WorldWideScience

Sample records for airless planetary bodies

  1. DOTS: A High Resolution Orbitrap Mass Spectrometer for In Situ Analysis of the surface samples of Airless Planetary Bodies

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Engrand, Cécile; Altwegg, Kathrin; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chapuis, Claude; Cottin, Hervé; Grün, Eberhard; Grand, Noel; Henkel, Hartmut; Kempf, Sascha; Lebreton, Jean-Pierre; Makarov, Alexander A.; Postber, Frank; Srama, Ralf; Schmidt, Jürgen; Szopa, Cyril; Thirkell, Laurent; Tobie, Gabriel; Wurz, Peter; Zolotov, Mikhail Yu

    2013-04-01

    The dust detectors on board the Ulysses and Galileo spacecraft have shown that the Galilean satellites are surrounded by clouds of sub-micrometer size grains generated by impacts of interplanetary (micro-) meteoroids [1, 2]. In situ chemical analysis from orbit of these ballistic grains ejected from the surface of airless bodies provides a unique opportunity to remotely access the chemical composition of the Jovian moons' surface and subsurface. For Saturn, in situ identification by the Cassini Dust Analyzer (CDA) of sodium in icy grains in the E-Ring and in Enceladus plumes have proven a subsurface liquid water reservoir inside Enceladus [3, 4]. Noticeably, this was not accessible to other in situ or traditional remote sensing techniques. In situ measurements, either during a flyby or from orbit, of grains ejected from the surface, or emerging from the subsurface, of an airless body is a powerful tool to remotely study its surface composition and the nature of its geological activity. Crucial constraints on habitability can thus be determined. Our consortium of laboratories, in collaboration with Thermo Fischer Scientific [5, 6], is currently developing a high mass resolution Fourier Transform (FT) Orbitrap-based mass spectrometer optimized for in situ analysis of dust and icy grains in the environment of Solar System airless bodies. This new generation of dust mass spectrometer was studied in the framework of the Europa Jupiter System Mission (EJSM) instrument study in 2010-2012 and proposed in response to ESA's AO for the JUpiter ICy moons Explorer (JUICE) mission [7]. This mass analyser can provide very high mass resolution analysis (M/ΔM reaching 50 000 at m/z 50 Da). DOTS would allow identification of elemental and molecular species with excellent accuracy, in the 20-1000 Da mass range. In the context of the JUICE mission, DOTS would provide decisive information on the surface composition and on the putative liquid oceans in the subsurface of Ganymede

  2. Space weathering on airless bodies

    Science.gov (United States)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  3. Sampling the Uppermost Surface of Airless Bodies

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.

    2011-01-01

    The uppermost surface of an airless body is a critical source of ground-truth information for the various remote sensing techniques that only penetrate nanometers to micrometers into the surface. Such samples will also be vital for understanding conditions at the surface and acquiring information about how the body interacts with its environment, including solar wind interaction, grain charging and levitation [1]. Sampling the uppermost surface while preserving its structure (e.g. porosity, grain-to-grain contacts) however, is a daunting task that has not been achieved on any sample return mission to date.

  4. A scaling analysis for thermal fragmentation on small airless bodies

    Science.gov (United States)

    El Mir, Charles; Hazeli, Kavan; Ramesh, KT; Delbo, Marco

    2016-10-01

    The presence of regolith on airless bodies has typically been attributed to impact ejecta re-accumulation and gradual breakdown of boulders by micrometeoritic impacts. However, ejecta velocities for small kilometer-sized asteroids often exceed the gravitational escape velocity, limiting to a great extent the amount of retained debris following a high-velocity impact event. Close-surface images of small (sub-km) asteroid surfaces have shown the presence of a coarse-grained regolith layer on these bodies, suggesting that a different mechanism could be involved in the regolith generation process.Recently, the existence of regolith on sufficiently small planetary bodies has also been attributed to cyclic stresses that develop within boulders due to the large diurnal temperature variation, which eventually lead to fracture by thermal fatigue. It was demonstrated that thermal fatigue can be orders of magnitude faster than fragmentation by classical impact mechanisms, in terms of breaking down cm-sized rocks on small airless bodies. Larger (10 cm-size) rocks were shown to potentially break up faster than smaller (cm) rocks, an observation that is in contrast to the predictions of mechanical disruption models. This observation is justified by the existence of higher internal thermal stresses resulting from the larger temperature gradient in bigger rocks, but it is not clear that this conclusion can be extrapolated or scaled for meter-sized boulders.In the current study, we present a computational and analytical approach that examines thermally driven crack growth within asteroidal rocks over a large range of lengthscales. We first examine the main length and timescales involved in the thermally-driven fatigue crack growth, and identify a critical lengthscale comparable to the thermal skin depth, after which thermal fatigue becomes slower, providing bounds on the thermal fragmentation mechanism. We also develop a simple scaling method to estimate the time required for

  5. Modeling grain-scale thermoelastic stresses on airless bodies

    Science.gov (United States)

    Molaro, J.; Byrne, S.

    2013-12-01

    Thermal stress weathering is the mechanical breakdown of rock from expansion and contraction caused by changes in temperature. Damage occurs in the form of microscopic cracks that result from a thermal cycle or thermal shock. This process may play an important role in the evolution of airless landscapes, by contributing to regolith production and crater degradation. Without the presence of an atmosphere, rock surfaces experience very dramatic temperature changes that induce high thermoelastic stresses in the near sub-surface. The thermoelastic behavior of each surface is primarily controlled by its distance to the sun and its solar day length, providing a unique experience on each body. For example, slowly rotating bodies that are close to the sun (such as Mercury) experience a very wide diurnal temperature range. Bodies further from the sun (such as NEAs) have a much smaller range, but rotate quickly and experience rapid temperature 'shocks' during sunrise/set. While many studies suggest stresses induced by these temperature changes may cause rock breakdown, the extent of the damage produced as a result is unknown. In this study, we modeled thermoelastic stresses produced on airless surfaces at the mineral grain scale. Finite Element Analysis of Microstructures (OOF2) is a 2-D finite element modeling program, developed at NIST and designed to help scientists calculate macroscopic properties of real or simulated microstructures. This allows us to model thermal behavior of microstructures with varying grain sizes and thermophysical properties, and to explore the relationship between the spatial and temporal temperature gradients and stress. Using OOF2, we imposed the solar and conductive fluxes calculated by our 1-D thermal model at the surface and at 5mm depth on a microstructure. The microstructure has bulk properties typical of a basalt, and a grain size of ~0.3 mm. We assigned 20% and 80% of the grains a thermal conductivity of 1 and 3 W/mK, respectively. The

  6. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  7. Detecting meteoroid streams with an in-situ dust detector above an airless body

    Science.gov (United States)

    Szalay, Jamey R.; Horányi, Mihály

    2016-09-01

    The Lunar Dust Experiment (LDEX), aboard NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) successfully mapped the dust density distribution over the lunar surface up to an altitude of ∼ 250 km. LDEX detected dust grains launched off the surface in ejecta plumes generated by impacts of cometary and asteroidal micrometeoroids striking the Moon. While on average LDEX detected particles at a rate of 1 min-1 , periodically it measured bursts of particles at a rate exceeding the average value by up to two orders of magnitude. The timing and location of the most intense period of bursts is used here to independently determine the radiant for the Geminids meteoroid stream. The method is proposed to be of general interest to characterize meteoroid streams bombarding any of the airless bodies in the solar system using in-situ dust detectors.

  8. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  9. Survival times of meter-sized rock boulders on the surface of airless bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-11-01

    Rock boulders are typical features of the surfaces of many airless bodies, so the possibility of estimating their potential survival times may provide insights into the rates of surface-modification processes. As an opening point of this study we employ estimates of the survival times of meter-sized boulders on the surface of the Moon based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age (Basilevsky et al., 2013), and apply them, with necessary corrections, to boulders on other bodies. In this approach the major factor of rock destruction is considered to be impacts of meteorites. However another factor of the rock destruction, thermal fatigue due to day-night cycling, does exist and it was claimed by Delbo et al. (2014) as being more important than meteorite impacts. They concluded this on the basis of known presence of fine material on the surface of small asteroids, claiming that due to extremely low gravity on those bodies, the products of meteorite bombardment should leave these bodies, and thus their presence indicates that the process of thermal fatigue should be much more effective there. Delbo et al. (2014) made laboratory experiments on heating-cooling centimeter-sized samples of chondrites and, applying some assumptions and theoretical modeling concluded that, for example, at 1 AU distance from the Sun, the lifetime of 10 cm rock fragments on asteroids with period of rotation from 2.2 to 6 h should be only ~103 to 104 years (that is ~3.5×106 to 1.5×107 thermal cycles) and the larger the rock, the faster it should be destroyed. In response to those conclusions we assessed the results of earlier laboratory experiments, which show that only a part of comminuted material produced by high-velocity impacts into solid rocks is ejected from the crater while another part is not ejected but stays exposed on the target surface and is present in its subsurface. This means that the presence of

  10. Photon-induced electro-chemical processes in airless icy bodies analogues

    Science.gov (United States)

    Marchione, Demian; Gudipati, Murthy

    2016-10-01

    Previous laboratory studies have shown that radiation-induced ionization of impurities in water-rich ices drives the formation of ionized species resulting in charge generation and accumulation in ices [1-3]. It is expected that some of these impurity ions are decomposed into smaller volatile species and ejected into the vacuum. These processes are relevant to the chemical composition of the near-surface tenuous (thin) atmosphere of icy bodies such as the Jovian satellites like Europa.Our work aims at investigating photocurrents from organic impurity embedded water ices of several microns thick and understanding how these measurements correlate with the desorption of volatiles during UV and electron irradiation. These experiments are performed in an ultrahigh vacuum chamber around Europa's surface temperature (100 - 150 K) conditions using a low-pressure hydrogen flow-discharge lamp emitting primarily at Lyα (121.6 nm), a 2 keV electron source, and a substrate-less electrode. Photoionization of organic impurities in the water matrix results in charge pair (electron and ion) separation within the ice, and hence in detectable currents that are measured as a function of the applied bias and the temperature (5 K - 200 K). Photodesorption products are also identified by a quadrupole mass spectrometer (QMS) and correlated with conductivity measurements. We will discuss these results in the context of expected Europa's surface photoconductivity and near-surface volatile production.References:[1] M. S. Gudipati, and L. J. Allamandola, Astrophysical Journal Letters, 2003, 596(2), L195-L198.[2] M. S. Gudipati, Journal of Physical Chemistry A, 2004, 108(20), 4412-4419.[3] S. H. Cuylle, L. J. Allamandola, and H. Linnartz, Astronomy and Astrophysics, 2014, 562, A22.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by NASA under Planetary Atmospheres

  11. High-Resolution and Analytical TEM Investigation of Space Radiation Processing Effects in Primitive Solar System Materials and Airless Planetary Surface Environments

    Science.gov (United States)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.; Dukes, C.; Baragiola, R.

    2012-01-01

    Energetic ions present in the diverse plasma conditions in space play a significant role in the formation and modification of solid phases found in environments ranging from the interstellar medium (ISM) to the surfaces of airless bodies such as asteroids and the Moon. These effects are often referred to as space radiation processing, a term that encompasses changes induced in natural space-exposed materials that may be only structural, such as in radiation-induced amorphization, or may involve ion-induced nanoscale to microscale chemical changes, as occurs in preferential sputtering and ion-beam mixing. Ion sputtering in general may also be responsible for partial or complete erosion of space exposed materials, in some instances possibly bringing about the complete destruction of free-floating solid grains in the ISM or in circumstellar nebular dust clouds. We report here on two examples of the application of high-resolution and analytical transmission electron microscopy (TEM) to problems in space radiation processing. The first problem concerns the role of space radiation processing in controlling the overall fate of Fe sulfides as hosts for sulfur in the ISM. The second problem concerns the known, but as yet poorly quantified, role of space radiation processing in lunar space weathering.

  12. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  13. Design and Development of the Telescope-deployment High-vacuum teleOperated Rover (THOR) in an Airless Body Environment

    CERN Document Server

    Womack, Chris; Kruger, Laura; DeGeorge, Kelsey; Tuan, Karynna; Burns, Jack

    2014-01-01

    The harsh environment on the lunar surface presents unique technological challenges for space exploration. This paper presents research on the design and development of the Tele- scope-deployment High-vacuum teleOperated Rover (THOR), currently being built and tested in the Lunar and Airless Bodies Simulator (LABS) facility at the University of Colorado Boulder. This rover is fabricated entirely out of cost-effective commercial off-the-shelf (COTS) components and materials. THOR can potentially survive for more than one simulated year in conditions similar to that of the lunar environment, demonstrating the successful initial results of a first phase research study on material and electronic survivability in an extreme environment such as the Moon.

  14. 双枪高压无气喷涂机的泵体结构设计%Design of Double-gun High-pressure Airless Spraying Machine’s Pump Body

    Institute of Scientific and Technical Information of China (English)

    马如宏; 俞俊海

    2015-01-01

    为了解决目前国内双枪高压无气喷涂机紧缺的现状,通过对高压无气喷涂机的分析与研究,研制出一种新型的双枪高压无气喷涂机的泵体。并基于 Fluent软件分析了该泵体管路的压力和速度的变化。泵体有一个进料口,两个出料口,输漆管采用分段拼接式,方便携带和拆卸,不受喷涂距离的限制。%In order to solve the shortage of double-gun high-pressure airless spraying machine in China ,based on the analysis and research on high-pressure airless spraying machine ,a new type of double-gun high-pressure airless spraying machine’s pump body is developed .With a feed port ,two discharging mouth ,and the segmented painting tube ,the pump body is convenient to carry and remove ,not restricted by spraying distance .The changes of pipeline pressure and spaying speed is analyzed by Fluent software .

  15. Thermal evolution of planetary size bodies

    Science.gov (United States)

    Hsui, A. T.; Toksoz, M. N.

    1977-01-01

    The size dependence of planetary thermal evolution is investigated through calculations which take into account the effects of heat source differentiation and convection. The theoretical computations make use of hypothetical bodies for minor planets; Mercury, Venus and Mars are employed to represent the size spectrum of the inner planets. If started at a cold initial condition, an object with a radius less than 1000 km is unlikely to reach melting. Accretional heating, inductive heating and short half-life radioactive heating are among the mechanisms which may produce early melting and differentiation in larger planets. Core formation in Mercury and Venus is also discussed.

  16. Beyond Earth: Using Google Earth to Visualize Other Planetary Bodies

    Science.gov (United States)

    Hancher, M.; Beyer, R.; Broxton, M.; Gorelick, N.; Kolb, E.; Weiss-Malik, M.

    2008-12-01

    Virtual globes have revolutionized the way we visualize and understand the Earth, but there are other planetary bodies that can be visualized as well. We will demonstrate the use of Google Earth, KML, and other modern mapping tools for visualizing data that's literally out of this world. Extra-terrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow users to explore the increasingly breathtaking imagery being sent back to Earth by modern planetary science satellites. We will demonstrate several uses of the latest Google Earth and KML features to visualize planetary data. Global maps of planetary bodies---not just visible imagery maps, but also terrain maps, infra-red maps, minerological maps, and more---can be overlaid on the Google Earth globe using KML, and a number of sources are already making many such maps available. Coverage maps show the polygons that have been imaged by various satellite sensors, with links to the imagery and science data. High-resolution regionated ground overlays allow you to explore the most breathtaking imagery at full resolution, in its geological context, just as we have become accustomed to doing with Earth imagery. Panoramas from landed missions to the Moon and Mars can even be embedded, giving users a first-hand experience of other worlds. We will take you on a guided tour of how these features can best be used to visualize places other than the Earth, and provide pointers to KML from many sources---ourselves and others---that users can build on in constructing their own KML content of other planetary bodies. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data.

  17. Can solid body destruction explain abundance discrepancies in planetary nebulae?

    CERN Document Server

    Henney, William J

    2010-01-01

    In planetary nebulae, abundances of oxygen and other heavy elements derived from optical recombination lines are systematically higher than those derived from collisionally excited lines. We investigate the hypothesis that the destruction of solid bodies may produce pockets of cool, high-metallicity gas that could explain these abundance discrepancies. Under the assumption of maximally efficient radiative ablation, we derive two fundamental constraints that the solid bodies must satisfy in order that their evaporation during the planetary nebula phase should generate a high enough gas phase metallicity. A local constraint implies that the bodies must be larger than tens of meters, while a global constraint implies that the total mass of the solid body reservoir must exceed a few hundredths of a solar mass. This mass greatly exceeds the mass of any population of comets or large debris particles expected to be found orbiting evolved low- to intermediate-mass stars. We therefore conclude that contemporaneous sol...

  18. Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    CERN Document Server

    Kelling, Thorben; Kocifaj, Miroslav; Klacka, Jozef; Reiss, Dennis

    2011-01-01

    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which ...

  19. Planetary and satellite three body mean motion resonances

    CERN Document Server

    Gallardo, Tabaré; Badano, Luciana

    2016-01-01

    We propose a semianalytical method to compute the strengths on each of the three massive bodies participating in a three body mean motion resonance (3BR). Applying this method we explore the dependence of the strength on the masses, the orbital parameters and the order of the resonance and we compare with previous studies. We confirm that for low eccentricity low inclination orbits zero order resonances are the strongest ones; but for excited orbits higher order 3BRs become also dynamically relevant. By means of numerical integrations and the construction of dynamical maps we check some of the predictions of the method. We numerically explore the possibility of a planetary system to be trapped in a 3BR due to a migrating scenario. Our results suggest that capture in a chain of two body resonances is more probable than a capture in a pure 3BR. When a system is locked in a 3BR and one of the planets is forced to migrate the other two can react migrating in different directions. We exemplify studying the case of...

  20. Super-Earths: A New Class of Planetary Bodies

    CERN Document Server

    Haghighipour, Nader

    2011-01-01

    Super-Earths, a class of planetary bodies with masses ranging from a few Earth-masses to slightly smaller than Uranus, have recently found a special place in the exoplanetary science. Being slightly larger than a typical terrestrial planet, super-Earths may have physical and dynamical characteristics similar to those of Earth whereas unlike terrestrial planets, they are relatively easier to detect. Because of their sizes, super-Earths can maintain moderate atmospheres and possibly dynamic interiors with plate tectonics. They also seem to be more common around low-mass stars where the habitable zone is in closer distances. This article presents a review of the current state of research on super-Earths, and discusses the models of the formation, dynamical evolution, and possible habitability of these objects. Given the recent advances in detection techniques, the detectability of super-Earths is also discussed, and a review of the prospects of their detection in the habitable zones of low-mass stars is presente...

  1. Airless drying: energy savings are not just hot air

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, Joyce

    1994-07-01

    The airless dryer provides substantial energy cost and drying time savings and sometimes product quality benefits. Originally developed and applied to laundry tumble drying, the technique was subsequently adapted as a batch process for brick drying and drying of ceramic slurries in trays. Most recently, the process has been extended to a large scale, continuous dryer which should allow the airless drying of minerals and many other materials, almost certainly with similar advantages. This feature outlines the principles of the airless dryer and illustrates with some case histories the economies which can be achieved. (Author)

  2. Photochemical hazes in planetary atmospheres: solar system bodies and beyond

    Science.gov (United States)

    Imanaka, Hiroshi; Cruikshank, Dale P.; McKay, Christopher P.

    2015-11-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. An understanding of haze formation rates and plausible optical properties in a wide diversity of planetary atmospheres is required to interpret the current and future observations.Here, we focus on how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. We have conducted a series of cold plasma experiments to constrain the haze mass production rates from gas mixtures of various CH4/CO ratios diluted either in H2 or N2 atmosphere. The mass production rates in the N2-CH4-CO system are much greater than those in the H2-CH4-CO system. They are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed both in H2-CO and N2-CO systems without CH4 in the initial gas mixtures. The complex refractive indices were derived for haze samples from N2-CH4, H2-CH4, and H2-CO gas mixtures. These are the model atmospheres for Titan, Saturn, and exoplanets, respectively. The imaginary part of the complex refractive indices in the UV-Vis region are distinct among these samples, which can be utilized for modeling these planetary atmospheres.

  3. Optimisation of the 3-body dynamics applied to extra-solar planetary systems

    CERN Document Server

    Windmiller, Gur; Orosz, Jerome

    2007-01-01

    The body of work presented here revolves around the investigation of the existence and nature of extra-solar planetary systems. The fitting of stellar radial velocity time series data is attempted by constructing a model to quantify the orbital properties of a star-planetary system. This is achieved with the Planetary Orbit Fitting Process (POFP). Though specific to the investigated problem, the POFP is founded on two separate, more general ideas. One is a Solver producing the gravitational dynamics of a Three-Body system by integrating its Newtonian equations of motion. The other is an independent optimisation scheme. Both have been devised using MATLAB. Applying the optimisation to the Solver results in a realistic Three-Body dynamics that best describes the radial velocity data under the model-specific orbital-observational constraints. Combining these aspects also allows for the study of dynamical instability derived from interaction, which is reaffirmed as a necessary criterion for evaluating the fit. Th...

  4. A new method to determine the grain size of planetary regolith

    CERN Document Server

    Gundlach, Bastian

    2012-01-01

    Airless planetary bodies are covered by a dusty layer called regolith. The grain size of the regolith determines the temperature and the mechanical strength of the surface layers. Thus, knowledge of the grain size of planetary regolith helps to prepare future landing and/or sample-return missions. In this work, we present a method to determine the grain size of planetary regolith by using remote measurements of the thermal inertia. We found that small bodies in the Solar System (diameter less than ~100 km) are covered by relatively coarse regolith grains with typical particle sizes in the millimeter to centimeter regime, whereas large objects possess very fine regolith with grain sizes between 10 and 100 micrometer.

  5. Mission Opportunities for Human Exploration of Nearby Planetary Bodies

    CERN Document Server

    Foster, Cyrus

    2016-01-01

    We characterize mission profiles for human expeditions to near-Earth asteroids, Venus, and Mars. Near-Earth objects (NEOs) are the closest destinations beyond cis-lunar space and present a compelling target with capabilities already under development by NASA and its partners. We present manned NEO mission options that would require between 90 days and one year. We next consider planetary flyby missions for Venus along the lines of plans that were first drafted during the Apollo program for human exploration of Venus. We also characterize a Mars flyby, and a double-flyby variant that would include close passes to both Venus and Mars. Finally, we consider orbital missions to Venus and Mars with capability for rendezvous with Phobos or Deimos. This would be a truly new class of mission for astronauts and could serve as a precursor to a human landing on Mars. We present launch opportunities, transit time, requisite {\\Delta}V, and approximate radiation environment parameters for each mission class. We find that {\\...

  6. ENA imaging near Planetary Bodies: Interaction between Plasma, Exosphere and Surface

    CERN Document Server

    Futaana, Yoshifumi

    2013-01-01

    Energetic Neutral Atom (ENA) imaging has been noticed as a powerful tool for remote sensing the plasma-neutral interaction in space. Particularly, the technique is used for investigation of space plasma near planetary bodies. Hear we provide a short review of recent low-energy ENA observations (up to ~1 keV) near Mars, Venus and the Moon.

  7. ESA' s novel gravitational modeling of irregular planetary bodies

    Science.gov (United States)

    Ortega, Guillermo

    A detailed understanding and modeling of the gravitational modeling is required for realistic investigation of the dynamics of orbits close to irregularly shaped bodies. Gravity field modelling up to a certain maximum spherical harmonic degree N involves N2 unkown spherical harmonic coefficients or complex harmonics. The corresponding number of matrix entries reaches till N4 . For missions like CHAMP, GRACE or GOCE, the maximum degree of resolution is 75, 150 and 300 respectively. Therefore, the number of unknowns for a satellite like GOCE will be around 100.000. Since these missions usually fly for a period of time of several years, the number of observations is huge. Hence, gravity field recovery from these missions is a high demanding task. The classical approaches like spherical expansion of the potential lead generally to a high number of coefficients, which reduce the software computational efficiency of the orbit propagation and which have mostly a limited physical meaning. One of the main targets of the activity is the modelling of asteroids, small moons, and cometary bodies. All celestial bodies are irregular by definition. However, the scope of the activity is broad enough as to be able to use the models and the software in quasy-regular bodies as well. Therefore the models and tools could be used for bodies such as the Moon, Mars, Venus, Deimos, Europa, Eros, Mathilda, and Churyumov-Gerasimenko, etc., being these applications relevant for scientific (Rosetta, Bepi Colombo), exploration (Exo-Mars), NEO mitigation (Don Quijote) and Earth observation (GOCE) missions of ESA.

