resulting in HK cleavage and liberation of bradykinin. These proteins also assemble along the surface of endothelial cells via zinc-dependent interactions with gC1qR, cytokeratin 1, and u-PAR. Endothelial cell expression (or secretion) of heat-shock protein 90 or prolylcarboxypeptidase can activate the prekallikrein-HK complex to generate bradykinin in the absence of factor XII, however factor XII is then secondarily activated by the kallikrein that results. Bradykinin is destroyed by carboxypeptidase N and angiotensin-converting enzyme. The hypotension associated with IgE-dependent anaphylaxis maybe mediated, in part, by massive proteolytic digestion of HK by kallikreins (tissue or plasma-derived) or other cell-derived kininogenases. PMID:20519882

  2. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

    International Nuclear Information System (INIS)

    Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were -0.569 and -0.560, respectively, with p<0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being -0.621 (FEV1) and -0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered. (orig.)

  3. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, Tobias; Weinheimer, Oliver; Schmitt, Sabine; Freudenstein, Daniela; Kunz, Richard Peter; Dueber, Christoph [Johannes Gutenberg University, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Biedermann, Alexander; Buhl, Roland [Johannes Gutenberg University, IIIrd Department of Internal Medicine - Pneumology, Mainz (Germany); Goutham, Edula [Astra Zeneca, Lund (Sweden); Heussel, Claus Peter [Thoraxklinik, University Hospital Heidelberg, Diagnostic and Interventional Radiology, Heidelberg (Germany)

    2008-12-15

    Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were -0.569 and -0.560, respectively, with p<0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being -0.621 (FEV1) and -0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered. (orig.)

  4. Crouzon syndrome with bony upper airway obstruction: case report and review literature.

    Science.gov (United States)

    Gothwal, Sunil; Nayan, Swati; Kumar, Jagdish

    2014-08-01

    Crouzon syndrome is a rare genetic disorder. It is inherited as an autosomal dominant pattern. Mutations in the FGFR2 gene are known to cause Crouzon syndrome. Craniofacial abnormalities are common at birth and may progress with time. The severity of these signs and symptoms varies among affected children. A full term, large for date, male baby was delivered to a gravida 2 mother by cesarean section having facial dimorphism suggestive of Crouzon syndrome. Genetic team confirmed the diagnosis. Baby had severe respiratory distress. On work up, upper bony airway narrowing was found (diameter 3 mm). Later on, baby was operated for the same. Baby is asymptomatic now and doing well up to 2 months of follow-up. Management of Crouzon disease is multidisciplinary and early diagnosis has prime importance. Follow-up must ensure late features like hearing problems, vision problems, dental problems, intelligence, cranial synostosis, and upper airway problems. PMID:24828762

  5. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    Science.gov (United States)

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  6. Influence of Tube‘s Diameter on Boling Heat Transfer Performance in Small Diameter Tubes

    Institute of Scientific and Technical Information of China (English)

    GanChengjun; WangWeicheng; 等

    1998-01-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a,HCFC-22 and CFC-12 as working fluid.The results show that the evaporation heat transfer cofeeicient increasese with the decreasing of inner diameter of tubes,A new concept of nondimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient.And further,a conveinent empirical correction method is preseted.

  7. Influence of tube's diameter on boiling heat transfer performance in small diameter tubes

    Science.gov (United States)

    Gan, Chengjun; Wang, Weicheng; Zhang, Lining

    1998-03-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a, HCFC-22 and CFC-12 as working fluid. The results show that the evaporation heat transfer coefficient increases with the decreasing of inner diameter of tubes. A new concept of non-dimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient. And further, a convenient empirical correction method is presented.

  8. Airway Clearance Devices for Cystic Fibrosis

    Science.gov (United States)

    2009-01-01

    Executive Summary Objective The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference. Background Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF. A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance. Airway Clearance Devices There are at least three classes of airway clearance devices: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP

  9. Picornavirus-Induced Airway Mucosa Immune Profile in Asymptomatic Neonates

    DEFF Research Database (Denmark)

    Wolsk, Helene M.; Følsgaard, Nilofar V.; Birch, Sune;

    2016-01-01

    Bacterial airway colonization is known to alter the airway mucosa immune response in neonates whereas the impact of viruses is unknown. The objective was therefore to examine the effect of respiratory viruses on the immune signature in the airways of asymptomatic neonates. Nasal aspirates from 571......-regulating effect. Asymptomatic presence of picornavirus in the neonatal airway is a potent activator of the topical immune response. This is relevant to understanding the immune potentiating effect of early life exposure to viruses....

  10. Quantitative computed tomography imaging of airway remodeling in severe asthma

    OpenAIRE

    Grenier, Philippe A.; Fetita, Catalin I.; Brillet, Pierre-Yves

    2016-01-01

    Asthma is a heterogeneous condition and approximately 5–10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. ...

  11. Ultrasound: A promising tool for contemporary airway management

    OpenAIRE

    Garg, Rakesh; Gupta, Anju

    2015-01-01

    Airway evaluation and its management remains an ever emerging clinical science. Present airway management tools are static and do not provide dynamic airway management option. Visualized procedures like ultrasound (US) provide point of care real time dynamic views of the airway in perioperative, emergency and critical care settings. US can provide dynamic anatomical assessment which is not possible by clinical examination alone. US aids in detecting gastric contents and the nature of gastric ...

  12. Reducing the diameters of computer networks

    Science.gov (United States)

    Bokhari, S. H.; Raza, A. D.

    1986-01-01

    Three methods of reducing the diameters of computer networks by adding additional processor to processor links under the constraint that no more than one I/O port be added to each processor are discussed. This is equivalent to adding edges to a given graph under the constraint that the degree of any node be increased, at most, by one.

  13. Impossible Airway Requiring Venovenous Bypass for Tracheostomy

    Directory of Open Access Journals (Sweden)

    Johnathan Gardes

    2012-01-01

    Full Text Available The elective surgical airway is the definitive management for a tracheal stenotic lesion that is not a candidate for tracheal resection, or who has failed multiple-tracheal dilations. This case report details the management of a patient who has failed an elective awake tracheostomy secondary to the inability to be intubated as well as severe scar tissue at the surgical site. A combination of regional anesthesia and venovenous bypass is used to facilitate the surgical airway management of this patient. Cerebral oximetry and a multidisciplinary team approach aid in early detection of an oxygenation issue, as well as the emergent intervention that preserved this patient’s life.

  14. Automatic Airway Deletion in Pulmonary Segmentation

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; ZHUANG Tian-ge

    2005-01-01

    A method of removing the airway from pulmonary segmentation image was proposed. This method firstly segments the image into several separate regions based on the optimum threshold and morphological operator,and then each region is labeled and noted with its mean grayscale. Therefore, most of the non-lung regions can be removed according to the tissue's Hounsfield units (HU) and the imaging modality. Finally, the airway region is recognized and deleted automatically through using the priori information of its HU and size. This proposed method is tested using several clinical images, yielding satisfying results.

  15. Association between peripheral airway function and neutrophilic inflammation in asthma

    NARCIS (Netherlands)

    Farah, Claude S.; Keulers, Laurien A. B.; Hardaker, Kate M.; Peters, Matthew J.; Berend, Norbert; Postma, Dirkje S.; Salome, Cheryl M.; King, Gregory G.

    2015-01-01

    Background and objectiveSmall airway dysfunction is associated with asthma severity and control, but its association with airway inflammation is unknown. The aim was to determine the association between sputum inflammatory cells and the site of small airway dysfunction, measured by multiple breath n

  16. Rigid fibrescope Bonfils: use in simulated difficult airway by novices

    Directory of Open Access Journals (Sweden)

    Piepho Tim

    2009-07-01

    Full Text Available Abstract Background The Bonfils intubation fibrescope is a promising alternative device for securing the airway. We examined the success rate of intubation and the ease of use in standardized simulated difficult airway scenarios by physicians. We compared the Bonfils to a classical laryngoscope with Macintosh blade. Methods 30 physicians untrained in the use of rigid fibrescopes but experienced in airway management performed endotracheal intubation in an airway manikin (SimMan, Laerdal, Kent, UK with three different airway conditions. We evaluated the success rate using the Bonfils (Karl Storz, Tuttlingen, Germany or the Macintosh laryngoscope, the time needed for securing the airway, and subjective rating of both techniques. Results In normal airway all intubations were successful using laryngoscope (100% vs. 82% using the Bonfils (p Conclusion The Bonfils can be successfully used by physicians unfamiliar with this technique in an airway manikin. The airway could be secured with at least the same success rate as using a Macintosh laryngoscope in difficult airway scenarios. Use of the Bonfils did not delay intubation in the presence of a difficult airway. These results indicate that intensive special training is advised to use the Bonfils effectively in airway management.

  17. Research on airway inflammation: present status in Mainland China

    Institute of Scientific and Technical Information of China (English)

    WANG Zeng-li

    2005-01-01

    @@ Airway inflammation involving activated eosinophils, mast cells and T lymphocytes is an established feature of asthma and has been the key target to treatment. Airway structural changes that occur in patients with asthma in response to persistent inflammation are termed airway remodeling.

  18. Airway remodeling: Effect of current and future asthma therapies

    NARCIS (Netherlands)

    Burgess, Janette K.; Moir, Lyn M.

    2007-01-01

    Airway remodeling (the structural changes which occur in the airways) is one of the characteristic features of severe persistent asthma. These changes include thickening of the laminar reticularis, an increase in the bulk of the airway smooth muscle, thickening of the basement membrane and alteratio

  19. Airway management in a bronchoscopic simulator based setting

    DEFF Research Database (Denmark)

    Graeser, Karin; Konge, Lars; Kristensen, Michael S;

    2014-01-01

    to practice on patients. OBJECTIVES: To evaluate the validity of airway simulation as an assessment tool for the acquisition of the preclinical basic skills in flexible optical intubation and to investigate anaesthetists' opinion on airway simulation. DESIGN: Observational study. SETTING: International airway...

  20. Mucociliary clearance, airway inflammation and nasal symptoms in urban motorcyclists

    OpenAIRE

    Brant, Tereza C S; Yoshida, Carolina T; Tomas de S. Carvalho; Nicola, Marina L; Jocimar. A. Martins; Lays M. Braga; Regiani C. de Oliveira; Vilma Leyton; Carmen S. de André; Saldiva, Paulo H. N.; Rubin, Bruce K.; Naomi K. Nakagawa

    2014-01-01

    OBJECTIVES: There is evidence that outdoor workers exposed to high levels of air pollution exhibit airway inflammation and increased airway symptoms. We hypothesized that these workers would experience increased airway symptoms and decreased nasal mucociliary clearance associated with their exposure to air pollution. METHODS:...

  1. A practical clinical approach to management of the difficult airway

    NARCIS (Netherlands)

    Eindhoven, GB; Dercksen, B; Regtien, JG; Borg, PAJ; Wierda, JMKH

    2001-01-01

    Difficult airway management represents a challenge in anaesthesia. In the last decades airway difficulty awareness has improved as a result of better anticipation and decision-making. Airway algorithms and protocols have a more prominent role in training and in clinical anaesthesia practice. In addi

  2. [Modern airway management--current concepts for more patient safety].

    Science.gov (United States)

    Timmermann, Arnd

    2009-04-01

    Effective and safe airway management is one of the core skills among anaesthesiologists and all physicians involved in acute care medicine. However, failure in airway management is still the most frequent single incidence with the highest impact on patient's morbidity and mortality known from closed claims analyses. The anaesthesiologist has to manage the airway in elective patients providing a high level of safety with as little airway injury and interference with the cardio-vascular system as possible. Clinical competence also includes the management of the expected and unexpected difficult airway in different clinical environments. Therefore, it is the anaesthesiologist's responsibility not only to educate and train younger residents, but also all kinds of medical personnel involved in airway management, e.g. emergency physicians, intensive care therapists or paramedics. Modern airway devices, strategies and educational considerations must fulfill these sometimes diverse and large range requirements. Supraglottic airway devices will be used more often in the daily clinical routine. This is not only due the multiple advantages of these devices compared to the tracheal tube, but also because of the new features of some supraglottic airways, which separate the airway from the gastric track and give information of the pharyngeal position. For the event of a difficult airway, new airway devices and concepts should be trained and applied in daily practice.

  3. Bronchoconstriction and airway biology : potential impact and therapeutic opportunities

    NARCIS (Netherlands)

    Gosens, Reinoud; Grainge, Chris

    2015-01-01

    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally

  4. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  5. Raman spectroscopy of small-diameter nanotubes

    International Nuclear Information System (INIS)

    Results based on Raman measurements of small-diameter nanotubes (NTs) are presented and discussed in this paper. The NTs with diameters from 1 nm down to 0.4 nm were produced either as the inner tubes in the double-wall carbon NTs (DWCNTs) or as tubes embedded in the channels of the zeolite crystals. While analysing the Raman spectra attention was paid to the radial breathing mode (RBM), the D line and the G band. For both NT systems the RBM frequency was found to follow the same functional diameter dependence as the tubes with larger diameters. However, in contrast to the latter, the diameters of the thin tubes obtained from density functional theory calculations must be taken into account to explain satisfactorily the observed line positions. The resonance behaviour of the RBM intensities was recorded for the tubes in zeolites. It allows us to ascribe a position of the RBM to a particular NT. This result also demonstrates the breakdown of a simple tight-binding approach to the electronic structure but agrees with predictions from ab initio calculations. The D line of the outer tubes in DWCNTs is dispersive, similar to the single-wall carbon NTs. However, the rate of dispersion is reduced for the inner tubes in DWCNTs. This is attributed to the fact that the inner and outer tubes are probed with the same laser excitation. The linear shift due to the increasing laser energy is compensated by the negative shift due to the NT diameter. The latter is smaller for the inner NTs which leads to a stronger compensation of their dispersive behaviour. This effect is even stronger for the NTs in zeolites. In the extreme case, the strong Raman lines are not dispersive at all. This unexpected behaviour was explained by the detailed ab initio calculation of the phonon structure. The G bands of the inner semiconducting tubes were observed as new features in the Raman spectra of DWCNTs. On the other hand, no lines of metallic inner tubes were found. G bands of semiconducting as

  6. On finding minimum-diameter clique trees

    Energy Technology Data Exchange (ETDEWEB)

    Blair, J.R.S. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science); Peyton, B.W. (Oak Ridge National Lab., TN (United States))

    1991-08-01

    It is well-known that any chordal graph can be represented as a clique tree (acyclic hypergraph, join tree). Since some chordal graphs have many distinct clique tree representations, it is interesting to consider which one is most desirable under various circumstances. A clique tree of minimum diameter (or height) is sometimes a natural candidate when choosing clique trees to be processed in a parallel computing environment. This paper introduces a linear time algorithm for computing a minimum-diameter clique tree. The new algorithm is an analogue of the natural greedy algorithm for rooting an ordinary tree in order to minimize its height. It has potential application in the development of parallel algorithms for both knowledge-based systems and the solution of sparse linear systems of equations. 31 refs., 7 figs.

  7. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen.

    OpenAIRE

    Schwarze, J.; Hamelmann, E; Bradley, K L; Takeda, K.; Gelfand, E. W.

    1997-01-01

    Viral respiratory infections can predispose to the development of asthma by mechanisms that are presently undetermined. Using a murine model of respiratory syncytial virus (RSV) infection, acute infection is associated with airway hyperresponsiveness as well as enhanced responses to subsequent sensitization to allergen. We demonstrate that acute viral infection results in increased airway responsiveness to inhaled methacholine and pulmonary neutrophilic and eosinophilic inflammation. This res...

  8. Postnatal Exposure History and Airways: Oxidant Stress Responses in Airway Explants

    OpenAIRE

    Murphy, Shannon R.; Schelegle, Edward S.; Edwards, Patricia C.; Lisa A. Miller; Hyde, Dallas M.; Van Winkle, Laura S.

    2012-01-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O3) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O3 exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurok...

  9. Baby cuff as a reason for laryngeal mask airway cuff malfunction during airway management for anesthesia

    OpenAIRE

    Jafar Rahimi Panahi; Ata Mahmoodpoor; Golzari, Samad E. J.; Hassan Soleimanpour

    2014-01-01

    Placement of laryngeal mask airway (LMA) is a blind procedure without requiring laryngoscopy. The reported success rate for LMA insertion at the first attempt is almost 95%; however, many functioning LMAs may not be in an ideal anatomic place. It seems that disposable LMAs have more stable cuff pressure compared to reusable LMAs; therefore, Anesthesiologists should bear in mind this fact when using reusable LMAs to achieve a proper sealing and safe airway management. In this report, we introd...

  10. Lasing in microdisks of ultrasmall diameter

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Bogdanov, A. A.; Shostak, I. I.; Moiseev, E. I.; Karpov, D. V. [St. Petersburg Academic University—Nanotechnology Research and Education Center, Russian Academy of Sciences (Russian Federation); Laukkanen, J. [University of Eastern Finland, Institute of Photonics (Finland); Tommila, J. [Tampere University of Technology, Optoelectronics Research Centre (Finland)

    2014-12-15

    It is demonstrated by calculations and experimental results that room-temperature lasing can be obtained at the ground-state optical transition of InAs/InGaAs/GaAs quantum dots in optical microcavities with a record-small diameter of 1.5 μm. In 1-μm cavities, lasing occurs at the wavelength of one of the whispering-gallery modes within the band corresponding to the first excited-state optical transition.

  11. Severe upper airway obstruction during sleep.

    Science.gov (United States)

    Bonekat, H William; Hardin, Kimberly A

    2003-10-01

    Few disorders may manifest with predominantly sleep-related obstructive breathing. Obstructive sleep apnea (OSA) is a common disorder, varies in severity and is associated with significant cardiovascular and neurocognitive morbidity. It is estimated that between 8 and 18 million people in the United States have at least mild OSA. Although the exact mechanism of OSA is not well-delineated, multiple factors contribute to the development of upper airway obstruction and include anatomic, mechanical, neurologic, and inflammatory changes in the pharynx. OSA may occur concomitantly with asthma. Approximately 74% of asthmatics experience nocturnal symptoms of airflow obstruction secondary to reactive airways disease. Similar cytokine, chemokine, and histologic changes are seen in both disorders. Sleep deprivation, chronic upper airway edema, and inflammation associated with OSA may further exacerbate nocturnal asthma symptoms. Allergic rhinitis may contribute to both OSA and asthma. Continuous positive airway pressure (CPAP) is the gold standard treatment for OSA. Treatment with CPAP therapy has also been shown to improve both daytime and nighttime peak expiratory flow rates in patients with concomitant OSA and asthma. It is important for allergists to be aware of how OSA may complicate diagnosis and treatment of asthma and allergic rhinitis. A thorough sleep history and high clinical suspicion for OSA is indicated, particularly in asthma patients who are refractory to standard medication treatments.

  12. Manual airway labeling has limited reproducibility

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Thomsen, Laura Hohwü;

    from low-dose chest CT scans. Methods and Materials: We selected 40 participants of the Danish Lung Cancer Screening Trial, 10 of each category: asymptomatic, mild, moderate, and severe COPD. Each subject contributed 2 CT scans with an average interval of 4 years. The airways were segmented...

  13. Qualitative analysis of unanticipated difficult airway management

    DEFF Research Database (Denmark)

    Rosenstock, C; Hansen, E G; Kristensen, M S;

    2006-01-01

    Unanticipated difficult airway management (DAM) is a major challenge for the anaesthesiologist and is associated with a risk of severe patient damage. We analysed 24 cases of unanticipated DAM for actual case management and anaesthesiologists knowledge, technical and non-technical skills....... Anaesthesiologists' opinions, as well as environmental factors of importance for DAM proficiency, were also assessed....

  14. Qualitative analysis of unanticipated difficult airway management

    DEFF Research Database (Denmark)

    Rosenstock, C; Hansen, E G; Kristensen, M S;

    2006-01-01

    Unanticipated difficult airway management (DAM) is a major challenge for the anaesthesiologist and is associated with a risk of severe patient damage. We analysed 24 cases of unanticipated DAM for actual case management and anaesthesiologists knowledge, technical and non-technical skills...

  15. Walking with continuous positive airway pressure

    NARCIS (Netherlands)

    Dieperink, W.; Goorhuis, JF; de Weerd, W; Hazenberg, A; Zijistra, JG; Nijsten, MWN

    2006-01-01

    A ventilator-dependent child had been in the paediatric intensive care unit (PICU) ever since birth. As a result, she had fallen behind considerably in her development. After 18 months, continuous positive airway tracheostomy tube with a novel lightweight device device, the child was discharged home

  16. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    Science.gov (United States)

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  17. Diameter-dependent hydrophobicity in carbon nanotubes

    Science.gov (United States)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  18. 29 mm Diameter Test Target Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Angela Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-15

    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA at 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.

  19. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  20. [Quality assurance in airway management: education and training for difficult airway management].

    Science.gov (United States)

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently. PMID:16440705

  1. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma.

    Science.gov (United States)

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P cells in asthma, but not contribution to lung regeneration. PMID:23334934

  2. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells

    International Nuclear Information System (INIS)

    Conventional airway in vitro models focus upon the function of individual structural cells cultured in a two-dimensional monolayer, with limited three-dimensional (3D) models of the bronchial mucosa. Electrospinning offers an attractive method to produce defined, porous 3D matrices for cell culture. To investigate the effects of fibre diameter on airway epithelial and fibroblast cell growth and functionality, we manipulated the concentration and deposition rate of the non-degradable polymer polyethylene terephthalate to create fibres with diameters ranging from nanometre to micrometre. The nanofibre scaffold closely resembles the basement membrane of the bronchiole mucosal layer, and epithelial cells cultured at the air–liquid interface on this scaffold showed polarized differentiation. The microfibre scaffold mimics the porous sub-mucosal layer of the airway into which lung fibroblast cells showed good penetration. Using these defined electrospinning parameters we created a biphasic scaffold with 3D topography tailored for optimal growth of both cell types. Epithelial and fibroblast cells were co-cultured onto the apical nanofibre phase and the basal microfibre phase respectively, with enhanced epithelial barrier formation observed upon co-culture. This biphasic scaffold provides a novel 3D in vitro platform optimized to mimic the different microenvironments the cells encounter in vivo on which to investigate key airway structural cell interactions in airway diseases such as asthma. (paper)

  3. Estimation of airway obstruction using oximeter plethysmograph waveform data

    Directory of Open Access Journals (Sweden)

    Desmond Renee' A

    2005-06-01

    Full Text Available Abstract Background Validated measures to assess the severity of airway obstruction in patients with obstructive airway disease are limited. Changes in the pulse oximeter plethysmograph waveform represent fluctuations in arterial flow. Analysis of these fluctuations might be useful clinically if they represent physiologic perturbations resulting from airway obstruction. We tested the hypothesis that the severity of airway obstruction could be estimated using plethysmograph waveform data. Methods Using a closed airway circuit with adjustable inspiratory and expiratory pressure relief valves, airway obstruction was induced in a prospective convenience sample of 31 healthy adult subjects. Maximal change in airway pressure at the mouthpiece was used as a surrogate measure of the degree of obstruction applied. Plethysmograph waveform data and mouthpiece airway pressure were acquired for 60 seconds at increasing levels of inspiratory and expiratory obstruction. At each level of applied obstruction, mean values for maximal change in waveform area under the curve and height as well as maximal change in mouth pressure were calculated for sequential 7.5 second intervals. Correlations of these waveform variables with mouth pressure values were then performed to determine if the magnitude of changes in these variables indicates the severity of airway obstruction. Results There were significant relationships between maximal change in area under the curve (P Conclusion The findings suggest that mathematic interpretation of plethysmograph waveform data may estimate the severity of airway obstruction and be of clinical utility in objective assessment of patients with obstructive airway diseases.