  8. Performance of thermal conductivity probes for planetary applications

    Directory of Open Access Journals (Sweden)

    E. S. Hütter

    2012-05-01

    Full Text Available This work aims to contribute to the development of in situ instruments feasible for space application. Commercial as well as custom-made thermal sensors, based on the transient hot wire technique and suitable for direct measurement of the effective thermal conductivity of granular media, were tested for application under airless conditions. In order to check the ability of custom-made sensors to measure the thermal conductivity of planetary surface layers, detailed numerical simulations predicting the response of the different sensors have been performed. These simulations reveal that for investigations under high vacuum conditions (as they prevail, e.g. on the lunar surface, the derived thermal conductivity values can significantly depend on sensor geometry, axial heat flow, and the thermal contact between probe and surrounding material. Therefore, a careful calibration of each particular sensor is necessary in order to obtain reliable thermal conductivity measurements. The custom-made sensors presented in this work can serve as prototypes for payload to be flown on future planetary lander missions, in particular for airless bodies like the Moon, asteroids and comets, but also for Mars.

  9. Saltation-threshold model can explain aeolian features on low-air-density planetary bodies

    CERN Document Server

    Pähtz, Thomas

    2016-01-01

    Knowledge of the minimal fluid speeds at which sediment transport can be sustained is crucial for understanding whether underwater landscapes exposed to water streams and wind-blown loose planetary surfaces can be altered. It also tells us whether surface features, such as ripples and dunes, can evolve. Here, guided by state-of-the-art numerical simulations, we propose an analytical model predicting the minimal fluid speeds required to sustain sediment transport in a Newtonian fluid. The model results are consistent with measurements and estimates of the transport threshold in water and Earth's and Mars' atmospheres. Furthermore, it predicts reasonable wind speeds to sustain aeolian sediment transport ("saltation") on the low-air-density planetary bodies Triton, Pluto, and 67P/Churyumov-Gerasimenko (comet). This offers an explanation for possible aeolian surface features photographed on these bodies during space missions.

  10. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    Science.gov (United States)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  11. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  12. Electric ignition and airless kindle for underfeed stokers

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, M.E. [CRE Group Ltd., Stoke Orchard (United Kingdom)

    1996-02-01

    The leaflet describes a project carried out to assess the effectiveness and reliability of two methods of reducing the amount of coal used for kindling on boilers fitted with underfeed stokers. Many coal-fired boilers use underfeed stokers to deliver their fuel. When heat is not required, the stoker is put into standby `kindle` mode, and the fire kept alight by the periodic delivery of small amounts of coal and air. CRE Group Ltd., assessed two techniques for reducing the fuel used for kindling: electric ignition and airless kindle. Electric ignition eliminates entirely the need for kindling by automatically re-igniting the coal in the stoker retort using a hot air jet. CRE Group`s development work aimed to overcome earlier design problems and improve cost-effectiveness and reliability. Airless kindle reduces the size and frequency of coal feed in kindle mode. Although it does not entirely eliminate the use of kindle, it saves almost as much fuel for a lower capital outlay and minimal maintenance costs. This option has proved so attractive to the host organisations (Derbyshire Country Council, Nottinghamshire Country Council and Haven Nurseries) that the boiler used for trials for the electric ignition system has now been converted to airless kindle. 3 figs., 4 photos.

  13. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    CERN Document Server

    Beth, Arnaud; Toublanc, Dominique; Dandouras, Iannis; Mazelle, Christian

    2015-01-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for Hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, an...

  14. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    Science.gov (United States)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  15. Performance of thermal conductivity probes for planetary applications

    Directory of Open Access Journals (Sweden)

    E. S. Hütter

    2012-01-01

    Full Text Available This work aims to contribute to the development of in situ instruments feasible for space application. Commercial as well as custom made thermal sensors, based on the transient hot wire technique and suitable for direct measurement of the effective thermal conductivity of granular media, were tested for application under airless conditions. The investigated media range from compact specimen of well known thermal conductivity used for calibration of the sensors to various granular planetary analogue materials of different shape and grain size. Measurements were performed under gas pressures ranging from 103 hPa down to about 10−5 hPa. It was found that for the inspected granular materials the given pressure decrease results in a decrease of the thermal conductivity by about two orders of magnitude. In order to check the ability of custom-made sensors to measure the thermal conductivity of planetary surface layers, detailed numerical simulations predicting the response of the different sensors have also been performed. Both, measurements and simulations, revealed that for investigations under high vacuum conditions (as they prevail e.g. on the lunar surface the derived thermal conductivity values can significantly depend on the sensor geometry, the axial heat flow and the thermal contact between probe and surrounding material. Therefore in these cases a careful calibration of each particular sensor is necessary in order to obtain reliable thermal conductivity measurements. The custom-made sensors presented in this work can serve as prototypes for payload to be flown on future planetary lander missions, in particular for airless bodies like the Moon, asteroids and comets, but also for Mars.

  16. An Internal Heating Model to Elucidate the Shape of a Small Planetary Body

    Institute of Scientific and Technical Information of China (English)

    LI Gen; CHEN Chu-Xin

    2012-01-01

    Small planetary bodies usually have irregular shapes.If they are large enough to be heated to a partial melting status,the deforming force of gravity could overcome the internal forces and make the shape transfigure from potato-like to spherical.We have developed a model to calculate the thermal history of a planetoid and apply the model to asteroids,since ample evidence has shown that many asteroids could have undergone differentiation.After revealing the relation between the shape and the ratio of the melt part,we also examine the surface roughness of these asteroids and suggest that 280km would be a critical radius for an asteroid to develop a virtually globular contour.%Small planetary bodies usually have irregular shapes. If they are large enough to be heated to a partial melting status, the deforming force of gravity could overcome the internal forces and make the shape transfigure from potato-like to spherical. We have developed a model to calculate the thermal history of a planetoid and apply the model to asteroids, since ample evidence has shown that many asteroids could have undergone differentiation. After revealing the relation between the shape and the ratio of the melt part, we also examine the surface roughness of these asteroids and suggest that 280 km would be a critical radius for an asteroid to develop a virtually globular contour.

  17. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    Science.gov (United States)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  18. Fast and reliable symplectic integration for planetary system N-body problems

    Science.gov (United States)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  19. A new paradigm for reproducing and analyzing N-body simulations of planetary systems

    Science.gov (United States)

    Rein, Hanno; Tamayo, Daniel

    2017-01-01

    The reproducibility of experiments is one of the main principles of the scientific method. However, numerical N-body experiments, especially those of planetary systems, are currently not reproducible. In the most optimistic scenario, they can only be replicated in an approximate or statistical sense. Even if authors share their full source code and initial conditions, differences in compilers, libraries, operating systems or hardware often lead to qualitatively different results. We provide a new set of easy-to-use, open-source tools that address the above issues, allowing for exact (bit-by-bit) reproducibility of N-body experiments. In addition to generating completely reproducible integrations, we show that our framework also offers novel and innovative ways to analyze these simulations. As an example, we present a high-accuracy integration of the Solar System spanning 10 Gyrs, requiring several weeks to run on a modern CPU. In our framework we can not only easily access simulation data at predefined intervals for which we save snapshots, but at any time during the integration. We achieve this by integrating an on-demand reconstructed simulation forward in time from the nearest snapshot. This allows us to extract arbitrary quantities at any point in the saved simulation exactly (bit-by-bit), and within seconds rather than weeks. We believe that the tools we present in this paper offer a new paradigm for how N-body simulations are run, analyzed, and shared across the community.

  20. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    Science.gov (United States)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  1. N-body simulations of planetary accretion around M dwarf stars

    CERN Document Server

    Ogihara, Masahiro

    2009-01-01

    We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions. In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and 4 to 6 planets eventually remain in mutual mean motion resonances and their orbits have small eccentricities and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely-packed ~ 40 small protoplanets remain in mutual mean motion resonances. In this case, they start orbit cross...

  2. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  3. The composition and evolution of primordial solutions on Mars, with application to other planetary bodies

    Science.gov (United States)

    King, P. L.; Lescinsky, D. T.; Nesbitt, H. W.

    2004-12-01

    We examine a model for Mars involving bulk primordial solutions (oceans and lakes) that were relatively Mg-rich and SO 4/(SO 4 + Cl)-rich. Such solutions could be produced when (1) volatiles leached a planet (or portions of a planet) with an ultramafic-mafic composition in a process called "planetary leaching"; and/or by (2) "impactor leaching" where meteoritic and/or cometary impactor fragments were leached. When Mg-SO 4/(SO 4 + Cl)-rich solutions are concentrated, we predict that the following sequence of salts precipitates: phosphates; carbonates; gypsum; epsomite; bloedite; halite; hexahydrite; and, finally bischofite. This sequence is modified slightly if appreciable Fe-, Mg- or Na-carbonates, Fe-sulfates, Mg-phosphate, or other halide salts crystallized before the Mg-Na-sulfate salts, or if HCO 3+CO 3 concentrations vary due to other effects (e.g., atmosphere CO 2 levels change). On Mars, the initial primordial solutions would have been relatively salt-rich and water-poor; therefore, the surface solutions formed Mg-Na-SO 4-Cl salts (cements, veneers, and dust) and subsurface solutions or ice (solid H 2O). This model is supported by the compositions of cements in the regolith on Mars (high Mg, Na, S, and Cl) and geochemical and petrographic evidence that the salts precipitated in the predicted sequence. We suggest that the partial pressure of oxygen was above the hematite-magnetite buffer where Fe 3+-(hydrous)-oxides are stable and SO 42- or HSO 4- are solutes in any solution. Such a partial pressure of oxygen may have been attained via H 2-loss. In contrast, on the Galilean satellites (Europa, Ganymede, and Callisto) surface solutions were relatively water-rich and formed ice, Mg-SO 4-rich salts, and solutions, thereby producing surface features dependent on the initial water content and the crystallization path. Unlike the Na-Cl-rich oceans on Earth, the solutions of these planetary bodies likely did not change greatly from their bulk primordial Mg-rich, SO

  4. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  5. Magnetotelluric Sensor Development for Planetary Subsurface Exploration

    Science.gov (United States)

    Fuqua, H.; Delory, G. T.; De Pater, I.; Grimm, R. E.

    2012-12-01

    Electromagnetic (EM) Sounding is a powerful geophysical investigation technique capable of constraining planetary subsurface structure, including core size, mantle and crustal temperature profiles, and the distribution of electrical conductivity at depth. Natural sources of EM activity, including solar wind turbulence and plasma waves, can induce electric and magnetic fields in the Moon and other small bodies. These induced fields respond according to the electrical conductivity as a function of skin depth of the body in question. In a branch of EM Sounding known as Magnetotellurics (MT), measurements of the horizontal electric and magnetic fields at the planetary surface are inverted to produce constraints on the interior. MT is particularly worthwhile in that geophysically meaningful results can be obtained from a single station, thus avoiding network mission architectures. While surface magnetic field measurements were taken on the Moon during the Apollo era, to date no measurements of the surface horizontal electric field have been attempted. However electric field measurements on the lunar surface should be feasible given their long successful history on spacecraft missions in similar environments. Building upon the heritage of electric field sensor technology at the UC Berkeley Space Sciences Laboratory, we describe a development plan for this instrument from component level to a fully functional instrument assembly for use in EM sounding, highlighting operational requirements, science capabilities, required testing, anticipated results and challenges to overcome. Upon development, this lander electric field sensor will enable future MT surveys on the Moon, and will provide a new exploration method for other small airless bodies from a single station.

  6. Matrix Pseudospectral Method for (Visco)Elastic Tides Modeling of Planetary Bodies

    Science.gov (United States)

    Zabranova, Eliska; Hanyk, Ladidslav; Matyska, Ctirad

    2010-05-01

    We deal with the equations and boundary conditions describing deformation and gravitational potential of prestressed spherically symmetric elastic bodies by decomposing governing equations into a series of boundary value problems (BVP) for ordinary differential equations (ODE) of the second order. In contrast to traditional Runge-Kutta integration techniques, highly accurate pseudospectral schemes are employed to directly discretize the BVP on Chebyshev grids and a set of linear algebraic equations with an almost block diagonal matrix is derived. As a consequence of keeping the governing ODEs of the second order instead of the usual first-order equations, the resulting algebraic system is half-sized but derivatives of the model parameters are required. Moreover, they can be easily evaluated for models, where structural parametres are piecewise polynomially dependent. Both accuracy and efficiency of the method are tested by evaluating the tidal Love numbers for the Earth's model PREM. Finally, we also derive complex Love numbers for models with the Maxwell viscoelastic rheology, where viscosity is a depth-dependent function. The method is applied to evaluation of the tidal Love numbers for models of Mars and Venus. The Love numbers of the two Martian models - the former optimized to cosmochemical data and the latter to the moment of inertia (Sohl and Spohn, 1997) - are h2=0.172 (0.212) and k2=0.093 (0.113). For Venus, the value of k2=0.295 (Konopliv and Yoder, 1996), obtained from the gravity-field analysis, is consistent with the results for our model with the liquid-core radius of 3110 km (Zábranová et al., 2009). Together with rapid evaluation of free oscillation periods by an analogous method, this combined matrix approach could by employed as an efficient numerical tool in structural studies of planetary bodies. REFERENCES Konopliv, A. S. and Yoder, C. F., 1996. Venusian k2 tidal Love number from Magellan and PVO tracking data, Geophys. Res. Lett., 23, 1857

  7. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    Science.gov (United States)

    Yano, H.

    2013-12-01

    Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep

  8. Swarm-NG: a CUDA Library for Parallel n-body Integrations with focus on Simulations of Planetary Systems

    CERN Document Server

    Dindar, Saleh; Juric, Mario; Yeo, Young In; Gao, Jianwei; Boley, Aaron C; Nelson, Benjamin; Peters, Jorg

    2012-01-01

    We present Swarm-NG, a C++ library for the efficient direct integration of many n-body systems using highly-parallel Graphics Processing Unit (GPU), such as NVIDIA's Tesla T10 and M2070 GPUs. While previous studies have demonstrated the benefit of GPUs for n-body simulations with thousands to millions of bodies, Swarm-NG focuses on many few-body systems, e.g., thousands of systems with 3...15 bodies each, as is typical for the study of planetary systems. Swarm-NG parallelizes the simulation, including both the numerical integration of the equations of motion and the evaluation of forces using NVIDIA's "Compute Unified Device Architecture" (CUDA) on the GPU. Swarm-NG includes optimized implementations of 4th order time-symmetrized Hermite integration and mixed variable symplectic integration, as well as several sample codes for other algorithms to illustrate how non-CUDA-savvy users may themselves introduce customized integrators into the Swarm-NG framework. To optimize performance, we analyze the effect of GP...

  9. AIRLESS, a European project on HVAC systems: Project programme and current status

    NARCIS (Netherlands)

    Bluyssen, P.M.; Björkroth, M.; Müller, B.; Oliveira Fernandes, E. de; Clausen, G.H.; Molina, J.L.; Roulet, C.A.

    1999-01-01

    In the beginning of 1998 a three year European project, AIRLESS, was started to develop strategies, principles and protocols to improve and control the performance of HVAC-systems and its components for incorporation in codes and guidelines. Twelve institutes, universities and companies from seven E

  10. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons

  11. On the polar moment of inertia of a compressible body. [planetary rotational dynamics

    Science.gov (United States)

    Mulholland, J. D.

    1980-01-01

    The rotational dynamics of a body are governed by the values of its principle moments of inertia. These quantities are not directly observable, but they are related to the harmonic coefficients of the external gravity field and to the density distribution within the body, both of which can be inferred from appropriate observations. It is shown that, for the particular case of a spherical planet whose density varies as a power of the radial distance, the principal moment of inertia has an elegantly simple form. Application of this simplified case to the Jovian planets suggests that the density profiles outside the central core are approximately linear, with the apparent exception of Neptune.

  12. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies

    Science.gov (United States)

    Davis, Andrew M.; Olsen, Edward J.

    1991-01-01

    Trace element analyses of the phosphates minerals in stony-iron pallasite meteorites are used here to investigate the magmatic history of the silicate portions of pallasites. In Eagle Station and seven other pallasites, the phosphates have relatively low concentrations of REEs and are strongly enriched in heavy relative to light REE. These patterns are consistent with formation of phosphate by subsolidus reactions between metal and silicate, in which phosphate inherits the REE pattern of olivine. In Springwater and Santa Rosalia, calcium-rich phosphates have higher concentrations of REE, are enriched in light relative to heavy REE, and have negative europium anomalies. These patterns are consistent with crystallization of phosphate from a europium-depleted chondritic liquid. This is unlikely to have happened near the base of the differentiating parent-body mantle; it suggests that some pallasites may come from regions of their parent bodies much nearer the surface than the core-mantle boundary.

  13. Invariant Tori in the Secular Motions of the Three-body Planetary Systems

    Science.gov (United States)

    Locatelli, Ugo; Giorgilli, Antonio

    We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

  14. On the Relationship Between Long-Period Comets and Large Trans-Neptunian Planetary Bodies

    Science.gov (United States)

    Guliyev, R.; Guliyev, A.

    2016-10-01

    In the present work we investigate the possible relationship of long-period comets with five large and distant trans-Neptunian bodies (Sedna, Eris, 2007 OR_{10}, 2012 VP_{113} and 2008 ST_{291}) in order to determine the probability of the transfer of a part of this kind of comets to the interior of the Solar System. To identify such relationships, we studied the relative positions of the comet orbits and listed TNOs. Using numerical integration methods, we have examined dynamical evolution of the comets and have found one encounter of comet C/1861J1 and Eris. The encounter was found at a distance of 0.0386 AU in the period of 2400 years before the comet discovery. Results are discussed.

  15. An N-body Integrator for Gravitating Planetary Rings, and the Outer Edge of Saturn's B Ring

    CERN Document Server

    Hahn, Joseph M

    2013-01-01

    A new symplectic N-body integrator is introduced, one designed to calculate the global 360 degree evolution of a self-gravitating planetary ring that is in orbit about an oblate planet. This freely-available code is called epi_int, and it is distinct from other such codes in its use of streamlines to calculate the effects of ring self-gravity. The great advantage of this approach is that the perturbing forces arise from smooth wires of ring matter rather than discreet particles, so there is very little gravitational scattering and so only a modest number of particles are needed to simulate, say, the scalloped edge of a resonantly confined ring or the propagation of spiral density waves. The code is applied to the outer edge of Saturn's B ring, and a comparison of Cassini measurements of the ring's forced response to simulations of Mimas' resonant perturbations reveals that the B ring's surface density at its outer edge is 195+-60 gm/cm^2 which, if the same everywhere across the ring would mean that the B ring...

  16. The Highland Terrain Hopper: a new locomotion system for exploration of Mars and other low-gravity planetary bodies

    Science.gov (United States)

    Gurgurewicz, Joanna; Grygorczuk, Jerzy; Wisniewski, Lukasz; Mege, Daniel; Rickman, Hans

    Field geoscientists need to collect three-dimensional data in order characterise the lithologic succession and structure of terrains, reconstruct their evolution, and eventually reveal the history of a portion of the planet. This is achieved by walking up and down mountains and valleys, conducting and interpreting geological and geophysical traverses, and reading measures made at station located at key sites on mountain peaks or rocky promontories. These activities have been denied to conventional planetary exploration rovers because engineering constraints for landing are strong, especially in terms of allowed terrain roughness and slopes. There are few limitations in the type of scientific payload conventional exploration rovers can carry, from geology and geophysics to geochemistry and exobiology. They lack two skills, however: the ability of working on rugged or unstable terrain, like in canyons and mountains, and on solid bodies having gravity too low for the friction between the wheels and the ground to generate robot displacement. ASTRONIKA Ltd. and the Space Research Centre of the Polish Academy of Sciences are designing Galago, the Highland Terrain Hopper, a small (Ø~50-100 cm), light (5-10 kg), and robust locomotion system, which addresses the challenge of accessing most areas on low-gravity planetary body for performing scientific observations and measurements, alone or as part of a commando. Galago is symmetric and can jump accurately to a height of 4.5 m on Mars, 9 m on the Moon, and much more on Phobos and other small bodies. For one Galago, a nominal horizontal travel distance of 5 km (1000 jumps) is currently planned with the considered energy source, a battery reloaded by solar panels. Galago may assist other types of robots, or humans, in accessing difficult terrain, or even replace them for specific measurements or campaigning. Its three independent legs make possible several types of motions: accurate jumping (to any place identified in advance

  17. Regolith Derived Heat Shield for a Planetary Body Entry and Descent System with In-Situ Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-mass planetary surface access is one of NASA’s Grand Challenges involving entry, descent and landing (EDL). During the entry and descent phase,...

  18. The compression behavior of blödite at low and high temperature up to ~10GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    Energy Technology Data Exchange (ETDEWEB)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra; Fei, Yingwei; Prakapenka, Vitali

    2017-03-01

    Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ~10.4 GPa and temperatures from ~118.8 K to ~490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperature equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede.

  19. Stellar winds and planetary bodies simulations: Magnetized obstacles in super-Alfvénic and sub-Alfvénic flows

    Science.gov (United States)

    Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.

    2017-03-01

    Most planetary bodies are moving in the solar wind, in a stellar wind, or in a plasma flow within the magnetosphere of a planet. The interaction of the body with the flowing plasma provides us with various interaction types, which mainly depend on the flow speed, the magnetization of the body, its conductivity, the presence of an ionosphere, and the size of the body. We establish two cornerstones representing highly magnetized obstacles embedded in a super-Alfvénic and sub-Alfvénic plasma. Those two cornerstones complete the two cornerstones defined in our previous study on inert obstacles in super-Alfvénic and sub-Alfvénic regimes. Tracking the transitions between these cornerstones enable better understanding of the feedback of the obstacle onto the plasma flow. Each interaction is studied by means of the hybrid model simulation code AIKEF. The results are summarized in three dimensional diagrams showing the current structures, which serve as a basis for our descriptions. We identify the major currents such as telluric, magnetosonic, Chapman-Ferraro, and bow-shock currents as the signatures of the particular state of development of the interaction region. We show that each type of interactions can be identified by studying the shape and the magnitude of its specific currents.

  20. A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede

    Science.gov (United States)

    Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.

    2016-09-01

    The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).

  1. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    Science.gov (United States)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  2. Constraining the Movement of the Spiral Features and the Locations of Planetary Bodies within the AB Aur System

    CERN Document Server

    Lomax, Jamie R; Grady, Carol A; McElwain, Michael W; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K; Fukagawa, Misato; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph C; Currie, Thayne M; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Inoue, Akio; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Momose, Munetake; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Schneider, Glenn H; Serabyn, Eugene; Sitko, Michael L; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-01-01

    We present new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We used a Monte Carlo, radiative transfer code to simultaneously model the system's SED and H-band polarized intensity imagery. We find that a disk-dominated model, as opposed to one that is envelope dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and polarized intensity imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8 year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 AU.

  3. Linking long-term planetary $N$-body simulations with periodic orbits: application to white dwarf pollution

    CERN Document Server

    Antoniadou, Kyriaki I

    2016-01-01

    Mounting discoveries of debris discs orbiting newly-formed stars and white dwarfs (WDs) showcase the importance of modeling the long-term evolution of small bodies in exosystems. WD debris discs are in particular thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of $N$-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as \\textit{periodic orbits} can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with $N$-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the $2$:$1$ mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable perio...

  4. Linking long-term planetary N-body simulations with periodic orbits: application to white dwarf pollution

    Science.gov (United States)

    Antoniadou, Kyriaki I.; Veras, Dimitri

    2016-12-01

    Mounting discoveries of debris discs orbiting newly formed stars and white dwarfs (WDs) showcase the importance of modelling the long-term evolution of small bodies in exosystems. WD debris discs are, in particular, thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of N-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as periodic orbits can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with N-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the 2:1 mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable periodic orbits for that commensurability. In none of our simulations did the planar CRTBP architecture yield a long-time-scale (≳0.25 per cent of the age of the Universe) asteroid-star collision. The pericentre distance of asteroids which survived beyond this time-scale (≈35 Myr) varied by at most about 60 per cent. These results help affirm that collisions occur too quickly to explain WD pollution in the planar CRTBP 2:1 regime, and highlight the need for further periodic orbit studies with the eccentric and inclined TBP architectures and other significant orbital period commensurabilities.

  5. Linking long-term planetary N-body simulations with periodic orbits: application to white dwarf pollution

    Science.gov (United States)

    Antoniadou, Kyriaki I.; Veras, Dimitri

    2016-09-01

    Mounting discoveries of debris discs orbiting newly-formed stars and white dwarfs (WDs) showcase the importance of modeling the long-term evolution of small bodies in exosystems. WD debris discs are in particular thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of N-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as periodic orbits can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with N-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the 2:1 mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable periodic orbits for that commensurability. In none of our simulations did the planar CRTBP architecture yield a long-timescale (≳ 0.25% of the age of the Universe) asteroid-star collision. The pericentre distance of asteroids which survived beyond this timescale (≈35 Myr) varied by at most about 60%. These results help affirm that collisions occur too quickly to explain WD pollution in the planar CRTBP 2:1 regime, and highlight the need for further periodic orbit studies with the eccentric and inclined TBP architectures and other significant orbital period commensurabilities.

  6. Microencapsulation of Bioactive Principles with an Airless Spray-Gun Suitable for Processing High Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Moreno Cocchietto

    2013-11-01

    Full Text Available Purpose: to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs by processing highly viscous feed solutions (FSs. Methods: the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle’s dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L and the range of practicable feed solution (FS viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. Results: according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. Conclusions: the novel prototype of production plant is suitable to process large amounts (2 L or more of FSs, characterized by a high viscosity, to produce MPs

  7. The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis

    CERN Document Server

    Nelson, Benjamin E; Wright, Jason T; Fischer, Debra A; von Braun, Kasper; Howard, Andrew W; Payne, Matthew J; Dindar, Saleh

    2014-01-01

    We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We provide the first posterior sample for the masses and orbital parameters based on self-consistent n-body orbital solutions for the 55 Cancri planets, all of which are dynamically stable (for at least $10^8$ years). We apply a GPU version of Radial velocity Using N-body Differential evolution Markov Chain Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of the radial velocity and transit observations. Each of the planets in this remarkable system has unique characteristics. Our investigation of high-cadence radial velocities and priors based on space-based photometry yields an updated mass estimate for planet "e" ($7.99\\pm0.25$ M$_\\oplus$), which affects its density ($5.51\\pm^{1.32}_{...

  8. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  9. Universal planetary tectonics (supertectonics)

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  10. What characterizes planetary space weather?

    OpenAIRE

    2014-01-01

    International audience; Space weather has become a mature discipline for the Earth space environment. With increasing efforts in space exploration, it is becoming more and more necessary to understand the space environments of bodies other than Earth. This is the background for an emerging aspect of the space weather discipline: planetary space weather. In this article, we explore what characterizes planetary space weather, using some examples throughout the solar system. We consider energy s...

  11. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  12. Planetary Rings

    CERN Document Server

    Tiscareno, Matthew S

    2011-01-01

    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...

  13. The Roles of Discs for Planetary Systems

    CERN Document Server

    Yeh, L C; Yeh, Li-Chin; Jiang, Ing-Guey

    2007-01-01

    It is known that the discs are detected for some of the extra-solar planetary systems. It is also likely that there was a disc mixing with planets and small bodies while our Solar System was forming. From our recent results, we conclude that the discs play two roles: the gravity makes planetary systems more chaotic and the drag makes planetary systems more resonant.

  14. The compression behavior of blödite at low and high temperature up to ~10GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    Energy Technology Data Exchange (ETDEWEB)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra; Fei, Yingwei; Prakapenka, Vitali

    2017-03-01

    Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ~10.4 GPa and temperatures from ~118.8 K to ~490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperature equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede. The experimentally determined volume expansivity, α, varies from 7.6 (7) 10-5 K-1 at 0.0001 GPa (from 118.8 to 413.15 K) to 2.6 (3) 10-5 K-1 at 10 GPa (from 313.0 to 453.0 K) with a δα/δP coefficient = -5.6(9)10-6 GPa-1 K-1. The bulk modulus calculated from the least squares fitting of P-V data on the isotherm at 413 K using a second-order Birch - Murnaghan equation of state is 38(5) GPa, which gives the value of δK/δT equal to 0.01(5) GPa K-1. The thermo-baric behavior of blödite appears strongly anisotropic with c lattice parameter being more deformed with respect to a and b. Thermogravimetric analyses performed at ambient pressure showed three endotherms at 413 K, 533 K and 973 K with weight losses of approximately 11%, 11% and 43% caused by partial dehydration, full dehydration and sulfate decomposition respectively. Interestingly, no clear evidence of dehydration was observed up to ~453 K and ~10.4 GPa, suggesting that pressure acts to stabilize the crystalline structure of blödite. The data collected allow to write the following equation of state, V(P, T) = V

  15. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  16. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  17. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  18. Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances

    Science.gov (United States)

    Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.

    2016-08-01

    In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible

  19. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  20. Preliminary Broadband Measurements of Dielectric Permittivity of Planetary Regolith Analog Materials Using a Coaxial Airline

    Science.gov (United States)

    Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2014-12-01

    When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon

  1. A miniature laser ablation time-of-flight mass spectrometer for in situ planetary exploration

    Science.gov (United States)

    Rohner, Urs; Whitby, James A.; Wurz, Peter

    2003-12-01

    We report the development and testing of a miniature mass spectrometer and ion source intended to be deployed on an airless planetary surface to measure the elemental and isotopic composition of rocks and soils. Our design concentrates at this stage on the proposed BepiColombo mission to the planet Mercury. The mass analyser is an axially symmetric reflectron time-of-flight design. The ion source utilizes a laser induced plasma, which is directly coupled into the mass analyser. Laser ablation gives high spatial resolution, and avoids the need for sample preparation. Our prototype instrument has a demonstrated mass resolution m/Dgrm (FWHM) in excess of 600 and a predicted dynamic range of better than four orders of magnitude. Isotopic fractionation effects are found to be minor. We estimate that a flight instrument would have a mass of 500 g (including all electronics), a volume of 650 cm3 and could operate on 3 W power.

  2. A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100 Hour Spitzer Campaign

    CERN Document Server

    Dittmann, Jason A; Charbonneau, David; Berta-Thompson, Zachory K; Newton, Elisabeth R

    2016-01-01

    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of the known planet. We collected 21 transit observations of GJ 1132b with the MEarth-South array since 2015. We obtained 100 near-continuous hours of observations with the $Spitzer$ Space Telescope, including two transits of GJ 1132b and spanning 60\\% of the orbital phase of the maximum period at which bodies coplanar with GJ 1132b would pass in front of the star. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7\\%. When we combine the mass estimate of the star (obtained from its parallax and apparent $K_s$ band magnitude) with the stellar density inferred from our high-cadence $Spitzer$ light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be $0.2105^{+0.0102}_{-0.0085} R_\\odot$, and we refine the radius measurement of GJ 1132b to $1.130 \\pm 0.056 R_\\oplus$. Combin...

  3. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  4. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  5. Constraints on the location of a putative distant massive body in the Solar System and on the External Field Effect of MOND from recent planetary data

    CERN Document Server

    Iorio, Lorenzo

    2011-01-01

    We analytically work out the long-term variations caused on the motion of a planet orbiting a star by a distant, pointlike massive object X (Planet X/Nemesis/Tyche). It turns out that, apart from the semimajor axis $a$, all the other Keplerian orbital elements of the perturbed planet experience long-term variations which are complicated functions of the orbital configurations of both the planet itself and of X. A numerical integration of the equations of motion of the perturbed planet yielding the temporal evolution of all its orbital elements successfully confirms our analytical results. We infer constraints on the minimum distance $d_{\\rm X}$ at which the putative body X can exist by comparing, first, our prediction of the long-term variation of the longitude of the perihelion $\\varpi$ to the latest empirical determinations of the corrections $\\Delta\\dot\\varpi$ to the standard Newtonian/Einsteinian secular precessions of several planets of the solar system recently obtained. Independent teams of astronomers...

  6. The Planetary Archive

    Science.gov (United States)

    Penteado, Paulo F.; Trilling, David; Szalay, Alexander; Budavári, Tamás; Fuentes, César

    2014-11-01

    We are building the first system that will allow efficient data mining in the astronomical archives for observations of Solar System Bodies. While the Virtual Observatory has enabled data-intensive research making use of large collections of observations across multiple archives, Planetary Science has largely been denied this opportunity: most astronomical data services are built based on sky positions, and moving objects are often filtered out.To identify serendipitous observations of Solar System objects, we ingest the archive metadata. The coverage of each image in an archive is a volume in a 3D space (RA,Dec,time), which we can represent efficiently through a hierarchical triangular mesh (HTM) for the spatial dimensions, plus a contiguous time interval. In this space, an asteroid occupies a curve, which we determine integrating its orbit into the past. Thus when an asteroid trajectory intercepts the volume of an archived image, we have a possible observation of that body. Our pipeline then looks in the archive's catalog for a source with the corresponding coordinates, to retrieve its photometry. All these matches are stored into a database, which can be queried by object identifier.This database consists of archived observations of known Solar System objects. This means that it grows not only from the ingestion of new images, but also from the growth in the number of known objects. As new bodies are discovered, our pipeline can find archived observations where they could have been recorded, providing colors for these newly-found objects. This growth becomes more relevant with the new generation of wide-field surveys, particularly LSST.We also present one use case of our prototype archive: after ingesting the metadata for SDSS, 2MASS and GALEX, we were able to identify serendipitous observations of Solar System bodies in these 3 archives. Cross-matching these occurrences provided us with colors from the UV to the IR, a much wider spectral range than that

  7. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  8. Six Hot Topics in Planetary Astronomy

    OpenAIRE

    Jewitt, David

    2008-01-01

    Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

  9. Next Generation Gamma/Neutron Detectors for Planetary Science. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma-ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  10. Next Generation Gamma/Neutron Detectors for Planetary Science. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  11. Planetary plains: subsidence and warping

    Science.gov (United States)

    Kochemasov, G.

    A common feature of all celestial bodies is their tectonic dichotomy best studied, naturally, at Earth [1]. Here there is an opposition of the eastern continental hemisphere and the western oceanic one. The first one is uplifted and cracked, the second one subsided, squeezed and warped. The next excellent example of dichotomy is at Mars where the subsided northern hemisphere is opposed by the highly uplifted southern one. The enigmatic two-face Iapetus now with help of Cassini SC presents a more clear picture: the leading dark hemisphere is opposed by the trailing light one. The light hemisphere is built mainly of water ice, the dark one of some more dense material. Bean-shaped asteroids with one convex and another concave hemispheres are best exemplified by Ida. Examples of dichotomic asteroids, satellites, planets and stars could be extended. Ubiquity of this phenomenon was expressed as the 1st theorem of the planetary wave tectonics [2 & others]: "Celestial bodies are dichotomic". A reason of this phenomenon is in action of inertia-gravity waves occurring in any celestial body because of its movement in non-round but elliptical (parabolic) orbit with periodically changing accelerations. The inertia-gravity standing waves warp rotating bodies (but all bodies rotate !) in 4 ortho- and diagonal interfering directions and in several harmonic wave-lengths. The fundamental wave1 produces ubiquitous tectonic dichotomy (2πR-structure): an opposition of two hemispheres with different planetary radii. To keep angular momenta of two hemispheres equal (otherwise a body will fall apart) the lower subsiding one is constructed of denser material than the higher one. Normally in terrestrial planets lowlands are filled with dense basalts, highlands are built by lighter lithologies. A subsidence means diminishing radius, otherwise, the larger surface must be fit into a smaller space. It is possible only if an original infilling is warped. At Earth cosmic altimetry shows complex

  12. Life on Earth and other planetary bodies

    CERN Document Server

    Hanslmeier, Arnold; Seckbach, Joseph

    2012-01-01

    This volume covers aspects of life on Earth with all its diversity and the possibilities of extraterrestrial life. It presents contributions by experts from 20 countries who discuss astrobiology emphasizing life "as we know it" to extraterrestrial places.

  13. Planetary mass function and planetary systems

    CERN Document Server

    Dominik, M

    2010-01-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows to derive all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their r...

  14. The Planetary Project

    Science.gov (United States)

    Pataki, Louis P.

    2016-06-01

    This poster presentation presents the Planetary Project, a multi-week simulated research experience for college non-science majors. Students work in research teams of three to investigate the properties of a fictitious planetary system (the “Planetary System”) created each semester by the instructor. The students write team and individual papers in which they use the available data to draw conclusions about planets, other objects or general properties of the Planetary System and in which they compare, contrast and explain the similarities between the objects in the Planetary System and comparable objects in the Solar System.Data about the orbital and physical properties of the planets in the Planetary System are released at the start of the project. Each week the teams request data from a changing pool of available data. For example, in week one pictures of the planets are available. Each team picks one planet and the data (pictures) on that planet are released only to that team. Different data are available in subsequent weeks. Occasionally a news release to all groups reports an unusual occurrence - e.g. the appearance of a comet.Each student acts as principal author for one of the group paper which must contain a description of the week’s data, conclusions derived from that data about the Planetary System and a comparison with the Solar System. Each students writes a final, individual paper on a topic of their choice dealing with the Planetary System in which they follow the same data, conclusion, comparison format. Students “publish” their papers on a class-only restricted website and present their discoveries in class talks. Data are released to all on the website as the related papers are “published.” Additional papers commenting on the published work and released data are encouraged.The successes and problems of the method are presented.

  15. Liberating exomoons in white dwarf planetary systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Gaensicke, Boris T

    2016-01-01

    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 10^6 years. The short sinking timescale for the pollutants indicate that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events among planets in WD systems easily triggers moon ejection. Repeated close encounters within tenths of a planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the ...

  16. A New Method for Determining Geometry of Planetary Images

    CERN Document Server

    Guio, P

    2010-01-01

    This paper presents a novel semi-automatic image processing technique to estimate accurately, and objectively, the disc parameters of a planetary body on an astronomical image. The method relies on the detection of the limb and/or the terminator of the planetary body with the VOronoi Image SEgmentation (VOISE) algorithm (Guio and Achilleos, 2009). The resulting map of the segmentation is then used to identify the visible boundary of the planetary disc. The segments comprising this boundary are then used to perform a "best" fit to an algebraic expression for the limb and/or terminator of the body. We find that we are able to locate the centre of the planetary disc with an accuracy of a few tens of one pixel. The method thus represents a useful processing stage for auroral "imaging" based studies.

  17. The compression behavior of blödite at low and high temperature up to ∼10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    Science.gov (United States)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra; Fei, Yingwei; Prakapenka, Vitali

    2017-03-01

    Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ∼10.4 GPa and temperatures from ∼118.8 K to ∼490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperature equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede. The experimentally determined volume expansivity, α, varies from 7.6 (7) 10-5 K-1 at 0.0001 GPa (from 118.8 to 413.15 K) to 2.6 (3) 10-5 K-1 at 10 GPa (from 313.0 to 453.0 K) with a δα/δP coefficient = -5.6(9)10-6 GPa-1 K-1. The bulk modulus calculated from the least squares fitting of P-V data on the isotherm at 413 K using a second-order Birch - Murnaghan equation of state is 38(5) GPa, which gives the value of δK/δT equal to 0.01(5) GPa K-1. The thermo-baric behavior of blödite appears strongly anisotropic with c lattice parameter being more deformed with respect to a and b. Thermogravimetric analyses performed at ambient pressure showed three endotherms at 413 K, 533 K and 973 K with weight losses of approximately 11%, 11% and 43% caused by partial dehydration, full dehydration and sulfate decomposition respectively. Interestingly, no clear evidence of dehydration was observed up to ∼453 K and ∼10.4 GPa, suggesting that pressure acts to stabilize the crystalline structure of blödite. The data collected allow to write the following equation of state, V(P, T) = V0[1 + 7.6(7)10- 5ΔT - 0.026(3)P - 5.6(9)10- 6PΔT-6.6(9)10- 6PΔT)] from which the density of bl

  18. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the

  19. Special Software for Planetary Image Processing and Research

    Science.gov (United States)

    Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.

    2016-06-01

    The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).

  20. Image Processing for Planetary Limb/Terminator Extraction

    Science.gov (United States)

    Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.

    1995-01-01

    A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.

  1. Planetary polarization nephelometer

    NARCIS (Netherlands)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.M.; Volten, H.; Wilson, A.

    2004-01-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths separa

  2. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  3. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  4. Planetary ring systems

    CERN Document Server

    Miner, Ellis D; Cuzzi, Jeffrey N

    2007-01-01

    This is the most comprehensive and up-to-date book on the topic of planetary rings systems yet written. The book is written in a style that is easily accessible to the interested non expert. Each chapter includes notes, references, figures and tables.

  5. Planetary rings - Theory

    Science.gov (United States)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  6. Numerical Models in Planetary Geology - Specifics of One-Plate Planets

    Science.gov (United States)

    Breuer, Doris; Wünnemann, Kai; Spohn, Tilman

    2015-04-01

    Impact craters, volcanic constructs and compressional and extensional fracture zones are typical landforms found on terrestrial planets. Features characteristic of plate-tectonics like on Earth are generally lacking. An exception are the surfaces of Ganymede and perhaps Europa where indications of lateral displacements of surface units have been observed. Planetary geologists modeling tectonic features often resort to studies of features on Earth such as Graben formation of which Valles Marineris on Mars is a giant example or shield volcanoes where Olympus Mons is another giant example. Scaling laws can be used, for instance for shield volcanoes to relate their height and base diameter to the value of the planet's gravity. More specific for numerical modeling of landforms on terrestrial planets is the formation of impact craters, which can be more easily studied on airless bodies or planets of low atmospheric pressure such as Mercury, the Moon, and Mars. Impact modeling relates crater diameters and morphology to the size and mass of the impactor. Very large impacts may even be affecting the mantles and cores and have been modeled, for instance, to study the heating and melting of a planet's deep interior. The giant impact hypothesis for the formation of Earth's moon has been tested by modeling. Such studies have only been possible due to significant improvements of so-called hydrocodes over the last couple of decades, specifically in terms of material modeling. The consideration of elastic-plastic material behavior taking ductile and brittle deformation, fracturing, and the compaction and opening of pore space into account was recognized to be key for a better understanding of impact crater formation. As a consequence of the advancements in material modeling the classic term "hydrocode" is actually no longer justified and is now often replaced by the term "shock physics code". Another tectonic feature that is more specific to terrestrial planets are lobate scarps

  7. Do Planetary Encounters Reset Surfaces of Near Earth Asteroids?

    CERN Document Server

    Nesvorny, David; Vokrouhlicky, David; Chapman, Clark R; Rafkin, Scot

    2010-01-01

    Processes such as the solar wind sputtering and micrometeorite impacts can modify optical properties of surfaces of airless bodies. This explains why spectra of the main belt asteroids, exposed to these `space weathering' processes over eons, do not match the laboratory spectra of ordinary chondrite (OC) meteorites. In contrast, an important fraction of Near Earth Asteroids (NEAs), defined as Q-types in the asteroid taxonomy, display spectral attributes that are a good match to OCs. Here we study the possibility that the Q-type NEAs underwent recent encounters with the terrestrial planets and that the tidal gravity (or other effects) during these encounters exposed fresh OC material on the surface (thus giving it the Q-type spectral properties). We used numerical integrations to determine the statistics of encounters of NEAs to planets. The results were used to calculate the fraction and orbital distribution of Q-type asteroids expected in the model as a function of the space weathering timescale, t_sw (see m...

  8. An ethical approach of planetary protection

    Science.gov (United States)

    Arnould, J.; Debus, A.

    Since the beginning of Solar System Exploration a lot of spacecraft have been sent in the Solar System and one of the main goals of such missions on Mars particularly is the search for eventual extraterrestrial life forms It is known that some terrestrial entities are able to survive the cruise during space exploration missions and it cannot be excluded that they can contaminate other planetary environments forward contamination At another level possible extraterrestrial life forms are unknown and their ability to contaminate the Earth s biosphere back contamination in the frame of sample return missions for example remains also unknown The article IX of the OUTER SPACE TREATY London Washington January 27 1967 ratified by pratically all spacefaring nations requires to preserve Solar system bodies and Earth from contamination All Nations part to this Treaty have to prevent forward mainly for scientific reasons and backward contamination during missions exploring our Solar System Consequently the United Nations UN-COPUOS has delegated the COSPAR Committee of Space Research to take charge of planetary protection and at present all spacefaring nations have to comply with COSPAR policy and consequently with COSPAR planetary protection recommendations It could be useful to review the planetary protection recommendations in the light of an ethical approach Shall other environments Mars one for example be protected only for scientific reason allowing its biological contamination in proportion compatible with exobiological

  9. Access to planetary science for the broad public: a more familiar planetary nomenclature and terminology system

    Science.gov (United States)

    Hargitai, H.

    The Planetary Sciences in the last decades has accumulated an amount of knowledge that is comparable to other Earth Sciences. The study of planets is not any more a computation of orbital data, but the investigation and description of surface features of dozens of planetary bodies, including our own Earth. This way, it is only an extention of the present Earth sciences like geography, geology, geophisics, meteorolgy etc. In Hungary, Planetary Science studies has been made for decades, but especially today, numerous popular scientific works are published, and the subject of planetology (and also exobiology linked to it) is taught in more and more secondary schools and universities. This ma kes a demand for a Hungarian language terminology and nomenclature in the relatively new discipline of Planetology. It is needed because the present terminology of geosciences is not adequeate for the description of the surface conditions and structures in other planetary bodies. In the mean time it has to be in accord with the Earth-based system. Since this is areal discipline in its subject, it is of high importance that the areas studied be identifiable easily, unambiguously and descriptively. This make s the translation/transcription of IAU's nomenclature our second goal. This is not a simple transliteration of the proper names used in planetary body nomenclatures, but the task is also the setting of the basic rules used in the making of Hungarian nomenclature system. It would be useful, if the system would be useable for any body of the solar system. It has to fit into the system of both the IAU's nomenlcature and the Hungarian geographic name system [1]. This makes a double task: to make a system that is appropriate both linguistically and scientifically. At the same time, in popular science and elementary education, the planetary features' common names and some basic terms should be in the mother languages of the readers, and not in latin or English (outside the anglophone

  10. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  11. Forming different planetary systems

    Institute of Scientific and Technical Information of China (English)

    Ji-Lin Zhou; Ji-Wei Xie; Hui-Gen Liu; Hui Zhang; Yi-Sui Sun

    2012-01-01

    With the increasing number of detected exoplanet samples,the statistical properties of planetary systems have become much clearer.In this review,we summarize the major statistical results that have been revealed mainly by radial velocity and transiting observations,and try to interpret them within the scope of the classical core-accretion scenario of planet formation,especially in the formation of different orbital architectures for planetary systems around main sequence stars.Based on the different possible formation routes for different planet systems,we tentatively classify them into three major catalogs:hot Jupiter systems,standard systems and distant giant planet systems.The standard systems can be further categorized into three sub-types under different circumstances:solar-like systems,hot Super-Earth systems,and subgiant planet systems.We also review the theory of planet detection and formation in binary systems as well as planets in star clusters.