  4. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  5. Difficult airway management from Emergency Department till Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Debasis Pradhan

    2015-01-01

    Full Text Available We report a case of "can ventilate but can′t intubate" situation which was successfully managed in the Emergency Department and Intensive Care Unit by the use of ProSeal laryngeal mask airway and Frova Intubating Introducer as bridging rescue devices. Use of appropriate technique while strictly following the difficult airway algorithm is the mainstay of airway management in unanticipated difficult airway situations. Although the multiple airway devices were used but each step took not more than 2 min and "don′t struggle, skip to the next step principle" was followed. With the availability of many advanced airway management tools, the intensivists should have a training and experience along with preparedness in order to perform such lifesaving airway managements.

  6. Airway, responsiveness and inflammation in adolescent elite swimmers

    DEFF Research Database (Denmark)

    Pedersen, Lise; Lund, T.K.; Barnes, P.J.;

    2008-01-01

    Background: Whereas increased airway hyperresponsiveness (AHR) and airway inflammation are well documented in adult elite athletes, it remains uncertain whether the same airway changes are present in adolescents involved in elite sport. Objective: To investigate airway responsiveness and airway...... inflammation in adolescent elite swimmers. Methods: We performed a cross-sectional study on adolescent elite swimmers (n = 33) and 2 control groups: unselected adolescents (n = 35) and adolescents with asthma (n = 212). The following tests were performed: questionnaire, exhaled nitric oxide (FeNO), spirometry...... years of intense training and competition. This leads us to believe that elite swimmers do not have particularly susceptible airways when they take up competitive swimming when young, but that they develop respiratory symptoms, airway inflammation, and AHR during their swimming careers Udgivelsesdato...

  7. Multum non multa: airway distensibility by forced oscillations.

    Science.gov (United States)

    Mermigkis, Charalampos; Schiza, Sophia E; Panagou, Panagiotis

    2016-01-01

    Airway distensibility although appears to be unaffected by airway smooth muscle tone probably related to airway remodelling, after bronchodilator treatment is significantly increased in subjects with asthma. We assessed airway distensibity and its first moment derivative in two patients with mild intermittent asthma and normal spirometry. The increase in airway distensibility after bronchodilation measured at the tidal volume range during quiet breathing by forced oscillations was not accompanied by a change in its first moment, while the latter showed a significant increase in a second patient after anti-inflammatory treatment. It appears that airway distensibility is sensitive to reduction of bronchial smooth muscle tone after bronchodilation, but in addition its first moment might provide information on a change of both bronchial smooth muscle tone and small airways inflammation. PMID:27374218

  8. Simulation-based airway management training: application and looking forward.

    Science.gov (United States)

    Yang, Dong; Wei, Yu-Kui; Xue, Fu-Shan; Deng, Xiao-Ming; Zhi, Juan

    2016-04-01

    Within the airway management field, simulation has been used as a tool of training for over 40 years. Simulation training offers a chance of active involvement for the trainees. It can effectively enhance and upgrade the knowledge and skills of the trainees in airway management, and subsequently decrease medical errors and improve patients' outcomes and safety through a variety of airway management training modalities, such as common airway skills, difficult airway management strategies, and crisis management skills. To perform simulation-based airway management training effectively, not only are task trainers and high-fidelity simulators required but also instructors with rich experience in airway management simulation training and optimal curriculum design are essential. PMID:26671260

  9. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    Science.gov (United States)

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  10. Investigating in vivo airway wall mechanics during tidal breathing with optical coherence tomography

    Science.gov (United States)

    Robertson, Claire; Lee, Sang-Won; Ahn, Yeh-Chan; Mahon, Sari; Chen, Zhongping; Brenner, Matthew; George, Steven C.

    2011-10-01

    Optical coherence tomography (OCT) is a nondestructive imaging technique offering high temporal and spatial resolution, which makes it a natural choice for assessing tissue mechanical properties. We have developed methods to mechanically analyze the compliance of the rabbit trachea in vivo using tissue deformations induced by tidal breathing, offering a unique tool to assess the behavior of the airways during their normal function. Four-hundred images were acquired during tidal breathing with a custom-built endoscopic OCT system. The surface of the tissue was extracted from a set of these images via image processing algorithms, filtered with a bandpass filter set at respiration frequency to remove cardiac and probe motion, and compared to ventilatory pressure to calculate wall compliance. These algorithms were tested on elastic phantoms to establish reliability and reproducibility. The mean tracheal wall compliance (in five animals) was 1.3+/-0.3×10-5 (mm Pa)-1. Unlike previous work evaluating airway mechanics, this new method is applicable in vivo, noncontact, and loads the trachea in a physiological manner. The technique may have applications in assessing airway mechanics in diseases such as asthma that are characterized by significant airway remodeling.

  11. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening

    Science.gov (United States)

    Jacob, A. M.; Gaver, D. P.

    2005-03-01

    The goal of this study is to assess the local mechanical environment of the pulmonary epithelium in a computational model of airway reopening. To this end, the boundary element method (BEM) in conjunction with lubrication theory is implemented to assess the stationary-state behavior of a semi-infinite bubble traveling through a liquid-occluded parallel plate flow chamber lined with epithelial cells. The fluid occlusion is assumed to be Newtonian and inertia is neglected. The interactions between the microgeometry of the model airway's walls and the interfacial kinematics surrounding the bubble's tip result in a complex, spatially and temporally dependent stress distribution. The walls' nonplanar topography magnifies the normal and shear stresses and stress gradients. We find that decreasing the bubble's speed serves to increase the maximum normal stress and stress gradient but decrease the maximum shear stress and stress gradient. Our results give credence to the pressure-gradient-induced epithelial damage theory recently proposed by Bilek et al. [J. Appl. Physiol. 94, 770 (2003)] and Kay et al. [J. Appl. Physiol. 97, 269 (2004)]. We conclude that the amplified pressure gradients found in this study may be even more detrimental to the airway's cellular epithelium during airway reopening.

  12. The operative cooperation and nursing in performing airway stent placement under DSA guidance for treating airway stenosis

    International Nuclear Information System (INIS)

    Objective: To discuss the key points of the nursing care for effectively performing airway stent placement under DSA monitoring for airway stenosis. Methods: Corresponding nursing care measures were carried out for 118 patients with airway stenosis who were treated with airway stent placement. Results: The symptom of dyspnea was markedly relieved after stent implantation in all 118 patients with airway stenosis. Conclusion: To strengthen the preoperative psychological nursing and operative posture training, to make close postoperative watch on vital signs, to adopt some prevention measures for possible complications and to give necessary medical advises at the time of discharge are very helpful for patient's recovery after the surgery. (authors)

  13. Retrobulbar diameter of optic nerve in glaucoma

    Directory of Open Access Journals (Sweden)

    Stefanović Ivan

    2009-01-01

    Full Text Available Introduction. The ultrasound diagnostics of the optic nerve includes the analysis of the optic nerve disc (PNO and measuring of its retrobulbar diameter. With B-scan, by Schraeder's method, it is possible to measure very precisely the optic nerve, the pial diameter, the normal values for the pial diameter being 2.8-4.1 mm. In glaucoma, the disease that is most frequently associated with higher intraocular pressure, there comes the destruction of nerve fibres, which can be visualized as the excavation of the optic nerve disc. Objective. In this paper, we were interested in finding whether in glaucoma, and in what phase of the disease, the optic nerve starts growing thinner. Aware of many forms of this very complex disease, we were interested in knowing if the visualization of excavation on the optic nerve disc is related to diminishing of the pial diameter of the retrobulbar nerve part. Methods. There were treated the patients who had already had the diagnosis of glaucoma and the visualized excavation of the optic disc of various dimensions. Echographically, there was measured the thickness of the retrobulbar part of the optic nerve and the finding compared in relation to the excavation of the optic disc. Results. In all eyes with glaucoma, a normal size of the retrobulbar part of the optic nerve was measured, ranging from 3.01 to 3.91 mm with the median of 3.36 mm. Also, by testing the correlation between the thickness of the optic nerve and the excavation of the PNO, by Pearson test, we found that there was no correlation between these two parameters (r=0.109; p>0.05. Conclusion. In the patients with glaucoma, the retrobulbar part of the optic nerve is not thinner (it has normal values, even not in the cases with a totally excavated optic disc. There is no connection between the size of the PNO excavation and the thickness of the retrobulbar part of the optic nerve.

  14. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography.

    Science.gov (United States)

    Chu, Kengyeh K; Unglert, Carolin; Ford, Tim N; Cui, Dongyao; Carruth, Robert W; Singh, Kanwarpal; Liu, Linbo; Birket, Susan E; Solomon, George M; Rowe, Steven M; Tearney, Guillermo J

    2016-07-01

    We have designed and fabricated a 4 mm diameter rigid endoscopic probe to obtain high resolution micro-optical coherence tomography (µOCT) images from the tracheal epithelium of living swine. Our common-path fiber-optic probe used gradient-index focusing optics, a selectively coated prism reflector to implement a circular-obscuration apodization for depth-of-focus enhancement, and a common-path reference arm and an ultra-broadbrand supercontinuum laser to achieve high axial resolution. Benchtop characterization demonstrated lateral and axial resolutions of 3.4 μm and 1.7 μm, respectively (in tissue). Mechanical standoff rails flanking the imaging window allowed the epithelial surface to be maintained in focus without disrupting mucus flow. During in vivo imaging, relative motion was mitigated by inflating an airway balloon to hold the standoff rails on the epithelium. Software implemented image stabilization was also implemented during post-processing. The resulting image sequences yielded co-registered quantitative outputs of airway surface liquid and periciliary liquid layer thicknesses, ciliary beat frequency, and mucociliary transport rate, metrics that directly indicate airway epithelial function that have dominated in vitro research in diseases such as cystic fibrosis, but have not been available in vivo. PMID:27446685

  15. Management of the Difficult Paediatric Airway with a Simple Fiberoptic-Assisted Laryngoscope: A Report of Two Cases with Pierre Robin and Patau’s (Trisomy 13) Syndrome

    Science.gov (United States)

    Kılıçaslan, Alper; Erol, Atilla; Topal, Ahmet; Et, Tayfun; Otelcioğlu, Şeref

    2014-01-01

    Airway management of children with congenital craniofacial anomalies is a challenge for paediatric anaesthesiologists. We do not have any video-assisted airway device in our department for difficult paediatric intubations. We decided to attach a regular fiberoptic (outer diameter; 3.7 mm, Karl Storz, Germany) scope to a conventional Macintosh Laryngoscope (size 1). We describe two cases of Pierre Robin and Patau’s (Trisomy 13) syndrome successfully intubated with a fiberoptic-assisted laryngoscope (FOL). A fiberoptic scope and any size of a laryngoscope blade can be easily assembled in the operating room. The FOL may be a useful device in the setting of difficult paediatric intubation. PMID:27366452

  16. Diameter-Controllable Magnetic Properties of Co Nanowire Arrays by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2010-01-01

    Full Text Available The Co nanowires with different diameters were prepared by pulsed electrodeposition into anodic alumina membranes oxide templates. The micrographs and crystal structures of nanowires were studied by FE-SEM, TEM, and XRD. Due to their cylindrical shape, the nanowires exhibit perpendicular anisotropy. The coercivity and loop squareness (Mr/Ms of Co nanowires depend strongly on the diameter. Both coercivity and Mr/Ms decrease with increasing wire diameter. The behavior of the nanowires is explained briefly in terms of localized magnetization reversal.

  17. Sagittal Abdominal Diameter: Application in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Thaís Da Silva-Ferreira

    2014-05-01

    Full Text Available Excess visceral fat is associated with cardiovascular risk factors. Sagittal abdominal diameter (SAD has recently been highlighted as an indicator of abdominal obesity, and also may be useful in predicting cardiovascular risk. The purpose of the present study was to review the scientific literature on the use of SAD in adult nutritional assessment. A search was conducted for scientific articles in the following electronic databases: SciELO , MEDLINE (PubMed and Virtual Health Library. SAD is more associated with abdominal fat (especially visceral, and with different cardiovascular risk factors, such as, insulin resistance, blood pressure, and serum lipoproteins than the traditional methods of estimating adiposity, such as body mass index and waist-to-hip ratio. SAD can also be used in association with other anthropometric measures. There are still no cut-off limits established to classify SAD as yet. SAD can be an alternative measure to estimate visceral adiposity. However, the few studies on this diameter, and the lack of consensus on the anatomical site to measure SAD, are obstacles to establish cut-off limits to classify it.

  18. Randomized crossover comparison of the laryngeal mask airway classic with i-gel laryngeal mask airway in the management of difficult airway in post burn neck contracture patients

    Directory of Open Access Journals (Sweden)

    Jeevan Singh

    2012-01-01

    Full Text Available Purpose: The objective of the study was to compare the performance of i-gel supraglottic airway with cLMA in difficult airway management in post burn neck contracture patients and assess the feasibility of i-gel use for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening. Methods: Prospective, crossover, randomized controlled trial was performed amongst forty eight post burn neck contracture patients with limited mouth opening and neck movement. i-gel and cLMA were placed in random order in each patient. Primary outcome was overall success rate. Other measurements were time to successful ventilation, airway leak pressure, fiberoptic glottic view, visualization of square wave pattern. Results: Success rate for the i-gel was 91.7% versus 79.2% for the cLMA. i-gel required shorter insertion time (19.3 seconds vs. 23.5 seconds, P=0.000. Airway leak pressure difference was statistically significant (i-gel 21.2 cm H20; cLMA 16.9 cm H 2 0; P=0.00. Fiberoptic view through the i-gel showed there were less epiglottic downfolding and better fiberoptic view of the glottis than cLMA. Overall agreement in insertion outcome for i-gel was 22/24 (91.7% successes and 2/24(8.3% failure and for cLMA, 19/24 (79.16% successes and 5/24 (16.7% failure in the first attempt. Conclusion: The i-gel is cheap, effective airway device which is easier to insert and has better clinical performance in the difficult airway management of the airway in the post burn contracture of the neck. Our study shows that i-gel is feasible for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening in post burn neck.

  19. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    Science.gov (United States)

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  20. Phenotyping airways disease: an A to E approach.

    Science.gov (United States)

    Gonem, S; Raj, V; Wardlaw, A J; Pavord, I D; Green, R; Siddiqui, S

    2012-12-01

    The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic. PMID:23181785

  1. Update on the roles of distal airways in COPD

    Directory of Open Access Journals (Sweden)

    N. Roche

    2011-03-01

    Full Text Available This review is the summary of a workshop on the role of distal airways in chronic obstructive pulmonary disease (COPD, which took place in 2009 in Vence, France. The evidence showing inflammation and remodelling in distal airways and the possible involvement of these in the pathobiology, physiology, clinical manifestations and natural history of COPD were examined. The usefulness and limitations of physiological tests and imaging techniques for assessing distal airways abnormalities were evaluated. Ex vivo studies in isolated lungs and invasive measurements of airway resistance in living individuals have revealed that distal airways represent the main site of airflow limitation in COPD. Structural changes in small conducting airways, including increased wall thickness and obstruction by muco-inflammatory exudates, and emphysema (resulting in premature airway closure, were important determinants of airflow limitation. Infiltration of small conducting airways by phagocytes (macrophages and neutrophils, dendritic cells and T and B lymphocytes increased with airflow limitation. Distal airways abnormalities were associated with patient-related outcomes (e.g. dyspnoea and reduced health-related quality of life and with the natural history of the disease, as reflected by lung function decline and mortality. These data provide a clear rationale for targeting distal airways in COPD.

  2. Mechanically patterning the embryonic airway epithelium

    Science.gov (United States)

    Varner, Victor D.; Gleghorn, Jason P.; Miller, Erin; Radisky, Derek C.; Nelson, Celeste M.

    2015-01-01

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  3. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger;

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane......(f), determined by the changes of the apical solution osmolarity, was not influenced by the presence of glucose, Na(+), or Na(+)/glucose-cotransport inhibitors in the bath, but was sensitive to the aquaporin (AQP) inhibitor HgCl(2). The measured P(f) levels and the values of activation energy were in the range...... of those seen in AQP-associated water transport. Together, these results indicate the presence of an AQP in the apical membrane of the spheroids. Notably, identical values for P(f) were found in CF and non-CF airway preparations, as was the case also for the calculated spontaneous fluid absorption rates....

  4. Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome

    Science.gov (United States)

    Zhang, Su-Bei; Sun, Xin; Wu, Qi; Wu, Jun-Ping; Chen, Huai-Yong

    2016-01-01

    Background: Bronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS. Methods: Suspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance. Results: LPCs were isolated with the surface phenotype of CD31- CD34- CD45- EpCAM+ Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05). Conclusion: The epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS. PMID:27569228

  5. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing

    International Nuclear Information System (INIS)

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 24  ±  11%; vibration time, 0.2  ±  0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13  ±  7% [P ≤ 0.0001]; vibration time, 1.2  ±  0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics. (paper)

  6. Airway deposition of inhaled particles in healthy and pathological subjects

    International Nuclear Information System (INIS)

    Probabilities for deposition of aerosols in the human respiratory tract can be predicted by calculation models widely based upon ventilatory airflows, lung dimensions and anatomical features. A study of the impact of impaired lung function on airway deposition was performed on three groups of subjects: 18 healthy non-smokers, 15 patients with moderately restrictive lung function, and 15 patients with moderately obstructive lung function. Total deposition of an aerosol inhaled through the mouth at identical ventilation rates for all subjects and containing three sizes of monodisperse inert particles (1.2, 2.3 and 3.3 μm aerodynamic diameter) was measured by comparing inhaled and exhaled concentrations by laser velocimetry. Results were significantly higher in all the patients than in the healthy non-smokers. In restricted patients, Total Lung Capacity (TLC), Functional Residual Capacity (FRC), and Forced Expiratory Volume in one second (FEV1) presented significant inverse correlation coefficients with deposition. In obstructive patients, inverse correlation was observed only with FEV1. (Author)

  7. Endoscopic Airway Evaluation in Congenital Tracheoesophageal Fistula

    Directory of Open Access Journals (Sweden)

    Bracci Paolo

    2014-06-01

    Full Text Available Introduction. The communication between the trachea and esophagus is called tracheoesophageal fistula (TEF. It can occurs as a congenital malformation (0.025-0.05% (in particular related to the esophageal atresia or can occurs as an acquired pathology. Endoscopic evaluation is the gold standard for the diagnosis of TEF and must be performed, in presence of symptoms such as choking, coughing, and cianosis at feeding. Materials and methods. The authors present 145 endoscopic airway evaluations, performed in 142 children for the suspected presence of TEF and for a diagnostic classification of esophageal atresia. The endoscopic airway procedure was performed with the rigid endoscopy technique, in general anesthesia and spontaneous ventilation, with topical anesthesia. Results. The use of the rigid endoscopy allows us to assure an open airway and assists operative management: in the presence of TEF the endoscopic procedure was infact diagnostic, and operative at surgery. The tracheobronchoscopic airway evaluation was able to identify the presence, the level and number of TEF in all patients, in order to classify the cases and plan the therapeutic strategy. Endoscopy showed the fovea of TEF in different positions, in the upper, medium and lower part of the trachea, in rare cases a double fistula or in some cases did not detect the presence of fistula. Discussion and Conclusions. The fovea located in the upper part of the trachea was always of small size, and difficult to diagnose, while the fovea located in the lower or medium part of the trachea was always of large size, and simple to identify. The identification of the precise anatomic position of the TEF guides the surgical planning but also permits to achieve the optimal ventilation and strategies to reduce potential complications during anesthesia.

  8. Essential ultrasound techniques of the pediatric airway

    DEFF Research Database (Denmark)

    Stafrace, Samuel; Engelhardt, Thomas; Teoh, Wendy H;

    2015-01-01

    Ultrasound of the airways is a technique which has been described in a number of recent articles and reviews highlighting the diagnostic possibilities and simple methodology. However, there is a paucity of information focusing specifically on such methods in children where equipment, technique......, and challenges are different. This review article gives a general overview of the equipment considerations, scanning protocols, and clinical applications in children....

  9. Improving Customer Satisfaction, case Tiger Airways

    OpenAIRE

    Ngo, Thi

    2011-01-01

    The main objective of the thesis was to assess the level of customer satisfaction of the airline company Tiger Airways, which is a low-cost airline with a considerable number of dissatisfied customers. In the study the theories of customer satisfaction were reviewed for providing solutions for the airline to reduce the number of discontented customers. To analyze the current situation of the airline company’s customer satisfaction the quantitative research method was used. The research ma...

  10. Airway Smooth Muscle Hypercontractility in Asthma

    Directory of Open Access Journals (Sweden)

    Rachid Berair

    2013-01-01

    Full Text Available In recent years, asthma has been defined primarily as an inflammatory disorder with emphasis on inflammation being the principle underlying pathophysiological characteristic driving airway obstruction and remodelling. Morphological abnormalities of asthmatic airway smooth muscle (ASM, the primary structure responsible for airway obstruction seen in asthma, have long been described, but surprisingly, until recently, relatively small number of studies investigated whether asthmatic ASM was also fundamentally different in its functional properties. Evidence from recent studies done on single ASM cells and on ASM-impregnated gel cultures have shown that asthmatic ASM is intrinsically hypercontractile. Several elements of the ASM contraction apparatus in asthmatics and in animal models of asthma have been found to be different from nonasthmatics. These differences include some regulatory contractile proteins and also some components of both the calcium-dependent and calcium-independent contraction signalling pathways. Furthermore, oxidative stress was also found to be heightened in asthmatic ASM and contributes to hypercontractility. Understanding the abnormalities and mechanisms driving asthmatic ASM hypercontractility provides a great potential for the development of new targeted drugs, other than the conventional current anti-inflammatory and bronchodilator therapies, to address the desperate unmet need especially in patients with severe and persistent asthma.

  11. Lentiviral vector gene transfer to porcine airways.

    Science.gov (United States)

    Sinn, Patrick L; Cooney, Ashley L; Oakland, Mayumi; Dylla, Douglas E; Wallen, Tanner J; Pezzulo, Alejandro A; Chang, Eugene H; McCray, Paul B

    2012-01-01

    In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1-based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF).Molecular Therapy - Nucleic Acids (2012) 1, e56; doi:10.1038/mtna.2012.47; published online 27 November 2012. PMID:23187455

  12. Exercise and airway injury in athletes.

    Science.gov (United States)

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures. PMID:23697359

  13. Dynamic Properties of Human Bronchial Airway Tissues

    CERN Document Server

    Wang, Jau-Yi; Pallai, Prathap; Corrigan, Chris J; Lee, Tak H

    2011-01-01

    Young's Modulus and dynamic force moduli were measured on human bronchial airway tissues by compression. A simple and low-cost system for measuring the tensile-strengh of soft bio-materials has been built for this study. The force-distance measurements were undertaken on the dissected bronchial airway walls, cartilages and mucosa from the surgery-removed lungs donated by lung cancer patients with COPD. Young's modulus is estimated from the initial slope of unloading force-displacement curve and the dynamic force moduli (storage and loss) are measured at low frequency (from 3 to 45 Hz). All the samples were preserved in the PBS solution at room temperature and the measurements were perfomed within 4 hours after surgery. Young's modulus of the human bronchial airway walls are fond ranged between 0.17 and 1.65 MPa, ranged between 0.25 to 1.96 MPa for cartilages, and between 0.02 to 0.28 MPa for mucosa. The storage modulus are found varying 0.10 MPa with frequency while the loss modulus are found increasing from ...