  12. Strongly Interacting Planetary Systems

    Science.gov (United States)

    Ford, Eric

    2017-01-01

    Both ground-based Doppler surveys and NASA's Kepler mission have discovered a diversity of planetary system architectures that challenge theories of planet formation. Systems of tightly-packed or near-resonant planets are particularly useful for constraining theories of orbital migration and the excitation of orbital eccentricities and inclinations. In particular, transit timing variations (TTVs) provide a powerful tool to characterize the masses and orbits of dozens of small planets, including many planets at orbital periods beyond the reach of both current Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified some ``supper-puffy'' planets, i.e., low mass planets with surprisingly large radii and low densities. I will describe a few particularly interesting planetary systems and discuss the implications for the formation of planets ranging from gaseous super-Earth-size planets to rocky planets the size of Mars.

  13. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  14. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  15. The Influence of Volcanic Aerosols on Planetary Habitability

    Science.gov (United States)

    Chen, Howard; Horton, Daniel Ethan

    2017-01-01

    On rocky planetary bodies such as Proxima Centuri b, the detection of sulphate aerosols may indicate volcanism and tectonic activity; ingredients hypothesized to be necessary for planetary habitability. However, due to the effect of atmospheric aerosols on a planet’s energy balance, coupled with eruption constituent and frequency uncertainties, the potential impact of volcanic activity on planetary habitability remains unresolved. Here, we employ multi-column climate models in conjunction with a parameter space approach to test the effect of volcanic aerosols on planetary climate with various climate sensitivities. Preliminary results indicate that volcanic activity could provide a means of extending the inner edge of the habitable zone (IHZ), depending on eruption constituents and frequency. Previous work using transit spectra simulations have demonstrated the possibility of detecting transient aerosols of volcanic origin. Our work investigates the range of habitability implications detection of such aerosols would imply.

  16. Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover

    Science.gov (United States)

    Rohner, Urs; Whitby, James A.; Wurz, Peter; Barabash, Stas

    2004-05-01

    We report the development and testing of a highly miniaturized mass spectrometer and ion source intended to be deployed on an airless planetary surface to measure the elemental and isotopic composition of solids, e.g., rocks and soils. Our design concentrates at this stage on the proposed BepiColombo mission to the planet Mercury. The mass analyzer is a novel combination of an electrostatic analyzer and a reflectron time-of-flight design. The ion source utilizes a laser induced plasma, which is directly coupled into the mass analyzer. Laser ablation gives high spatial resolution and avoids the need for sample preparation. Our prototype instrument has a demonstrated mass resolution m/Δm full width at half maximum in excess of 180 and a predicted dynamic range of better than five orders of magnitude. We estimate that a flight instrument would have a mass of 280 g (including laser and all electronics), a volume of 84 cm3, and could operate on 3 W power.

  17. Lightning detection in planetary atmospheres

    CERN Document Server

    Aplin, Karen L

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  18. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  19. Galactic planetary science

    CERN Document Server

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets -mainly radial velocity and transit - or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next...

  20. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  1. A High Speed, Radiation Hard X-Ray Imaging Spectroscometer for Planetary Investigations

    Science.gov (United States)

    Kraft, R. P.; Kenter, A. T.; Murray, S. S.; Martindale, A.; Pearson, J.; Gladstone, R.; Branduardi-Raymont, G.; Elsner, R.; Kimura, T.; Ezoe, Y.; Grant, C.; Roediger, E.; Howell, R.; Elvis, M.; Smith, R.; Campbell, B.; Morgenthaler, J.; Kravens, T.; Steffl, A. J.; Hong, J.

    2014-01-01

    X-ray observations provide a unique window into fundamental processes in planetary physics, and one that is complementary to observations obtained at other wavelengths. We propose to develop an X-ray imaging spectrometer (0.1-10 keV band) that, on orbital planetary missions, would measure the elemental composition, density, and temperature of the hot plasma in gas giant magnetospheres, the interaction of the Solar wind with the upper atmospheres of terrestrial planets, and map the elemental composition of the surfaces of the Galilean moons and rocky or icy airless systems on spatial scales as small as a few meters. The X-ray emission from gas giants, terrestrial planets and moons with atmospheres, displays diverse characteristics that depend on the Solar wind's interaction with their upper atmospheres and/or magnetospheres. Our imaging spectrometer, as part of a dedicated mission to a gas giant, will be a paradigm changing technology. On a mission to the Jovian system, our baseline instrument would map the elemental composition of the rocky and icy surfaces of the Galilean moons via particle-induced X-ray fluorescence. This instrument would also measure the temperature, density and elemental abundance of the thermal plasma in the magnetosphere and in the Io plasma torus (IPT), explore the interaction of the Solar wind with the magnetosphere, and characterize the spectrum, flux, and temporal variability of X-ray emission from the polar auroras. We will constrain both the mode of energy transport and the effective transport coefficients in the IPT and throughout the Jovian magnetosphere by comparing temporal and spatial variations of the X-ray emitting plasma with those seen from the cooler but energetically dominant 5 eV plasma.

  2. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  3. Phase Equilibrium Investigations of Planetary Materials

    Science.gov (United States)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  4. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Green, James

    2016-04-01

    another instrument. This was a tremendously successful activity leading to another similar call for instrument proposals for the Europa mission that is currently under definition by NASA. Europa mission instruments will be used to conduct high priority scientific investigations addressing the science goals for the moon's exploration outlined in the National Resource Council's Planetary Decadal Survey, Vision and Voyages (2011). The selection of these instruments will be announced in the late spring or early summer. International partnerships are an excellent, proven way of amplifying the scope and sharing the science results of a mission otherwise implemented by an individual space agency. The exploration of the Solar System is uniquely poised to bring planetary scientists, worldwide, together under the common theme of understanding the origin, evolution, and bodies of our solar neighborhood. In the past decade we have witnessed great examples of international partnerships that made various missions the success they are known for today. As Director of Planetary Science at NASA I will continue to seek cooperation with our strong international partners in support of planetary missions.

  5. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  6. The NASA/USGS Planetary Geologic Mapping Program

    Science.gov (United States)

    Tanaka, K.

    NASA's Planetary Geologic Mapping Program (PGM) publishes geologic maps of the planets based on released, geodetically controlled spacecraft data. The general objectives of PGM include (1) production of geologic maps that will greatly increase our knowledge of the materials and processes that have contributed to the evolution of Solar System bodies, and (2) geologic surveys of areas of special interest that may be investigated by future missions. Although most map authors are from U.S. institutions, some European investigators have also served as authors. PGM is sponsored by NASA's Planetary Geology and Geophysics Program (PGG) and has been supported by personnel of the Astrogeology Team of the U.S. Geological Survey (USGS) for more than 40 years. PGG also supports the Astrogeology Team to prepare and distribute controlled data products necessary for the production of geologic maps. USGS coordination and outreach activities for PGM include developing new planetary geologic map series, managing existing map series, generating geologic mapping databases and packages for individual mapping investigators, providing oversight and expertise in meeting the requirements of USGS map standards, providing editorial support in map reviews and revisions, supporting map pre-press production, and maintaining an informative planetary geologic mapping web page (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/). The Astrogeology Team also provides a Geographic Information Systems (GIS) web site (Planetary Interactive GIS on the Web Analyzable Database, or PIGWAD) to facilitate distribution and analysis of spatially registered, planetary geologic data primarily in vector form. USGS now publishes planetary geologic map data in GIS format. Geologic maps of planetary bodies published by USGS through 2005 include 80 of the Moon from 1:10K to 1:5M scale, 93 of Mars from 1:500K to 1:15M scale, 18 of Venus at 1:5M and 1:15M scales, 9 of Mercury at 1:5M scale, and 16 of the Galilean

  7. Distances from Planetary Nebulae

    CERN Document Server

    Ciardullo, R

    2003-01-01

    The [O III] 5007 planetary nebula luminosity function (PNLF) occupies an important place on the extragalactic distance ladder. Since it is the only method that is applicable to all the large galaxies of the Local Supercluster, it is uniquely useful for cross-checking results and linking the Population I and Population II distance scales. We review the physics underlying the method, demonstrate its precision, and illustrate its value by comparing its distances to distances obtained from Cepheids and the Surface Brightness Fluctuation (SBF) method. We use the Cepheid and PNLF distances to 13 galaxies to show that the metallicity dependence of the PNLF cutoff is in excellent agreement with that predicted from theory, and that no additional systematic corrections are needed for either method. However, when we compare the Cepheid-calibrated PNLF distance scale with the Cepheid-calibrated SBF distance scale, we find a significant offset: although the relative distances of both methods are in excellent agreement, th...

  8. Planetary internal structures

    CERN Document Server

    Baraffe, I; Fortney, J; Sotin, C

    2014-01-01

    This chapter reviews the most recent advancements on the topic of terrestrial and giant planet interiors, including Solar System and extrasolar objects. Starting from an observed mass-radius diagram for known planets in the Universe, we will discuss the various types of planets appearing in this diagram and describe internal structures for each type. The review will summarize the status of theoretical and experimental works performed in the field of equation of states (EOS) for materials relevant to planetary interiors and will address the main theoretical and experimental uncertainties and challenges. It will discuss the impact of new EOS on interior structures and bulk composition determination. We will discuss important dynamical processes which strongly impact the interior and evolutionary properties of planets (e.g plate tectonics, semiconvection) and describe non standard models recently suggested for our giant planets. We will address the case of short-period, strongly irradiated exoplanets and critica...

  9. An ethical approach to planetary protection

    Science.gov (United States)

    Arnould, Jacques; Debus, André

    2008-09-01

    What hazards might biological contamination pose to planets, comets and other celestial bodies visited by probes launched from Earth? What hazards might returning probes pose to Earth and its inhabitants? What should be considered an acceptable level of risk? What technologies, procedures and constraints should be applied? What sort of attitude has to be chosen concerning human crews, who themselves could become both contaminated victims and contaminating agents? The vast issue of planetary protection must, more than ever, spark ethical debate. Space treaty, COSPAR recommendations offer borders and context for this reflection, which has to be introduced in the actual humanist: never has been anthropocentrism so practical and concerned, in the same time, by the next generations, because of the historical character of life. At least an ethics of risk is necessary (far from the myth of zero-risk) for all the three types of contamination: other celestial bodies (forward contamination), Earth (backward contamination) and astronauts.

  10. Formation of planetary systems is in sight now. ; On transformation on Initial solar system as seen from meteorites (On transformation of source celestial bodies). Wakuseikei no keisei ga mietekita. ; Inseki ni miru shoki taiyokei (Shigen botaiten no henka wo megutte)

    Energy Technology Data Exchange (ETDEWEB)

    Tomeoka, K. (The University of Tokyo, Tokyo (Japan). Faculty of Science)

    1992-02-01

    The meteoritic studies using high-resolution transmission electron microscopes are in a process of elucidating the problem as to whether the carbon-based chondrite meteorites regarded as initial chemically are the substance resulted from accumulation of solid particles which have had existed in the solar system nebulae, or whether they have had been subjected to any secondary modification after the accumulation. The initial state of the solar system was inferred through considering the latest research results on transforming actions given to these source celestial bodies. The intervention of the water quality transformation as a result of water actions at temperatures as low as associating no loss in volatile elements has been elucidated from the researches on micro-structures in a substance contained in the carbon-based chondrite. As to at what stage the water quality transformation has taken place, a view that its timing is after the formation of the base celestial bodies is predominant. A consideration was given on what the first celestial body integrated from a solar system nebula was like using a model presenting the transforming actions on the carbon-based chondrite celestial bodies. 11 refs., 4 figs.

  11. Magnetic Helicity and Planetary Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  12. Planetary science: Eris under scrutiny

    Science.gov (United States)

    Gulbis, Amanda

    2011-10-01

    A stellar occultation by the dwarf planet Eris provides a new estimate of its size. It also reveals a surprisingly bright planetary surface, which could indicate the relatively recent condensation of a putative atmosphere. See Letter p.493

  13. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  14. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  15. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    Directory of Open Access Journals (Sweden)

    Nediljko Budisa

    2014-08-01

    Full Text Available In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic. Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment.

  16. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    Science.gov (United States)

    Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk

    2014-01-01

    In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378

  17. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  18. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  19. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  20. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  1. Dynamical Simulations of the Planetary System HD69830

    CERN Document Server

    Payne, Matthew J; Wyatt, Mark C; Booth, Mark

    2008-01-01

    HD 69830 exhibits radial velocity variations attributed to three planets as well as infrared emission attributed to a warm debris disk. Previous studies have developed models for the planet migration and mass growth (Alibert et al. 2006) and the replenishment of warm grains (Wyatt et al. 2007). We perform n-body integrations in order to explore the implications of these models for: 1) the excitation of planetary eccentricity, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the IR emission. We find that: i) It is not possible to explain the observed planetary eccentricities (e~0.1) purely as the result of planetary perturbations during migration unless the planetary system is nearly face-on. ii) The rate of accretion of planetesimals onto planets in our n-body simulations is significantly different to that assumed in the semi-analytic models, suggesting that one cannot successfully treat pla...

  2. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  3. Interstellar Transfer of Planetary Microbiota

    Science.gov (United States)

    Wallis, Max K.; Wickramasinghe, N. C.

    Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.

  4. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  5. Planetary cubesats - mission architectures

    Science.gov (United States)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  6. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  7. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  8. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  9. The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics

    Science.gov (United States)

    Yin, Huabing; Zhou, Guangming

    2010-06-01

    The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made

  10. Planetary systems in star clusters

    CERN Document Server

    Kouwenhoven, M B N; Cai, Maxwell Xu; Spurzem, Rainer

    2016-01-01

    Thousands of confirmed and candidate exoplanets have been identified in recent years. Consequently, theoretical research on the formation and dynamical evolution of planetary systems has seen a boost, and the processes of planet-planet scattering, secular evolution, and interaction between planets and gas/debris disks have been well-studied. Almost all of this work has focused on the formation and evolution of isolated planetary systems, and neglect the effect of external influences, such as the gravitational interaction with neighbouring stars. Most stars, however, form in clustered environments that either quickly disperse, or evolve into open clusters. Under these conditions, young planetary systems experience frequent close encounters with other stars, at least during the first 1-10 Myr, which affects planets orbiting at any period range, as well as their debris structures.

  11. Variational Principle for Planetary Interiors

    Science.gov (United States)

    Zeng, Li; Jacobsen, Stein B.

    2016-09-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass-radius relation, an estimate of the error propagation from the equation of state to the mass-radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  12. Variational Principle for Planetary Interiors

    CERN Document Server

    Zeng, Li

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. Variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying this principle to planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From it, a universal mass-radius relation, an estimate of error propagation from equation of state to mass-radius relation, and a form of virial theorem applicable to planetary interiors are derived.

  13. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  14. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  15. Do tidal or swing waves roughen planetary surfaces?

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    Surfaces of the terrestrial planets and their moons are far from being smooth. They are warped by several wavelengths and show a remarkable regularity: their roughness increases with the solar distance. Thus, if for Mercury the surface relief range does not exceed several km, for Mars it is already about 30 km. Earth's range is 20 km, Venus' one 14 km. Recently it was shown that this row of ranges reflects ratios of the tectonic granules radii of terrestrial planets [1, 2]. These radii related to unity of reduced planetary globes (in a geometrical model all planets are represented by even circles [2]) are as follows: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2. It means that in the great planetary circles (equators) there are 32, 12, 8, and 4 tectonic granules (now they all are mapped by remote methods) and their numbers are inversely proportional to the orbital frequencies of the planets: higher frequency - smaller granule, and, vice versa, lower frequency - larger granule. In this planetary law is a firm confirmation of the main conceptual point of the wave planetology: "Orbits make structures" [3]. But how this happens? A basic reason lies in the keplerian elliptical orbits implying periodical changes of planetary bodies accelerations. Periodical slowing down and speeding up produce inertia-gravity waves warping any celestial body. In rotating bodies this wave warping is divided in four directions: two orthogonal and two diagonal. An interference of these directions produces tectonic blocks of three kinds: uplifting, subsiding, and neutral. Sizes and amplitudes of the blocks (granules) depend on the warping wavelengths and increase with the solar distance. Thus, a relief-forming potential and the actual relief range observed on the planets increase in this direction [1, 2, 4]. But the tidal forces diminish in this direction. That is why they cannot be a reason for the relief-forming potential. Having in mind a swinging action of planetary orbits on

  16. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  17. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    Science.gov (United States)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an

  18. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)

    Science.gov (United States)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.

    2016-09-01

    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  19. The four hundred years of planetary science since Galileo and Kepler.

    Science.gov (United States)

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  20. Online Planetary Science Courses at Athabasca University

    Science.gov (United States)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  1. Spice Tools Supporting Planetary Remote Sensing

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2016-06-01

    NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events

  2. Searching for stable orbits in the HD 10180 planetary system

    Directory of Open Access Journals (Sweden)

    Laskar J.

    2011-02-01

    Full Text Available A planetary system with at least seven planets has been found around the star HD 10180. However, the traditional Keplerian and n-body fits to the data provide an orbital solution that becomes unstable very quickly, which may quest the reliability of the observations. Here we show that stable orbital configurations can be obtained if general relativity and long-term dissipation raised by tides on the innermost planet are taken into account.

  3. Revised Diagnostic Diagrams for Planetary Nebulae

    CERN Document Server

    Riesgo, H

    2006-01-01

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  4. Experimental studies of crystal-melt differentiation in planetary basalt compositions

    Science.gov (United States)

    Grove, T. L.

    1987-01-01

    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented.

  5. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  6. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  7. Gravitational Stirring in Planetary Debris Disks

    CERN Document Server

    Kenyon, S J; Kenyon, Scott J.; Bromley, Benjamin C.

    2001-01-01

    We describe gravitational stirring models of planetary debris disks using a new multi-annulus planetesimal evolution code. The current code includes gravitational stirring and dynamical friction; future studies will include coagulation, fragmentation, Poynting-Robertson drag, and other physical processes. We use the results of our calculations to investigate the physical conditions required for small bodies in a planetesimal disk to reach the shattering velocity and begin a collisional cascade. Our results demonstrate that disks composed primarily of bodies with a single size will not undergo a collisional cascade which produces small dust grains at 30-150 AU on timescales of 1 Gyr or smaller. Disks with a size distribution of bodies reach conditions necessary for a collisional cascade in 10 Myr to 1 Gyr if the disk is at least as massive as a minimum mass solar nebula and if the disk contains objects with radii of 500 km or larger. The estimated 500 Myr survival time for these disks is close to the median ag...

  8. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    Didier Queloz of Geneva Observatory. Two of the newly discovered retrograde planets have already been found to have more distant, massive companions that could potentially be the cause of the upset. These new results will trigger an intensive search for additional bodies in other planetary systems. This research was presented at the Royal Astronomical Society National Astronomy Meeting (NAM2010) that is taking place this week in Glasgow, Scotland. Nine publications submitted to international journals will be released on this occasion, four of them using data from ESO facilities. On the same occasion, the WASP consortium was awarded the 2010 Royal Astronomical Society Group Achievement Award. Notes [1] The current count of known exoplanets is 454. [2] The nine newly found exoplanets were discovered by the Wide Angle Search for Planets (WASP). WASP comprises two robotic observatories, each consisting of eight wide-angle cameras that simultaneously monitor the sky continuously for planetary transit events. A transit occurs when a planet passes in front of its parent star, temporarily blocking some of the light from it. The eight wide-angle cameras allow millions of stars to be monitored simultaneously to detect these rare transit events. The WASP cameras are operated by a consortium including Queen's University Belfast, the Universities of Keele, Leicester and St Andrews, the Open University, the Isaac Newton Group on La Palma and the Instituto Astrofisica Canarias. [3] To confirm the discovery and characterise a new transiting planet, it is necessary to do radial velocity follow-up to detect the wobble of the host star around its common centre of mass with the planet. This is done with a worldwide network of telescopes equipped with sensitive spectrometers. In the northern hemisphere, the Nordic Optical Telescope in the Canary Islands and the SOPHIE instrument on the 1.93-metre telescope at Haute-Provence in France lead the search. In the south, the HARPS exoplanet hunter

  9. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  10. On stability of planetary motion during stellar approaches

    Science.gov (United States)

    Gasanov, S. A.; Mammadli, A. H.

    2016-10-01

    We consider motion of a passive-gravitating body when a test star (perturbing body) approaches the central body. An integral invariant relation - a quasi-integral - is found by using exact expression of the force function, and regions of possible motion of a passive-gravitating body are determined. The surfaces of minimal energy (a generalization of zero velocity surfaces) are plotted, singular points of these surfaces are determined, their type and Lyapunov stability are established. Hill's stability of planetary motion is investigated for the case of a test star approaching the Solar system. Criteria for capture of a passive-gravitating body by a test star being possible and impossible are derived. Based on Hill stability criteria, we find critical parameters of the test star's orbit that leave planets bound to the Solar system.

  11. SPICE Supports Planetary Science Observation Geometry

    Science.gov (United States)

    Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.

    2015-11-01

    "SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this

  12. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  13. Report on the 2015 COSPAR Panel on Planetary Protection Colloquium

    Science.gov (United States)

    Hipkin, Victoria; Kminek, Gerhard

    2016-07-01

    In consultation with the COSPAR Scientific Commissions B (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) and F (Life Sciences as Related to Space), the COSPAR Panel on Planetary Protection organised a colloquium at the International Space Science Institute (ISSI) in Bern, Switzerland, in September 2015, to cover two pertinent topics: * Icy moon sample return planetary protection requirements * Mars Special Regions planetary protection requirements These two topics were addressed in two separate sessions. Participation from European, North American and Japanese scientists reflected broad expertise from the respective COSPAR Commissions, recent NASA MEPAG Science Analysis Group and National Academies of Sciences, Engineering, and Medicine/European Science Foundation Mars Special Regions Review Committee. The recommendations described in this report are based on discussions that took place during the course of the colloquium and reflect a consensus of the colloquium participants that participated in the two separate sessions. These recommendations are brought to the 2016 COSPAR Scientific Assembly for further input and discussion as part of the recognised process for updating COSPAR Planetary Protection Policy.

  14. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  15. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  16. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  17. Planetary engulfment as a trigger for white dwarf pollution

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the Kozai-Lidov mechanism from a stellar binary companion. We show that this mechanism can explain the observed levels of accretion if: (1) the planetary engulfment happens fast compared to the secular timescale, which is generally the case for wide binaries ($>100$ AU) and planetary engulfment during the Asymptotic Giant Branch; (2) the planetesimal disk has a total mass of $\\sim10^{-4}-10^{-2}M_\\oplus$. We ...

  18. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  19. Planetary Engulfment as a Trigger for White Dwarf Pollution

    Science.gov (United States)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ∼ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  20. Precision photometry for planetary transits

    CERN Document Server

    Pont, F; Pont, Frederic; Moutou, Claire

    2007-01-01

    We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.

  1. Mars 2020 Planetary Protection Status

    Science.gov (United States)

    Stricker, Moogega; Bernard, Douglas; Benardini, James Nick; Jones, Melissa

    2016-07-01

    The Mars 2020 (M2020) flight system consists of a cruise stage; an entry, descent and landing system (EDL); and a Radioisotope Thermoelectric Generator (RTG) powered roving science vehicle that will land on the surface of Mars. The M2020 Mission is designed to investigate key question related to the habitability of Mars and will conduct assessments that set the stage for potential future human exploration of Mars. Per its Program Level Requirements, the project will also acquire and cache samples of rock, regolith, and/or procedural "blank" samples for possible return to Earth by a subsequent mission. NASA has assigned the M2020 Mission as a Category V Restricted Earth Return due to the possible future return of collected samples. As indicated in NPR8020.12D, Section 5.3.3.2, the outbound leg of a Category V mission that could potentially return samples to Earth, Mars 2020 would be expected to meet the requirements of a Category IVb mission. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and caching. A bioburden accounting tool is being used to track the microbial population on the surfaces to ensure that the biological cleanliness requirements are met. Initial bioburden estimates based on MSL heritage allows M2020 to gauge more precisely how the bioburden is allocated throughout each hardware element. Mars 2020 has completed a Planetary Protection Plan with Planetary Implementation Plans at a mature draft form. Planetary protection sampling activities have commenced with the start of flight system fabrication and assembly. The status of the Planetary Protection activities will be reported.