  14. Exercise and airway injury in athletes.

    Science.gov (United States)

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures.

  15. Bimetallic materials for large diameter pipelines

    International Nuclear Information System (INIS)

    The results are presented of the investigation of bimetallic pipes made of Ni-Mn-Mo-V + Cb08Kh19N10G2B steel and of 19MN5 (type 22K) + SB 08Kh19N10G2B steels, manufactured in Japan for piping nuclear power stations for service under corrosion attack by coolants at high both pressure and temperature and under heavy cyclic loads. The procedures are described for manufacturing elements of piping from bimetallic seamless large-diameter pipes. A study has been made of the variation in bimetallic microstructure of the short-time mechanical properties, of the impact strength, of the critical brittleness point in initial and aged states of the cyclic strength and of the strength of the bimetallic joint

  16. Endoscopic high-resolution auto fluorescence imaging and optical coherence tomography of airways in vivo (Conference Presentation)

    Science.gov (United States)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.

  17. Diameter Modification of Si Nanowires via Catalyst Size

    Institute of Scientific and Technical Information of China (English)

    邢英杰; 奚中和; 薛增泉; 俞大鹏

    2003-01-01

    Si nanowires with different diameters are grown on catalyst coated Si substrates via a solid-liquid-solid mechanism. It is found that the thickness and type of catalyst film can modify the average diameter of Si nanowires obviously. The nanowires prepared on substrates deposited with Ni film of 40, 10, and 4nm thick have a mean diameter around 41, 36, and 24nm, respectively. Si nanowires with the smallest average diameter (~ 16 nm) are grown with a gold catalyst. Studies of diameter distributions show that the minimum diameter of nanowires does not shift with the average diameters spontaneously and has the same size of 10nm.

  18. In vitro surfactant and perfluorocarbon aerosol deposition in a neonatal physical model of the upper conducting airways.

    Directory of Open Access Journals (Sweden)

    Estibalitz Goikoetxea

    Full Text Available OBJECTIVE: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. METHODS: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD, were measured at different driving pressures (4-7 bar. Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. RESULTS: The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65% was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar. CONCLUSION: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

  19. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    Science.gov (United States)

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  20. Postnatal exposure history and airways: oxidant stress responses in airway explants.

    Science.gov (United States)

    Murphy, Shannon R; Schelegle, Edward S; Edwards, Patricia C; Miller, Lisa A; Hyde, Dallas M; Van Winkle, Laura S

    2012-12-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O(3)) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O(3) exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O(3) biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5-8) for four to six animals in each of four groups (FA, O(3), HDMA, and HDMA+O(3)) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O(3). However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O(3)-exposed animals. We conclude that a history of prior O(3) exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  1. Airway hyperresponsiveness in asthma: Mechanisms, Clinical Significance and Treatment

    OpenAIRE

    JohnDanielBrannan; M. DianeLougheed

    2012-01-01

    Airway hyperresponsiveness (AHR) and airway inflammation are key pathophysiological features of asthma. Bronchial provocation tests (BPTs) are objective tests for AHR that are clinically useful to aid in the diagnosis of asthma. BPTs can be either ‘direct’ or ‘indirect’, referring to the mechanism by which a stimulus mediates bronchoconstriction. Direct BPTs refer to the administration of pharmacological agonist (e.g., methacholine or histamine) that act on specific receptors on the airway sm...

  2. CALPAIN AND MARCKS PROTEIN REGULATION OF AIRWAY MUCIN SECRETION

    OpenAIRE

    Lampe, W. Randall; Park, Joungjoa; Fang, Shijing; Crews, Anne L; Adler, Kenneth B.

    2012-01-01

    Hypersecretion of mucin plays an important role in the pathophysiology of many inflammatory airway diseases, including asthma, chronic bronchitis, and cystic fibrosis. Myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been shown to play an important role in regulation of airway mucin secretion, as peptides analogous to the amino (N)-terminus of MARCKS attenuate mucin secretion by airway epithelium in vitro and in vivo. Here, we investigated a potential role for the protease C...

  3. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    OpenAIRE

    Kearney William R; Allaman Margaret M; Watt Janet L; Launspach Janice; Neelakantan Srividya; Durairaj Lakshmi; Veng-Pedersen Peter; Zabner Joseph

    2006-01-01

    Abstract Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, ...

  4. The relationship between eosinophilia and airway remodelling in mild asthma

    OpenAIRE

    Wilson, S J; Rigden, H.M.; Ward, J. A.; Laviolette, M.; Jarjour, N N; Djukanović, R.

    2013-01-01

    Background Eosinophilia is a marker of corticosteroid responsiveness and risk of exacerbation in asthma; although it has been linked to submucosal matrix deposition, its relationship with other features of airway remodelling is less clear. Objective The aim of this study was to investigate the relationship between airway eosinophilia and airway remodelling. Methods Bronchial biopsies from subjects (n = 20 in each group) with mild steroid-naïve asthma, with either low (0–0....

  5. Difficult Airway Management in Field Conditions: Somalia Experience.

    Science.gov (United States)

    Özkan, Ahmet Selim; Nasır, Serdar Nazif

    2015-10-01

    Difficult airway is defined as having the patient's mask ventilation or difficult tracheal intubation of an experienced anaesthesiologist. A number of reasons, such as congenital or acquired anatomical anomalies, can cause difficult intubation and difficult ventilation. Keeping all equipment ready for airway management of patients will reduce mortality and complications. In this case, it is intended that the submission of difficult airway management who encountered in mandibular reconstruction for mandible bone defect repairing with reconstruction plates before at the field conditions in Somalia.

  6. Retinoic Acid Inhibits Airway Smooth Muscle Cell Migration

    OpenAIRE

    Day, Regina M.; Lee, Young H.; Park, Ah-Mee; Suzuki, Yuichiro J.

    2006-01-01

    Airway remodeling in chronic asthma is characterized by increased smooth muscle mass that is associated with the reduction of the bronchial lumen as well as airway hyperresponsiveness. The development of agents that inhibit smooth muscle growth is therefore of interest for therapy to prevent asthma-associated airway remodeling. All-trans retinoic acid (ATRA) suppresses growth of vascular smooth muscle cells (SMCs) from the systemic and pulmonary circulation. The present study investigated the...

  7. Airway Smooth Muscle in Asthma: Just a Target for Bronchodilation?

    OpenAIRE

    Black, Judith L; Reynold A Panettieri; Banerjee, Audreesh; Berger, Patrick

    2012-01-01

    Airway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has thus been considered as a target for bronchodilation. In asthma however, there is a complex relationship between ASM and inflammatory cells such as mast cells and T lymphocytes. Moreover, the increased ASM mass in the asthmatic airways is one of the key features of airway remodeling. This article aims to review the main concepts about the three possible roles of ASM ...

  8. Inhibition of airway surface fluid absorption by cholinergic stimulation

    OpenAIRE

    Nam Soo Joo; Krouse, Mauri E.; Jae Young Choi; Hyung-Ju Cho; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated ...

  9. Improving the safety of remote site emergency airway management

    OpenAIRE

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package ...

  10. Increased expression of senescence markers in cystic fibrosis airways

    OpenAIRE

    Fischer, Bernard M.; Wong, Jessica K.; Degan, Simone; Kummarapurugu, Apparao B.; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A.

    2013-01-01

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF an...

  11. Transforming Growth Factor-β Induces Airway Smooth Muscle Hypertrophy

    OpenAIRE

    Goldsmith, Adam M.; Bentley, J. Kelley; Zhou, Limei; Jia, Yue; Bitar, Khalil N; Fingar, Diane C.; Hershenson, Marc B.

    2005-01-01

    Although smooth muscle hypertrophy is present in asthmatic airways, little is known about the biochemical pathways regulating airway smooth muscle protein synthesis, cell size, or accumulation of contractile apparatus proteins. We sought to develop a model of airway smooth muscle hypertrophy in primary cells using a physiologically relevant stimulus. We hypothesized that transforming growth factor (TGF)-β induces hypertrophy in primary bronchial smooth muscle cells. Primary human bronchial sm...

  12. CONGENITAL HIGH AIRWAY OBSTRUCTION (CHAOS SYNDROME: A RARE CASE PRESENTATION

    Directory of Open Access Journals (Sweden)

    Dinakara

    2014-04-01

    Full Text Available Congenital high airway obstruction syndrome (CHAOS results in a predictable constellation of findings: large echogenic lungs flattened or inverted diaphragms, dilated airways distal to the obstruction, and fetal ascites and/or hydrops.1 The finding of CHAOS on prenatal ultrasound examination is diagnostic of complete or near-complete obstruction of the fetal upper airway, most likely caused by laryngeal atresia. A greater understanding of the natural history of CHAOS may permit improved prenatal and perinatal management

  13. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen

    Directory of Open Access Journals (Sweden)

    Morgan Carrie I

    2011-12-01

    Full Text Available Abstract Background Zinc supplementation can modulate immunity through inhibition of NF-κB, a transcription factor that controls many immune response genes. Thus, we sought to examine the mechanism by which zinc supplementation tempers the response to a common allergen and determine its effect on allergic airway inflammation. Methods Mice were injected with zinc gluconate prior to German cockroach (GC feces (frass exposure and airway inflammation was assessed. Primary bone marrow-derived neutrophils and DMSO-differentiated HL-60 cells were used to assess the role of zinc gluconate on tumor necrosis factor (TNFα expression. NF-κB:DNA binding and IKK activity were assessed by EMSA and in vitro kinase assay. Protein levels of A20, RIP1 and TRAF6 were assessed by Western blot analysis. Establishment of allergic airway inflammation with GC frass was followed by administration of zinc gluconate. Airway hyperresponsiveness, serum IgE levels, eosinophilia and Th2 cytokine production were assessed. Results Administration of zinc gluconate prior to allergen exposure resulted in significantly decreased neutrophil infiltration and TNFα cytokine release into the airways. This correlated with decreased NF-κB activity in the whole lung. Treatment with zinc gluconate significantly decreased GC frass-mediated TNFα production from bone-marrow derived neutrophils and HL-60 cells. We confirmed zinc-mediated decreases in NF-κB:DNA binding and IKK activity in HL-60 cells. A20, a natural inhibitor of NF-κB and a zinc-fingered protein, is a potential target of zinc. Zinc treatment did not alter A20 levels in the short term, but resulted in the degradation of RIP1, an important upstream activator of IKK. TRAF6 protein levels were unaffected. To determine the application for zinc as a therapeutic for asthma, we administered zinc following the establishment of allergic airway inflammation in a murine model. Zinc supplementation decreased airway hyperresponsiveness

  14. Practical advance in obtaining an emergency airway via cricothyroidotomy.

    Science.gov (United States)

    Huber, William G; Dahman, Marc H; Thomas, Deanna; Lipschutz, Joshua H

    2007-05-01

    By the time a cricothyroidotomy is deemed necessary, the patient is in critical need of an emergency airway before anoxic damage ensues. Two things are necessary for the delivery of the requisite oxygen. First, an airway must be rapidly established. Second, the airway must be large enough to facilitate ventilation. Present methods for emergency cricothyroidotomy include needle cricothyroidotomy, which suffers from difficulties in both establishment and ventilation. We describe here a practical and widely available method for establishing a timely effective airway that has been used successfully for five patients since 1992.

  15. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    Science.gov (United States)

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  16. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    Science.gov (United States)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 surfactant distribution in airways and develop effective SRT strategies.

  17. Airway disorders of the fetus and neonate: An overview.

    Science.gov (United States)

    Vijayasekaran, Shyan; Lioy, Janet; Maschhoff, Kathryn

    2016-08-01

    Differences between neonatal, pediatric and adult airway anatomy, structure and function are important to understand. Size, surface area, proportion, resistance and compliance are all very different between age groups and infants are certainly not small adults. Knowledge of these airway differences is essential in rapid correction of an emergency situation. Unanticipated airway emergencies are the most serious of all and may be classified into profiles such as the unanticipated emergency in the non-intubated patient, the unanticipated emergency in the intubated patient, and patients with tracheostomy. A neonatal airway emergency can be effectively managed by a strategy for anticipation, identification, preparation, mobilization, and execution. Furthermore, neonatal airways may be classified by severity in being considered either difficult or critical. These neonatal specific clinical challenges have recently substantiated the need for a distinct neonatal airway algorithm. This strategy is strengthened by regular education of the team and frequent simulation of airway emergencies. Following a predetermined pathway for activating an airway emergency alert and having all necessary equipment readily available are essential components of a well-defined strategy. Finally, knowing the pediatric otolaryngologist's perspective of what defines these airway disorders and current management is key to working collaboratively. PMID:27039115

  18. Airway management in patients with burn contractures of the neck.

    Science.gov (United States)

    Prakash, Smita; Mullick, Parul

    2015-12-01

    Airway management of patients with burn contracture of the neck (PBC neck) is a challenge to the anesthesiologist. Patient evaluation includes history, physical and airway examination. A safe approach in the airway management of a patient with moderate to severe PBC neck is to secure the airway with the patient awake. The anesthesiologist should have a pre-planned strategy for intubation of the difficult airway. The choices advocated for airway management of such patients include awake fiberoptic-guided intubation, use of intubating laryngeal mask airway, intubation without neuromuscular blocking agents, intubation with neuromuscular blocking agents after testing the ability to ventilate by mask, pre-induction neck scar release under local anesthesia and ketamine or sedation followed by direct laryngoscopy and intubation and video-laryngoscope guided intubation, amongst others. Preparation of the patient includes an explanation of the proposed procedure, sedation, administration of antisialogogues and regional anesthesia of the airway. The various options for intubation of patients with PBC neck, intraoperative concerns and safe extubation are described. Back-up plans, airway rescue strategies and a review of literature on this subject are presented.

  19. New frontiers in CT imaging of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine [Department of Radiology, University Pierre et Marie Curie, Paris (France); Fetita, Catalin; Preteux, Francoise [Institut National des Telecommunications, Department ARTEMIS, Evry (France); Brauner, Michel W. [Avicenne Hospital, UFR SMBH Paris XIII, Bobigny (France); Lenoir, Stephane [Institut Mutualiste Montsouris, Paris (France)

    2002-05-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  20. Interactions between inhalant allergen extracts and airway epithelial cells : Effect on cytokine production and cell detachment

    NARCIS (Netherlands)

    Tomee, JFC; van Weissenbruch, R; de Monchy, JGR; Kauffman, HF

    1998-01-01

    Background: The factors responsible for inducing or maintaining airway inflammation are poorly understood. Various studies have focussed on the mechanisms leading to allergic airway inflammation in patients with asthma and rhinitis. The observation of local airway inflammation in nonallergic patient

  1. Serum cytokine levels, cigarette smoking and airway responsiveness among pregnant women

    NARCIS (Netherlands)

    Tsunoda, M; Litonjua, AA; Kuniak, MP; Weiss, ST; Satoh, T; Guevarra, L; Tollerud, DJ

    2003-01-01

    Background. Five to twenty percent of healthy, nonasthmatic individuals exhibit airway hyperreactivity. Because cytokines are important intermediates in airway responses, we investigated the relationship between serum cytokines and airway responsiveness in a well-characterized population of pregnant

  2. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    Science.gov (United States)

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  3. Quantification of atopy, lung function and airway hypersensitivity in adults

    Directory of Open Access Journals (Sweden)

    Marinho Susana

    2011-12-01

    Full Text Available Abstract Background Studies in children have shown that concentration of specific serum IgE (sIgE and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR. Objective To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK. Methods FEV1 and FVC (% predicted were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma. Atopic status was assessed by skin prick tests (SPT and measurement of sIgE (common inhalant allergens. We also measured indoor allergen exposure in subjects' homes. Results Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0% having AHR (dose-response slope>25. Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV1 (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10-8. Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10-8, cat p = 3.93 × 10-10, dog p = 3.03 × 10-15, grass p = 2.95 × 10-9. The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control. Conclusions In the studied population, lung function decreased and AHR increased with increasing

  4. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    OpenAIRE

    CHEN, HONGXIA; Xia, Qingqing; FENG, XIAOQIAN; CAO, FANGYUAN; Yu, Hang; SONG, YINLI; NI, XIUQIN

    2015-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects ...

  5. Airway management using laryngeal mask airway in insertion of the Montgomery tracheal tube for subglottic stenosis -A case report-.

    Science.gov (United States)

    Park, Jung Sun; Kwon, Young-Suk; Lee, Sangseock; Yon, Jun Heum; Kim, Dong Won

    2010-12-01

    The Montgomery tracheal tube (T-tube) is a device used as a combined tracheal stent and airway after laryngotracheoplasty for patients with tracheal stenosis. This device can present various challenges to anesthesiologists during its placement, including the potential for acute loss of the airway, inadequate administration of inhalation agents, and inadequacy of controlled mechanical ventilation. The present case of successful airway management used a laryngeal mask airway under total intravenous anesthesia with propofol and remifentanil in the insertion of a Montgomery T-tube in a tracheal resection and thyrotracheal anastomosis because of severe subglottic stenosis.

  6. Deposition of graphene nanomaterial aerosols in human upper airways.

    Science.gov (United States)

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  7. Deposition of graphene nanomaterial aerosols in human upper airways.

    Science.gov (United States)

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced.

  8. Increased Th2 cytokine secretion, eosinophilic airway inflammation, and airway hyperresponsiveness in neurturin-deficient mice.

    Science.gov (United States)

    Michel, Tatiana; Thérésine, Maud; Poli, Aurélie; Domingues, Olivia; Ammerlaan, Wim; Brons, Nicolaas H C; Hentges, François; Zimmer, Jacques

    2011-06-01

    Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-β, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma. PMID:21508262

  9. Airway Measurement for Airway Remodeling Defined by Post-Bronchodilator FEV1/FVC in Asthma: Investigation Using Inspiration-Expiration Computed Tomography

    OpenAIRE

    Chae, Eun Jin; Kim, Tae-Bum; Cho, You Sook; Park, Chan-Sun; Seo, Joon Beom; Kim, Namkug; Moon, Hee-Bom

    2010-01-01

    Purpose Airway remodeling may be responsible for irreversible airway obstruction in asthma, and a low post-bronchodilator FEV1/FVC ratio can be used as a noninvasive marker of airway remodeling. We investigated correlations between airway wall indices on computed tomography (CT) and various clinical indices, including post-bronchodilator FEV1/FVC ratio, in patients with asthma. Methods Volumetric CT was performed on 22 stable asthma patients who were taking inhaled corticosteroids. Airway dim...

  10. Mockup Small-Diameter Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  11. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  12. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  13. MOEBIUS SYNDROME: CHALLENGES OF AIRWAY MANAGEMENT.

    Science.gov (United States)

    Budić, Ivana; Šurdilović, Dušan; Slavković, Anđelka; Marjanović, Vesna; Stević, Marija; Simić, Dušica

    2016-03-01

    Moebius syndrome is a rare nonprogressive congenital neurological disorder with a wide range of severity and variability of symptoms. This diversity is a consequence of dysfunction of different cranial nerves (most often facial and abducens nerves), accompanying orofacial abnormalities, musculoskeletal malformations, congenital cardiac diseases, as well as specific associations of Moebius and other syndromes. The authors present anesthesia and airway management during the multiple tooth extraction surgery in a 10-year-old girl with Moebius syndrome associated with Poland and trigeminal trophic syndromes. PMID:27276780

  14. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy.

    Science.gov (United States)

    Brueggemann, Lioubov I; Kakad, Priyanka P; Love, Robert B; Solway, Julian; Dowell, Maria L; Cribbs, Leanne L; Byron, Kenneth L

    2012-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists. PMID:21964407

  15. On the perturbation of the electromagnetic energy due to the presence of inhomogeneities with small diameters

    CERN Document Server

    Daveau, Christian

    2007-01-01

    We consider solutions to the time-harmonic Maxwell problem in $\\R^3$. For such solution we provide a rigorous derivation of the asymptotic expansions in the practically interesting situation, where a finite number of inhomogeneities of small diameter are imbedded in the entire space. Then, we describe the behavior of the electromagnetic energy caused by the presence of these inhomogeneities.

  16. Tracheal granulation as a cause of unrecognized airway narrowing

    OpenAIRE

    Gaurav Bhatia; Valsamma Abraham; Linjo Louis

    2012-01-01

    Tracheostomy is one of the most common elective surgical procedures performed in critically ill patients. The most frequent late complication after tracheostomy is the development of granulation tissue, a complication that may cause airway occlusion or result in airway stenosis. We report the successful management of a patient with tracheal granulation presenting as an unrecognised cause of difficulty breathing.

  17. Nitrogen Dioxide Exposure and Airway Responsiveness in Individuals with Asthma

    Science.gov (United States)

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway r...

  18. Mortality by Level of Emphysema and Airway Wall Thickness

    DEFF Research Database (Denmark)

    Johannessen, Ane; Skorge, Trude Duelien; Bottai, Matteo;

    2013-01-01

    There is limited knowledge of the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness (AWT) on mortality.......There is limited knowledge of the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness (AWT) on mortality....

  19. Computed tomography of nonanesthetized cats with upper airway obstruction.

    Science.gov (United States)

    Stadler, Krystina; O'Brien, Robert

    2013-01-01

    Upper airway obstruction is a potentially life-threatening problem in cats and for which a noninvasive, sensitive method rapid diagnosis is needed. The purposes of this prospective study were to describe a computed tomography (CT) technique for nonanesthetized cats with upper airway obstruction, CT characteristics of obstructive diseases, and comparisons between CT findings and findings from other diagnostic tests. Ten cats with clinical signs of upper airway obstruction were recruited for the study. Four cats with no clinical signs of upper airway obstruction were recruited as controls. All cats underwent computed tomography imaging without sedation or anesthesia, using a 16-slice helical CT scanner and a previously described transparent positional device. Three-dimensional (3D) internal volume rendering was performed on all CT image sets and 3D external volume rendering was also performed on cats with evidence of mass lesions. Confirmation of upper airway obstruction was based on visual laryngeal examination, endoscopy, fine-needle aspirate, biopsy, or necropsy. Seven cats were diagnosed with intramural upper airway masses, two with laryngotracheitis, and one with laryngeal paralysis. The CT and 3D volume-rendered images identified lesions consistent with upper airway disease in all cats. In cats with mass lesions, CT accurately identified the mass and location. Findings from this study supported the use of CT imaging as an effective technique for diagnosing upper airway obstruction in nonanesthetized cats. PMID:23441677

  20. Do indoor chemicals promote development of airway allergy?

    DEFF Research Database (Denmark)

    Nielsen, G D; Larsen, S T; Olsen, O;

    2007-01-01

    products, the important question may be would it be profitable to look for lifestyle factors and non-chemical indoor exposures in order to abate airway allergy? PRACTICAL IMPLICATIONS: Indoor chemicals (pollutants) have been accused to promote development of airway allergy by adjuvant effects......, and exposures to allergens, microorganisms, including vira, and their interactions?...

  1. A hierarchical scheme for geodesic anatomical labeling of airway trees

    DEFF Research Database (Denmark)

    Feragen, Aasa; Petersen, Jens; Owen, Megan;

    2012-01-01

    We present a fast and robust supervised algorithm for label- ing anatomical airway trees, based on geodesic distances in a geometric tree-space. Possible branch label configurations for a given unlabeled air- way tree are evaluated based on the distances to a training set of labeled airway trees....

  2. Has the airway microbiome been overlooked in respiratory disease?

    OpenAIRE

    Salami, Olawale; Marsland, Benjamin J

    2015-01-01

    Editorial summary The respiratory disease field is changing because of recent advances in our understanding of the airway microbiome. Central to this is dysbiosis, an imbalance of microbial communities that can lead to and flag inflammation in the airways. The increasing momentum of research in this area holds promise for novel treatment strategies.

  3. Plethysmographic measurements of specific airway resistance in young children

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Nielsen, Kim G

    2005-01-01

    Validated methods for lung function measurements in young children are lacking. Plethysmographic measurement of specific airway resistance (sRaw) provides such a method applicable from 2 years of age. sRaw gauges airway resistance from the measurements of the pressure changes driving the airflow...

  4. Nineteen-Foot Diameter Explosively Driven Blast Simulator; TOPICAL

    International Nuclear Information System (INIS)

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels

  5. Numerical Simulation of Large Diameter Cylindrical Structure Slamming

    Institute of Scientific and Technical Information of China (English)

    XU Jing; WANG De-yu

    2008-01-01

    The water entry of large diameter cylindrical structure is studied by applying numerical simulation method. The processes of different diameter cylindrical structures impacting water with various constant velocities are calculated numerically. Thereafter, analyzed are the distribution of slamming pressure on structure during slamming course and the influence of slamming velocity and cylindrical diameter on slamming process. Furthermore, presented herein is an equation being used to forecast the peak slamming force on a large diameter cylindrical structure.

  6. Research on Diameter Protocols%Diameter协议研究

    Institute of Scientific and Technical Information of China (English)

    邱锡鹏; 刘海鹏

    2003-01-01

    Diameter is the next authentication,authorization and accounting protocol currently developed in the IETF AAA working group ,which will replace the widely and successfully deployed Radius protocol. In the paper ,the motivations and backgrounds of Diameter protocols are firstly introduced. The following is a detailed description of the Diameter base protocol and its applications,such as mobile IP,NASREQ. Then the comparisons and analysis between Diameter and Radius are given.

  7. Airway Management of Two Patients with Penetrating Neck Trauma

    Directory of Open Access Journals (Sweden)

    P Bhattacharya

    2009-01-01

    Full Text Available Direct trauma to the airway is a rare injury which can lead to disastrous consequences due to compounding effect of bleeding, aspiration of blood, airway obstruction and severe sympathetic stimulation. Here we are presenting two cases of open tracheal injury in two adult males following assault with sharp weapon. Two different techniques of securing the airways were employed depending upon the severity and urgency of the situation. In the first case, orotracheal intubation helped the surgeon to repair airway around the endotracheal tube whereas in the second patient this stenting effect was absent as he was intubated through the distal cut-end of trachea in the face of airway emergency.

  8. Airway obstruction among Latino poultry processing workers in North Carolina.

    Science.gov (United States)

    Mirabelli, Maria C; Chatterjee, Arjun B; Mora, Dana C; Arcury, Thomas A; Blocker, Jill N; Chen, Haiying; Grzywacz, Joseph G; Marín, Antonio J; Schulz, Mark R; Quandt, Sara A

    2015-01-01

    This analysis was conducted to evaluate the prevalence of airway obstruction among Latino poultry processing workers. Data were collected from 279 poultry processing workers and 222 other manual laborers via spirometry and interviewer-administered questionnaires. Participants employed in poultry processing reported the activities they perform at work. Participants with forced expiratory volume in 1 second (FEV1) or FEV1/forced expiratory volume (FVC) below the lower limits of normal were categorized as having airway obstruction. Airway obstruction was identified in 13% of poultry processing workers and 12% of the comparison population. Among poultry processing workers, the highest prevalence of airway obstruction (21%) occurred among workers deboning chickens (prevalence ratio: 1.75; 95% confidence interval: 0.97, 3.15). These findings identify variations in the prevalence of airway obstruction across categories of work activities. PMID:24965321

  9. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem;

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  10. The diameter-dependent photoelectrochemical performance of silicon nanowires.

    Science.gov (United States)

    Zhang, Bing-Chang; Wang, Hui; He, Le; Duan, Chun-Yang; Li, Fan; Ou, Xue-Mei; Sun, Bao-Quan; Zhang, Xiao-Hong

    2016-01-25

    We demonstrate the first systematic study of the diameter-dependent photoelectrochemical performance of single silicon nanowires within a broad size range from 200 to 2000 nm. SiNWs with a diameter of 1415 nm exhibit the highest solar energy conversion efficiency, which can be mainly traced to their diameter-dependent light absorption properties.

  11. Continuous positive airway pressure therapy: new generations.

    Science.gov (United States)

    Garvey, John F; McNicholas, Walter T

    2010-02-01

    Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS). However, CPAP is not tolerated by all patients with OSAS and alternative modes of pressure delivery have been developed to overcome pressure intolerance, thereby improving patient comfort and adherence. Auto-adjustable positive airway pressure (APAP) devices may be utilised for the long-term management of OSAS and may also assist in the initial diagnosis of OSAS and titration of conventional CPAP therapy. Newer modalities such as C-Flex and A-Flex also show promise as treatment options in the future. However, the evidence supporting the use of these alternative modalities remains scant, in particular with regard to long-term cardiovascular outcomes. In addition, not all APAP devices use the same technological algorithms and data supporting individual APAP devices cannot be extrapolated to support all. Further studies are required to validate the roles of APAP, C-Flex and A-Flex. In the interim, standard CPAP therapy should continue as the mainstay of OSAS management. PMID:20308751

  12. The cystic fibrosis lower airways microbial metagenome

    Science.gov (United States)

    Moran Losada, Patricia; Chouvarine, Philippe; Dorda, Marie; Hedtfeld, Silke; Mielke, Samira; Schulz, Angela; Wiehlmann, Lutz

    2016-01-01

    Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Herein, we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, moulds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified, on average, approximately 10 DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple, lowly abundant species superimposed by few disease-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, as major components. The host-associated signatures ranged from inconspicuous polymicrobial communities in healthy subjects to low-complexity microbiomes dominated by the typical CF pathogens in patients with advanced lung disease. The DNA virus community in CF lungs mainly consisted of phages and occasionally of human pathogens, such as adeno- and herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource that could rapidly expand as a response to habitat alterations, such as antimicrobial chemotherapy or invasion of novel microbes. PMID:27730195

  13. Mode of Glucocorticoid Actions in Airway Disease

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ito

    2006-01-01

    Full Text Available Synthetic glucocorticoids are the most potent anti-inflammatory agents used to treat chronic inflammatory disease, such as asthma. However, a small number (<5% of asthmatic patients and almost all patients with chronic obstructive pulmonary disease (COPD do not respond well, or at all, to glucocorticoid therapy. If the molecular mechanism of glucocorticoid insensitivity is uncovered, it may in turn provide insight into the key mechanism of glucocorticoid action and allow a rational way to implement treatment regimens that restore glucocorticoid sensitivity. Glucocorticoids exert their effects by binding to a cytoplasmic glucocorticoid receptor (GR, which is subjected to post-translational modifications. Receptor phosphorylation, acetylation, nitrosylation, ubiquitinylation, and other modifications influence hormone binding, nuclear translocation, and protein half-life. Analysis of GR interactions to other molecules, such as coactivators or corepressors, may explain the genetic specificity of GR action. Priming with inflammatory cytokine or oxidative/nitrative stress is a mechanism for the glucocorticoid resistance observed in chronic inflammatory airway disease via reduction of corepressors or GR modification. Therapies targeting these aspects of the GR activation pathway may reverse glucocorticoid resistance in patients with glucocorticoid-insensitive airway disease and some patients with other inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease.

  14. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    Science.gov (United States)

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  15. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Qiu-Ju Jiang

    2016-01-01

    Full Text Available Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM; however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component was prepared, which completely inhibits high K+- and acetylcholine- (ACH- induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  16. Continuous positive airway pressure therapy: new generations.

    LENUS (Irish Health Repository)

    Garvey, John F

    2012-02-01

    Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS). However, CPAP is not tolerated by all patients with OSAS and alternative modes of pressure delivery have been developed to overcome pressure intolerance, thereby improving patient comfort and adherence. Auto-adjustable positive airway pressure (APAP) devices may be utilised for the long-term management of OSAS and may also assist in the initial diagnosis of OSAS and titration of conventional CPAP therapy. Newer modalities such as C-Flex and A-Flex also show promise as treatment options in the future. However, the evidence supporting the use of these alternative modalities remains scant, in particular with regard to long-term cardiovascular outcomes. In addition, not all APAP devices use the same technological algorithms and data supporting individual APAP devices cannot be extrapolated to support all. Further studies are required to validate the roles of APAP, C-Flex and A-Flex. In the interim, standard CPAP therapy should continue as the mainstay of OSAS management.

  17. Continuous positive airway pressure therapy: new generations.

    LENUS (Irish Health Repository)

    Garvey, John F

    2010-02-01

    Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS). However, CPAP is not tolerated by all patients with OSAS and alternative modes of pressure delivery have been developed to overcome pressure intolerance, thereby improving patient comfort and adherence. Auto-adjustable positive airway pressure (APAP) devices may be utilised for the long-term management of OSAS and may also assist in the initial diagnosis of OSAS and titration of conventional CPAP therapy. Newer modalities such as C-Flex and A-Flex also show promise as treatment options in the future. However, the evidence supporting the use of these alternative modalities remains scant, in particular with regard to long-term cardiovascular outcomes. In addition, not all APAP devices use the same technological algorithms and data supporting individual APAP devices cannot be extrapolated to support all. Further studies are required to validate the roles of APAP, C-Flex and A-Flex. In the interim, standard CPAP therapy should continue as the mainstay of OSAS management.

  18. Delivery of Alpha-1 Antitrypsin to Airways.

    Science.gov (United States)

    Griese, Matthias; Scheuch, Gerhard

    2016-08-01

    Treatment with exogenous alpha-1 antitrypsin (AAT), a potent serine protease inhibitor, was developed originally for chronic obstructive pulmonary disease associated with AAT deficiency; however, other lung conditions involving neutrophilic inflammation and proteolytic tissue injury related to neutrophil elastase and other serine proteases may also be considered for AAT therapy. These conditions include bronchiectasis caused by primary ciliary dyskinesia, cystic fibrosis, and other diseases associated with an increased free elastase activity in the airways. Inhaled AAT may be a viable option to counteract proteolytic tissue damage. This form of treatment requires efficient drug delivery to the targeted pulmonary compartment. Aerosol technology meeting this requirement is currently available and offers an alternative therapeutic approach to systemic AAT administration. To date, early studies in humans have shown biochemical efficacy and have established the safety of inhaled AAT. However, to bring aerosol AAT therapy to patients, large phase 3 protocols in carefully selected patient populations (i.e., subgroups of patients with AAT deficiency, cystic fibrosis, or other lung diseases with bronchiectasis) will be needed with clinical end points in addition to the measurement of proteolytic activity in the airway. The outcomes likely will have to include lung function, lung structure assessed by computed tomography imaging, disease exacerbations, health status, and mortality. PMID:27564672

  19. [Exercise-induced airway obstruction in asthmatic children and adolescents].

    Science.gov (United States)

    Zapletal, A; Zbojan, J; Pohanka, V

    1992-03-01

    In 115 asymptomatic asthmatic children and adolescents (age 6-18 years) there was studied the magnitude of airway obstruction, induced by various physical efforts and assessed from the recording of maximum expiratory flow-volume curves and in some patients by "specific" airway conductance measurement in a body plethysmograph. The effects of 5 minutes free running outdoors, 5 minutes of exercise on a bicycle ergometer (2 watts/kg of body weight), routine swimming training in swimming pool and of forced expiration maneuver on the magnitude of airway obstruction were assessed. The most frequent and largest degree of airway obstruction was observed after 5 min. free running outdoors (heart rate after running 160-200/min). The obstruction was revealed in 80-100% asthmatics in various groups. The chosen lung function parameters showed exercise-induced airway obstruction in the same patients in various proportions as well as the magnitude of the obstruction. Following free running outdoors the values of maximum expiratory flow at 25% of vital capacity and "specific" airway conductance were most reduced. Spontaneous retreat of obstruction was observed in the course of 2 hours. The physical exercise on a bicycle ergometer was a small stimulus in inducing of airway obstruction. The swimming in a pool did not provoke any obstruction. In 10% of our asthmatics airway obstruction was observed following forced expiration maneuver. Airway obstruction induced by 5 minutes free running outdoors and assessed best by flow-volume curves appeared as a suitable test in the assessment of airway hyperresponsiveness. PMID:1591810

  20. Airway Responsiveness to Psychological Processes in Asthma and Health

    Directory of Open Access Journals (Sweden)

    Thomas eRitz

    2012-09-01

    Full Text Available Psychosocial factors have been found to impact airway pathophysiology in respiratory disease with considerable consistency. Influences on airway mechanics have been studied particularly well. The goal of this article is to review the literature on airway responses to psychological stimulation, discuss potential pathways of influence, and present a well-established emotion-induction paradigm to study airway obstruction elicited by unpleasant stimuli. Observational studies have found systematic associations between lung function and daily mood changes. The laboratory –based paradigm of bronchoconstrictive suggestion has been used successfully to elicit airway obstruction in a substantial proportion of asthmatic individuals. Other studies have demonstrated an enhancement of airway responses to standard airway challenges with exercise, allergens, or methacholine. Standardized emotion-induction techniques have consistently shown airway constriction during unpleasant stimulation, with surgery, blood and injury stimuli being particularly powerful. Findings with various forms of stress induction have been more mixed. A number of methodological factors may account for variability across studies, such as choice of measurement technique, temporal association between stimulation and measurement, and the specific quality and intensity of the stimulus material, in particular the extent of implied action-orientation. Research has also begun to elucidate physiological processes associated with psychologically induced airway responses, with vagal excitation and ventilatory influences being the most likely candidate pathways, whereas the role of specific central nervous system pathways and inflammatory processes has been less studied. The technique of emotion-induction using films has the potential to become a standardized challenge paradigm for the further exploration of airway hyperresponsiveness mediated by central nervous system processes.

  1. Mucociliary clearance, airway inflammation and nasal symptoms in urban motorcyclists

    Directory of Open Access Journals (Sweden)

    Tereza C.S. Brant

    2014-01-01

    Full Text Available OBJECTIVES: There is evidence that outdoor workers exposed to high levels of air pollution exhibit airway inflammation and increased airway symptoms. We hypothesized that these workers would experience increased airway symptoms and decreased nasal mucociliary clearance associated with their exposure to air pollution. METHODS: In total, 25 non-smoking commercial motorcyclists, aged 18-44 years, were included in this study. These drivers work 8-12 hours per day, 5 days per week, driving on urban streets. Nasal mucociliary clearance was measured by the saccharine transit test; airway acidification was measured by assessing the pH of exhaled breath condensate; and airway symptoms were measured by the Sino-nasal Outcome Test-20 questionnaire. To assess personal air pollution exposure, the subjects used a passive-diffusion nitrogen dioxide (NO2 concentration-monitoring system during the 14 days before each assessment. The associations between NO2 and the airway outcomes were analyzed using the Mann-Whitney test and the Chi-Square test. Clinicaltrials.gov: NCT01976039. RESULTS: Compared with clearance in healthy adult males, mucociliary clearance was decreased in 32% of the motorcyclists. Additionally, 64% of the motorcyclists had airway acidification and 92% experienced airway symptoms. The median personal NO2 exposure level was 75 mg/m3 for these subjects and a significant association was observed between NO2 and impaired mucociliary clearance (p = 0.036. CONCLUSION: Non-smoking commercial motorcyclists exhibit increased airway symptoms and airway acidification as well as decreased nasal mucociliary clearance, all of which are significantly associated with the amount of exposure to air pollution.

  2. Mechanical ventilation causes airway distension with proinflammatory sequelae in mice.

    Science.gov (United States)

    Nickles, Hannah T; Sumkauskaite, Migle; Wang, Xin; Wegner, Ingmar; Puderbach, Michael; Kuebler, Wolfgang M

    2014-07-01

    The pathogenesis of ventilator-induced lung injury has predominantly been attributed to overdistension or mechanical opening and collapse of alveoli, whereas mechanical strain on the airways is rarely taken into consideration. Here, we hypothesized that mechanical ventilation may cause significant airway distension, which may contribute to the pathological features of ventilator-induced lung injury. C57BL/6J mice were anesthetized and mechanically ventilated at tidal volumes of 6, 10, or 15 ml/kg body wt. Mice were imaged by flat-panel volume computer tomography, and central airways were segmented and rendered in 3D for quantitative assessment of airway distension. Alveolar distension was imaged by intravital microscopy. Functional dead space was analyzed in vivo, and proinflammatory cytokine release was analyzed in isolated, ventilated tracheae. CT scans revealed a reversible, up to 2.5-fold increase in upper airway volume during mechanical ventilation compared with spontaneous breathing. Airway distension was most pronounced in main bronchi, which showed the largest volumes at tidal volumes of 10 ml/kg body wt. Conversely, airway distension in segmental bronchi and functional dead space increased almost linearly, and alveolar distension increased even disproportionately with higher tidal volumes. In isolated tracheae, mechanical ventilation stimulated the release of the early-response cytokines TNF-α and IL-1β. Mechanical ventilation causes a rapid, pronounced, and reversible distension of upper airways in mice that is associated with an increase in functional dead space. Upper airway distension is most pronounced at moderate tidal volumes, whereas higher tidal volumes redistribute preferentially to the alveolar compartment. Airway distension triggers proinflammatory responses and may thus contribute relevantly to ventilator-induced pathologies. PMID:24816486

  3. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease

    NARCIS (Netherlands)

    Qu, N; de Haan, A; Harmsen, MC; Kroese, FGM; de Leij, LFMH; Prop, J

    2003-01-01

    Background. Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD) w

  4. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    Science.gov (United States)

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  5. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    Science.gov (United States)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  6. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  7. Anesthetic techniques to facilitate lung lavage for pulmonary alveolar proteinosis in children-new airway techniques and a review of the literature.

    Science.gov (United States)

    Wilson, Caroline A; Wilmshurst, Sally L; Black, Ann E

    2015-06-01

    Pediatric patients with pulmonary alveolar proteinosis require whole lung lavage to clear the accumulation of lipoproteinaceous material within the alveoli, to maintain respiratory function. Anesthesia for this presents a challenge due to preexisting respiratory failure, and the small diameter and length of the pediatric airway, which is often unable to accommodate existing one-lung isolation and ventilation equipment. Novel techniques to facilitate lung lavage on seven occasions are described and placed in the context of the existing literature to date. PMID:25664978

  8. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Sverrild, Asger; Bergqvist, Anders; Baines, Katherine J;

    2016-01-01

    BACKGROUND: Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway...... tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. METHODS: Airway hyperresponsiveness to inhaled mannitol was measured in 23 non......-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. RESULTS...

  9. CD69 expression on airway eosinophils and airway inflammation in a murine model of asthma

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-ying; SHEN Hua-hao; James J Lee; Nancy A Lee

    2006-01-01

    Background Asthma is a chronic airway disease with inflammation characterized by physiological changes(airway hyper-responsiveness, AHR) and pathological changes (inflammatory cells infiltration and mucus production). Eosinophils play a key role in the allergic inflammation. But the causative relationship between eosinophils and airway inflammation is hard to prove. One of the reasons is lack of activation marker of murine eosinophils. We investigated the expression of CD69 on murine eosinophils in vitro, the relationship between the expression of CD69 on eosinophils from peripheral blood and bronchoalveolar lavage fluid and on airway inflammation in asthmatic mice.Methods Eosinophils from peripheral blood of IL-5 transgenic mice (NJ.1638) were purified. Mice were divided into five groups: wild type mice sensitized and challenged with saline (WS group), wild type mice sensitized and challenged with ovalbumin (WO group), IL-5-/- mice sensitized and challenged with saline and transferred with purified eosinophils (ISE group), IL-5-/- mice sensitized and challenged with OVA and transferred with purified eosinophils (IOE group), IL-5-/- mice sensitized and challenged with OVA and transferred with purified eosinophils, pretreated with anti CD4 monoclonal antibody (IOE+antiCD4mAb group).IL-5-/- mice were sensitized with OVA at day 0 and day 14, then challenged with OVA aerosol. On days 24, 25, 26and 27 purified eosinophils were transferred intratracheally to IL-5-/- mice. On day 28, blood and BALF were collected and CD69 expression on eosinophils measured by flowcytometry.Results Purified eosinophils did not express CD69. But eosinophils cultured with PMA+MA, IFN- γ, IL-5 or GM-CSF expressed CD69 strongly. Eosinophils from blood of WO, WS group did not express CD69 at all. The numbers of eosinophils in BALF of WO group, IOE group, ISE group and IOE+antiCD4mAb group were significantly higher than in mice of WS group which did not have eosinophils at all. CD69 expression

  10. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage

    Science.gov (United States)

    Sun, Zheng; Plikus, Maksim V.; Komarova, Natalia L.

    2016-01-01

    Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical

  11. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage.

    Science.gov (United States)

    Sun, Zheng; Plikus, Maksim V; Komarova, Natalia L

    2016-07-01

    Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical

  12. Analysis of the Appearance Diameter of Yarns in Worsted Fabrics

    Institute of Scientific and Technical Information of China (English)

    XU Guang-biao; WANG Fu-mei

    2008-01-01

    Three-dimeasional Rotational Microscopy was used to take the photos of the fabrics.Three cateries of yarn appearance diameters in the worsted fabrics were discussed.The fabrics were grouped into two to explore the relationships between yarn appearance diameters at the interlacing points,opening points,and the calculated yarn diameters.The correlations bgtween the appearance diameters and fabric parameters were given,and the results showed that the calculated yarn diameter and warp cover factor had a very big influence on yarn appearace diameter.The equations expressing the relationship between yarn appearance diameters and fabric parameters are established using step-regression method.The validation of the equations for one type of fabrics shows a good accuracy with the average error below9%except the weft filaments exceeding22%.

  13. The k-Diameter of a Kind of Circulant Graph

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-di

    2004-01-01

    The diameter of a graph G is the maximal distance between pairs of vertices of G. When a network is modeled as a graph,diameter is a measurement for maximum transmission delay. The k-diameter dk(G) of a graph G, which deals with k internally disjoint paths between pairs of vertices of G, is a extension of the diameter of G. It has widely studied in graph theory and computer science. The circulant graph is a group-theoretic model of a class of symmetric interconnection network. Let Cn(i, ) be a circulant graph of order n whose spanning elements are i and , where n≥4 and n is even. In this paper, the diameter, 2-diameter and 3-diameter of the Cn(i,) are all obtained if gcd(n,i)=1, where the symbol gcd(n,i) denotes the maximum common divisor of n and i.