  2. Planetary Exploration in the Classroom

    Science.gov (United States)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  3. Ethical considerations for planetary protection in space exploration: a workshop.

    Science.gov (United States)

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  4. A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions

    Science.gov (United States)

    Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

    1993-01-01

    An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

  5. Galileo Avionica's technologies and instruments for planetary exploration.

    Science.gov (United States)

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  6. Transient chaos and fractal structures in planetary feeding zones

    CERN Document Server

    Kovács, Tamás

    2014-01-01

    The circular restricted three body problem is investigated in the context of accretion and scattering processes. In our model a large number of identical non-interacting mass-less planetesimals are considered in planar case orbiting a star-planet system. This description allows us to investigate in dynamical systems approach the gravitational scattering and possible captures of the particles by the forming planetary embryo. Although the problem serves a large variety of complex motion, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where accretion or escape of the planetesimals occur, these have, in fact, a fractal structure. The fractal geometry of these "basins" implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power-law for longer integration. A ...

  7. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    CERN Document Server

    Hasegawa, Yasuhiro; Matsumoto, Yuji; Oshino, Shoichi

    2015-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue as to the origin of our Solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that corresponds to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s$^{-1}$. The previous simulations show that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct $N$-body simulations. As found by the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-p...

  8. Long-term evolution and stability of planetary systems

    Science.gov (United States)

    Juric, Mario

    This dissertation studies the dynamical evolution and stability of planetary systems over long time spans (10 8 -10 9 years). I investigated the dynamical evolution of few-planet systems by simulating ensembles of systems consisting of hundreds to thousands of randomly constructed members. I looked at ways to classify the systems according to their dynamical activity, and found the median Hill separation of an ensemble to be a sufficiently good criterion for separation into active (those exhibiting frequent planetary close encounters, collisions or ejections) and inactive ensembles. I examined the evolution of dynamical parameters in active systems. I found that in ensembles of dynamically active (initially unstable) systems the eccentricity distribution evolves towards the same equilibrium form, irrespective of the distribution it began with. Furthermore, this equilibrium distribution is indistinguishable, within observational errors, from the distribution found in extrasolar planets. This is to my knowledge the first successful detailed theoretical reproduction of the form of observed exoplanet eccentricity distribution. I further looked for quantities that can be used as indicators of long-term stability of planetary systems, specifically the angular momentum deficit (AMD) as originally proposed by Laskar. I found that the quantity Q , defined as the ratio of minimum AMD required for a planetary collision to occur in secular theory and the total AMD of the system, may be used to predict the likelihood of decay of a planetary system. Qualitatively, the decay in systems having Q [Special characters omitted.] 1 is highly probable, while systems with Q [Special characters omitted.] 1 were found to be stable. To conduct the above investigations, I developed a new integrator package (VENUS), and the HYBRID/EE integration scheme designed for nearly-symplectic long-term integrations. VENUS implements integration algorithms for few-body planetary system integrations

  9. Statistical scaling properties of planetary topographic fields

    Science.gov (United States)

    Landais, François; Schmidt, Frederic; Lovejoy, Shaun

    2016-10-01

    The massive acquisition of altimetric data in the solar system has motivated numerous analysis of the topography of planets, in particular the surface roughness. Many statistical indicators have been proposed and widely explored in order to study the surface of plantets. Useful informations have been obtained by the use of those indicators but they often have the disadvantage of been defined at a given scale. By construction, they do not directly take into account the well-established scale symmetry that generally occurs in the case of natural surfaces. Indeed, topography can not be interpreted as a stationary field, meaning that statistical parameters like the mean or the standard deviation exhibit a dependence toward scales. This subject has been widely studied in the past, parallel to the development of the notion of fractals. It is now well established that topography is often efficiently modelled by fractal simulations. More interestingly, the fractal theory provides a mathematical formalism to describe the scale dependence of statistical parameters toward scales. It turns out that simple power-law relations efficiently approach the variability of planetary surfaces.However, The observed intermittency (spatial dependance of the scaling laws) apparently rejects the idea of a global description of any topographic field at the planetary scale. Still, modern developments in the fractal theory might be able to give full account to the observed variability and intermittency. It is possible to extent the fractal interpretation of topography to a multifractal statistical object requiring an infinite number of fractal dimensions (one for each statistical moment order). In the present study, we analyse the global scaling laws of topography for different body in the solar system in order to test the multifractal formalism. We then compare the fractal and multifractal parameters form a body to the other. We demonstrate that a change of processes governing the global

  10. Twenty-Second Lunar and Planetary Science Conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  11. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  12. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  13. Nasa's Planetary Geologic Mapping Program: Overview

    Science.gov (United States)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  14. Robotic Tool Changer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  15. Verification of a Monte-Carlo planetary surface radiation environment model using gamma-ray data from Lunar Prospector and 2001 Mars Odyssey

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, M.S., E-mail: mss16@star.le.ac.u [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2010-01-01

    Characterising a planetary radiation environment is important to: (1) assess the habitability of a planetary body for indigenous life; (2) assess the risks associated with manned exploration missions to a planetary body and (3) predict/interpret the results that remote sensing instrumentation may obtain from a planetary body (e.g. interpret the gamma-ray emissions from a planetary surface produced by radioactive decay or via the interaction of galactic cosmic rays to obtain meaningful estimates of the concentration of certain elements on the surface of a planet). The University of Leicester is developing instrumentation for geophysical applications that include gamma-ray spectroscopy, gamma-ray densitometry and radiometric dating. This paper describes the verification of a Monte-Carlo planetary radiation environment model developed using the MCNPX code. The model is designed to model the radiation environments of Mars and the Moon, but is applicable to other planetary bodies, and will be used to predict the performance of the instrumentation being developed at Leicester. This study demonstrates that the modelled gamma-ray data is in good agreement with gamma-ray data obtained by the gamma-ray spectrometers on 2001 Mars Odyssey and Lunar Prospector, and can be used to accurately model geophysical instrumentation for planetary science applications.

  16. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  17. Central Stars of Planetary Nebulae

    CERN Document Server

    Jones, David

    2016-01-01

    In this brief invited review, I will attempt to summarise some of the key areas of interest in the study of central stars of planetary nebulae which (probably) won't be covered by other speakers' proceedings. The main focus will, inevitably, be on the subject of multiplicity, with special emphasis on recent results regarding triple central star systems as well as wide binaries which avoid a common-envelope phase. Furthermore, in light of the upcoming release of Kepler's Campaign 11 data, I will discuss a few of the prospects from that data including the unique possibility to detect merger products.

  18. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  19. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  20. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  1. Gallery of Planetary Nebula Spectra

    CERN Document Server

    Kwitter, K B; Kwitter, Karen B.; Henry, Richard B.C.

    2006-01-01

    We present the Gallery of Planetary Nebula Spectra now available at http://oitwilliams.edu/nebulae. The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and...

  2. New Indivisible Planetary Science Paradigm

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    I present here a new, indivisible planetary science paradigm, a wholly self-consistent vision of the nature of matter in the Solar System, and dynamics and energy sources of planets. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures. Earth's complete condensation included a 300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions stripped the gases away from the inner planets and stripped a portion of Mercury's incompletely condensed protoplanet, and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System and formed the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. In response to decompression-driven planetary volume increases, cracks form to increase surface area and mountain ranges ...

  3. Shape and topography corrections for planetary nuclear spectroscopy

    Science.gov (United States)

    Prettyman, Thomas H.; Hendricks, John S.

    2015-11-01

    The elemental composition of planetary surfaces can be determined using gamma ray and neutron spectroscopy. Most planetary bodies for which nuclear spectroscopy data have been acquired are round, and simple, analytic corrections for measurement geometry can be applied; however, recent measurements of the irregular asteroid 4 Vesta by Dawn required more detailed corrections using a shape model (Prettyman et al., Science 2012). In addition, subtle artifacts of topography have been observed in low altitude measurements of lunar craters, with potential implications for polar hydrogen content (Eke et al., JGR 2015). To explore shape and topography effects, we have updated the general-purpose Monte Carlo radiation transport code MCNPX to include a polygonal shape model (Prettyman and Hendricks, LPSC 2015). The shape model is fully integrated with the code’s 3D combinatorial geometry modules. A voxel-based acceleration algorithm enables fast ray-intersection calculations needed for Monte Carlo. As modified, MCNPX can model neutron and gamma ray transport within natural surfaces using global and/or regional shape/topography data (e.g. from photogrammetry and laser altimetry). We are using MCNPX to explore the effect of small-scale roughness, regional-, and global-topography for asteroids, comets and close-up measurements of high-relief features on larger bodies, such as the lunar surface. MCNPX can characterize basic effects on measurements by an orbiting spectrometer such as 1) the angular distribution of emitted particles, 2) shielding of galactic cosmic rays by surrounding terrain and 3) re-entrant scattering. In some cases, re-entrant scattering can be ignored, leading to a fast ray-tracing model that treats effects 1 and 2. The algorithm is applied to forward modeling and spatial deconvolution of epithermal neutron data acquired at Vesta. Analyses of shape/topography effects and correction strategies are presented for Vesta, selected small bodies and cratered

  4. The Rocky World of Young Planetary Systems

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Panel A of Inset Panel B of Inset Panel C of Inset This artist's concept illustrates how planetary systems arise out of massive collisions between rocky bodies. New findings from NASA's Spitzer Space Telescope show that these catastrophes continue to occur around stars even after they have developed full-sized planets, when they are as old as one hundred million years. For reference, our own Sun, at 4.5 billion years old, is far past this late stage of planet formation. In this image, a young star is shown circled by full-sized planets, and rings of dust beyond. These rings, also called 'debris discs,' arise when embryonic planets smash into each other. One of these collisions is illustrated in the inset of Figure 1. Spitzer was able to see the dust generated by these collisions with its powerful infrared vision.

  5. Planetary Environments: Scientific Issues and Perspectives

    Directory of Open Access Journals (Sweden)

    Encrenaz Th.

    2014-02-01

    Full Text Available What are the planetary environments where conditions are best suited for habitability? A first constraint is provided by the presence of liquid water. This condition allows us to define two kinds of media: (1 the atmospheres of solid (exoplanets with a temperature typically ranging between 0°C and 100°C, and (2 the interiors of icy bodies (outer satellites or possibly exosatellites where the pressure and temperature would fit the liquid phase region of the water phase diagram. In the case of Mars, significant progress has been achieved about our understanding of the history of liquid water in the past, thanks to the findings of recent space missions. The study of the outer satellites is also benefiting from the on-going operation of the Cassini mission. In the case of exopl nets, new discoveries are continuously reported, especially with the Kepler mission, in operation since 2009. With the emergence of transit spectroscopy, a new phase of exoplanets’ exploration has started, their characterization, opening the new field of exoplanetology. In the future, new perspectives appear regarding the exploration of Mars, the giant planets and exoplanets, with the ultimate goal of characterizing the atmospheres of temperate exoplanets.

  6. Color Survey of the Irregular Planetary Satellites

    Science.gov (United States)

    Graykowski, Ariel; Jewitt, David

    2016-10-01

    Irregular satellites are characterized by their larger orbital distance from their planet, their high eccentricity and their high inclination, all indicating that they were captured. However, the mechanism of capture and the location of origin of the satellites remain unknown. We are conducting a photometric survey of the irregular satellites of the giant planets using the LRIS instrument on the 10-meter telescope at the Keck Observatory in Hawaii. The measured colors will be compared to other planetary bodies in search for similarities and differences that may reflect upon the origin of the satellites. For example, if irregular satellites were captured from the Kuiper Belt then some should contain the ultrared material that is common in the trans-Neptunian and Centaur populations. If the irregular satellites of Jupiter were captured from the same source population as the Jovian Trojans, then it is natural to expect that the surface properties of satellites and Trojans should be the same. We will present initial results of this work.

  7. Can planetary instability explain the Kepler dichotomy?

    CERN Document Server

    Johansen, Anders; Church, Ross P; Holmelin, Viktor

    2012-01-01

    The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16-months data as templates for physical triple-planet systems and perform synthetic transit observations. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around five degrees. Our analysis shows that the Kepler data contains a population of planets larger than four Earth radii in single-transit systems that can not arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N-body simulations of mass-boosted triple-planet systems and observe how the systems...

  8. On Some General Regularities of Formation of the Planetary Systems

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2014-01-01

    Full Text Available J.Wheeler’s geometrodynamic concept has been used, in which space continuum is considered as a topologically non-unitary coherent surface admitting the existence of transitions of the input-output kind between distant regions of the space in an additional dimension. This model assumes the existence of closed structures (micro- and macro- contours formed due to the balance between main interactions: gravitational, electric, magnetic, and inertial forces. It is such macrocontours that have been demonstrated to form — independently of their material basis — the essential structure of objects at various levels of organization of matter. On the basis of this concept in this paper basic regularities acting during formation planetary systems have been obtained. The existence of two sharply different types of planetary systems has been determined. The dependencies linking the masses of the planets, the diameters of the planets, the orbital radii of the planet, and the mass of the central body have been deduced. The possibility of formation of Earth-like planets near brown dwarfs has been grounded. The minimum mass of the planet, which may arise in the planetary system, has been defined.

  9. Stability of Satellites in Closely Packed Planetary Systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Perets, Hagai B

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary Systems with Tightly-packed Inner Planets (STIPs). We find that the majority of closely-spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to $\\sim 0.4 R_H$ (where $R_H$ is the Hill Radius) as opposed to $\\sim 0.5 R_H$ in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5 to 4.5 mutual Hill radii destabilize most satellites orbits only if $a\\sim 0.65 R_H$. In very close planetary pairs (e.g. the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close-approaches and the loss of satellites over a range of cir...

  10. Review on the Role of Planetary Factors on Habitability

    Science.gov (United States)

    Kereszturi, A.; Noack, L.

    2016-11-01

    In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.

  11. Evidence for Terrestrial Planetary System Remnants at White Dwarfs

    CERN Document Server

    Farihi, J

    2010-01-01

    The last several years have brought about a dynamic shift in the view of exoplanetary systems in the post-main sequence, perhaps epitomized by the evidence for surviving rocky planetary bodies at white dwarfs. Coinciding with the launch of the Spitzer Space Telescope, both space- and ground-based data have supported a picture whereby asteroid analogs persist at a significant fraction of cool white dwarfs, and are prone to tidal disruption when passing close to the compact stellar remnant. The ensuing debris can produce a detectable infrared excess, and the material gradually falls onto the star, polluting the atmosphere with heavy elements that can be used to determine the bulk composition of the destroyed planetary body. Based on the observations to date, the parent bodies inferred at white dwarfs are best described as asteroids, and have a distinctly rocky composition similar to material found in the inner Solar System. Their minimum masses are typical of large asteroids, and can approach or exceed the mass...

  12. Experimental studies of oblique impact. [of meteorites on planetary surfaces

    Science.gov (United States)

    Gault, D. E.; Wedekind, J. A.

    1978-01-01

    Meteoritic materials most probably impact planetary bodies along oblique trajectories inclined less than 45 deg above their surfaces. Laboratory studies of hypervelocity impacts against rock and particulate media are presented that indicate important effects of obliquity on crater size, shape, and ejecta distribution. The effects are particularly important to crater size-frequency analyses and geologic interpretations of crater formations. Impacts at shallow incidence, which are not uncommon, lead to ricochet of the impacting object accompanied with some entrained excavated materials at velocities only slightly reduced from the pre-impact value.

  13. Planetary nebulae abundances and stellar evolution II

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2010-01-01

    Context. In recent years mid-and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aims. The observed abundances in planetary nebulae are

  14. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  15. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The d

  16. Proceedings of the 38th Lunar and Planetary Science Conference

    Science.gov (United States)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  17. Europa Clipper Mission Concept Preliminary Planetary Protection Approach

    Science.gov (United States)

    Jones, Melissa; Schubert, Wayne; Newlin, Laura; Cooper, Moogega; Chen, Fei; Kazarians, Gayane; Ellyin, Raymond; Vaishampayan, Parag; Crum, Ray

    2016-07-01

    The science objectives of the proposed Europa Clipper mission consist of remotely characterizing any water within and beneath Europa's ice shell, investigating the chemistry of the surface and ocean, and evaluating geological processes that may permit Europa's ocean to possess the chemical energy necessary for life. The selected payload supporting the science objectives includes: Plasma Instrument for Magnetic Sounding (PIMS), Interior Characterization of Europa using Magnetometry (ICEMAG), Mapping Imaging Spectrometer for Europa (MISE), Europa Imaging System (EIS), Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON), Europa Thermal Emission Imaging System (E-THEMIS), MAss SPectrometer for Planetary EXploration/Europa (MASPEX), Ultraviolet Spectrograph/Europa (UVS), and SUrface DUst Mass Analyzer (SUDA). Launch is currently baselined as 2022. Pending the yet to be selected launch vehicle, the spacecraft would either arrive to the Jovian system on a direct trajectory in 2025 or an Earth-Venus-Earth-Earth gravity assist interplanetary trajectory arriving in 2030. The operational concept consists of multiple low-altitude flybys of Europa to obtain globally distributed regional coverage of the Europan surface. According to COSPAR Policy, it is currently anticipated that the Europa Clipper mission would be classified as a Category III mission. That is, the mission is to a body "of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment." Therefore, the expected driving planetary protection requirement for the mission is that the probability of inadvertent contamination of an ocean or other liquid water body shall be less than 1x10-4 per mission. This requirement applies until final disposition of the spacecraft, however in practice, would only apply until the spacecraft is

  18. Lunar and Planetary Science XXXVI, Part 13

    Science.gov (United States)

    2005-01-01

    Contents include the following: A Fast, Non-Destructive Method for Classifying Ordinary Chondrite Falls Using Density and Magnetic Susceptibility. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity. Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets. Piping Structures on Earth and Possibly Mars: Astrobiological Implications. Uranium and Lead in the Early Planetary Core Formation: New Insights Given by High Pressure and Temperature Experiments. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory. MGS MOC: First Views of Mars at Sub-Meter Resolution from Orbit. Analysis of Candor Chasma Interior Layered Deposits from OMEGA/MEX Spectra. Analysis of Valley Networks on Valles Marineris Plateau Using HRSC/MEX Data. Solar Abundance of Elements from Neutron-Capture Cross Sections. Preliminary Evaluation of the Secondary Ion/Accelerator Mass Spectrometer, MegaSIMS. Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars. Continued Study of Ba Isotopic Compositions of Presolar Silicon Carbide Grains from Supernovae. Paleoenviromental Evolution of the Holden-Uzboi Area. Stability of Magnesium Sulfate Minerals in Martian Environments. Tungsten Isotopic Constraints on the Formation and Evolution of Iron Meteorite Parent Bodies. Migration of Dust Particles and Volatiles Delivery to the Inner Planets. On the Sitting of Trapped Noble Gases in Insoluble Organic Matter of Primitive Meteorites. Trapping of Xenon Upon Evaporation-Condensation of Organic Matter Under UV Irradiation: Isotopic Fractionation and Electron Paramagnetic Resonance Analysis. Stability of Water on Mars. A Didactic Activity. Analysis of Coronae in the Parga Chasma Region, Venus. Photometric and Compositional Surface Properties of the Gusev Crater Region, Mars, as Derived from Multi-Angle, Multi-Spectral Investigation of

  19. Lessons learned from planetary entry probe missions

    Science.gov (United States)

    Niemann, Hasso; Atreya, Sushil K.; Kasprzak, Wayne

    Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and too costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future planetary missions should also include more entry probe missions back to Venus and to the outer planets. The success of and science returns from past missions, the need for more and unique data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. There are, however, unique challenges associated with entry probe missions and with building instruments for an entry probe, as compared to orbiters, landers, or rovers. Conditions during atmospheric entry are extreme. There are operating time constraints due to the usually short duration of the probe descent, and the instruments experience rapid environmental changes in temperature and pressure. In addition, there are resource limitations, i.e. mass, power, size and bandwidth. Because of the protective heat shield and the high acceleration the probe experiences during entry, the ratio of payload to total probe mass is usually much smaller than in other missions. Finally, the demands on the instrument design are determined in large part by conditions (pressure, temperature, composition) unique to the particular body under study, and as a result, there is no one-size-fits-all instrument for an atmospheric probe. Many of these requirements are more easily met by miniaturizing the probe instrumentation and consequently reducing the required size of the probe. Improved heat shield

  20. Nature and Composition of Planetary Surficial Deposits and Their Relationship to Planetary Crusts

    Science.gov (United States)

    McLennan, S. M.

    2010-12-01

    Planetary soils constitute micron to meter sized debris blankets covering all or parts of the surfaces of many planetary bodies. Recent results from the Martian surface, by the MER rovers and Phoenix lander, the Huygens probe at Titan and perhaps even the NEAR mission to asteroid 433 Eros suggest a continuum between classic planetary soils, such as those on the Moon, and conventional sediments, such as those on Earth. Controls on this variation are governed by complex interactions related to (1) impact and volcanic history, (2) presence and nature of atmospheres (and thus climate), (3) occurrence, composition and physical state of near-surface volatiles (e.g., water, methane), and (4) presence and nature of crustal tectonics, crustal evolution, and so forth. The Moon represents one extreme where surficial deposits result almost exclusively from impact processes. Absence of water and air restrict further reworking or transport on a significant scale after initial deposition. Disruption and mixing of lunar soils takes place but is related to impact gardening operating on relatively local scales and largely in a vertical sense; alteration is restricted to space weathering. The effect is that lunar soils are compositionally variable and match the composition of the crust in the vicinity of where they form. Thus lunar soils in the highlands are fundamentally different in composition than those on maria. Earth provides the other extreme where the highly dynamic geochemical and geophysical nature of the surface precludes preservation of classic planetary soils, although analogs may exist in ejecta blankets and eolian loess. Instead, a complex suite of sedimentary deposits form in response to chemical and physical weathering, erosion, transport and deposition by a variety of mechanisms involving water, wind, ice and biology. Although there is substantial sedimentary lithological differentiation (e.g., shales, sands, carbonates, evaporites), greatly influenced by the

  1. Dynamical evolution of planetary systems

    CERN Document Server

    Morbidelli, Alessandro

    2011-01-01

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current ones and that nothing dramatic ever happened during their lifetime. The discovery of extra-solar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extra-solar planets have orbits with semi major axes of $\\sim 1$ AU, and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extra-solar planets have large eccentricities, up to values that only comets have in our solar system. Why such a big diversity between our solar system and the extra-solar systems, as well as among the extra-solar systems themselves? This chapter aims to give a partial answer to this fundamental question....

  2. Formation around planetary displaced orbit

    Institute of Scientific and Technical Information of China (English)

    GONG Sheng-ping; LI Jun-feng; BAOYIN He-xi

    2007-01-01

    The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.

  3. Where Do Messy Planetary Nebulae Come From?

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  4. Planetary Data System (PDS) Strategic Roadmap

    Science.gov (United States)

    Law, Emily; McNutt, Ralph; Crichton, Daniel J.; Morgan, Tom

    2016-07-01

    The Planetary Data System (PDS) archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA's Science Mission Directorate (SMD) sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The Planetary Science Division (PSD) within the SMD at NASA Headquarters has directed the PDS to set up a Roadmap team to formulate a PDS Roadmap for the period 2017-2026. The purpose of this activity is to provide a forecast of both the rapidly changing Information Technology (IT) environment and the changing expectations of the planetary science communities with respect to Planetary Data archives including, specifically, increasing assessability to all planetary data. The Roadmap team will also identify potential actions that could increase interoperability with other archive and curation elements within NASA and with the archives of other National Space Agencies. The Roadmap team will assess the current state of the PDS and report their findings to the PSD Director by April 15, 2017. This presentation will give an update of this roadmap activity and serve as an opportunity to engage the planetary community at large to provide input to the Roadmap.

  5. Process engineering with planetary ball mills.

    Science.gov (United States)

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  6. Impact penetrometry of analogue planetary regoliths

    Science.gov (United States)

    Paton, M. D.; Green, S. F.; Ball, A. J.