  14. Overexpression of mclca3 in airway epithelium of asthmatic murine models with airway inflammation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-lan; HE Li

    2010-01-01

    Asthma is a worldwide prevalent disease that is a considerable health burden in many countries.1 In recent years, the airway epithelium is increasingly recognized as a central contributor to the pathogenesis of asthma.2 One of the most highly induced genes in epithelial cells in experimental allergic airway disease is the third murine calcium-activated chloride channel homologue (mclca3, alias gob-5). Its human homology protein is hCLCA1,3,4 which has been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. In initial studies, mclca3 was thought to be a member of calcium-activated chloride channel (CaCCs) family,whereas some new interesting reports suggest that the two mclca3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules with as yet unknown functions and interacting partners.5

  15. Analysis of Gear Wheel-shaft Joint Characterized by Comparable Pitch Diameter and Mounting Diameter

    Directory of Open Access Journals (Sweden)

    J. Ryś

    2003-01-01

    Full Text Available This paper presents the design procedure for a gear wheel-shaft direct frictional joint. The small difference between the operating pitch diameter of the gear and the mounting diameter of the frictional joint is the key feature of the connection. The contact surface of the frictional joint must be placed outside the bottom land of the gear, and the geometry of the joint is limited to the specific type of solutions.The strength analysis is based on the relation between the torque and statistical load intensity of the gear transmission. Several dimensionless parameters are introduced to simplify the calculations. Stress-strain verifying analysis with respect to combined loading, the condition of appropriate load-carrying capacity of the frictional joint and the fatigue strength of the shaft are applied to obtain the relations between the dimensions of the joint and other parameters. The final engineering solution may then be suggested. The approach is illustrated by a numerical example.The proposed procedure can be useful in design projects for small, high-powered modern reducers and new-generation geared motors, in particular when manufactured in various series of types.

  16. LIGHT is a crucial mediator of airway remodeling.

    Science.gov (United States)

    Hung, Jen-Yu; Chiang, Shyh-Ren; Tsai, Ming-Ju; Tsai, Ying-Ming; Chong, Inn-Wen; Shieh, Jiunn-Min; Hsu, Ya-Ling

    2015-05-01

    Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling. PMID:25251281

  17. Increased expression of senescence markers in cystic fibrosis airways.

    Science.gov (United States)

    Fischer, Bernard M; Wong, Jessica K; Degan, Simone; Kummarapurugu, Apparao B; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A

    2013-03-15

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells. PMID:23316069

  18. Deposition of inhalated radionuclides in computer topographically reconstructed human airways

    International Nuclear Information System (INIS)

    Health effects of inhaled radio aerosols highly depend on their deposition patterns within the respiratory system. In addition, several pulmonary health diseases are characteristic to the tracheobronchial tree and most of them are provoked by inhaled aerosols. Local features of particle deposition are strongly influenced by the applied computational model in order to describe airway morphology. Current aerosol deposition models apply strongly idealised geometries of the airways for the description of aerosol deposition. They approximate the surface of the tracheo-bronchial airways with circular cross-section bifurcation units and cylinders. Medical endoscopic, post-mortem and other examinations show that the geometry of the real tracheo-bronchial tree is much more complex. The surface of the conducting airways is not perfectly smooth, especially in case of a diseased lung when even the mucus production excess is not negligible. Furthermore, the morphology of the airways constantly changes during at in vivo circumstances. In summary, the exact numerical description of the complex surface of the human airways is impossible, but a quite realistic approach can be achieved by applying medical imaging techniques to describe the geometry of the airways

  19. Association between lung function and airway wall density

    Science.gov (United States)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  20. Clinical characteristics of adult asthma associated with small airway dysfunction.

    Science.gov (United States)

    Kjellberg, S; Houltz, B K; Zetterström, O; Robinson, P D; Gustafsson, Per M

    2016-08-01

    Suboptimal asthma control is common despite modern asthma therapy. The degree of peripheral airway involvement remains unclear and poor medication delivery to these regions might be a contributing reason for this failure in obtaining adequate symptom control. A cohort of 196 adults (median (range) age 44 (18-61) years, 109 females, 54 ex-smokers, six current smokers) with physician-diagnosed asthma were recruited from primary care. Subjects were characterized clinically by interviews, questionnaires, skin prick tests (SPT) and blood eosinophil counts. Lung function was assessed by spirometry, impulse oscillometry (IOS) and nitrogen multiple breath washout (N2 MBW). IOS assessed peripheral airway resistance (FDR, frequency dependence of resistance). N2 MBW assessed global ventilation inhomogeneity (LCI, lung clearance index), specific indices of peripheral airway function (Scond × VT and Sacin × VT; VT, tidal volume), and inter-regional inhomogeneity (specific ventilation ratio). Never-smoking healthy cohorts of 158 and 400 adult subjects provided local reference values for IOS and N2 MBW variables, respectively. Peripheral airway dysfunction was detected in 31% (FDR or specific ventilation ratio) to 47% (Scond x VT) of subjects. Risk factors for peripheral airway dysfunction were identified. Among subjects with low FEV1 and either positive smoking history and/or blood eosinophilia (>4.0%), 63% had abnormality across all peripheral airway outcomes, whilst only one subject was completely normal. Abnormal peripheral airway function was present in a large proportion of adult asthmatics at baseline. Reduced FEV1, a positive smoking history, and/or blood eosinophilia identified "a small airway asthma subtype" that might benefit from peripheral airway targeted therapy. PMID:27492518

  1. Classification of pulmonary airway disease based on mucosal color analysis

    Science.gov (United States)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  2. Airway Management in a Patient with Wolf-Hirschhorn Syndrome

    Science.gov (United States)

    Udani, Andrea G.

    2016-01-01

    We present a case of a 3-month-old female with Wolf-Hirschhorn syndrome (WHS) undergoing general anesthesia for laparoscopic gastrostomy tube placement with a focus on airway management. WHS is a rare 4p microdeletion syndrome resulting in multiple congenital abnormalities, including craniofacial deformities. Microcephaly, micrognathia, and glossoptosis are common features in WHS patients and risk factors for a pediatric airway that is potentially difficult to intubate. We discuss anesthesia strategies for airway preparation and management in a WHS patient requiring general anesthesia with endotracheal intubation. PMID:27752382

  3. Review article: Extubation of the difficult airway and extubation failure.

    Science.gov (United States)

    Cavallone, Laura F; Vannucci, Andrea

    2013-02-01

    Respiratory complications after tracheal extubation are associated with significant morbidity and mortality, suggesting that process improvements in this clinical area are needed. The decreased rate of respiratory adverse events occurring during tracheal intubation since the implementation of guidelines for difficult airway management supports the value of education and guidelines in advancing clinical practice. Accurate use of terms in defining concepts and describing distinct clinical conditions is paramount to facilitating understanding and fostering education in the treatment of tracheal extubation-related complications. As an example, understanding the distinction between extubation failure and weaning failure allows one to appreciate the need for pre-extubation tests that focus on assessing airway patency in addition to evaluating the ability to breathe spontaneously. Tracheal reintubation after planned extubation is a relatively rare event in the postoperative period of elective surgeries, with reported rates of reintubation in the operating room and postanesthesia care unit between 0.1% and 0.45%, but is a fairly common event in critically ill patients (0.4%-25%). Conditions such as obesity, obstructive sleep apnea, major head/neck and upper airway surgery, and obstetric and cervical spine procedures carry significantly increased risks of extubation failure and are frequently associated with difficult airway management. Extubation failure follows loss of upper airway patency. Edema, soft tissue collapse, and laryngospasm are among the most frequent mechanisms of upper airway obstruction. Planning for tracheal extubation is a critical component of a successful airway management strategy, particularly when dealing with situations at increased risk for extubation failure and in patients with difficult airways. Adequate planning requires identification of patients who have or may develop a difficult airway, recognition of situations at increased risk of

  4. AIRWAY LABELING USING A HIDDEN MARKOV TREE MODEL

    Science.gov (United States)

    Ross, James C.; Díaz, Alejandro A.; Okajima, Yuka; Wassermann, Demian; Washko, George R.; Dy, Jennifer; San José Estépar, Raúl

    2014-01-01

    We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). We obtain a collection of discrete points along the segmented airway tree using particles sampling [1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our HMTM algorithm probabilistically assigns labels to each point. While alternative methods label airway branches out to the segmental level, we describe a general method and demonstrate its performance out to the subsubsegmental level (two generations further than previously published approaches). We present results on a collection of 25 computed tomography (CT) datasets taken from a Chronic Obstructive Pulmonary Disease (COPD) study. PMID:25436039

  5. Nrf2 protects against airway disorders

    International Nuclear Information System (INIS)

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.

  6. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  7. CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration

    OpenAIRE

    S. R. Singh; Sutcliffe, A.; Kaur, D; Gupta, S.; Desai, D; Saunders, R.; Brightling, C E

    2014-01-01

    Background Asthma is characterized by variable airflow obstruction, airway inflammation, airway hyper-responsiveness and airway remodelling. Airway smooth muscle (ASM) hyperplasia is a feature of airway remodelling and contributes to bronchial wall thickening. We sought to investigate the expression levels of chemokines in primary cultures of ASM cells from asthmatics vs healthy controls and to assess whether differentially expressed chemokines (i) promote fibrocyte (FC) migration towards ASM...

  8. IL-1 Receptors Mediate Persistent, but Not Acute, Airway Hyperreactivity to Ozone in Guinea Pigs

    OpenAIRE

    Verhein, Kirsten C.; Jacoby, David B.; Allison D Fryer

    2008-01-01

    Ozone exposure in the lab and environment causes airway hyperreactivity lasting at least 3 days in humans and animals. In guinea pigs 1 day after ozone exposure, airway hyperreactivity is mediated by eosinophils that block neuronal M2 muscarinic receptor function, thus increasing acetylcholine release from airway parasympathetic nerves. However, mechanisms of ozone-induced airway hyperreactivity change over time, so that depleting eosinophils 3 days after ozone makes airway hyperreactivity wo...

  9. Viral Bronchiolitis in Young Rats Causes Small Airway Lesions that Correlate with Reduced Lung Function

    OpenAIRE

    Sorkness, Ronald L.; Renee J Szakaly; Louis A Rosenthal; Sullivan, Ruth; James E Gern; Lemanske, Robert F.; Sun, Xin

    2013-01-01

    Viral illness with wheezing during infancy is associated with the inception of childhood asthma. Small airway dysfunction is a component of childhood asthma, but little is known about how viral illness at an early age may affect the structure and function of small airways. We used a well-characterized rat model of postbronchiolitis chronic airway dysfunction to address how postinfectious small airway lesions affect airway physiological function and if the structure/function correlates persist...

  10. The airway smooth muscle in asthma: More than meets the eye

    OpenAIRE

    Yick, C.Y.

    2013-01-01

    Asthma is a chronic, episodic inflammatory disease of the airways characterized by airway remodeling and functional changes including variable airways obstruction and bronchial hyperresponsiveness. The pathophysiologic mechanisms leading to the functional changes in asthma are still largely unknown. However, recent studies suggest that the airway smooth (ASM) layer in the airway wall is a key player in determining the clinical expression of asthma. Additionally, the ASM layer itself may also ...

  11. The Glandular Stem/Progenitor Cell Niche in Airway Development and Repair

    OpenAIRE

    Liu, Xiaoming; Engelhardt, John F.

    2008-01-01

    Airway submucosal glands (SMGs) are major secretory structures that lie beneath the epithelium of the cartilaginous airway. These glands are believed to play important roles in normal lung function and airway innate immunity by secreting antibacterial factors, mucus, and fluid into the airway lumen. Recent studies have suggested that SMGs may additionally serve as a protective niche for adult epithelial stem/progenitor cells of the proximal airways. As in the case of other adult stem cell nic...

  12. Yarn diameter measurements using coherent optical signal processing

    OpenAIRE

    Carvalho, Vítor; Cardoso, Paulo; Belsley, M.; Vasconcelos, Rosa; Soares, Filomena

    2008-01-01

    A method to measure variations in yarn diameter using coherent optical signal processing based on a single photodiode plus additional electronics is described. The approach enables us to quantify yarn irregularities associated with diameter variations which are Iinearly correlated with yarn mass variations. A robust method of system auto-calibration, eliminating the need for a temperature and humidity controlled environment, is also demonstrated. Two yarns that span the diameter ranges common...

  13. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    Science.gov (United States)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  14. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    Science.gov (United States)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  15. Percutaneous dilational tracheotomy for airway management in a newborn with Pierre-Robin syndrome and a glossopharyngeal web.

    Science.gov (United States)

    Pirat, Arash; Candan, Selim; Unlükaplan, Aytekin; Kömürcü, Ozgür; Kuşlu, Selim; Arslan, Gülnaz

    2012-04-01

    Pierre-Robin syndrome (PRS) is often associated with difficulty in endotracheal intubation. We present the use of percutaneous dilational tracheotomy (PDT) for airway management of a newborn with PRS and a glossopharyngeal web. A 2-day-old term newborn with PRS and severe obstructive dyspnea was evaluated by the anesthesiology team for airway management. A direct laryngoscopy revealed a glossopharyngeal web extending from the base of the tongue to the posterior pharyngeal wall. The infant was spontaneously breathing through a 2 mm diameter fistula in the center of this web. It was decided that endotracheal intubation was impossible, and a PDT was planned. The trachea of the newborn was cannulated, using a 20 gauge peripheral venous catheter and a 0.71 mm guide wire was introduced through this catheter. Using 5 French, 7 French, 9 French, and 11 French central venous catheter kit dilators, staged tracheotomy stoma dilation was performed. By inserting a size 3.0 tracheotomy cannula, PDT was successfully completed in this newborn. This case describes the successful use of PDT for emergency airway management of a newborn with PRS and glossopharyngeal web.

  16. Monitoring the state of the human airways by analysis of respiratory sound

    Science.gov (United States)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  17. k-Diameter of Circulant Graph with Degree 3

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-di; LI Man-li

    2005-01-01

    Parameters k-distance and k-diameter are extension of the distance and the diameter in graph theory. In this paper, the k-distance dk (x,y) between the any vertices x andy is first obtained in a connected circulant graph G with order n (n is even) and degree 3 by removing some vertices from the neighbour set of the x. Then, the k-diameters of the connected circulant graphs with order n and degree 3 are given by using the k-diameter dk (x, y).

  18. Surface Airways Observations (SAO) Hourly Data 1928-1948 (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of hourly U.S. surface airways observations (SAO). These observations extend as far back as 1928, from the time when commercial aviation began...

  19. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  20. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    Science.gov (United States)

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  1. Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation

    OpenAIRE

    Carmody, Lisa A.; Zhao, Jiangchao; Schloss, Patrick D.; Petrosino, Joseph F; Murray, Susan; Young, Vincent B.; Li, Jun Z.; LiPuma, John J.

    2013-01-01

    Rationale: In persons with cystic fibrosis (CF), repeated exacerbations of pulmonary symptoms are associated with a progressive decline in lung function. Changes in the airway microbiota around the time of exacerbations are not well understood.

  2. AEROSOL DEPOSITION AS A FUNCTION OF AIRWAY DISEASE: CYSTIC FIBROSIS

    Science.gov (United States)

    Progressive lung disease associated with cystic fibrosis (CF) is a continuous interaction of the processes of airway obstruction, infection and inflammation. ecent literature has suggested that the manifestation of CF could compromise the successful administration of pharmacologi...

  3. Singapore Airlines and South African Airways Sign Codeshare Agreement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ From 15 September 2006, Singapore Airlines' customers will be able to travel to more destinations in South Africa thanks to a new codeshare agreement signed by Singapore Airlines and South African Airways (SAA).

  4. Kenya Airways Launches New Project to Reduce Carbon Emissions

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Kenya Airways announced its new carbon offset project in May,aiming to have guests directly take part in a carbon emissions reduction plan for environmental protection.Titus Naikuni,Managing Director of

  5. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua, E-mail: jiahua.ni@sjtu.edu.cn; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong, E-mail: xnzhang@sjtu.edu.cn

    2015-08-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO{sub 2} nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO{sub 2} nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO{sub 2} nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO{sub 2} nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO{sub 2} nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO{sub 2} nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO{sub 2} nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO{sub 2} nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO{sub 2} nanotubes. • The highest cell density was observed on 470 nm diameter TiO{sub 2} nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface.

  6. Intraoperative endobronchial rupture of pulmonary hydatid cyst: An airway catastrophe

    Directory of Open Access Journals (Sweden)

    Richa Gupta

    2013-01-01

    Full Text Available Hydatid cyst disease of lungs may not be symptomatic. It may present as spontaneous rupture in pleura or a bronchus. During spontaneous breathing, cyst content of endobronchially ruptured pulmonary hydatid cyst is mostly evacuated by coughing. However, during positive pressure ventilation such extruded fragments may lodge into smaller airway leading to an airway catastrophe. We present such accidental endobronchial rupture of pulmonary hydatid cyst during surgery, its prompt detection, and management by rigid bronchoscopy.

  7. Effects of hyperosmolarity on human isolated central airways.

    OpenAIRE

    Jongejan, R. C.; de Jongste, J. C.; Raatgeep, R. C.; Stijnen, T; Bonta, I.L.; Kerrebijn, K. F.

    1991-01-01

    1. We studied the effect of hyperosmolarity on human isolated airways because a better understanding of the effect of hyperosmolarity on the human airway wall may improve insight into the pathophysiology of hyperosmolarity-induced bronchoconstriction in asthma. 2. In cartilaginous bronchial rings dissected from fresh human lung tissue, hyperosmolar krebs-Henseleit buffer (450 mosM, extra sodium chloride added) evoked a biphasic response: a rapid relaxation phase (peak after 5.0 +/- 0.3 min) f...

  8. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    OpenAIRE

    Patrick Berger; Roger Marthan; Thomas Trian; Pierre-Olivier Girodet; Benoit Allard; Imane Bara; Annaïg Ozier

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/lo...

  9. Larynx during exercise: the unexplored bottleneck of the airways

    OpenAIRE

    2014-01-01

    Exercise-induced shortness of breath is not uncommon in otherwise healthy young people. Based on the presenting symptoms alone, it is challenging to distinguish exercise-induced asthma (EIA) from exercise-induced obstruction of central airways, sometimes leading to diagnostic errors and inadequate treatment. Central airway obstruction usually presents with exercise-induced inspiratory symptoms (EIIS) during ongoing exercise. EIIS tends to peak towards the end of an exercise session or immedia...

  10. Biphasic positive airway pressure ventilation (PeV+) in children

    OpenAIRE

    Jaarsma, Anneke S; Knoester, Hennie; van Rooyen, Frank; Bos, Albert P.

    2001-01-01

    Background: Biphasic positive airway pressure (BIPAP) (also known as PeV+) is a mode of ventilation with cycling variations between two continuous positive airway pressure levels. In adults this mode of ventilation is effective and is being accepted with a decrease in need for sedatives because of the ability to breathe spontaneously during the entire breathing cycle. We studied the use of BIPAP in infants and children. Methods: We randomized 18 patients with respiratory failure for ventilati...

  11. Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice

    OpenAIRE

    Chen, Felicia; Marquez, Hector; Kim, Youn-Kyung; Qian, Jun; Shao, Fengzhi; Fine, Alan; Cruikshank, William W.; Quadro, Loredana; Wellington V. Cardoso

    2014-01-01

    There is increasing evidence that vitamin A deficiency in utero correlates with abnormal airway smooth muscle (SM) function in postnatal life. The bioactive vitamin A metabolite retinoic acid (RA) is essential for formation of the lung primordium; however, little is known about the impact of early fetal RA deficiency on postnatal lung structure and function. Here, we provide evidence that during murine lung development, endogenous RA has a key role in restricting the airway SM differentiation...

  12. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases

    OpenAIRE

    Zehethofer, Nicole; Bermbach, Saskia; Hagner, Stefanie; Garn, Holger; Müller, Julia; Goldmann, Torsten; Lindner, Buko; Schwudke, Dominik; König, Peter

    2014-01-01

    Airway epithelial cells play an important role in the pathogenesis of inflammatory lung diseases such as asthma, cystic fibrosis and COPD. Studies concerning the function of the lipid metabolism of the airway epithelium are so far based only on the detection of lipids by immunohistochemistry but quantitative analyses have not been performed. Although recent advances in mass spectrometry have allowed to identify a variety of lipid classes simultaneously in isolated tissue samples, up until now...

  13. Biomechanics of liquid-epithelium interactions in pulmonary airways

    OpenAIRE

    Ghadiali, Samir N.; Gaver, Donald P.

    2008-01-01

    The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface ...

  14. Defective fluid transport by cystic fibrosis airway epithelia.

    OpenAIRE

    Smith, J.J.; Karp, P H; Welsh, M J

    1994-01-01

    Cystic fibrosis (CF) airway epithelia exhibit defective transepithelial electrolyte transport: cAMP-stimulated Cl- secretion is abolished because of the loss of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, and amiloride-sensitive Na+ absorption is increased two- to threefold because of increased amiloride-sensitive apical Na+ permeability. These abnormalities are thought to alter respiratory tract fluid, thereby contributing to airway disease, the m...

  15. Airway hyperresponsiveness in asthma: Mechanisms, Clinical Significance and Treatment

    Directory of Open Access Journals (Sweden)

    John Daniel Brannan

    2012-12-01

    Full Text Available Airway hyperresponsiveness (AHR and airway inflammation are key pathophysiological features of asthma. Bronchial provocation tests (BPTs are objective tests for AHR that are clinically useful to aid in the diagnosis of asthma. BPTs can be either ‘direct’ or ‘indirect’, referring to the mechanism by which a stimulus mediates bronchoconstriction. Direct BPTs refer to the administration of pharmacological agonist (e.g., methacholine or histamine that act on specific receptors on the airway smooth muscle. Airway inflammation and/or airway remodeling may be key determinants of the response to direct stimuli. Indirect BPTs are those in which the stimulus causes the release of mediators of bronchoconstriction from inflammatory cells (e.g., exercise, allergen, mannitol. Airway sensitivity to indirect stimuli is dependent upon the presence of inflammation (e.g., mast cells, eosinophils, which responds to treatment with inhaled corticosteroids (ICS. Thus, there is a stronger relationship between indices of steroid-sensitive inflammation (e.g., sputum eosinophils, fraction of exhaled nitric oxide and airway sensitivity to indirect compared to direct stimuli. Regular treatment with ICS does not result in the complete inhibition of responsiveness to direct stimuli. AHR to indirect stimuli identifies individuals that are highly likely to have a clinical improvement with ICS therapy in association with an inhibition of airway sensitivity following weeks to months of treatment with ICS. To comprehend the clinical utility of direct or indirect stimuli in either diagnosis of asthma or monitoring of therapeutic intervention requires an understanding of the underlying pathophysiology of AHR and mechanisms of action of both stimuli.

  16. Airway inflammation is present during clinical remission of atopic asthma

    OpenAIRE

    Toorn, Leon; Overbeek, Shelley; de Jongste, Johan; Leman, K.; Hoogsteden, Henk; Prins, Jan-Bas

    2001-01-01

    textabstractSymptoms of atopic asthma often disappear at puberty. However, asthmatic subjects in clinical remission will frequently have a relapse later in life. The aim of this study was to investigate whether subjects in clinical remission of atopic asthma have persistent airway inflammation and/or airway remodeling. Bronchial biopsies were obtained from subjects in clinical remission, asthmatic subjects, and healthy control subjects. The presence and/or activation state of eosinophils, mas...

  17. Airway Hyperresponsiveness in Asthma: Mechanisms, Clinical Significance, and Treatment

    OpenAIRE

    Brannan, John D; Lougheed, M Diane

    2012-01-01

    Airway hyperresponsiveness (AHR) and airway inflammation are key pathophysiological features of asthma. Bronchial provocation tests (BPTs) are objective tests for AHR that are clinically useful to aid in the diagnosis of asthma in both adults and children. BPTs can be either “direct” or “indirect,” referring to the mechanism by which a stimulus mediates bronchoconstriction. Direct BPTs refer to the administration of pharmacological agonist (e.g., methacholine or histamine) that act on specifi...

  18. Airway hyperresponsiveness; smooth muscle as the principal actor.

    Science.gov (United States)

    Lauzon, Anne-Marie; Martin, James G

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  19. Severe upper airway obstruction caused by ulcerative laryngitis

    OpenAIRE

    Hatherill, M.; Reynolds, L; Waggie, Z; Argent, A

    2001-01-01

    AIMS—To present our experience of severe upper airway obstruction caused by ulcerative laryngitis in children.
METHODS—Retrospective case note review of 263 children with severe upper airway obstruction and a clinical diagnosis of croup admitted to a paediatric intensive care unit (PICU) over a five year period.
RESULTS—A total of 148 children (56%) underwent microlaryngoscopy (Storz 3.0 rigid telescope). Laryngeal ulceration with oedema was documented in 15 of these childre...

  20. Seasonal Fluctuations in Airway Responsiveness in Elite Endurance Athletes

    OpenAIRE

    Howard B Hemingson; Davis, Beth E.; Cockcroft, Donald W

    2004-01-01

    BACKGROUND: It has been suggested that exposure to winter training conditions (irritants in indoor facilities and/or cold, dry air in the outdoors) can increase airway responsiveness in elite endurance athletes.OBJECTIVES: It has yet to be elucidated whether elite endurance athletes experience seasonal fluctuations in their airway responsiveness.METHODS: Eighteen members of a varsity cross-country running team underwent screening procedures and five members were enrolled in the study. Each at...

  1. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent......Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...

  2. Neutrophil elastase-mediated increase in airway temperature during inflammation

    DEFF Research Database (Denmark)

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi;

    2014-01-01

    Background How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. Methods We determined the temperature...... in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Results...

  3. Modeling the Nonlinear Motion of the Rat Central Airways.

    Science.gov (United States)

    Ibrahim, G; Rona, A; Hainsworth, S V

    2016-01-01

    Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model. PMID:26592166

  4. Robust system for human airway-tree segmentation

    Science.gov (United States)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  5. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool

    Directory of Open Access Journals (Sweden)

    Nathan A. Hotaling

    2015-12-01

    Full Text Available DiameterJ is an open source image analysis plugin for ImageJ. DiameterJ produces ten files for every image that it analyzes. These files include the images that were analyzed, the data to create histograms of fiber radius, pore size, fiber orientation, and summary statistics, as well as images to check the output of DiameterJ. DiameterJ was validated with 130 in silico-derived, digital, synthetic images and 24 scanning electron microscope (SEM images of steel wire samples with a known diameter distribution. Once validated, DiameterJ was used to analyze SEM images of electrospun polymeric nanofibers, including a comparison of different segmentation algorithms. In this article, all digital synthetic images, SEM images, and their segmentations are included. Additionally, DiameterJ’s raw output files, and processed data is included for the reader. The data provided herein was used to generate the figures in DiameterJ: A Validated Open Source Nanofiber Diameter Measurement Tool [1], where more discussion can be found.

  6. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sync.monash.edu.au; Morgan, K.S.; Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Boucher, R. [CF Research and Treatment Center, University of North Carolina at Chapel Hill (United States); Uesugi, K.; Yagi, N. [SPring-8/JASRI, Hyogo 679-5198 (Japan); Parsons, D.W. [Department of Pulmonary Medicine, Women' s and Children' s Hospital, South Australia 5006 (Australia); Department of Paediatrics, University of Adelaide, South Australia, 5006 (Australia); Women' s and Children' s Health Research Institute, South Australia, 5006 (Australia)

    2008-12-15

    We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of {approx}2 {mu}m. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.

  7. A comparison between the v-gel supraglottic airway device and the cuffed endotracheal tube for airway management in spontaneously breathing cats during isoflurane anaesthesia

    NARCIS (Netherlands)

    van Oostrom, H.; Krauss, M.W.; Sap, R.

    2013-01-01

    Abstract OBJECTIVE: To compare airway management using the v-gel supraglottic airway device (v-gel SGAD) to that using an endotracheal tube (ETT), with respect to practicability, leakage of volatile anaesthetics and upper airway discomfort in cats. STUDY DESIGN: Prospective, randomized clinical tria

  8. Mean particle diameters: from statistical definition to physical understanding

    NARCIS (Netherlands)

    Alderliesten, M.

    2008-01-01

    Mean particle diameters are important for the science of particulate systems. This thesis deals with a definition system for these mean diameters, called Moment-Ratio (M-R) definition system, and provides a general statistical and physical basis. Also, the current DIN/ISO definition system is discus

  9. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.

  10. Asteroid rotation rates depend on diameter and type

    Energy Technology Data Exchange (ETDEWEB)

    Dermott, S.F.; Murray, C.D. (Cornell Univ., Ithaca, NY (USA). Center for Radiophysics and Space Research)

    1982-04-01

    The rotational frequency of main-belt asteroids is shown here to depend on both asteroidal type and diameter. If asteroids of any one diameter are considered then, on average, M asteroids rotate faster than S asteroids which in turn rotate faster than C asteroids. This shows that asteroids which have been classified by their surface properties alone have different bulk properties. For all three types, although the dispersions of the frequencies are large, it is proved that the mean frequency increases linearly with the mean diameter. In both the C and S plots of mean rotational frequency against mean diameter there are discontinuities at diameters approximately equal to 125 km and approximately equal to 105 km, respectively, which may differentiate primordial asteroids from their collisional products.

  11. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit;

    2006-01-01

    and blood glucose, variations in retinal blood vessel diameters and blood pressure were predominantly attributable to genetic effects. A genetic influence may have a role in individual susceptibility to hypertension and other vascular diseases. The results suggest that retinal vessel diameters......PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...

  12. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity

    Science.gov (United States)

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-09-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena.

  13. Superresolution measurement of nanofiber diameter by modes beating

    Science.gov (United States)

    Fenton, E. F.; Solano, P.; Hoffman, J. E.; Orozco, L. A.; Rolston, S. L.; Fatemi, F. K.

    2016-05-01

    Nanofibers are becoming an important tool in quantum information technologies for coupling photonics systems to atomic systems. Nondestructive techniques for characterizing these nanofibers prior to integration into an apparatus are desirable. In this work, we probe the light propagating in a fused silica optical nanofiber (750-nm-diameter) by coupling it evanescently to a 6- μm-diameter microfiber that is scanned along the nanofiber length. This technique is capable of observing all possible beat lengths among different propagating modes. The beat lengths are strongly dependent on the nanofiber diameter and refractive index of the fiber. The steep dependence has enabled measurements of the fiber diameter with sub-Angstrom sensitivity. The diameter extracted from the beat length measurements agrees with a measurement made using scanning electron microscopy. Work supported by NSF.

  14. Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes

    Science.gov (United States)

    Shohany, Boshra Ghanbari; Roknabadi, Mahmood Rezaee; Kompany, Ahmad

    2016-10-01

    In this work, the structural and electronic properties of armchair and zigzag graphdiyne nanotubes (GDYNTs) have been investigated using the density functional theory (DFT). All the nanotubes under investigation exhibited semiconducting behavior. The edge configuration and diameter effects on the electrical transport of graphdiyne nanotubes are studied using non-equilibrium Green's function (NEGF) method. Our results showed that the currents in the zigzag graphdiyne nanotubes are remarkably higher comparing to the armchair nanotubes.

  15. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars;

    2015-01-01

    ) bronchial inflammation exists in all CRSwNP patients irrespective of clinical asthma status. Methods We collected biopsies from nasal polyps, inferior turbinates and bronchi of 27 CRSwNP patients and 6 controls. All participants were evaluated for lower airway disease according to international guidelines...... patients and controls. Results We found significantly higher concentrations of Th2 cytokines in nasal polyps compared to inferior turbinate and bronchial biopsies. In addition, we showed that the inflammatory profile of nasal polyps and bronchial biopsies correlated significantly (p

  16. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  17. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S

    2015-11-01

    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  18. Computational Flow Modeling of Human Upper Airway Breathing

    Science.gov (United States)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  19. Liquid Therapy Delivery Models Using Microfluidic Airways

    Science.gov (United States)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  20. Prehospital airway management: A prospective case study.

    Science.gov (United States)

    Wilbers, N E R; Hamaekers, A E W; Jansen, J; Wijering, S C; Thomas, O; Wilbers-van Rens, R; van Zundert, A A J

    2011-01-01

    We conducted a one-year prospective study involving a prehospital Emergency Medical Service in the Netherlands to investigate the incidence of failed or difficult prehospital endotracheal intubation. During the study period the paramedics were asked to fill in a registration questionnaire after every endotracheal intubation. Of the 26,271 patient contacts, 256 endotracheal intubations were performed by paramedics in one year. Endotracheal intubation failed in 12 patients (4.8%). In 12.0% of 249 patients, a Cormack and Lehane grade III laryngoscopy was reported and a grade IV laryngoscopy was reported in 10.4%. The average number of endotracheal intubations per paramedic in one year was 4.2 and varied from zero to a maximum of 12. The median time between arrival on the scene and a positive capnograph was 7 min.38 s in the case of a Cormack and Lehane grade I laryngoscopy and 14 min.58 s in the case of a Cormack and Lehane grade 4 laryngoscopy. The incidence of endotracheal intubations performed by Dutch paramedics in one year was low, but endotracheal intubation was successful in 95.2%, which is comparable with findings in international literature. Early capnography should be used consistently in prehospital airway management. PMID:21612142

  1. Stress relaxation of grouted entirely large diameter B-GFRP soil nail

    Science.gov (United States)

    Li, Guo-wei; Ni, Chun; Pei, Hua-fu; Ge, Wan-ming; Ng, Charles Wang Wai

    2013-08-01

    One of the potential solutions to steel-corrosion-related problems is the usage of fiber reinforced polymer (FRP) as a replacement of steel bars. In the past few decades, researchers have conducted a large number of experimental and theoretical studies on the behavior of small size glass fiber reinforce polymer (GFRP) bars (diameter smaller than 20 mm). However, the behavior of large size GFRP bar is still not well understood. Particularly, few studies were conducted on the stress relaxation of grouted entirely large diameter GFRP soil nail. This paper investigates the effect of stress levels on the relaxation behavior of GFRP soil nail under sustained deformation ranging from 30% to 60% of its ultimate strain. In order to study the behavior of stress relaxation, two B-GFRP soil nail element specimens were developed and instrumented with fiber Bragg grating (FBG) strain sensors which were used to measure strains along the B-GFRP bars. The test results reveal that the behavior of stress relaxation of B-GFRP soil nail element subjected to pre-stress is significantly related to the elapsed time and the initial stress of relaxation procedure. The newly proposed model for evaluating stress relaxation ratio can substantially reflect the influences of the nature of B-GFRP bar and the property of grip body. The strain on the nail body can be redistributed automatically. Modulus reduction is not the single reason for the stress degradation.

  2. Stress Relaxation of Grouted Entirely Large Diameter B-GFRP Soil Nail

    Institute of Scientific and Technical Information of China (English)

    LI Guo-wei; NI Chun; PEI Hua-fu; GE Wan-ming; NG Charles Wang Wai

    2013-01-01

    One of the potential solutions to steel-corrosion-related problems is the usage of fiber reinforced polymer (FRP) as a replacement of steel bars.In the past few decades,researchers have conducted a large number of experimental and theoretical studies on the behavior of small size glass fiber reinforce polymer (GFRP) bars (diameter smaller than 20 mm).However,the behavior of large size GFRP bar is still not well understood.Particularly,few studies were conducted on the stress relaxation of grouted entirely large diameter GFRP soil nail.This paper investigates the effect of stress levels on the relaxation behavior of GFRP soil nail under sustained deformation ranging from 30% to 60% of its ultimate strain.In order to study the behavior of stress relaxation,two B-GFRP soil nail element specimens were developed and instrumented with fiber Bragg grating (FBG) strain sensors which were used to measure strains along the B-GFRP bars.The test results reveal that the behavior of stress relaxation of B-GFRP soil nail element subjected to pre-stress is significantly related to the elapsed time and the initial stress of relaxation procedure.The newly proposed model for evaluating stress relaxation ratio can substantially reflect the influences of the nature of B-GFRP bar and the property of grip body.The strain on the nail body can be redistributed automatically.Modulus reduction is not the single reason for the stress degradation.

  3. Effects of Diameter on Initial Stiffness of P-Y Curves for Large-Diameter Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Augustesen, Anders Hust

    2010-01-01

    is developed for slender piles with diameters up to approximately 2.0 m. Hence, the method is not validated for piles with diameters of 4–6 m. The aim of the paper is to extend the p-y curve method to large-diameter non-slender piles in sand by considering the effects of the pile diameter on the soil-pile...... interaction. Hence, a modified expression for the p-y curves for statically loaded piles in sand is proposed in which the initial slope of the p-y curves depends on the depth below the soil surface, the pile diameter and the internal angle of friction. The evaluation is based on three-dimensional numerical...

  4. Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers

    OpenAIRE

    Sheel, A William; Jordan A. Guenette; Yuan, Ren; Holy, Lukas; Mayo, John R; McWilliams, Annette M.; Lam, Stephen; Coxson, Harvey O.

    2009-01-01

    We sought to determine the relationship between lung size and airway size in men and women of varying stature. We also asked if men and women matched for lung size would still have differences in airway size and if so where along the pulmonary airway tree would these differences exist. We used computed tomography to measure airway luminal areas of the large and central airways. We determined airway luminal areas in men (n = 25) and women (n = 25) who were matched for age, body mass index, smo...

  5. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells.

    Science.gov (United States)

    Zhao, Rui; Fallon, Timothy R; Saladi, Srinivas Vinod; Pardo-Saganta, Ana; Villoria, Jorge; Mou, Hongmei; Vinarsky, Vladimir; Gonzalez-Celeiro, Meryem; Nunna, Naveen; Hariri, Lida P; Camargo, Fernando; Ellisen, Leif W; Rajagopal, Jayaraj

    2014-07-28

    Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap (Yes-associated protein 1) is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and determines epithelial architecture.

  6. Relationship of rolling bearing stiffness with diameter of roller

    Institute of Scientific and Technical Information of China (English)

    郭茂林; 王刚; 张瑞

    2002-01-01

    The theoretical formula of roller bearing stiffness is induced and compared with its empirical formula.In the experience formula the stiffness of roller bearing has nothing to do with the roller diameter. The relation-ship of roller bearing stiffness with roller diameter was studied using Hz contacting theory. It is concluded thatconclusion in experience formula is only approximate result of data processing under special conditions, and therelation between stiffness of roller bearing and roller diameter must be taken into consideration while designingor selecting roller bearings.

  7. Effect of Anodic Alumina Oxide Pore Diameter on the Crystallization of Poly(butylene adipate).

    Science.gov (United States)

    Sun, Xiaoli; Fang, Qunqun; Li, Huihui; Ren, Zhongjie; Yan, Shouke

    2016-04-01

    Poly(butylene adipate) (PBA) was infiltrated into the anodic alumina oxide (AAO) templates with the pore diameter of around 30, 70, and 100 nm and PBA nanotubes with different diameters were prepared. The crystallization and phase transition behavior of the obtained PBA nanotubes capped in the nanopores have been explored by using X-ray diffraction and differential scanning calorimetry. Only α-PBA crystals form in the bulk sample during nonisothermal crystallization. By contrast, predominant β-PBA crystals form in the AAO templates. The β-PBA crystals formed in the nanopores with pore diameter less than 70 nm prefer to adopt an orientation with their b-axis parallel to the long axis of the pore. During the melt recrystallization, it was found that the critical temperature (Tβ), below which pure β-crystals form, is 20 °C for bulk PBA. It drops down significantly with the pore diameter for the PBA in the AAO template. Moreover, the β-crystals in the porous template exhibit larger lattice parameters compared with the bulk crystals. By monitoring the change of β-crystals in the heating process, it was found that β-crystals in the AAO template with the pore diameter of 30 nm (D30) melt directly while the β-crystals transform to α-crystals in the template with the pore diameter of 100 nm (D100). The intensity of (020) Bragg peak of β-crystals decreases at a similar rate in both D30 and D100 but disappears at a relatively lower temperature in D30. On the other hand, the β(110) peak intensity of β-PBA crystals formed in the D100 template decreases first at slower rate before α crystals appear, and then at a faster rate once the β to α phase transition takes place. PMID:27008378

  8. Eddy sensors for small diameter stainless steel tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  9. Pupil diameter reflects uncertainty in attentional selection during visual search

    Directory of Open Access Journals (Sweden)

    Joy J. Geng

    2015-08-01

    Full Text Available Pupil diameter has long been used as a metric of cognitive processing. However, recent advances suggest that the cognitive sources of change in pupil size may reflect LC-NE function and the calculation of unexpected uncertainty in decision processes (Aston-Jones & Cohen, 2005b; Yu & Dayan, 2005. In the current experiments, we explored the role of uncertainty in attentional selection on task-evoked changes in pupil diameter during visual search. We found that task-evoked changes in pupil diameter were related to uncertainty during attentional selection as measured by reaction time and performance accuracy (Experiments 1-2. Control analyses demonstrated that the results are unlikely to be due to error monitoring or response uncertainty. Our results suggest that pupil diameter can be used as an implicit metric of uncertainty in ongoing attentional selection requiring effortful control processes.

  10. Optimal electrode diameter in relation to volume of the cochlea.

    Science.gov (United States)

    Gnansia, D; Demarcy, T; Vandersteen, C; Raffaelli, C; Guevara, N; Delingette, H; Ayache, N

    2016-06-01

    The volume of the cochlea is a key parameter for electrode-array design. Indeed, it constrains the diameter of the electrode-array for low-traumatic positioning in the scala timpani. The present report shows a model of scala timpani volume extraction from temporal bones images in order to estimate a maximum diameter of an electrode-array. Nine temporal bones were used, and passed to high-resolution computed tomography scan. Using image-processing techniques, scala timpani were extracted from images, and cross-section areas were estimated along cochlear turns. Cochlear implant electrode-array was fitted in these cross-sections. Results show that the electrode-array diameter is small enough to fit in the scala timpani, however the diameter is restricted at the apical part. PMID:27246746

  11. Clinical predictors of central sleep apnea evoked by positive airway pressure titration

    Science.gov (United States)

    Moro, Marilyn; Gannon, Karen; Lovell, Kathy; Merlino, Margaret; Mojica, James; Bianchi, Matt T

    2016-01-01

    Purpose Treatment-emergent central sleep apnea (TECSA), also called complex apnea, occurs in 5%–15% of sleep apnea patients during positive airway pressure (PAP) therapy, but the clinical predictors are not well understood. The goal of this study was to explore possible predictors in a clinical sleep laboratory cohort, which may highlight those at risk during clinical management. Methods We retrospectively analyzed 728 patients who underwent PAP titration (n=422 split-night; n=306 two-night). Demographics and self-reported medical comorbidities, medications, and behaviors as well as standard physiological parameters from the polysomnography (PSG) data were analyzed. We used regression analysis to assess predictors of binary presence or absence of central apnea index (CAI) ≥5 during split-night PSG (SN-PSG) versus full-night PSG (FN-PSG) titrations. Results CAI ≥5 was present in 24.2% of SN-PSG and 11.4% of FN-PSG patients during titration. Male sex, maximum continuous positive airway pressure, and use of bilevel positive airway pressure were predictors of TECSA, and rapid eye movement dominance was a negative predictor, for both SN-PSG and FN-PSG patients. Self-reported narcotics were a positive predictor of TECSA, and the time spent in stage N2 sleep was a negative predictor only for SN-PSG patients. Self-reported history of stroke and the CAI during the diagnostic recording predicted TECSA only for FN-PSG patients. Conclusion Clinical predictors of treatment-evoked central apnea spanned demographic, medical history, sleep physiology, and titration factors. Improved predictive models may be increasingly important as diagnostic and therapeutic modalities move away from the laboratory setting, even as PSG remains the gold standard for characterizing primary central apnea and TECSA. PMID:27555802

  12. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  13. Effects of Flavin7 on allergen induced hyperreactivity of airways

    Directory of Open Access Journals (Sweden)

    Franova S

    2009-12-01

    Full Text Available Abstract Some studies have suggested that the polyphenolic compounds might reduce the occurrence of asthma symptoms. The aim of our experiments was to evaluate the effects of 21 days of the flavonoid Flavin7 administration on experimentally induced airway inflammation in ovalbumin-sensitized guinea pigs. We assessed tracheal smooth muscle reactivity by an in vitro muscle-strip method; changes in airway resistance by an in vivo plethysmographic method; histological picture of tracheal tissue; and the levels of interleukin 4 (IL-4, and interleukin 5 (IL-5 in bronchoalveolar lavage fluid (BALF. Histological investigation of tracheal tissue and the concentrations of the inflammatory cytokines IL-4 and IL-5 in BALF were used as indices of airway inflammation. Administration of Flavin7 caused a significant decrease of specific airway resistance after histamine nebulization and a decline in tracheal smooth muscle contraction amplitude in response to bronchoconstricting mediators. Flavin7 minimized the degree of inflammation estimated on the basis of eosinophil calculation and IL-4 and IL-5 concentrations. In conclusion, administration of Flavin7 showed bronchodilating and anti-inflammatory effects on allergen-induced airway inflammation.

  14. The effect of rapid maxillary expansion on nasal airway resistance.

    Science.gov (United States)

    White, B C; Woodside, D G; Cole, P

    1989-06-01

    The purpose of this investigation was to provide quantitative data describing the effects of rapid palatal expansion on nasal airway resistance. Rapid palatal expansion is an orthodontic procedure which is commonly used to widen the maxilla to correct maxillary narrowing resulting in the orthodontic abnormality of crossbite and to provide more space for alignment of crowded teeth. Recordings of nasal airway resistance were taken prior to expansion, immediately after expansion (approximately one month), after a retention period of approximately 4 months and approximately one year after initiation of treatment. Findings indicate an average reduction in nasal airway resistance of 48.7 per cent which was statistically significant at the 0.005 level. The reduction also appeared stable throughout the post treatment observation period (maximum one year) as each series of readings was statistically significantly lower than the initial reading, but not significantly different from each other. Reduction of nasal airway resistance was highly correlated to the initial nasal resistance level prior to rapid maxillary expansion. Those individuals with the greater initial resistance tended to have greater reductions in airway resistance following the expansion.

  15. Assessment of nasopharyngeal airway and adenoid by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Suk; Hur, Gham; Kim, Yong Hoon; Joe, Eun Ok; Lee, Seong Sook [Sanggae Paik Hospital, College of Medicine, Inje University, Seoul (Korea, Republic of)

    1993-09-15

    Adenoid is a kind of tonsil located in the posterior wall of nasopharynx. Enlargement of the adenoid can produce obstruction of the nasopharynx and Eustachian tube. Disturbance in discharge of nasal and paranasal secretions can be a cause of chronic rhinitis, sinusitis, and otitis media. Diagnosis of enlarged adenoid simply by inspection is different due to its location. Measurement of nasopharyngeal airway and adenoid using lateral radiographs of nasopharynx may be inaccurate for magnification and rotation. It was some limitations in demonstrating the actual state of nasopharyngeal airway and adenoid because it gives only two dimensional information. The authors measured the size and areas of nasopharyngeal airway and adenoid using MRI with sagittal and oblique coronal pilot views of T1 weighted spin echo. We categorized the patients into 4 groups according to the scoring system by symptoms such as apnea, mouth breathing, and snoring. The results of several measurment and their ratios were evaluated in these 4 categorized patients. The ratios of area of adenoid and nasopharyngeal airway (AA/Na) in each patient group were 6.52, 7.76, 10.53, 15.93, respectively. And the ratios of adenoid and nasopharyngeal airway (A/N) by Fujioka's method were 0.6, 0.65, 0.69, 0.71, respectively. We found that AA/Na might be the most effective index as an objective indicator in the evaluation of nasopharyngeal obstruction by the enlarged adenoid.