    2013-09-01

    Erosion and deposition processes on major and minor planetary bodies generate layers of loose broken up material on the surface. Due to the long period over which these processes have been active, the material in these layers can be, depending on the bodies' size, finely ground into grains similar in size to sand or a finer power such as found on the lunar surface. The subsurface stratigraphy of an asteroid, for example, could help characterise and understand the variety of geological features and granular processes on asteroids, e.g. see [1]. The microstructural properties of the asteroid's surface are also important for understanding the impact history of the asteroid, the interpretation of light scattering observations and thermal modelling. As the surface of an asteroid or planet will most likely be granular and loose it is then easy to penetrate, for example by using a cylindrical body tipped with a conical or other shaped tip. Such a device, fitted with a force sensor, that measures the resistance to penetration, can then be used to infer the physical properties of the target, in a similar way to penetrometers used on Earth. These instruments can be made small enough to be deployed by spacecraft to investigate extraterrestrial surfaces as with the Huygens penetrometer that investigated the surface of Titan [2]. A prototype impact penetrometer (fig. 1), based on a standard instrument used for making such measurements on Earth, is introduced. For detailed characterisation of the local stratigraphy penetrometry is usually conducted on the Earth using such a standardised penetrometer inserted slowly and at constant speed into the subsurface. Consequently there is an established and extensive library of publications available for the interpretation of this type of instrument. Impact penetrometry, as the name suggests, is conducted during the impact of a projectile. This type of penetrometry has not been so well characterised and interpreting the results, in terms

  7. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  8. Cold aqueous planetary geochemistry with FREZCHEM from modeling to the search for life at the limits

    CERN Document Server

    Marion, Giles M

    2007-01-01

    This book explicitly investigates issues of astrobiological relevance in the context of cold aqueous planetary geochemistry. At the core of the technical chapters is the FREZCHEM model, initially developed over many years by one of the authors to quantify aqueous electrolyte properties and chemical thermodynamics at subzero temperatures. FREZCHEM, of general relevance to biogeochemists and geochemical modelers, cold planetary scientists, physicochemists and chemical engineers, is subsequently applied to the exploration of biogeochemical applications to solar systems bodies in general, and to speculations about the limits for life in cold environments in particular.

  9. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  10. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  11. Spectroscopic detection and characterisation of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    Collier Cameron A.

    2011-07-01

    Full Text Available Space based broadband infrared observations of close orbiting extrasolar giant planets at transit and secondary eclipse have proved a successful means of determining atmospheric spectral energy distributions and molecular composition. Here, a ground-based spectroscopic technique to detect and characterise planetary atmospheres is presented. Since the planet need not be transiting, this method enables a greater sample of systems to be studied. By modelling the planetary signature as a function of phase, high resolution spectroscopy has the potential to recover the signature of molecules in planetary atmospheres.

  12. Planetary astronomy in the 1990's

    Science.gov (United States)

    Morrison, David

    1992-01-01

    An overview is presented of current achievements and future possibilities that exist in planetary astronomy. Planetary astronomers employ a wide range of techniques, from straightforward telescopic observation to laboratory analysis of meteorites and cosmic dust. Much of this work focuses on three fundamental questions: how abundant are planets throughout the universe, how did the solar system form, and what can other planets tell us about earth? Several examples show that many recent discoveries reveal the continuing value of earth-orbit and ground-based methods for planetary studies.

  13. Modal properties of three-dimensional helical planetary gears

    Science.gov (United States)

    Eritenel, Tugan; Parker, Robert G.

    2009-08-01

    The structured modal properties of single-stage helical planetary gears with equally spaced planets are categorized and mathematically proved. Compared to prior two-dimensional analyses of spur gears, this study examines the three-dimensional motion of the helical gears and shafts. A lumped-parameter model is formulated to obtain the equations of motion. The gear-shaft bodies are modeled as rigid bodies with compliant bearings at arbitrary axial locations on the shafts. A translational and a tilting stiffness account for the force and moment transmission at the gear mesh interface. The derived modal properties generalize those of two-dimensional spur planetary gears; there are twice as many degrees of freedom and natural frequencies due to the added tilting and axial motion. All vibration modes are categorized as rotational-axial, translational-tilting, and planet modes. The modal properties are shown to hold even for configurations that are not symmetric about the gear plane, due to, for example, shaft bearings not being equidistant from the gear plane.

  14. Body Image

    Science.gov (United States)

    ... About Us Contact Us Text size | Print | Body Image Developing a positive body image and a healthy mental attitude is crucial to ... on for tips to have a healthy body image. Topics About body image When you look in ...

  15. The Planetary Data System--preparing for a New Decade

    Science.gov (United States)

    Morgan, Thomas H.; Knopf, William P.; Grayzeck, Edwin J.

    2015-11-01

    In order to improve NASA’s ability to serve the Planetary Science Community, the Planetary Data System (PDS) has been transformed. NASA has used the highly successful virtual institute model (e.g., for NASA’s Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. The new institute structure will facilitate our efforts within the PDS to improve both archive searchability and product discoverability. We will continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the community of space faring nations (through the IPDA). PDS science nodes will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented.The Science nodes were selected through a Cooperative Agreement Notice (NNH15ZDA006C) which specifically allowed the community to propose specific archive concepts. The selected nodes are: Cartography and Imaging Sciences, Rings-Moon Systems, Planetary Geosciences, Planetary Plasma Interactions, Atmospheres, and Small Bodies. Other elements of the PDS include an Engineering Node, the Navigation and Ancillary Information Facility, and a small project office.The prime role of the PDS is unchanged. We archive and distribute scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA’s Science Mission Directorate sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research.In this presentation we discuss recent changes in the PDS, and our future activities to build on the new Institute. Near term efforts include developing a PDS Roadmap for the next decade lead by PDS Chief Scientist, Dr

  16. Lunar and Planetary Science XXXVI, Part 22

    Science.gov (United States)

    2005-01-01

    The Lunar and Planetary Science XXXVI, Part 22 is presented. The topics include: 1) Pressure Histories from Thin and Thick Shock-induced Melt Veins in Meteorites; 2) Nano-structured Minerals as Signature of Microbial Activity; 3) The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase; 4) Discovery of Abundant Presolar Silicates in Subgroups of Antarctic Micrometeorites; 5) Characteristics of a Seismometer for the LUNAR-A Penetrator; 6) Heating Experiments of the HaH 262 Eucrite and Implication for the Metamorphic History of Highly Metamorphosed Eucrites; 7) Measurements of Ejecta Velocity Distribution by a High-Speed Video Camera; 8) Petrological Comparison of Mongolian Jalanash Ureilite and Twelve Antarctic Ureilites; 9) Metallographic Cooling Rate of IVA Irons Revisited; 10) Inhomogeneous Temperature Distribution in Chondrules in Shock-Wave Heating Model; 11) Subsurface Weathering of Rocks and Soils at Gusev Crater; 12) Extinct Radioactivities in the Early Solar System and the Mean Age of the Galaxy; 13) Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site; 14) Silicon Isotopic Ratios of Presolar Grains from Supernovae; 15) Current Status and Readiness on In-Situ Exploration of Asteroid Surface by MINERVA Rover in Hayabusa Mission; 16) Long Formation Period of Single CAI: Combination of O and Mg Isotope Distribution; 17) Supra-Canonical Initial 26Al/27Al Indicate a 105 Year Residence Time for CAIs in the Solar Proto-Planetary Disk; 18) Evolution of Mercury's Obliquity; 19) First Results from the Huygens Surface Science Package; 20) Polyhedral Serpentine Grains in CM Chondrites; 21) Mountainous Units in the Martian Gusev Highland Region: Volcanic, Tectonic, or Impact Related? 22) Petrography of Lunar Meteorite MET 01210, A New Basaltic Regolith Breccia; 23) Earth-Moon Impacts at 300 Ma and 500 Ma Ago; 24

  17. Sensor Array Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  18. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  19. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  20. Planetary science: Flow of an alien ocean

    Science.gov (United States)

    Goodman, Jason

    2014-01-01

    Liquid water may lurk beneath the frozen surfaces of Jupiter's moon Europa and other icy worlds. Extending ocean science beyond Earth, planetary oceanographers are linking Europa's ocean dynamics to its enigmatic surface geology.

  1. Planetary camera control improves microfiche production

    Science.gov (United States)

    Chesterton, W. L.; Lewis, E. B.

    1965-01-01

    Microfiche is prepared using an automatic control system for a planetary camera. The system provides blank end-of-row exposures and signals card completion so the legend of the next card may by photographed.

  2. Planetary science: Cometary dust under the microscope

    Science.gov (United States)

    Kolokolova, Ludmilla

    2016-09-01

    The Rosetta spacecraft made history by successfully orbiting a comet. Data from the craft now reveal the structure of the comet's dust particles, shedding light on the processes that form planetary systems. See Letter p.73

  3. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  4. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  5. Predictions of mineral assemblages in planetary interiors

    Science.gov (United States)

    Stolper, E.

    1980-01-01

    It is shown that mineral compatibilities in the model system CaO-MgO-Al2O3-SiO2 can be applied to deduce the mineral assemblages expected in planetary interiors and their variation with depth. In general, the available estimates of bulk composition of the terrestrial planets suggest that the terrestrial planets can be divided into two groups based on their predicted mineral assemblages. The terrestrial, Venusian, and lunar bulk compositions are expected to display the following sequence of mineral assemblages with increasing pressure: plagioclase lherzolite, spinel lherzolite, and garnet lherzolite. The sequences expected in Martian and Mercurian are different: spinel-plagioclase wehrlite, spinel lherzolite, and spinel-garnet wehrlite. These assemblages have a major influence on the compositions of liquids produced by melting of these planetary interiors, on the solidus temperatures, and thus on the nature of planetary differentiation and the types of magmas extruded at planetary surfaces.

  6. Planetary boundaries: Governing emerging risks and opportunities

    OpenAIRE

    2016-01-01

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thresholds that, if we cross them, we run the risk of rapid, non-linear, and irreversible changes to the environment, with severe consequences for human wellbeing. The concept of planetary boundaries, ...

  7. Scaling laws to understand tidal dissipation in fluid planetary layers and stars

    CERN Document Server

    Auclair-Desrotour, P; Poncin-Lafitte, C Le

    2014-01-01

    Tidal dissipation is known as one of the main drivers of the secular evolution of planetary systems. It directly results from dissipative mechanisms that occur in planets and stars' interiors and strongly depends on the structure and dynamics of the bodies. This work focuses on the mechanism of viscous friction in stars and planetary layers. A local model is used to study tidal dissipation. It provides general scaling laws that give a qualitative overview of the different possible behaviors of fluid tidal waves. Furthermore, it highlights the sensitivity of dissipation to the tidal frequency and the roles played by the internal parameters of the fluid such as rotation, stratification, viscosity and thermal diffusivity that will impact the spins/orbital architecture in planetary systems.

  8. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  9. Unveiling shocks in planetary nebulae

    CERN Document Server

    Guerrero, M A; Medina, J J; Luridiana, V; Miranda, L F; Riera, A; Velázquez, P F

    2013-01-01

    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.

  10. Cosmological aspects of planetary habitability

    CERN Document Server

    Shchekinov, Yu A; Murthy, J

    2014-01-01

    The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmosphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. However along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one -- the age --- has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on...

  11. Fluid dynamics of planetary ices

    CERN Document Server

    Greve, Ralf

    2009-01-01

    The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...

  12. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    Science.gov (United States)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  13. Using Planetary Nebulae to Teach Physics

    Science.gov (United States)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  14. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    OpenAIRE

    Weigang Wen; Gao, Robert X.; Weidong Cheng

    2016-01-01

    The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by w...

  15. Composition of Solar System Small Bodies

    CERN Document Server

    Vernazza, Pierre

    2016-01-01

    The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then use this information to i) discuss current dynamical models (Nice and Grand Tack models), ii) mention possible caveats in these models if any, and iii) draw a preliminary version of the primordial compositional gradient across the solar system before planetary migrations occured. Note that the composition of both planetary satellites (the regular ones) and that of the transient populations (NEOs, centaurs) is not discussed here. We strictly focus on the composition of the main reservoirs of small bodies. The manuscript's objective is to provide a global and synthetic view of small bodies' compositions rather than a very detailed one, for specific reviews regarding the composition of small bodies, see papers by Burbine (2014) for asteroids, Emery et al. (2015) for J...

  16. Early Planetary Differentiation: Comparative Planetology

    Science.gov (United States)

    Jones, John H.

    2006-01-01

    We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.

  17. Europlanet - Joining the European Planetary Research Information Service

    Science.gov (United States)

    Capria, M. T.; Chanteur, G.; Schmidt, W.

    2009-04-01

    to data to be integrated into the VO features of IDIS? Any combination and many more alternatives are possible. 3. Contact the staff of the selected node(s) to go through the details 4. The node's expert team will evaluate the information to ensure that it is compliant with the minimum requirements for Europlanet information providers like correct address, related field of competence, quality of data if any etc. 5. The new resource meta data (addresses, contents etc) will be added to the IDIS system including update of the search facilities 6. If data are offered for on-line access, the IDIS team will provide tools to generate a network-compatible generic interface. This one-time effort will make it possible to search the new data sets and combine them with related in-formation from other sources. Benefits for the information provider: - wide advertisement for the own resources and capabilities with increase in scientific references to the own activities and publications - new co-operation possibilities with so far unknown teams. Team exchange might be financially supported by other segments of the Europlanet RI - strong arguments for new funding applications and many more aspects List of contact web-sites: Technical node for support and management aspects: http://www.europlanet-idis.fi/ Planetary Surfaces and Interiors node: http://europlanet.dlr.de/ Planetary Plasma node: http://europlanet-plasmanode.oeaw.ac.at/ Planetary Atmospheres node: http://idis.ipsl.jussieu.fr/ Virtual Observatory Paris Data Centre: http://vo.obspm.fr/ Small Bodies and Dust node: http://www.ifsi-roma.inaf.it/europlanet/

  18. Assessing planetary protection and contamination control technologies for planetary science missions

    Science.gov (United States)

    Beauchamp, Patricia; Belz, Andrea

    Planetary protection and organic contamination control, like many technologically rich areas, continually progress. As a result of the 2011 Planetary Science Decadal Survey Report, Vision and Voyages for Planetary Science in the Decade 2013-2022, the future focus is now on proposed Mars sample return missions. In addition to Mars exploration we now have the exciting possibility of a potential mission to the outer planets, most likely Europa. This paper reassesses planetary protection and organic contamination control technologies, which were evaluated in 2005, and provides updates based on new science results, technology development, and programmatic priorities. The study integrates information gathered from interviews of a number of National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) scientists, systems engineers, planetary protection engineers, and consultants, as well as relevant documents, and focuses on the technologies and practices relevant to the current project mission set as presented in the 2011 Planetary Science Decadal Survey. This paper provides the status of planetary protection and contamination control technologies as they apply to potential future missions, and provides findings and recommendations to improve our capabilities as we further explore our solar system. It has become clear that linking planetary protection and contamination control requirements and processes together early in mission development and spacecraft design is key to keeping mission costs in check and returning high-quality samples that are free from biological and organic contaminants.

  19. The Planetary and Space Simulation Facilities at DLR Cologne

    Science.gov (United States)

    Rabbow, Elke; Parpart, André; Reitz, Günther

    2016-06-01

    Astrobiology strives to increase our knowledge on the origin, evolution and distribution of life, on Earth and beyond. In the past centuries, life has been found on Earth in environments with extreme conditions that were expected to be uninhabitable. Scientific investigations of the underlying metabolic mechanisms and strategies that lead to the high adaptability of these extremophile organisms increase our understanding of evolution and distribution of life on Earth. Life as we know it depends on the availability of liquid water. Exposure of organisms to defined and complex extreme environmental conditions, in particular those that limit the water availability, allows the investigation of the survival mechanisms as well as an estimation of the possibility of the distribution to and survivability on other celestial bodies of selected organisms. Space missions in low Earth orbit (LEO) provide access for experiments to complex environmental conditions not available on Earth, but studies on the molecular and cellular mechanisms of adaption to these hostile conditions and on the limits of life cannot be performed exclusively in space experiments. Experimental space is limited and allows only the investigation of selected endpoints. An additional intensive ground based program is required, with easy to access facilities capable to simulate space and planetary environments, in particular with focus on temperature, pressure, atmospheric composition and short wavelength solar ultraviolet radiation (UV). DLR Cologne operates a number of Planetary and Space Simulation facilities (PSI) where microorganisms from extreme terrestrial environments or known for their high adaptability are exposed for mechanistic studies. Space or planetary parameters are simulated individually or in combination in temperature controlled vacuum facilities equipped with a variety of defined and calibrated irradiation sources. The PSI support basic research and were recurrently used for pre

  20. On the formation of compact planetary systems via concurrent core accretion and migration

    CERN Document Server

    Coleman, Gavin A L

    2016-01-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion onto planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low mass multi-planet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since ...

  1. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  2. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    Science.gov (United States)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  3. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  4. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  5. TRANSIENT CHAOS AND FRACTAL STRUCTURES IN PLANETARY FEEDING ZONES

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, T. [Also at University of Applied Sciences, Nagy Lajos kir. útja 1-9, H-1148 Budapest, Hungary. (Hungary); Regály, Zs. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2015-01-01

    The circular restricted three-body problem is investigated in the context of accretion and scattering processes. In our model, a large number of identical non-interacting mass-less planetesimals are considered in the planar case orbiting a star-planet system. This description allows us to investigate the gravitational scattering and possible capture of the particles by the forming planetary embryo in a dynamical systems approach. Although the problem serves a large variety of complex motions, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where planetesimals accrete or escape, which have, in fact, a fractal structure. The fractal geometry of these ''basins'' implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.

  6. Ground-based astronomical instrument for planetary protection

    Science.gov (United States)

    Kendrick, Richard L.; Bennett, Dave; Bold, Matthew

    2014-07-01

    Planetary protection consists of the measurement and characterization of near-earth objects including earth threatening asteroids and earth orbiting debris. The Lockheed Martin STAR Labs in Palo Alto California is developing new astronomical instruments for use in planetary protection. The observation of asteroids is standard for astronomical facilities and there are available instruments designed with this specific science mission in mind. Orbital debris observation and characterization has a somewhat different set of requirements and includes large fields of view with simultaneous spectro-polarimetric data on multiple closely spaced objects. Orbital debris is comprised of spent rocket bodies, rocket fairing covers, paint chips, various satellite components, debris from satellite collisions and explosions and nonoperational satellites. The debris is present in all orbital planes from Low Earth orbit out to the geosynchronous graveyard orbit. We concentrate our effort on the geosynchronous and nearby orbits. This is because typical groundbased astronomical telescopes are built to track at sidereal rates and not at the 1 degree per second rates that are required to track low earth orbiting objects. The orbital debris materials include aluminum, mylar, solar cell materials, composite matrix material and other materials that are used in the fabrication of satellites and launch vehicles. These materials typically have spectral features in different wavebands than asteroids which are mostly composed of materials with molecular absorption bands such as in H2O. This will drive an orbital debris material identification instrument to wavebands and resolutions that are typically not used in asteroid observations.

  7. Native Fluorescence Life Detection instrument for planetary surfaces.

    Science.gov (United States)

    Smith, Heather

    2016-07-01

    For this research project we designed an instrument to detect organisms (amino acids, metabolites) via biomolecular fluorescence. We proposed a novel technique for searching for direct evidence of life on planetary bodies. Results indicate the fluorescence of the biotic component of desert soils is approximately as strong as the fluorescence of the mineral component. Fluorescence laboratory measurements using the portable instrument reveal microbial concentration in the Mojave Desert soil is 107 bacteria per gram of soil. Soil microbial concentrations in the Mojave Desert, determined in situ via fluorescence, show that the number varies from 104 to 107 cells per gram of soil. Biomolecules and polycyclic aromatic hydrocarbons are highly fluorescent at wavelengths in the ultra violet (266 nm, 355 nm), but not as much in the visible 532 nm range. Preliminary results show minerals discovered, such as perchlorate, fluoresce highest when excited by 355 nm. Overall, we conclude the fluorescent instrument described is suitable to detect soil microbes, organics, biomolecules, and some minerals via fluorescence, offering a high scientific return for minimal cost with non-contact applications in extreme environments on Earth and on future planetary missions.

  8. Planetary X-ray studies: past, present and future

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  9. Mechanistic Studies of Planetary Haze Formation

    Science.gov (United States)

    Hicks, Raea Kay

    2015-10-01

    Planetary atmospheres can be thought of as global-scale reactors capable of synthesizing large, complex molecules from small gases such as methane (CH4), carbon dioxide (CO2), and nitrogen (N2). The atmosphere of Titan, the largest moon of Saturn covered by a thick organic haze, contains trace amounts (2%) of CH4 in an atmosphere of N2 at a surface pressure of 1.5 bar. This is similar to the Earth's Archaean atmosphere, which possibly contained trace amounts of CH4 and CO2 (˜1,000 ppmv each) in an N2 -dominant atmosphere before the rise of biogenic oxygen. Laboratory simulations of the atmospheric chemistry on Titan and the early Earth have shown that these atmospheres are capable of generating biologically-relevant molecules that condense to form particles which can then settle to the surface of the planetary body, possibly providing the molecules required for the emergence of life. The work presented here examines the mechanisms by which FUV photochemistry initiates incorporation of N atoms into Titan aerosol analogs, and C atoms into early Earth aerosol analogs. Results from the Aerosol Collector and Pyrolyser onboard the Huygens lander reveal the presence of nitrogen in Titan's aerosols. This nitrogen incorporation is thought to occur primarily by extreme-UV photons or energetic electrons. However, recent results from our laboratory indicate a surprising amount of nitrogen incorporation- up to 16% by mass- in Titan aerosol analogs produced by photochemistry initiated by FUV irradiation of CH4/N 2 mixtures. The termolecular reaction CH+N2 +M → HCN2 has been proposed to account for this observation. Here, we test this hypothesis by using a high- resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the mass loading and chemical composition of aerosol produced at a range of pressures from roughly 0.1 to 1 atm. We report a 10-fold increase in aerosol mass loading across the range of pressures studied, indicating that the mechanism

  10. Magnetic investigations for studying planetary interiors

    Directory of Open Access Journals (Sweden)

    A. De Santis

    1994-06-01

    Full Text Available Most of the magnetic methods used for investigating planetary interiors are based on the reasonable hypothesis that the mechanism for the origin of the field is an Earth-like hydromagnetic dynamo: in this case the planet has an electrically conducting fluid shell within it as in the case of the Earth's core. The present paper describes several techniques of planetary magnetic investigation which give important clues on the internal constitution of planets. Some considerations on the possible mechanisms for maintaining a dynamo and simple concepts with the help of a few non-dimensional numbers are also introduced and discussed. Then some fundamental relationships are given in order to relate the planetary magnetism to other physical parameters, such as angular rotation, core dimensions etc. It finally summarizes some results available for the planets of the Solar System.

  11. Dust in the 55 Cancri planetary system

    CERN Document Server

    Jayawardhana, R; Greaves, J S; Dent, W R F; Marcy, G W; Hartmann, L W; Fazio, G G; Jayawardhana, Ray; Holland, Wayne S.; Greaves, Jane S.; Dent, William R. F.; Marcy, Geoffrey W.; Hartmann, Lee W.; Fazio, Giovanni G.

    2000-01-01

    The presence of debris disks around $\\sim$ 1-Gyr-old main sequence stars suggests that an appreciable amount of dust may persist even in mature planetary systems. Here we report the detection of dust emission from 55 Cancri, a star with one, or possibly two, planetary companions detected through radial velocity measurements. Our observations at 850$\\mu$m and 450$\\mu$m imply a dust mass of 0.0008-0.005 Earth masses, somewhat higher than that in the the Kuiper Belt of our solar system. The estimated temperature of the dust grains and a simple model fit both indicate a central disk hole of at least 10 AU in radius. Thus, the region where the planets are detected is likely to be significantly depleted of dust. Our results suggest that far-infrared and sub-millimeter observations are powerful tools for probing the outer regions of extrasolar planetary systems.