  16. Flexible CO2 Laser Fiber in the Pediatric Airway

    Directory of Open Access Journals (Sweden)

    Kimberly K. Caperton

    2011-01-01

    Full Text Available Objective. Our institution has been using a novel flexible laser fiber in pediatric surgical airway procedures, which has been quite successful. The purpose of this paper is to present our preliminary experience in the treatment of pediatric airway lesions using this laser technique. Methods. A case series reviewing 40 patients undergoing 95 laser procedures is reported. Indications included removal of suprastomal granulation tissue, removal of granulation after laryngotracheal reconstruction, subglottic and supraglottic stenoses, recurrent respiratory papillomas, subglottic hemangioma, laryngeal cleft, and left main stem bronchus stenosis. Procedures were performed via microdirect laryngoscopy and bronchoscopy. Results. No complications including postoperative glottic webs, concentric scar formation, or airway fires occurred in any of the patients (after the series was completed, we did experience an airway fire. It was a flash flame that was self-limited and caused no long-term tissue injury. Conclusions. The endoscopic application of a new flexible carbon dioxide laser fiber for management of pediatric airways lesions provides good outcomes in selected patients. Distal respiratory papillomas, subglottic stenosis, and granulation tissue are, in our experience, appropriate indications.

  17. Unmet needs in severe chronic upper airway disease (SCUAD).

    Science.gov (United States)

    Bousquet, Jean; Bachert, Claus; Canonica, Giorgio W; Casale, Thomas B; Cruz, Alvaro A; Lockey, Richard J; Zuberbier, Torsten

    2009-09-01

    Although the majority of patients with chronic upper airway diseases have controlled symptoms during treatment, many patients have severe chronic upper airway diseases (SCUADs). SCUAD defines those patients whose symptoms are inadequately controlled despite adequate (ie, effective, safe, and acceptable) pharmacologic treatment based on guidelines. These patients have impaired quality of life, social functioning, sleep, and school/work performance. Severe uncontrolled allergic rhinitis, nonallergic rhinitis, chronic rhinosinusitis, aspirin-exacerbated respiratory diseases, or occupational airway diseases are defined as SCUADs. Pediatric SCUADs are still unclear. In developing countries SCUADs exist, but risk factors can differ from those seen in developed countries. Comorbidities are common in patients with SCUADs and might increase their severity. The present document is the position of a group of experts considering that SCUADs should be considered differently from mild chronic upper airway diseases. It reviews the state of the art, highlighting gaps in our knowledge, and proposes several areas for a better understanding, prevention, and management of SCUADs. This document can also serve to optimize the pharmacoeconomic evaluation of SCUADs by means of comparison with mild chronic upper airway diseases. PMID:19660803

  18. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    OpenAIRE

    Frazier-Wood Alexis C; Glasser Stephen; Garvey W Timothy; Kabagambe Edmond K; Borecki Ingrid B; Tiwari Hemant K; Tsai Michael Y; Hopkins Paul N; Ordovas Jose M; Arnett Donna K

    2011-01-01

    Abstract Background The presence of smaller low-density lipoproteins (LDL) has been associated with atherosclerosis risk, and the insulin resistance (IR) underlying the metabolic syndrome (MetS). In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL) particle diameters with components of the metabolic syndrome (MetS), although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diamete...

  19. Lysosome Transport as a Function of Lysosome Diameter

    OpenAIRE

    Debjyoti Bandyopadhyay; Austin Cyphersmith; Zapata, Jairo A.; Y Joseph Kim; Payne, Christine K.

    2014-01-01

    Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular ...

  20. Minimum Orders of Eulerian Oriented Digraphs with Given Diameter

    Institute of Scientific and Technical Information of China (English)

    Yoomi RHO; Byeong Moon KIM; Woonjae HWANG; Byung Chul SONG

    2014-01-01

    A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-degree 2 and a diameter d, we find the minimum order of D. In addition, when D is 2-regular with diameter 4m (m≥2), we classify the extremal cases.

  1. NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    CERN Document Server

    Nugent, C R; Masiero, J; Bauer, J; Cutri, R M; Grav, T; Kramer, E; Sonnett, S; Stevenson, R; Wright, E L

    2015-01-01

    We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.

  2. The Relationship between the Volume and Diameter of Pots

    OpenAIRE

    Pleterski, Andrej

    2011-01-01

    In determining the function of a pot, its volume plays an important role. Since whole pots are very rarely found in settlement layers, their volume can only be estimated based on their diameter. Rim shards, i.e. shards with a preserved area around the neck, are particularly suitable for this purpose. This method of determining volume can also be verified by comparing the known volumes of whole pots in a group with the diameters.

  3. Measuring airway surface liquid depth in ex vivo mouse airways by x-ray imaging for the assessment of cystic fibrosis airway therapies.

    Directory of Open Access Journals (Sweden)

    Kaye S Morgan

    Full Text Available In the airways of those with cystic fibrosis (CF, the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.

  4. Balancing Degree, Diameter and Weight in Euclidean Spanners

    CERN Document Server

    Solomon, Shay

    2011-01-01

    In this paper we devise a novel \\emph{unified} construction of Euclidean spanners that trades between the maximum degree, diameter and weight gracefully. For a positive integer k, our construction provides a (1+eps)-spanner with maximum degree O(k), diameter O(log_k n + alpha(k)), weight O(k \\cdot log_k n \\cdot log n) \\cdot w(MST(S)), and O(n) edges. Note that for k= n^{1/alpha(n)} this gives rise to diameter O(alpha(n)), weight O(n^{1/alpha(n)} \\cdot log n \\cdot alpha(n)) \\cdot w(MST(S)) and maximum degree O(n^{1/alpha(n)}), which improves upon a classical result of Arya et al. \\cite{ADMSS95}; in the corresponding result from \\cite{ADMSS95} the spanner has the same number of edges and diameter, but its weight and degree may be arbitrarily large. Also, for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and weight O(log^2 n) \\cdot w(MST(S)), which reproves another classical result of Arya et al. \\cite{ADMSS95}. Our bound of O(log_k n + alpha(k)) on the diameter is optimal under the constrai...

  5. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  6. Wire-guided (Seldinger technique intubation through a face mask in urgent, difficult and grossly distorted airways

    Directory of Open Access Journals (Sweden)

    Jake M Heier

    2012-01-01

    Full Text Available We report two cases of successful urgent intubation using a Seldinger technique for airway management through an anesthesia facemask, while maintaining ventilation in patients with difficult airways and grossly distorted airway anatomy. In both cases, conventional airway management techniques were predicted to be difficult or impossible, and a high likelihood for a surgical airway was present. This technique was chosen as it allows tracheal tube placement through the nares during spontaneous ventilation with the airway stented open and oxygen delivery with either continuous positive airway pressure and/or pressure support ventilation. This unhurried technique may allow intubation when other techniques are unsuitable, while maintaining control of the airway.

  7. Analysis of the Effect of Pile Skin Resistance Verses Pile Diameter Based on Experimental Research

    Directory of Open Access Journals (Sweden)

    S. M. Marandi

    2009-01-01

    Full Text Available In spite of the many recent advances in pile design and execution methods, the quantitative effects of grouted pile skin resistance and form on subsequent pile behavior remains an area for research. There are many parameters involved in the analysis of the bearing capacity of piles and descriptive method theory of the loading effect for each parameter is very complex. Many of these parameters are interrelated and investigation of the relationships leads to complex equations, which cannot be easily solved. The only reliable solution is to study the influence of each parameter by experimental model tests in equipped laboratories. This research presents the results of static compression tests on two model groups of pipe and grouted pile shafts (35mm, 50mm and 60 mm in diameters and 900 mm in length installed into beds of Yazd siliceous sand (located in southeast Iran. The findings of the experimental research were to the average ultimate loads at failure for grouted piles were approximately 12% higher than for the pipe piles. The pile skin resistance is an effective factor on pile bearing capacity, the load transfer response appears to be more plastic with increasing pile diameter in siliceous sand and the skin resistance of the pile was not linearly proportional to the pile diameter and varied with increase in pile diameter.

  8. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    Directory of Open Access Journals (Sweden)

    Johnson KN

    2015-12-01

    Full Text Available Kathleen N Johnson,1 Daniel B Botros,1 Leanne Groban,1–4 Yvon F Bryan11Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA; 2Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; 3Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA; 4Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USAAbstract: There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease increase the risk of aspiration. Finally, cognitive changes (eg, dementia not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the

  9. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma

    Institute of Scientific and Technical Information of China (English)

    SUN Yong-chang; ZHOU Qing-tao; YAO Wan-zhen

    2005-01-01

    @@ Asthma is a chronic inflammatory airway disease characterized by the involvement of many cells (including eosinophils, mast cells, T cells, neutrophils and airway epithelial cells) and their cellular components.1 While airway eosinophilic inflammation is considered as a characteristic of asthma, our previous reports2,3 and other recent studies4,5 have demonstrated that neutrophils may play important roles in airway inflammation, or even in airway remodeling, particularly in severe asthma. The mechanisms underlying the neutrophil accumulation in asthmatic airway remain to be elucidated. Interleukin-8 (IL-8) is a potent chemotactic factor for neutrophils, and was demonstrated to be increased in asthmatic airways.6,7 More recent studies have shown that T-cell derived IL-17 can accumulate neutrophils via a IL-8 dependent pathway.8,9 Whether IL-17/IL-8 mechanism is involved in airway inflammation in severe asthma is not clear.

  10. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching

    NARCIS (Netherlands)

    Dekkers, Bart G J; Spanjer, Anita I R; van der Schuyt, Robert D; Kuik, Willem Jan; Zaagsma, Johan; Meurs, Herman

    2013-01-01

    Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype.

  11. Conventional chest physiotherapy compared to other airway clearance techniques for cystic fibrosis

    NARCIS (Netherlands)

    Main, E; Prasad, A; van der Schans, C

    2005-01-01

    Background Cystic fibrosis is an inherited life-limiting disorder, characterised by pulmonary infections and thick airway secretions. Chest physiotherapy has been integral to clinical management in facilitating removal of airway secretions. Conventional chest physiotherapy techniques (CCPT) have dep

  12. INDUCED SPUTUM DERIVES FROM THE CENTRAL AIRWAYS: CONFIRMATION USING A RADIOLABELED AEROSOL BOLUS DELIVERY TECHNIQUE

    Science.gov (United States)

    Indirect evidence suggests that induced sputum derives from the surfaces of the bronchial airways. To confirm this experimentally, we employed a radiolabeled aerosol bolus delivery technique that preferentially deposits aerosol in the central airways in humans. We hypothesized th...

  13. c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse.

    Science.gov (United States)

    Volckaert, Thomas; Campbell, Alice; De Langhe, Stijn

    2013-01-01

    During lung development, Fibroblast growth factor 10 (Fgf10), which is expressed in the distal mesenchyme and regulated by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into proximal (airway) epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth muscle cells (PSMCs). After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10 expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair, whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important implications for understanding the misregulation of lung repair in asthma and COPD. PMID:23967208

  14. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    Directory of Open Access Journals (Sweden)

    Annaïg Ozier

    2011-01-01

    Full Text Available Asthma is characterized by the association of airway hyperresponsiveness (AHR, inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.

  15. The microbiome in chronic inflammatory airway disease: A threatened species.

    Science.gov (United States)

    Green, Robin John; Van Niekerk, Andre; Jeevarathnum, Ashley C; Feldman, Charles; Richards On Behalf Of The South African Allergic Rhinitis Working Group, Guy A

    2016-08-01

    The human body is exposed to a multitude of microbes and infectious organisms throughout life. Many of these organisms colonise the skin, gastrointestinal tract (GIT) and airway. We now recognise that this colonisation includes the lower airway, previously thought to be sterile. These colonising organisms play an important role in disease prevention, including an array of chronic inflammatory conditions that are unrelated to infectious diseases. However, new evidence of immune dysregulation suggests that early colonisation, especially of the GITand airway, by pathogenic micro-organisms, has deleterious effects that may contribute to the potential to induce chronic inflammation in young children, which may only express itself in adult life. PMID:27499401

  16. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung per...... treatment with ultrafine formulations of ICS will change the natural history of asthma and prevent airway remodelling in both the large and small airways.......Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... periphery in adult asthma by means of ultrafine aerosols. Results: Ultrafine formulations of inhaled corticosteroids have improved lung deposition up to at least 50 %, primarily in the peripheral airways. Ultrafine formulations of ICS provide equivalent asthma control to non-ultrafine ICS at approximately...

  17. [Acute airway obstruction during chemotherapy-induced agranulocytosis with fever].

    Science.gov (United States)

    Vandenbos, F; Deswardt, Ph; Hyvernat, H; Burel-Vandenbos, F; Bernardin, G

    2006-02-01

    Acute airway obstruction caused by mucoid impaction can cause sometimes life-threatening respiratory distress. Bronchial plugging is usually observed in subjects with chronic diseases such as asthma, allergic bronchopulmonary aspergillosis, or cystic fibrosis. In children, it can be related to heart failure. Acute airway obstruction in a patient without a chronic respiratory disease is exceptional. We report the case of a patient who developed bronchial plugs obstructing the bronchi during a period of agranulocytosis induced by chemotherapy. The patient experienced acute respiratory distress with asphyxia. The plugs were composed of fibrin and required several fibroscopic procedures for clearance. To our knowledge, this is the first case report of acute airway obstruction by plugging during a period of agranulocytosis. PMID:16604039

  18. The Role of CLCA Proteins in Inflammatory Airway Disease

    Science.gov (United States)

    Patel, Anand C.; Brett, Tom J.; Holtzman, Michael J.

    2014-01-01

    Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. Based on this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function, but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions. PMID:18954282

  19. Management of difficult airway in intratracheal tumor surgery

    Directory of Open Access Journals (Sweden)

    Agarwal Surendra K

    2005-06-01

    Full Text Available Abstract Background Tracheal malignancies are usual victim of delay in diagnosis by virtue of their symptoms resembling asthma. Sometimes delayed diagnosis may lead to almost total airway obstruction. For difficult airways, not leaving any possibility of manipulation into neck region or endoscopic intervention, femorofemoral cardiopulmonary bypass can be a promising approach. Case Presentation We are presenting a case of tracheal adenoid cystic carcinoma (cylindroma occupying about 90% of the tracheal lumen. It was successfully managed by surgical excision of mass by sternotomy and tracheotomy under femorofemoral cardiopulmonary bypass (CPB. Conclusion Any patient with recurrent respiratory symptoms should be evaluated by radiological and endoscopic means earlier to avoid delay in diagnosis of such conditions. Femorofemoral cardiopulmonary bypass is a relatively safe way of managing certain airway obstructions.

  20. The Evaluation of Lumbar Spinal Canal Diameters by MRI

    Directory of Open Access Journals (Sweden)

    Mehrnaz Mashoufi

    2010-05-01

    Full Text Available Background/Objective: Lumbar spinal stenosis is the common cause of low back pain. MRI is the best modality for diagnosis of spinal canal stenosis. The aim of this study is to evaluate lumbar spinal canal diameters and relationship with gender, age, stature, weight and job."nPatients and Methods: One-hundred men and 100 women in the age range of 25 to 40 years from East Azarbayjan who were referred to Sheikholrais MRI Center were selected. The diameters of the spinal canal were measured on the midsagittal and axial section on T2 weighted images by 0.3 T MRI Unite. The results of measurements were analyzed by SPSS software. "nResults: The results showed that the least anteroposterior diameter was at the third lumbar vertebra but the narrowest transverse diameter was at the first lumbar vertebra. The mean anteroposterior diameter of the lumbar spinal canal decreased from the first to the third lumbar vertebra, followed by an increase from the third to the fifth. From the first to the fifth lumbar vertebra, there was an increase in the mean transverse diameters. The mean transverse diameter in the middle part of the vertebra is longer than the lower part. A frank relation was seen between the gender of physical workers with lumbar spinal canal stenosis, although there was no relation between age, stature, and weight with lumbar spinal canal stenosis."nConclusion: Considering the high incidence of lumbar canal stenosis and the relationship with heavy manual work, it is recommended that a plain radiography is taken before choosing heavy manual work and exercises. People whose canal is relatively narrow should be refused from heavy manual work and exercises.

  1. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Frazier-Wood Alexis C

    2011-12-01

    Full Text Available Abstract Background The presence of smaller low-density lipoproteins (LDL has been associated with atherosclerosis risk, and the insulin resistance (IR underlying the metabolic syndrome (MetS. In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL particle diameters with components of the metabolic syndrome (MetS, although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diameters to MetS and its features, and by clustering individuals by their diameters of VLDL, LDL and HDL particles, to capture information across all three fractions of lipoprotein into a unified phenotype. Methods We used nuclear magnetic resonance spectroscopy measurements on fasting plasma samples from a general population sample of 1,036 adults (mean ± SD, 48.8 ± 16.2 y of age. Using latent class analysis, the sample was grouped by the diameter of their fasting lipoproteins, and mixed effects models tested whether the distribution of MetS components varied across the groups. Results Eight discrete groups were identified. Two groups (N = 251 were enriched with individuals meeting criteria for the MetS, and were characterized by the smallest LDL/HDL diameters. One of those two groups, one was additionally distinguished by large VLDL, and had significantly higher blood pressure, fasting glucose, triglycerides, and waist circumference (WC; P Conclusions While small LDL diameters remain associated with IR and the MetS, the occurrence of these in conjunction with a shift to overall larger VLDL diameter may identify those with the highest fasting glucose, TG and WC within the MetS. If replicated, the association of this phenotype with more severe IR-features indicated that it may contribute to identifying of those most at risk for incident type II diabetes and cardiometabolic disease.

  2. Airway Smooth Muscle as a Target in Asthma and the Beneficial Effects of Bronchial Thermoplasty

    OpenAIRE

    Janssen, Luke J

    2012-01-01

    Airflow within the airways is determined directly by the lumenal area of that airway. In this paper, we consider several factors which can reduce airway lumenal area, including thickening and/or active constriction of the airway smooth muscle (ASM). The latter cell type can also contribute in part to inflammation, another feature of asthma, through its ability to take on a synthetic/secretory phenotype. The ASM therefore becomes a strategically important target in the treatment of asthma, giv...

  3. Relationship between surfactant alterations and severity of disease in horses with recurrent airway obstruction (RAO).

    OpenAIRE

    Christmann, Undine

    2008-01-01

    Pulmonary surfactant is synthesized in the alveoli and lines the respiratory epithelium of the airways. Phospholipids, the main component of surfactant, confer it its ability to lower surface tension and to prevent alveolar collapse. Airway surfactant helps maintain smaller airway patency, improves muco-ciliary clearance, decreases bronchoconstriction, and modulates pulmonary immunity. Surfactant alterations in human asthma are therefore believed to contribute to the severity of airway obstr...

  4. Acute airway obstruction by Ascaris lumbricoides in a 14-month-old boy.

    Science.gov (United States)

    Gan, Richard Wei Chern; Gohil, Rohit; Belfield, Katherine; Davies, Patrick; Daniel, Matija

    2014-10-01

    We describe the case of a 14-month-old child with airway obstruction caused by a mature Ascaris lumbricoides worm. The child had been admitted to the paediatric intensive care unit due to overwhelming sepsis, and during the course of his illness developed acute airway obstruction that resolved once the worm was removed from the airway. The Ascaris life-cycle is detailed, and a literature review of patients with airway obstruction due to Ascaris worms is presented.

  5. Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control

    OpenAIRE

    Bessac, Bret F.; Jordt, Sven-Eric

    2008-01-01

    New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome.

  6. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control.

    Science.gov (United States)

    Bessac, Bret F; Jordt, Sven-Eric

    2008-12-01

    New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome. PMID:19074743

  7. Models for Predicting Stem Diameter from Crown Diameter of Open Grown Trees in Sondu-Nyando River Catchment, Kenya

    Directory of Open Access Journals (Sweden)

    J.M. Mugo

    2011-03-01

    Full Text Available Information on stocks of trees on farm is scanty and in many cases lacking. Assessing the stocking density of trees on farms require models relating tree bole diameter with its crown diameter. However, bolecrown diameter models of open grown trees on farms is lacking in the Lake Victoria basin and indeed in Kenya. The focus of this study was to develop regression equations that would predict individual tree Diameter at Breast Height (DBH from its crown diameter (Cd for selected open grown tree species in Sondu-Nyando River catchment. Stratified random sampling was used and GPS readings, DBH and Cd, collected from 20 unequal sized sample plots, along selected agro ecological gradients. The models were developed using DBH and Cd measurements from 578 trees of five most dominant tree species (Cupressus lusitanica, Eucalyptus saligna, Grevillea robusta, Persea americana and Croton megalocarpus. The DBH - Cd models displayed good fit (R2 > 0.586. Persea americana had the highest adjusted R2 (0.875 and Eucalyptus saligna the lowest (R2 = 0.586. F-test showed regression coefficients were significant in all the models. Residuals were more concentrated in lower diameters, implying a negative exponential DBH distribution. The Linear, Exponential and Power models performed well with the highest R2 (up to 0.875, 0.676 and 0.655. The developed models are applicable across species groups and not across species.

  8. Impulse oscillometry in COPD: identification of measurements related to airway obstruction, airway conductance and lung volumes

    DEFF Research Database (Denmark)

    Kolsum, Umme; Borrill, Zoë; Roy, Kay;

    2008-01-01

    ). In contrast, X5 changes were significantly related to FEV(1) changes over 1 year (r=-0.27, p=0.05), while for Fres changes there was a trend to statistical significance (p=0.08). CONCLUSIONS: IOS reactance measurements are more closely related than resistance measurements to other pulmonary function...... measurements in COPD patients. The IOS reactance measurements appear to be indicative of changes in pulmonary compliance caused by airflow obstruction.......BACKGROUND: Impulse oscillometry system (IOS) assesses pulmonary resistance and reactance. We set out to investigate which IOS measurements are related to airflow obstruction, airway conductance and lung volumes in chronic obstructive pulmonary disease (COPD). METHODS: Ninety-four COPD patients...

  9. A miRNA upregulated in asthma airway T cells promotes TH2 cytokine production

    Science.gov (United States)

    Simpson, Laura J.; Patel, Sana; Bhakta, Nirav R.; Choy, David F.; Brightbill, Hans D.; Ren, Xin; Wang, Yanli; Pua, Heather H.; Baumjohann, Dirk; Montoya, Misty M.; Panduro, Marisella; Remedios, Kelly A.; Huang, Xiaozhu; Fahy, John V.; Arron, Joseph R.; Woodruff, Prescott G.; Ansel., Karl M.

    2014-01-01

    MicroRNAs (miRNAs) exert powerful effects on immune function by tuning networks of target genes that orchestrate cell behavior. We sought to uncover miRNAs and miRNA-regulated pathways that control the TH2 responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed miR-19a elevation in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promotes TH2 cytokine production and amplifies PI(3)K, JAK-STAT, and NF-κB signaling by direct targeting of PTEN, SOCS1, and A20. Thus, miR-19a up regulation in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways. PMID:25362490

  10. Post-burn facial contractures in pediatric patients: Challenging aspects of difficult airway management

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available Pediatric burn injuries are the most challenging to handle especially when they involve the face as the airway compromise invariably occurs due to edema and inflammation of the soft tissues of pharynx and larynx. The healing of the facial burns causes development of contractures and deformities after survival from the initial insults. Such patients when presented for surgery of the affected area or for that matter any surgery under general anesthesia, poses unique challenges to the attending anesthesiologists. Not only there are technical difficulties, but the socio-behavioral aspects related to pediatric age group and the various side-effects of anesthetic drugs are the main concerns for the anesthesiologist during the entire operative intervention. We are presenting a case of an infant who was brought to our institute by his parents for the cosmetic correction of the contractures and deformities of the lower face and the neck and in whom we faced extensive airway challenges because of the nature of the surgery.

  11. Nasal airway nitric oxide : Methodological aspects and influence of inflammation

    OpenAIRE

    Palm, Jörgen

    2004-01-01

    Nitric oxide (NO) is an endogenously formed free radical gas involved in numerous biological processes. In 1991 NO was discovered to be present in exhaled air of humans. Soon after, it was reported that the largest amounts of NO were found in the upper airways, and that the levels of NO were increased in the lower airways of patients with asthma. The high levels of NO in the nasal region are believed to be involved in functions as various as primary host defence, including k...

  12. Pulmonary Surfactant Function in Alveoli and Conducting Airways

    Directory of Open Access Journals (Sweden)

    Goran Enhorning

    1996-01-01

    Full Text Available Surface tension plays a very important role in aeration of the neonate's lungs. Pulmonary surfactant, which is inadequate in the premature infant, modifies surface tension during the act of breathing and is necessary for maintenance of alveolar stability. These facts led to the development of the concept that it might be possible to treat the premature infant by supplementing the infant's inadequate surfactant supply. In addition to maintaining alveolar stability, pulmonary surfactant might also be of vital importance for maintenance of small airway patency. Various conditions, most importantly asthma, might be the reason for a surfactant dysfunction to develop. This in turn might cause airway resistance to increase.

  13. Foreign bodies in the lactant airway, Report of a case

    International Nuclear Information System (INIS)

    We report the case of a lactant who aspired (popcorn) fragments of popcorn into his airway. Immediately the patient developed respiratory difficulty, he was remitted to a specialized hospital until 72 hours after. In this hospital the fragments of popcorn were removed by bronchoscopic procedure with posterior improvement. The aspiration of foreign bodies into the airway is a frequent accident in the early childhood. The clinical picture may be confounded specially with asthma attacks or simple acute respiratory infections. It is very important to recognize this condition because of the foreign bodies can cause severe complications and sequels, and occasionally the death

  14. Design of the exhale airway stents for emphysema (EASE) trial : an endoscopic procedure for reducing hyperinflation

    NARCIS (Netherlands)

    Shah, Pallav L.; Slebos, Dirk-Jan; Cardoso, Paulo F. G.; Cetti, Edward J.; Sybrecht, Gerhard W.; Cooper, Joel D.

    2011-01-01

    Background: Airway Bypass is a catheter-based, bronchoscopic procedure in which new passageways are created that bypass the collapsed airways, enabling trapped air to exit the lungs. The Exhale Airway Stents for Emphysema (EASE) Trial was designed to investigate whether Exhale (R) Drug-Eluting Stent

  15. Glucocorticosteroids and beta(2)-Adrenoceptor Agonists Synergize to Inhibit Airway Smooth Muscle Remodeling

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Pehlic, Adnan; Mariani, Raissa; Bos, I. Sophie T.; Meurs, Herman; Zaagsma, Johan

    2012-01-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative,

  16. Connective tissue growth factor : a role in airway remodelling in asthma?

    NARCIS (Netherlands)

    Burgess, Janette K

    2005-01-01

    1. Severe persistent asthma is accompanied by structural changes in the airway, referred to as remodelling. The mechanisms driving airway remodelling are poorly understood. 2. Transforming growth factor (TGF)-beta is increased in the airways of patients with asthma. Many of the effects of TGF-beta a

  17. Histamine airway hyper-responsiveness and mortality from chronic obstructive pulmonary disease : a cohort study

    NARCIS (Netherlands)

    Hospers, JJ; Postma, DS; Rijcken, B; Weiss, ST; Schouten, JP

    2000-01-01

    Background Smoking and airway lability, which is expressed by histamine airway hyper-responsiveness, are known risk factors for development of respiratory symptoms. Smoking is also associated with increased mortality risks. We studied whether airway hyper-responsiveness is associated with increased

  18. A direct photographic measurement for diameter of spray particles

    International Nuclear Information System (INIS)

    A measurement study has been conducted to make clear the atomizing characteristics of swirl injection type spray nozzles attached inside a commercial nuclear reactor container as the safety spraying device. Diameters of particles sprayed from the nozzles having great capacity and small pressure loss are distributed very widely, It has been found that such ordinary methods as the accepting one were not sufficient for measuring the particle diameters from such nozzles. Then, a test equipment was manufactured in which diameters of water spray particles and their distribution from the nozzles under specified conditions can be measured by the direct photographic method. By using the equipment, the instant pictures of the particles 100 to 2,000 μ in diameter flying through the hood slit were clearly taken by the camera with short focus lens with the aid of the flash light source. The distribution of the diameters corrected for the flow distribution and the particle velocity has been found to be subject to logarithmic normal. (author)

  19. Effect of rootstock diameter on apple saplings growth

    Directory of Open Access Journals (Sweden)

    VAHID AVDIU

    2014-03-01

    Full Text Available This research paper presents the results of a field trial with managed nursery trees including two apple cultivars Golden Reinders and Gala Galaxy on the rootstocks M9 and MM 106. In April 2011, the saplings (bench grafted in March 2011 were planted in the distance 100 cm x 35 cm in randomized block design in threecombinations of rootstock diameters (5-7 mm, 7-9 mm, 9-11 mm with threereplications (in total 60 saplings for each apple cultivar-rootstock and combinations in Mirovica, Kosovo. The following parameters were examined: growth, rootstock diameter, scion diameter, and stocks growth dynamic. The experimental design was a ANOVAs one-way analysing two different factors cultivars, rootstocks types and treatments (three combinations of rootstocks diameter. Significant differences were found in scion thickness and sapling growth among the three different combinations of rootstock diameter, dimensions and cultivars. Insignificant were differences were found within factors as cultivar, rootstock and their combinations Key words: Amino acids, Moringa oleifera, poultry manure.

  20. Memory, emotion, and pupil diameter: Repetition of natural scenes.

    Science.gov (United States)

    Bradley, Margaret M; Lang, Peter J

    2015-09-01

    Recent studies have suggested that pupil diameter, like the "old-new" ERP, may be a measure of memory. Because the amplitude of the old-new ERP is enhanced for items encoded in the context of repetitions that are distributed (spaced), compared to massed (contiguous), we investigated whether pupil diameter is similarly sensitive to repetition. Emotional and neutral pictures of natural scenes were viewed once or repeated with massed (contiguous) or distributed (spaced) repetition during incidental free viewing and then tested on an explicit recognition test. Although an old-new difference in pupil diameter was found during successful recognition, pupil diameter was not enhanced for distributed, compared to massed, repetitions during either recognition or initial free viewing. Moreover, whereas a significant old-new difference was found for erotic scenes that had been seen only once during encoding, this difference was absent when erotic scenes were repeated. Taken together, the data suggest that pupil diameter is not a straightforward index of prior occurrence for natural scenes. PMID:25943211

  1. "DIFFICULT AIRWAY MANAGEMENT IN A PATIENT WITH TREACHER-COLLIN’S SYNDROME WITH INTUBATING LARYNGEAL MASK AIRWAY "

    Directory of Open Access Journals (Sweden)

    M. Gharebaghian

    2006-08-01

    Full Text Available Treacher Collin’s syndrome (TCS is a rare inherited condition characterized by bilateral and symmetric abnormalities of structures within the first and second bronchial arches. Patients with TCS present a serious problem to anesthetists maintaining their airway as upper airway obstruction and difficult tracheal intubation due to severe facial deformity. Because of retrognathia, airway management of these patients is often challenging. We report the case of a 25-yr-old patient with TCS undergoing microtia repair under general anesthesia twice. In the first time he could not be intubated via direct laryngoscopy and was intubated via blind nasal intubation. In the second time, he was intubated through an ILMA using endotracheal tube.

  2. Evaluation of the upper airway measurements by multi-slice CT before and after operations in obstructive sleep apnoea syndrome patients

    International Nuclear Information System (INIS)

    Objective: To evaluate the changes of the upper airway of the patients with obstructive sleep apnoea syndrome (OSAS) before and after operations and to know the effects of operations by MSCT. Methods: The upper airway dimensions of 26 patients with OSAS were measured on multiplanar reformatted (MPR), curved-planar reformatted (CPR), volume rendering (VR) images of 16-slice spiral CT. The measurements include the anteroposterior calibres and the areas on the reformatted axial images on the pharyngeal cavity levels, the calibres and the minimum areas in retropalatal and retroglossal regions, the areas of the soft palate and uvula on the reformatted sagittal view with maximum thickness, the maximum wall thickness of the right and left the upper airway on the coronary images, the volume of the upper airway before and after the operations. The measurements were correlated with the polysomnography (PSG) records. The data were analyzed paired-samples t-test and Pearson correlations. Results: By comparison, the anteroposterior calibres and the cross-sectional areas on the reformatted axial view of the lower retropalatal region (slice 4) of the upper airway increased significantly after operations. The anteroposterior diameter increased from 5.9 mm before operations to 12.8 mm after operations, where t=-5.506, P2 before operations to 275.0 mm2 after operations, where t=-5.011, P2 before operations to 128.0 mm2 after operations, where t=3.087, P2 before operation to 10.9 mm, 76.0 mm2 after operation, where t=-3.413, -2.216, respectively and P2 before operations to 76.0 mm2 after operations, were t=-4.932, P<0.05. The anteroposterior calibres increased from 4.6 mm before operations to 6.6 mm after operations, where t=-7.308, P<0.05. The L-R calibres increased from 8.3 mm before operations to 13.6 mm after operations, where t=-4.320, P<0.05. Conclusions: MPR, CPR, VR of MSCT can evaluate the not only the morphology but the function changes of the upper airways on the OSAS

  3. 侧孔型鼻咽通气道的研制及应用%Design and Application of Nasopharyngeal Airway with Side Holes

    Institute of Scientific and Technical Information of China (English)

    江伟; 杨建平

    2013-01-01

    Objective To design a nasopharyngeal airway with side holes to reduce nasal cavity mucous membrane injury and apply it clinically. Methods The structure of nasopharyngeal airway was refined on the basis of the traditional one, opening 6-8 round side holes on the airway tube whose outside diameter was two times as the holes, keeping the port of pharyngeal side to oblique structure of 45-degree bevel and the inclined hole was towards the left or right side of arc of the airway tube. The effect of nasopharyngeal airway with side holes was evaluated for the clinical application. Results The courses of operation were smooth. All cases with nasopharyngeal airway with side holes had a good ventilation effect and none had signification complications. Conclusion Applying the nasopharyngeal airway with side holes clinically is safe, reliable, effective and with few complications.%目的:研制一种可减轻对鼻腔黏膜损伤的侧孔型鼻咽通气道并应用于临床.方法:在传统鼻咽通气道结构的基础上进行了改进,在导气管上均匀开有6~8个直径为导气管外径1/2大小的圆形侧孔,将咽端的端口设计为45.斜面的斜口结构,其咽端斜口朝向弧形结构的导气管所在弧面的左侧或右侧.观察侧孔型鼻咽通气道在临床中的应用效果.结果:采用侧孔型鼻咽通气道的病例全部顺利进行通气,置入顺利,通气效果良好,无明显并发症.结论:侧孔型鼻咽通气道在临床应用中安全、可靠、效果好,并发症少.

  4. UROTENSIN II RECEPTOR IN THE RAT AIRWAY SMOOTH MUSCLE AND ITS EFFECT ON THE RAT AIRWAY SMOOTH MUSCLE CELLS PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 刘秀华; 姚婉贞; 杨军; 张肇康; 唐朝枢

    2001-01-01

    Objective. To investigate the characteristics of urotensin II (U-II) receptor in the rat airway smooth muscleand the effect and signal transduction pathway of U-II on the proliferation of airway smooth muscle cells.Methods. Using 125-UII binding assay to measure the Bmax and Kd of U-II receptor. Using the 3H-TdRincorporation to deter mine the effect of U-II on the proliferation of airway smooth muscle cells and its signal transduc-tion pathway. Using Fura-2/AM to measure the effect of U-II on the cytosolic free calcium concentration.Results. 1. 125I-UⅡ binding increased with the time and reached saturation at 45min. The Bmax was(ll. 36 +0.37)fmol/mg pr and Kd was (4.46 +0.61)nmol/L. 2. U-II increased 3H-TdR incorporation of theairway smooth muscle cells in a dose-dependent manner. 3. H7, PDg8059 and nicardipine, inhibitors of PKC,MAPK, calcium cha.nnel, respectively, significantly inhibited U-II-stimulated 3H-TdR incorporation of airwaysmooth muscle cells. W7, inhibitor of CaM-PK, had no effect. 4. Cyclosporin A, inhibitor of CaN, inhibited3H-TdRincorporation ofthe airway smooth muscle cells induced by U-Ⅱl in a dose-dependent manner. 5. U-Ⅱlpromot-ed cy-tosolic free calcium concentration increase by 18%.Conclusions. 1. There was U-II receptor in the rat airway smooth muscle. 2. The effect of U-II-stimulated-3H-TdR incorporation of airway smooth muscle cells was mediated by such signal transduction pathway as Ca2 +.PKC, MAPK and Ca.N, etc.``

  5. Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Gong

    2013-01-01

    Full Text Available Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA. Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases.

  6. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease

    Directory of Open Access Journals (Sweden)

    Simon G. Royce

    2015-11-01

    Full Text Available This study determined if the anti-fibrotic drug, serelaxin (RLN, could augment human bone marrow-derived mesenchymal stem cell (MSC-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR associated with chronic allergic airways disease (AAD/asthma. Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9–11. Changes in airway inflammation (AI, epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p < 0.05 vs OVA group. RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p < 0.05 vs OVA group. Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p < 0.05 vs either treatment alone, and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs.

  7. Airway size and the rate of pulmonary function decline in grain handlers

    International Nuclear Information System (INIS)

    Tracheal diameter and chest dimensions were measured from postero-anterior chest radiographs in grain handlers to prospectively identify airway size and chest size-related predictors of the rate of pulmonary function decline. A total of 634 grain workers were studied at the initial survey, of whom 239 satisfied the following inclusion criteria: (1) had a satisfactory chest radiograph taken at the initial survey in 1975, (2) performed spirometry at the 1975, 1978, and 1981 surveys, and (3) had no change in smoking status from 1975 to 1981. Radiographic measurements consisted of height of the right lung, transverse diameter of the chest at the level of the right diaphragm and at a level two-thirds up the right lung, and tracheal diameter (Tr). Areas of both lungs were measured by planimetry. Tr was only weakly related to height (r = 0.24). Increasing age was strongly associated with faster rates of FEV1 decline. After adjusting for the effects of age and cigarette smoking, Tr was the only radiographic measurement associated with FEV1 decline. Workers with Tr of 16 mm or less lost an average of 0.2% of their FEV1 per year compared to 0.9% per year for those with larger tracheas. This association was not modified by dust exposure estimates based on measurements of total dust. However, the strength of the association did depend upon smoking status, being strongest in current cigarette smokers (Tr less than or equal to 16 mm lost 0.2% annually and Tr greater than or equal to 21 mm lost 1.4% annually)

  8. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... orientation assumption is a reasonable one. However, fiber crossings and other complex configurations are widespread in the brain. In such areas, the existing techniques will fail to provide useful axon diameter indices for any of the individual fiber populations. We propose a novel crossing fiber tissue...... of the technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  9. The angular diameter and distance of the Cepheid Zeta Geminorum

    CERN Document Server

    Kervella, P; Perrin, G; Schöller, M; Traub, W A; Lacasse, M D

    2001-01-01

    Cepheids are the primary distance indicators for extragalactic astronomy and therefore are of very high astrophysical interest. Unfortunately, they are rare stars, situated very far from Earth.Though they are supergiants, their typical angular diameter is only a few milliarcseconds, making them very challenging targets even for long-baseline interferometers. We report observations that were obtained in the K prime band (2-2.3 microns), on the Cepheid Zeta Geminorum with the FLUOR beam combiner, installed at the IOTA interferometer. The mean uniform disk angular diameter was measured to be 1.64 +0.14 -0.16 mas. Pulsational variations are not detected at a significant statistical level, but future observations with longer baselines should allow a much better estimation of their amplitude. The distance to Zeta Gem is evaluated using Baade-Wesselink diameter determinations, giving a distance of 502 +/- 88 pc.

  10. Directional Solidification and Convection in Small Diameter Crucibles

    Science.gov (United States)

    Chen, J.; Sung, P. K.; Tewari, S. N.; Poirier, D. R.; DeGroh, H. C., III

    2003-01-01

    Pb-2.2 wt% Sb alloy was directionally solidified in 1, 2, 3 and 7 mm diameter crucibles. Pb-Sb alloy presents a solutally unstable case. Under plane-front conditions, the resulting macrosegregation along the solidified length indicates that convection persists even in the 1 mm diameter crucible. Al-2 wt% Cu alloy was directionally solidified because this alloy was expected to be stable with respect to convection. Nevertheless, the resulting macrosegregation pattern and the microstructure in solidified examples indicated the presence of convection. Simulations performed for both alloys show that convection persists for crucibles as small as 0.6 mm of diameter. For the solutally stable alloy, Al-2 wt% Cu, the simulations indicate that the convection arises from a lateral temperature gradient.

  11. Improved Design Basis for Laterally Loaded Large Diameter Pile

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    the structure and the productivity of the turbine. Current design practice for monopiles are based on p-y curves developed for slender piles with a diameter of 0.6 m. The focus on the structure stiffness has entailed a significant research on the soil-structure interaction for large diameter monopiles...... diameter, depth and soil strength, and increase of each these will give an increase in stiffness. • Cyclic response of a lateral loaded pile is depended on the characteristics of the cyclic load. Behaviour of a monopile is a classic soil-structure interaction problem depending on the pile stiffness and the...... expected development of offshore wind farms is towards larger farms, larger turbines and larger water depths. Monopiles have been applied widely and it is of interest to investigate the possibilities to further optimize the design and in particular the modelling of the soil-structure interaction. The...

  12. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    CERN Document Server

    Nugent, C R; Bauer, J; Cutri, R M; Kramer, E A; Grav, T; Masiero, J; Sonnett, S; Wright, E L

    2016-01-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids and 8,885 other asteroids. $84\\%$ of the near-Earth asteroids did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within $ \\pm \\sim20\\%$ and $\\pm\\sim40\\%$, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large ($>100$ m), and have low albedos.

  13. Application of direct tracking method for measuring electrospun nanofiber diameter

    Directory of Open Access Journals (Sweden)

    M. Ziabari

    2009-03-01

    Full Text Available In this paper, direct tracking method as an image analysis based technique for measuring electrospun nanofiber diameter has been presented and compared with distance transform method. Samples with known characteristics generated using a simulation scheme known as µ-randomness were employed to evaluate the accuracy of the method. Electrospun webs of polyvinyl alcohol (PVA were also used to verify the applicability of the method on real samples. Since direct tracking as well as distance transform require binary input images, micrographs of the electrospun webs obtained from Scanning Electron Microscopy (SEM were first converted to black and white using local thresholding. Direct tracking resulted in more accurate estimations of fiber diameter for simulated images as well as electrospun webs suggesting the usefulness of the method for electrospun nanofiber diameter measurement.

  14. Depletion of OX-8 lymphocytes from the blood and airways using monoclonal antibodies enhances the late airway response in rats.

    OpenAIRE

    Olivenstein, R.; Renzi, P M; Yang, J P; P. Rossi; Laberge, S.; Waserman, S; Martin, J.G.

    1993-01-01

    Recent evidence supports a role for T lymphocytes in allergic airway responses. We hypothesized that reducing blood T suppressor cells (Ts) might increase the late airway response (LR). Sprague-Dawley (SD) rats were sensitized with ovalbumin (OA). On days 8, 10, and 12, post-sensitization test SD (n = 14) received monoclonal antibody intravenously (OX-8; 1 mg) specific to rat Ts. Controls received saline (n = 7) or mouse ascites IgG (n = 7). On day 14, animals were challenged with OA aerosol ...

  15. Nanofiber alignment of a small diameter elastic electrospun scaffold

    Science.gov (United States)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data

  16. An instrument for measuring abrasive water jet diameter

    OpenAIRE

    Junkar, Mihael; Lebar, Andrej; Orbanić, Henri

    2015-01-01

    In order to improve the accuracy of abrasive water jet (AW) machining the precise value of the jet diameter has to be known. Because of an aggressive environment caused by high velocity abrasive grains, the diameter is not easily measured. That is why a measuring device consisting of a load cell and a wear resistant probe was developed. The device measures the force of the jet while it passes over the edge of the probe. If the feed rate of the jet is constant and the time needed for jet to pa...

  17. Additional nuclear criticality safety calculations for small-diameter containers

    International Nuclear Information System (INIS)

    This report documents additional criticality safety analysis calculations for small diameter containers, which were originally documented in Reference 1. The results in Reference 1 indicated that some of the small diameter containers did not meet the criteria established for criticality safety at the Portsmouth facility (Keff +2σ<.95) when modeled under various contingency assumptions of reflection and moderation. The calculations performed in this report reexamine those cases which did not meet the criticality safety criteria. In some cases, unnecessary conservatism is removed, and in other cases mass or assay limits are established for use with the respective containers

  18. Determination of Aerosol Particle Diameter Using Cascade Impactor Procedure

    International Nuclear Information System (INIS)

    Determination of aerosol particle size distribution has been done using a low pressure Andersen's cascade impactor with 13 stages. The aerosol has been sampled with flow rate of aerosol sampling of 28.3 Ipm. Preliminary study result shows that aerosol in the simulation chamber was spread in monomodal distribution with Mass Median Aerodynamic Diameter of 4.9 μm. The aerosol measurement in Japan Power Demonstration Reactor has been spread in trimodal distribution with Activity Median Aerodynamic Diameter equal to 13.3 μm. The use of mylar as impaction plate instead of aluminum foil gives good result

  19. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  20. [Effects of once-daily low-dose administration of sustained-release theophylline on airway inflammation and airway hyperresponsiveness in patients with asthma].

    Science.gov (United States)

    Terao, Ichiro

    2002-04-01

    Bronchial asthma is eosinophilic airway inflammation with enhanced airway responsiveness induced by eosinophilic granule proteins such as eosinophilic cationic protein (ECP) that are released from eosinophils. In the present study using 30 outpatients with mild to moderate asthma who had no history of treatment with steroid inhalation, we examined the effects of 4-week low-dose (200 mg/day) treatment with Uniphyl Tablets, a sustained-release theophylline formulated for once-daily dosing, on airway inflammation and airway hyperresponsiveness, as well as on respiratory function. Uniphyl Tablets significantly (p statistically significant (p V50 also showed statistically significant (p < 0.05) improvement. Mean blood theophylline concentration at the time the improvements were seen was 3.95 mg/mL. These results suggest that low-dose administration of Uniphyl Tablets has anti-airway inflammatory and anti-airway hyperresponsiveness effects in mild to moderate asthmatic patients.