  12. The AFCRL Lunar amd Planetary Research Branch

    Science.gov (United States)

    Price, Stephan D.

    2011-07-01

    The Lunar and Planetary research program led by Dr John (Jack) Salisbury in the 1960s at the United States Air Force Cambridge Research Laboratories (AFCRL) investigated the surface characteristics of Solar System bodies. The Branch was one of the first groups to measure the infrared spectra of likely surface materials in the laboratory under appropriate vacuum and temperature conditions. The spectral atlases created from the results were then compared to photometric and spectral measurements obtained from ground- and balloon-based telescopes to infer the mineral compositions and physical conditions of the regoliths of the Moon, Mars and asteroids. Starting from scratch, the Branch initially sponsored observations of other groups while its in-house facilities were being constructed. The earliest contracted efforts include the spatially-resolved mapping of the Moon in the first half of the 1960s by Richard W. Shorthill and John W. Saari of the Boeing Scientific Research Laboratories in Seattle. This effort ultimately produced isophotal and isothermal contour maps of the Moon during a lunation and time-resolved thermal images of the eclipsed Moon. The Branch also sponsored probe rocket-based experiments flown by Riccardo Giacconi and his group at American Science and Engineering Inc. that produced the first observations of X-ray stars in 1962 and later the first interferometric measurement of the ozone and C02 emission in the upper atmosphere. The Branch also made early use of balloon-based measurements. This was a singular set of experiments, as these observations are among the very few mid-infrared astronomical measurements obtained from a balloon platform. Notable results of the AFCRL balloon flights were the mid-infrared spectra of the spatially-resolved Moon obtained with the University of Denver mid-infrared spectrometer on the Branch's balloon-borne 61-cm telescope during a 1968 flight. These observations remain among the best available. Salisbury also funded

  13. Reconsideration of the planetary boundary for phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Stephen R [Center for Limnology, University of Wisconsin, Madison, WI 53706 (United States); Bennett, Elena M, E-mail: srcarpen@wisc.edu, E-mail: Elena.Bennett@mcgill.ca [Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC, H9X 3V9 (Canada)

    2011-01-15

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m{sup -3}, a typical target for lakes and reservoirs, and 160 mg m{sup -3}, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  14. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  15. Dynamical Problems in Extrasolar Planetary Science

    Science.gov (United States)

    Morbidelli, Alessandro; Haghighipour, Nader

    2016-10-01

    The past few years have witnessed a large increase in the number of extrasolar planets. Thanks to successful surveys from the ground and from space, there are now over 1000 confirmed exoplanets and more then 3000 planetary candidates. More than 130 of these systems host multiple planets. Many of these systems demonstrate physical and orbital characteristics fundamentally different from those of our solar system. The challenges associated with the diversity of planetary systems have raised many interesting questions on planet formation and orbital dynamics.

  16. Global Analysis of a Planetary Gear Train

    OpenAIRE

    Tongjie Li; Rupeng Zhu

    2014-01-01

    By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion ...

  17. Early planetary differentiation: Geophysical consequences

    Science.gov (United States)

    Schubert, G.

    1992-01-01

    Differentiation of a planet can have profound consequences for its structure and thermal evolution, including core formation and crystal growth. Recent theories for the origin and evolution of the terrestrial planets and the Moon have all these bodies forming hot and cooling thereafter. Early core formation, and in the cases of Earth and Moon, a deep magma ocean possibly encompassing the entire mantle are characteristic features of these models. Secular cooling of Mars from a hot origin and cooling of Moon from a hot initial state with a deep magma ocean have been criticized on the basis of their tectonic implications. The cases of Mars and the Moon are discussed.

  18. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    CERN Document Server

    Baruteau, Clément; Mordasini, Christoph; Mollière, Paul

    2016-01-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets i...

  19. Relating binary-star planetary systems to central configurations

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...

  20. Predicting the frequencies of diverse exo-planetary systems

    CERN Document Server

    Greaves, J S; Wyatt, M C; Beichman, C A; Bryden, G

    2007-01-01

    Extrasolar planetary systems range from hot Jupiters out to icy comet belts more distant than Pluto. We explain this diversity in a model where the mass of solids in the primordial circumstellar disk dictates the outcome. The star retains measures of the initial heavy-element (metal) abundance that can be used to map solid masses onto outcomes, and the frequencies of all classes are correctly predicted. The differing dependences on metallicity for forming massive planets and low-mass cometary bodies are also explained. By extrapolation, around two-thirds of stars have enough solids to form Earth-like planets, and a high rate is supported by the first detections of low-mass exo-planets.

  1. Planetary Protection Technology Definition Team: Tasks, Status, and Feedback

    Science.gov (United States)

    Meyer, M. A.; Rummel, J. D.

    2016-10-01

    A Planetary Protection and Technology Definition Team will assess challenges to meeting planetary protection requirements to instruments and will suggest technological solutions. Status and initial findings will be reported.

  2. Zinc and volatile element loss during planetary magma ocean phases

    Science.gov (United States)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  3. Planetary Protection Plan for an Antibody based instrument proposed for Mars2020

    Science.gov (United States)

    Smith, Heather; Parro, Víctor

    The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.

  4. Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Science.gov (United States)

    Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.

    2017-04-01

    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

  5. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  6. NASA’S PLANETARY GEOLOGIC MAPPING PROGRAM: OVERVIEW

    OpenAIRE

    Williams, D. A.

    2016-01-01

    NASA’s Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA’s planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT...

  7. Brownian Motion in Planetary Migration

    CERN Document Server

    Murray-Clay, R A; Murray-Clay, Ruth A.; Chiang, Eugene I.

    2006-01-01

    A residual planetesimal disk of mass 10-100 Earth masses remained in the outer solar system following the birth of the giant planets, as implied by the existence of the Oort cloud, coagulation requirements for Pluto, and inefficiencies in planet formation. Upon gravitationally scattering planetesimal debris, planets migrate. Orbital migration can lead to resonance capture, as evidenced here in the Kuiper and asteroid belts, and abroad in extra-solar systems. Finite sizes of planetesimals render migration stochastic ("noisy"). At fixed disk mass, larger (fewer) planetesimals generate more noise. Extreme noise defeats resonance capture. We employ order-of-magnitude physics to construct an analytic theory for how a planet's orbital semi-major axis fluctuates in response to random planetesimal scatterings. To retain a body in resonance, the planet's semi-major axis must not random walk a distance greater than the resonant libration width. We translate this criterion into an analytic formula for the retention effi...

  8. Planetary nebulae abundances and stellar evolution

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradi

  9. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    Science.gov (United States)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  10. Introduction: Special issue on planetary rings

    Science.gov (United States)

    Nicholson, Philip; Esposito, Larry

    2016-11-01

    This issue of Icarus is devoted largely to papers presented at an open conference held at the Univ. of Colorado on 13-15 August 2014. This Planetary Rings Workshop is the fourth in a series organized by the Rings Working Group of the Cassini-Huygens mission and most of the papers presented dealt with phenomena revealed

  11. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a ti

  12. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    2016-01-01

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thre

  13. The cosmopolitan contradictions of planetary urbanization.

    Science.gov (United States)

    Millington, Gareth

    2016-09-01

    This paper explores the empirical, conceptual and theoretical gains that can be made using cosmopolitan social theory to think through the urban transformations that scholars have in recent years termed planetary urbanization. Recognizing the global spread of urbanization makes the need for a cosmopolitan urban sociology more pressing than ever. Here, it is suggested that critical urban sociology can be invigorated by focusing upon the disconnect that Henri Lefebvre posits between the planetarization of the urban - which he views as economically and technologically driven - and his dis-alienated notion of a global urban society. The first aim of this paper is to highlight the benefits of using 'cosmopolitan' social theory to understand Lefebvre's urban problematic (and to establish why this is also a cosmopolitan problematic); the second is to identify the core cosmopolitan contradictions of planetary urbanization, tensions that are both actually existing and reproduced in scholarly accounts. The article begins by examining the challenges presented to urban sociology by planetary urbanization, before considering how cosmopolitan sociological theory helps provide an analytical 'grip' on the deep lying social realities of contemporary urbanization, especially in relation to questions about difference, culture and history. These insights are used to identify three cosmopolitan contradictions that exist within urbanized (and urbanizing) space; tensions that provide a basis for a thoroughgoing cosmopolitan investigation of planetary urbanization.

  14. Hypersonic and planetary entry flight mechanics

    Science.gov (United States)

    Vinh, N. X.; Busemann, A.; Culp, R. D.

    1980-01-01

    The book treats hypersonic flight trajectories and atmospheric entry flight mechanics in light of their importance for space shuttle entry. Following a review of the structures of planetary atmospheres and aerodynamic forces, equations are derived for flight over a spherical planet, and the performance of long-range hypervelocity vehicles in extra-atmospheric flight is analyzed. Consideration is then given to vehicle trajectories in the powered and atmospheric reentry phases of flight, and several first-order solutions are derived for various planetary entry situations. The second-order theory of Loh for entry trajectories is presented along with the classical theories of Yaroshevskii and Chapman for entry into planetary atmospheres, and the thermal problems encountered in hypersonic flight are analyzed. A unified theory for entry into planetary atmospheres is then introduced which allows the performance of a general type of lifting vehicle to be studied, and applied to the analysis of orbit contraction due to atmospheric drag, flight with lift modulation and lateral maneuvers.

  15. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  16. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.;

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  17. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru, E-mail: eiji.akiyama@nao.ac.jp, E-mail: yasuhiro.hasegawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  18. Modeling of the process of gear shifting in planetary gear trains of motor vehicles

    Directory of Open Access Journals (Sweden)

    Aleksandar R. Grkić

    2011-04-01

    scheme of the gear train. The gears are presented as a solid body defined by mass, moment of inertia, position with respect to the system and the center of gravity. Subsystem for monitoring the simulation results Measuring and recording the simulation results are simulated with the simulation tracking subsystem. The simulation results are described through the torque and the angular velocity as a function of time. Analysis of the simulation model Forming a simulation model enables virtual testing of the planetary gear and the analysis of the impact of certain parameters on the behavior of the gear during gear changes. In other words, an opportunity has been created to examine the behavior of the model while simulating different conditions. Conclusion This paper presents the modeling of the gear change process in a planetary gear using computers in the Matlab / Simulink environment. Computer-aided modeling of the gear change process enables the generation of different versions of virtual gear models with relevant data about their characteristics thus helping designers in their decision making in the iterative process of design, i. e. in making appropriate decisions in the early stages of design.

  19. The design and applications of Runge-Kutta methods for the simulation of planetary orbits

    Science.gov (United States)

    Rabbi, S. M. Fajlay

    Since the merger of physics and mathematics at the beginning of 1800s, system of finding solution to n-body problem has been intriguing mathematicians. The resulting differential equations can be solved by a variety of approaches -- for example, the Runge-Kutta Methods (RKn). In this thesis, after a brief historical overview of planetary science, RK3 methods are derived as a three-parameter family of solution methods. A particular instance of this family, FR3, is generated and subsequently tested to show it is indeed a third-order method. The planetary system is modeled as a system of differential of equations using laws of classical mechanics, and the models of planetary motions are generated applying RK4 methods. Kepler's laws of planetary motion are proved empirically using observed data taken from NASA. A new way of expressing Kepler's third law is presented: the orbital velocity of a planet decreases as inverse square root of its orbital radius. Simulation of Sun-Earth-Moon as well as solar system is conducted and compared to that of Dahir's and found is a very similar result. Also, the result of the entire solar system simulation closely matches to that of NASA. Initial position-velocity vectors are generated from NASA-JPL's ephemeris data using post-processing codes obtained from the University of Colorado.

  20. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn

    CERN Document Server

    Izidoro, Andre; Raymond, Sean N; Hersant, Franck; Pierens, Arnaud

    2015-01-01

    Reproducing Uranus and Neptune remains a challenge for simulations of solar system formation. The ice giants' peculiar obliquities suggest that they both suffered giant collisions during their formation. Thus, there must have been an epoch of accretion dominated by collisions among large planetary embryos in the primordial outer solar system. We test this idea using N-body numerical simulations including the effects of a gaseous protoplanetary disk. One strong constraint is that the masses of the ice giants are very similar -- the Neptune/Uranus mass ratio is $\\sim1.18$. We show that similar-size ice giants do indeed form by collisions between planetary embryos beyond Saturn. The fraction of successful simulations varies depending on the initial number of planetary embryos in the system, their individual and total masses. Similar-sized ice giants are consistently reproduced in simulations starting with 5-10 planetary embryos with initial masses of $\\sim$3-6 ${\\rm M_\\oplus}$. We conclude that accretion from a ...

  1. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    Science.gov (United States)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  2. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    Science.gov (United States)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  3. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  4. Confronting unknown planetary boundary threats from chemical pollution.

    Science.gov (United States)

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  5. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  6. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2016-01-01

    Full Text Available The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.

  7. Mathematical optimization of matter distribution for a planetary system configuration

    Science.gov (United States)

    Morozov, Yegor; Bukhtoyarov, Mikhail

    2016-07-01

    Planetary formation is mostly a random process. When the humanity reaches the point when it can transform planetary systems for the purpose of interstellar life expansion, the optimal distribution of matter in a planetary system will determine its population and expansive potential. Maximization of the planetary system carrying capacity and its potential for the interstellar life expansion depends on planetary sizes, orbits, rotation, chemical composition and other vital parameters. The distribution of planetesimals to achieve maximal carrying capacity of the planets during their life cycle, and maximal potential to inhabit other planetary systems must be calculated comprehensively. Moving much material from one planetary system to another is uneconomic because of the high amounts of energy and time required. Terraforming of the particular planets before the whole planetary system is configured might drastically decrease the potential habitability the whole system. Thus a planetary system is the basic unit for calculations to sustain maximal overall population and expand further. The mathematical model of optimization of matter distribution for a planetary system configuration includes the input observed parameters: the map of material orbiting in the planetary system with specified orbits, masses, sizes, and the chemical compound for each, and the optimized output parameters. The optimized output parameters are sizes, masses, the number of planets, their chemical compound, and masses of the satellites required to make tidal forces. Also the magnetic fields and planetary rotations are crucial, but they will be considered in further versions of this model. The optimization criteria is the maximal carrying capacity plus maximal expansive potential of the planetary system. The maximal carrying capacity means the availability of essential life ingredients on the planetary surface, and the maximal expansive potential means availability of uranium and metals to build

  8. The planetary rate of sprite events

    DEFF Research Database (Denmark)

    Ignaccolo, M.; Farges, T.; Mika, A.;

    2006-01-01

    We propose a new formula to calculate the planetary rate of sprite events, based on observations with sprite detectors. This formula uses the number of detected sprites, the detection efficiency and the false alarm rate of the detector and spatial and temporal effectiveness functions. The role...... of these elements in the formula is discussed for optical and non-optical recordings. We use the formula to calculate an average planetary rate of sprite events of similar to 2.8 per minute with an accuracy of a factor similar to 2 - 3 by use of observations reported in the literature. The proposed formula can...... be used to calculate the occurrence rate of any physical event detected by remote sensing....

  9. Laser Mass Spectrometry in Planetary Science

    Science.gov (United States)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  10. Testing Lorentz symmetry with planetary orbital dynamics

    CERN Document Server

    Hees, Aurélien; Poncin-Lafitte, Christophe Le; Bourgoin, Adrien; Rivoldini, Attilio; Lamine, Brahim; Meynadier, Frédéric; Guerlin, Christine; Wolf, Peter

    2015-01-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  11. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li

    2014-01-01

    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  12. PRM: A database of planetary reflection matrices

    Science.gov (United States)

    Stam, D. M.; Batista, S. F. A.

    2014-04-01

    We present the PRM database with reflection matrices of various types of planets. With the matrices, users can calculate the total, and the linearly and circularly polarized fluxes of incident unpolarized light that is reflected by a planet for arbitrary illumination and viewing geometries. To allow for flexibility in these geometries, the database does not contain the elements of reflection matrices, but the coefficients of their Fourier series expansion. We describe how to sum these coefficients for given illumination and viewing geometries to obtain the local reflection matrix. The coefficients in the database can also be used to calculate flux and polarization signals of exoplanets, by integrating, for a given planetary phase angle, locally reflected fluxes across the visible part of the planetary disk. Algorithms for evaluating the summation for locally reflected fluxes, as applicable to spatially resolved observations of planets, and the subsequent integration for the disk-integrated fluxes, as applicable to spatially unresolved exoplanets are also in the database

  13. Earth-like Habitats in Planetary Systems

    CERN Document Server

    Fritz, Jörg; Kührt, Ekkehard; Morbidelli, Alessandro; Tornow, Carmen; Wünnemann, Kai; Fernandes, Vera A; Grenfell, Lee J; Rauer, Heike; Wagner, Roland; Werner, Stephanie C

    2014-01-01

    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in th...

  14. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  15. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  16. Schottky Barrier CdTe(Cl) Detectors for Planetary Missions

    Science.gov (United States)

    Eisen, Yosef; Floyd, Samuel

    2002-10-01

    Schottky barrier cadmium telluride (CdTe) radiation detectors of dimensions 2mm × 2mm × 1mm and segmented monolithic 3cm × 3 cm × 1mm are under study at GSFC for future NASA planetary instruments. These instruments will perform x-ray fluorescence spectrometry of the surface and monitor the solar x-ray flux spectrum, the excitation source for the characteristic x-rays emitted from the planetary body. The Near Earth Asteroid Rendezvous (NEAR) mission is the most recent example of such a remote sensing technique. Its x-ray fluorescence detectors were gas proportional counters with a back up Si PIN solar monitor. Analysis of NEAR data has shown the necessity to develop a solar x-ray detector with efficiency extending to 30keV. Proportional counters and Si diodes have low sensitivity above 9keV. Our 2mm × 2mm × 1mm CdTe operating at -30°C possesses an energy resolution of 250eV FWHM for 55Fe with unit efficiency to up to 30keV. This is an excellent candidate for a solar monitor. Another ramification of the NEAR data is a need to develop a large area detector system, 20-30 cm2, with cosmic ray charged particle rejection, for measuring the characteristic radiation. A 3cm × 3cm × 1mm Schottky CdTe segmented monolithic detector is under investigation for this purpose. A tiling of 2-3 such detectors will result in the desired area. The favorable characteristics of Schottky CdTe detectors, the system design complexities when using CdTe and its adaptation to future missions will be discussed.

  17. Planetary Systems and the Formation of Habitable Planets

    CERN Document Server

    Dvorak, Rudolf; Burger, Christoph; Schäfer, Christoph; Speith, Roland

    2015-01-01

    As part of a national scientific network 'Pathways to Habitability' the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize the state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in th...

  18. Dynamics of the Galactic Bulge using Planetary Nebulae

    CERN Document Server

    Beaulieu, S F; Kálnay, A J; Saha, P; Zhao, H S; Beaulieu, Sylvie F.; Freeman, Kenneth C.; Kalnajs, Agris J.; Saha, Prasenjit; Zhao, HongSheng

    2000-01-01

    Evidence for a bar at the center of the Milky Way triggered a renewed enthusiasm for dynamical modelling of the Galactic bar-bulge. Our goal is to compare the kinematics of a sample of tracers, planetary nebulae, widely distributed over the bulge with the corresponding kinematics for a range of models of the inner Galaxy. Three of these models are N-body barred systems arising from the instabilities of a stellar disk (Sellwood, Fux and Kalnajs), and one is a Schwarzschild system constructed to represent the 3D distribution of the COBE/DIRBE near-IR light and then evolved as an N-body system for a few dynamical times (Zhao). For the comparison of our data with the models, we use a new technique developed by Saha (1998). The procedure finds the parameters of each model, i.e. the solar galactocentric distance R_o in model units, the orientation angle phi, the velocity scale (in km/s per model unit), and the solar tangential velocity which best fit the data.

  19. Planetary nebulae in the Small Magellanic Cloud

    Science.gov (United States)

    Ventura, P.; Stanghellini, L.; Di Criscienzo, M.; García-Hernández, D. A.; Dell'Agli, F.

    2016-08-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 10-3 ≤ Z ≤ 4 × 10-3 and mass 0.9 M⊙ Magellanic Cloud is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of this study for some still highly debated points regarding the AGB evolution are also commented.

  20. Search For Planetary Transits in Auriga

    Science.gov (United States)

    Mandushev, G. I.; Dunham, E. W.; Latham, D. W.; Everett, M.

    2007-07-01

    We report the results of an extensive, three-year search for planetary transits in a Milky Way field in the constellation of Auriga. More than 60 objects with transit-like events in their light curves were detected. Photometric and spectroscopic follow-up observations were carried out on the most promising transit candidates. Despite the large number of candidates, so far none of them has been found to be a transiting planet.

  1. Robots and Humans: Synergy in Planetary Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  2. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  3. High scale anisotropies in planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, G.

    1986-06-01

    We present a new classification of Planetary Nebulae (PN) grounded on their characteristic symmetries: bipolarity, ring shape, spiral structure, etc... The different anisotropic models (rotation of nucleus, binary progenitor intranebular magnetic field, nebular rotation, etc...) which have been lately proposed, are analysed and their explanatory power is tested with certain morphological criterious. The comparison with the other classifications (Acker, 1980; Kaler, 1978; Peimbert, 1978) reveals that the morphology has been insufficiently discussed in these latters.

  4. Dynamics of the 3/1 planetary mean-motion resonance. An application to the HD60532 b-c planetary system

    CERN Document Server

    Alves, A J; Santos, M Tadeu dos

    2015-01-01

    In this paper, we use a semi-analytical approach to analyze the global structure of the phase space of the planar planetary 3/1 mean-motion resonance, in cases where the outer planet is more massive than its inner companion. We show that the resonant dynamics can be described using only two fundamental parameters, the total angular momentum and the scaling parameter. The topology of the Hamiltonian function describing the resonant behaviour is studied on the representative planes that allows us to investigate a large domain of the phase space of the three-body problem without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The families of the well known Apsidal Corotation Resonances (ACR) parameterized by the planetary mass ratio are obtained and their stability is analyzed. The main dynamical features in the domains around ACR are also investigated in detail by means of spectral analysis techniques, which allow us...

  5. The Great Escape III: Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    CERN Document Server

    Veras, Dimitri; Wyatt, Mark C; Tout, Christopher A

    2013-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galactic environment before, during and after Asymptotic Giant Branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass loss, Galactic tidal perturbations, and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass loss will shrink ...

  6. Planetary Protection for LIFE-Sample Return from Enceladus

    Science.gov (United States)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  7. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  8. Kinematics, turbulence and evolution of planetary nebulae

    CERN Document Server

    Gesicki, K; Zijlstra, A A; Gesicki, Krzysztof; Acker, Agnes; Zijlstra, Albert A.

    2003-01-01

    This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass averaged velocity is shown to be a robust, simple parameter describing the outflow. The expansion velocity and radius are used to define the dynamical age; together with the stellar temperature, this gives a measurement of the luminosity and core mass of the central star. The same technique is applied to other planetary nebulae with previously measured expansion velocities, giving a total sample of 73 objects. The objects cluster closely around the Schoenberner track of 0.61 M_sun, with a very narrow distribution of core masses. The masses are higher than found for local white dwarfs. The luminosities determined in this way tend to be higher by a factor of a few than those derived from the nebular luminosities. The discrepancy is highest for the hottest (most evolved) ...

  9. Intelligent robots for planetary exploration and construction

    Science.gov (United States)

    Albus, James S.

    1992-01-01

    Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.

  10. Resonant Removal of Exomoons during Planetary Migration

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2016-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called evection resonance. Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically related to where the planet began its inward migration, as well as the character of interlunar perturbations. For example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼5 AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.

  11. Free and Open Source Software for Geospatial in the field of planetary science

    Science.gov (United States)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  12. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  13. The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems

    CERN Document Server

    Schönberner, D; Sandin, C; Steffen, M

    2010-01-01

    By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences w...

  14. A deep kinematic survey of planetary nebulae in the Andromeda Galaxy using the Planetary Nebula Spectrograph

    CERN Document Server

    Merrett, H R; Bridges, T J; Capaccioli, M; Carter, D; Coccato, L; Douglas, N G; Evans, N W; Freeman, K C; Gerhard, O; Halliday, C; Kuijken, K; Merrifield, M R; Napolitano, N R; Romanowsky, A J; Wilkinson, M I

    2006-01-01

    We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda Galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disk out to a radius of 1.5 degrees. Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m_5007~23.75, 3.5 magnitudes into the planetary nebula luminosity function.

  15. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle Dagmar

    2008-01-01

    ­logue between a written text and a visceral on-line performance involving photographs and music, the reader/audience has the possibility to be touched both sensually and intellectually, although through communication is in cyberspace, missing the liveliness of direct body language. Udgivelsesdato: 2008-May......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...... and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move...

  16. Body Basics

    Science.gov (United States)

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  17. Body punk

    DEFF Research Database (Denmark)

    Mogensen, Kevin

    BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...

  18. Body Language

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    When we speak,we use much more than just words. We also communicate with our face. our hands,and even our own body. This Kind of communication ean be called “body language” or “non-verbal eommunieation”. Non-verbal

  19. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    Science.gov (United States)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  20. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  1. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  2. Planetary Science Research Discoveries (PSRD) www.psrd.hawaii.edu

    Science.gov (United States)

    Martel, L.; Taylor, J.

    2010-12-01

    NASA's Year of the Solar System is celebrating not only Solar System mission milestones but also the collective data reduction and analysis that happens here on Earth. The Cosmochemistry Program of NASA's Science Mission Directorate takes a direct approach to enhance student learning and engage the public in the latest research on meteorites, asteroids, planets, moons, and other materials in our Solar System with the website known as PSRD. The Planetary Science Research Discoveries (PSRD) website at www.psrd.hawaii.edu explores the science questions that researchers are actively pursuing about our Solar System and explains how the answers are discovered and what they mean. The site helps to convey the scientific basis for sample study to the broader scientific community and the excitement of new results in cosmochemistry to the general public. We share with our broad audience the fascinating discoveries made by cosmochemists, increasing public awareness of the value of sample-focused research in particular and of fundamental scientific research and space exploration in general. The scope of the website covers the full range of cosmochemical research and highlights the investigations of extraterrestrial materials that are used to better understand the origin of the Solar System and the processes by which planets, moons, and small bodies evolve. We relate the research to broader planetary science themes and mission results. Articles are categorized into: asteroids, comets, Earth, instruments of cosmochemistry, Jupiter system, Mars, Mars life issues, Mercury, meteorites, Moon, origins, and space weathering. PSRD articles are based on peer-reviewed, journal publications. Some PSRD articles are based on more than one published paper in order to present multiple views and outcomes of research on a topic of interest. To date, 150 PSRD articles have been based on 184 journal articles (and counting) written by some of the most active cosmochemists and planetary scientists

  3. Modes of planetary-scale Fe isotope fractionation

    Science.gov (United States)

    Schoenberg, Ronny; Blanckenburg, Friedhelm von

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  4. New Design and Improvement of Planetary Gear Trains

    Science.gov (United States)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  5. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    OpenAIRE

    Józef DREWNIAK; Paulina GARLICKA; Aleksandra KOLBER

    2016-01-01

    The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train...

  6. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  7. Simultaneous Localization and Mapping for Planetary Surface Mobility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  8. Precision Time Protocol Based Trilateration for Planetary Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's vision for planetary exploration requires development and field testing of the key technologies required for extended habitation. To support extended lunar...

  9. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    2009-12-01

    Full Text Available Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere

  10. High Performance Monopropellants for Future Planetary Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  11. Urey prize lecture: On the diversity of plausible planetary systems

    Science.gov (United States)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  12. Interdisciplinary research produces results in understanding planetary dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  13. UNIFIED REPRESENTATION FOR COLLABORATIVE VISUALIZATION OF PLANETARY TERRAIN DATA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to apply to planetary terrain mapping an alternative, multiresolution method, subdivision surfaces (subdivs), in place of conventional digital elevation...

  14. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one...... or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific...... background weathering of P); global freshwater use (system change (

  15. Dynamics of early planetary gear trains

    Science.gov (United States)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  16. Directed energy missions for planetary defense

    Science.gov (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  17. The role of turbulent dissipation in planetary fluid interiors driven by tidal and librational forcing

    Science.gov (United States)

    Grannan, Alex; Favier, Benjamin; Bills, Bruce; Lemasquerier, Daphne; Le Bars, Michael; Aurnou, Jonathan

    2016-10-01

    The turbulent fluid motions generated in the liquid metal cores and oceans of planetary bodies can have profound effects on energy dissipation and magnetic field generation. An important driver of such fluid motions is mechanical forcing from precession, libration, and tidal forcing. On Earth, the dissipation of energy through tidal forcing occurs primarily in the oceans and may be due, in part, to nonlinear tidally forced resonances. However, the role that such nonlinear resonances play are not generally considered for other planetary bodies also possessing oceans and liquid metal cores.Recent laboratory experimental and numerical studies of Grannan et al. 2014 and Favier et al. 2015 have shown that nonlinear fluid resonances generated by sufficiently strong librational forcing can drive turbulent flows in ellipsoidal containers that mimic gravitational deformations. In Grannan et al. 2016, similar results were found for strong tidal forcing. Thus, a generalized scaling law for the turbulent r.m.s. velocity is derived, U~ɛβE-α, where ɛ is the dimensionless amplitude of the tidal or librational forcing, β is the dimensionless tidal deformation of the body, E is the dimensionless Ekman number characterizing the ratio of viscous to Coriolis forces, and α is a varying exponent.Using planetary values for tidal and librational forcing parameters, the turbulent dissipation is estimated for multiple bodies. For the subsurface oceans of Europa and Enceladus, the amount of nonlinear dissipation is comparable to the dissipation generated from linear resonances of the fluid layer and from upper bounding estimates of the tidal dissipation in the solid icy shell. In addition, our estimates of this turbulent dissipation provide bounds for the stratification in these subsurface oceans. Finally we find that dissipation from these nonlinear resonances in the liquid metal cores of the the early and present Earth, Io, and several exoplanets may help drive the dynamos in these

  18. Virtual Planetary Analysis Environment for Remote Science

    Science.gov (United States)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  19. Automatic extraction of planetary image features

    Science.gov (United States)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  20. Middle School Adventures in Planetary Exploration

    Science.gov (United States)

    Limaye, S. S.; Pertzborn, R. A.

    1998-09-01

    During the summer of 1998 the UW-Madison Office of Space Science Education (OSSE) developed and implemented a pilot summer school program to improve the math and science performance of middle school students. The program focused on the subject of solar system exploration for the summer school offered by the Milwaukee Public Schools (MPS) for middle school students. OSSE staff collaborated with science, math, and technology teachers from two middle schools (Milwaukee Education Center and Bell Middle School) to expand upon a series of hands-on, interdisciplinary lesson plans originally developed to accompany the Planetary Society's Red Rover, Red Rover Program. For six weeks, sixty inner city middle school students had the opportunity to explore new worlds as far reaching as Mars, Mercury, Titania, Uranus and Pluto with the assistance of Planetary Scientists and staff from the UW-Madison Space Science and Engineering Center. Students were provided with computers and internet connections by AT&T to conduct on-line research on their own research topic relating to planetary exploration. Based on their own research efforts, teams of five or six students wrote a mission statement and then proceeded to create a terrain resembling their desired planetary target. Team engineers then built a computer operated Lego Dacta rover designed especially for exploring the unique features of their targeted planet. In addition to strengthening their science and math skills, students also focused on the improvement of their communication skills by maintaining a daily journal of their experiences, tribulations and successes. Students were tested in the beginning and again at the end of the program. An independent group from University of Wisconsin-Milwaukee performed overall assessment of the summer program. Based on the overall success in achieving performance enchmarks, the Milwaukee Public Schools and UW-Extension Learning Innovations Center have elected to collaborate with the OSSE to

  1. Dust Extinction in Compact Planetary Nebulae

    OpenAIRE

    Lee, TH; Kwok, S.

    2005-01-01

    The effects of dust extinction on the departure from axisymmetry in the morphology of planetary nebulae (PNs) are investigated through a comparison of the radio free-free emission and hydrogen recombination line images. The dust extinction maps from five compact PNs are derived using high-resolution (̃0"1) Hα and radio maps of the HST and VLA. These extinction maps are then analyzed by an ellipsoidal shell ionization model including the effects of dust extinction to infer the nebulae's intrin...

  2. ANALYSIS METHOD OF AUTOMATIC PLANETARY TRANSMISSION KINEMATICS

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2014-06-01

    Full Text Available In the present paper, planetary automatic transmission is modeled by means of contour graphs. The goals of modeling could be versatile: ratio calculating via algorithmic equation generation, analysis of velocity and accelerations. The exemplary gears running are analyzed, several drives/gears are consecutively taken into account discussing functional schemes, assigned contour graphs and generated system of equations and their solutions. The advantages of the method are: algorithmic approach, general approach where particular drives are cases of the generally created model. Moreover, the method allows for further analyzes and synthesis tasks e.g. checking isomorphism of design solutions.

  3. Planetary and Lunar ephemerides, INPOP10A

    CERN Document Server

    Fienga, A; Kuchynka, P; Laskar, J; Gastineau, M

    2010-01-01

    The Planetary and Lunar ephemerides INPOP10a version has several improvements in the fitting process, the data sets used in the fit and in the general features of the solution. No big change was brought in the dynamics. As a consequence of these changes, the extrapolation capabilities of INPOP10a are improved compared to INPOP08, especially for the Earth, Mars, Mercury and Saturn orbits. As for INPOP08, INPOP10a provides to the user, positions, velocities of the planets and the moon and TT-TDB chebychev polynomials at \\url{http://www.imcce.fr/inpop}.

  4. Kinematic Distance of Galactic Planetary Nebulae

    CERN Document Server

    Yang, A Y; Zhu, H; Leahy, D A; Wu, D

    2016-01-01

    We construct \\HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects' kinematic distances are obtained for the first time. The distance uncertainties of 13 PNe range from 10% to 50%, which is a significant improvement with uncertainties of a factor two or three smaller than most of previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.

  5. Herschel Planetary Nebula Survey (HerPlaNS). First detection of OH+ in planetary nebulae

    NARCIS (Netherlands)

    Aleman, I.; Ueta, T.; Ladjal, D.; Exter, K.M.; Kastner, J.H.; Montez, R.; Tielens, A.G.G.M.; Chu, Y.-H.; Izumiura, H.; McDonald, I.; Sahai, R.; Siódmiak, N.; Szczerba, R.; Hoof, van P. A. M.; Villaver, E.; Vlemmings, W.; Wittkowski, M.; Zijlstra, A.A.

    2014-01-01

    We report the first detections of OH+emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the HerschelSpace Observatory, we performed a line survey in these PNe over the entire spectral range between 51

  6. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma....... Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp...... presents an overview of our knowledge about the taphomic processes as well as the methods used in bog body research....

  7. Body Language

    Institute of Scientific and Technical Information of China (English)

    王芳

    2008-01-01

    @@ For Teachers: The Wordless Language Spoken by Everyone by Pamela Osment An old saying goes:"Actions speak louder than words."That's true according to communication experts.Some studies show that up to 90 percent of communication is nonverbal.Though you might say one thing,your body movements may indicate something entirely different.This nonverbal way of communicating is called body language.The Universal(通用的)Language

  8. Proceedings of the 39th Lunar and Planetary Science Conference

    Science.gov (United States)

    2008-01-01

    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous

  9. Soil Shear Properties Assessment, Resistance, Thermal, and Triboelectric Analysis (SPARTTA) Tool: A New Multitool Instrument for Identifying the Physical Properties of In-situ Soils on Planetary Surfaces.

    Science.gov (United States)

    Anderson, R. C.; Peters, G. H.; Beegle, L. W.; Zhou, Y. M.; Van Stryk, N.; Carey, E. M.

    2015-12-01

    SPARTTA is a low cost, low mass (robotic surface mission. A key innovation of SPARTTA is its state-of-the-art miniature packaging approach which enables in-situ comprehensive analyses of the physical properties of soils on any planetary body (e.g. asteroids, comets, etc.) with a single compact instrument. SPARTTA will specifically address several high-priority science goals identified in the Decadal Study regarding the physical properties of planetary soils, liquid water/water-ice detection, and electrostatics for bodies as diverse as comets, Trojan asteroids, Mars and the Moon [Planetary Science Decadal Study, 2013]. Additionally, it will provide valuable data to assist engineers in designing landing, drilling, coring, and sample acquisition systems for future Discovery, New Frontiers missions, or flagship landed missions.

  10. Future planetary X-ray and gamma-ray remote sensing system and in situ requirements for room temperature solid state detectors

    CERN Document Server

    Trombka, J I; Starr, R; Clark, P E; Floyd, S R

    1999-01-01

    X-Ray and gamma-ray remote sensing observations find important applications in the study of the development of the planets. Orbital measurements can be carried out on solar-system bodies whose atmospheres and trapped radiation environments do not interfere significantly with the emissions. Elemental compositions can be inferred from observations of these line emissions. Future planetary missions also will involve landing both stationery and roving probes on planetary surfaces. Both X-ray and gamma-ray spectrometers will be used for performing elemental analysis of surface samples. These future planetary missions will impose a number of constraints: the flight instruments must be significantly reduced in weight from those previously flown; for many missions, gravity assist will be required, greatly increasing mission duration, resulting in the passage of several years before the first scientific measurement of a solar system body. The detector systems must operate reliably after years of cosmic-ray irradiation...

  11. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  12. Atlas3bgeneral: Three-body resonance calculator

    Science.gov (United States)

    Gallardo, Tabaré

    2016-07-01

    For a massless test particle and given a planetary system, atlas3bgeneral calculates all three body resonances in a given range of semimajor axes with all the planets taken by pairs. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the three-body resonances is available for use with the Fortran77 source code.

  13. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, N.; Grande, M.

    2015-10-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this JRA will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of

  14. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  15. InSight Planetary Protection Status

    Science.gov (United States)

    Benardini, James; Vaishampayan, Parag; Chen, Fei; Kazarians, Gayane; Willis, Jason; Witte, Joe; Hendrickson, Ryan

    2016-07-01

    The InSight Project is a Discovery mission that consists of a single spacecraft with an overarching mission goal of illuminating the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system is comprised of a 2008 Phoenix mission heritage cruise stage, aeroshell (heatshield and backshell), and lander. The lander payload contains cameras, a seismometer, a mole to penetrate the regolith (≤5 meters) to measure the geothermal gradient of Mars, and an auxiliary payload sensor suite to measure wind, temperature, and pressure. As a Mars lander mission without life detection instruments, the InSight mission has been designated PP Category IVa. Therefore, planetary protection bioburden requirements are applicable to this mission and require microbial reduction procedures and biological burden reports. Due to primary payload technical issues, InSight's 2016 launch has been delayed by NASA. The mission is currently under a re-planning phase. InSight has completed an approved Planetary Protection Plan, Subsidiary PP Plans, PP Implementation Documentation, and ~50% of the PPO verification biological assays. The flight system and additional payloads were assembled and being readied for launch at the launch site at the time of the project stand-down and has since been secured for storage. The status of the PP activities will be reported.

  16. Planetary nebulae abundances and stellar evolution

    CERN Document Server

    Pottasch, S R

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this is discussed. The higher solar neon abundance is confirmed; this is discussed in terms of the results of helioseismology. Evidence is presented for oxygen destruction via ON cycling having occurred in the progenitors of four planetary nebulae with bilobal structure. These progenitor stars had a high mass, probably greater than 5 solar masses. This is deduced from the high values of He/H and N/H found in these nebulae. Formation of nitrogen, helium and carbon are discussed. The high mass progenitors which showed oxygen de...

  17. Chandrayaan-1: India's first planetary science mission

    Science.gov (United States)

    Nath Goswami, Jitendra

    A new initiative of the Indian Space Research Organization to have dedicated Space Science Missions led to two major missions that are currently in progress: Astrosat and Chandrayaan-1, the latter being the first planetary science mission of the country. The spadework for this mission started about ten years back and culminated in late 2003 with the official endorsement for the mission. This remote sensing mission, to be launched in early next year, is expected to further our understanding of the origin and evolution of the Moon based on a chemical, mineralogical and topographic study of the lunar surface at spatial and spectral resolutions much better than those for previous and other currently planned lunar missions. The Chandrayaan-1 mission is also international in character and will have an array of Indian instruments as well as several instruments from abroad some of which will have very strong Indian collaboration. This talk will provide a brief overview of our present understanding of the Moon, the science objectives of the Chandrayaan-1 mission and how we hope to achieve these from the data to be obtained by the various instruments on board the mission. A possible road map for Indian planetary exploration programme in the context of the International scenario will be presented at the end.

  18. Using Vulcan to Recreate Planetary Cores

    CERN Document Server

    Collins, G W; Benedetti, L R; Benuzzi-Mounaix, A; Cauble, R; Celliers, P M; Danson, C; Da Silva, L B; Gessner, H; Henry, E; Hicks, D G; Huser, G; Jeanloz, R; Koening, M; Lee, K M; Mackinnon, A J; Moon, S J; Neely, D; Notley, M; Pasley, J; Willi, O

    2001-01-01

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and l...

  19. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  20. Observations of an extreme planetary system

    Science.gov (United States)

    Raetz, Stefanie; Schmidt, Tobias O. B.; Briceno, Cesar; Neuhäuser, Ralph

    2015-12-01

    Almost 500 planet host stars are already known to be surrounded by more than one planet. Most of them (except HR8799) are old and all planets were found with the same or similar detection method.We present an unique planetary system. For the first time, a close in transiting and a wide directly imaged planet are found to orbit a common host star which is a low mass member of a young open cluster. The inner candidate is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star and was detected in our international monitoring campaign of young stellar clusters. The transit shape is changing between different observations and the transit even disappears and reappears. This unusual transit behaviour can be explained by a precessing planet transiting a gravity-darkened star.The outer candidate was discovered in the course of our direct imaging survey with NACO at ESO/VLT. Both objects are consistent with a relation to protoplanetary disc lifetimes. Furthermore, this system with two planets on such extreme orbits gives us the opportunity to study the possible outcome of planet-planet scattering theories for the first time by observations.I will report on our monitoring and photometric follow-up observations as well as on the direct detection and the integral field spectroscopy of this extreme planetary system.

  1. Directed Energy Missions for Planetary Defense

    CERN Document Server

    Lubin, Philip; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathon; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional prop...

  2. A Planetary Companion to gamma Cephei A

    CERN Document Server

    Hatzes, A P; Endl, M; McArthur, B; Paulson, D B; Walker, G A H; Campbell, B; Yang, S; Hatzes, Artie P.; Cochran, William D.; Endl, Michael; Arthur, Barbara Mc; Paulson, Diane B.; Walker, Gordon A. H.; Campbell, Bruce; Yang, Stephenson

    2003-01-01

    We report the detection of a planetary companion in orbit around the primary star of the binary system gamma~Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981 to 2002 reveal long-lived residual radial velocity variations that are coherent in phase and amplitude with a period or 2.47 years and a semi-amplitude of 27 m/s. These residual radial velocity variations are most likely caused by a planetary mass companion with Msin i = 1.59 M_Jupiter and an orbital semi-major axis of 2.03AU. We have carefully analyzed of all the available photometric and spectroscopic data. Our CaII H&K S-index measurements taken during 1998-2002 show no variations with the planet period. Analysis of high resolution spectra taken 1988-1995 shows that the changes in the mean bisector velocity span and curvature for this star is less than 5 m/s. The Hipparcos photometry for this star made during 1989 to 1992 is constant to less than 0.001 mag. An analysis of the Walker ...

  3. Jim Pollack's Contributions to Planetary Science

    Science.gov (United States)

    Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.

  4. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  5. Planetary penetrators: Their origins, history and future

    Science.gov (United States)

    Lorenz, Ralph D.

    2011-08-01

    Penetrators, which emplace scientific instrumentation by high-speed impact into a planetary surface, have been advocated as an alternative to soft-landers for some four decades. However, such vehicles have yet to fly successfully. This paper reviews in detail, the origins of penetrators in the military arena, and the various planetary penetrator mission concepts that have been proposed, built and flown. From the very limited data available, penetrator developments alone (without delivery to the planet) have required ˜$30M: extensive analytical instrumentation may easily double this. Because the success of emplacement and operation depends inevitably on uncontrollable aspects of the target environment, unattractive failure probabilities for individual vehicles must be tolerated that are higher than the typical '3-sigma' (99.5%) values typical for spacecraft. The two pathways to programmatic success, neither of which are likely in an austere financial environment, are a lucky flight as a 'piggyback' mission or technology demonstration, or with a substantial and unprecedented investment to launch a scientific (e.g. seismic) network mission with a large number of vehicles such that a number of terrain-induced failures can be tolerated.

  6. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  7. Characterization of the Wolf 1061 Planetary System

    Science.gov (United States)

    Kane, Stephen R.; von Braun, Kaspar; Henry, Gregory W.; Waters, Miranda A.; Boyajian, Tabetha S.; Mann, Andrew W.

    2017-02-01

    A critical component of exoplanetary studies is an exhaustive characterization of the host star, from which the planetary properties are frequently derived. Of particular value are the radius, temperature, and luminosity, which are key stellar parameters for studies of transit and habitability science. Here we present the results of new observations of Wolf 1061, known to host three super-Earths. Our observations from the Center for High Angular Resolution Astronomy interferometric array provide a direct stellar radius measurement of 0.3207 ± 0.0088 R⊙, from which we calculate the effective temperature and luminosity using spectral energy distribution models. We obtained 7 yr of precise, automated photometry that reveals the correct stellar rotation period of 89.3 ± 1.8 days, finds no evidence of photometric transits, and confirms that the radial velocity signals are not due to stellar activity. Finally, our stellar properties are used to calculate the extent of the Habitable Zone (HZ) for the Wolf 1061 system, for which the optimistic boundaries are 0.09–0.23 au. Our simulations of the planetary orbital dynamics show that the eccentricity of the HZ planet oscillates to values as high as ∼0.15 as it exchanges angular momentum with the other planets in the system.

  8. The ultimate fate of planetary systems

    Science.gov (United States)

    Wachlin, F. C.; Vauclair, S.; Vauclair, G.; Althaus, L. G.

    2016-08-01

    In recent years, the increasing evidence that a significant fraction of white dwarfs is accreting matter from a debris disk has triggered a significant scientific interest. Its mere existence suggests that the planetary system which had formed around the star was able to survive all previous phases of stellar evolution, including those implying dramatic size changes as well as mass loss events of the central star. The computation of accretion rates provides us important information about the original planetary system. Unfortunately the present estimations do not take into account a physical process that may happen when heavy material falls ontop a lighter one, generating turbulences that dilutes the accreted material. This process affects directly the computed accretion rates, since if it takes place, larger accretion rates become necessary in order to explain the amount of surface contamination observed. In this work we present the results of numerical simulations that show that this destabilizing physical process actually occurs. Its impact on an accreting DA white dwarf model is presented.

  9. Detecting Abundance Variations in Planetary Nebulae

    Science.gov (United States)

    Monteiro, H.; Santos, P. M.; Falceta-Gonçalves, D.

    2014-04-01

    Empirical methods of investigating chemical abundances are still widely used as a primary tool to study planetary nebulae (PNe) as well as HII regions. In this work we investigate the capacity of the empirical abundance determination methods to recover pre-defined parameters and abundance variations in a realistically modeled planetary nebula. To perform the test we use a threedimensional density structure obtained from a hydrodynamical simulation which is fed through a threedimensional photoionization code. The density structure is an asymetrical and inhomogeneous elongated closed shell. The input parameters used, such as, ionizing source, density, and chemical abundances are typical values of type I PNe. The model emissivities are then projected in the line of sight and emission line maps are generated, which are used to obtain the temperature and density diagnostics. The diagnostics and line emission maps are then used to obtain spatially resolved maps of the abundances. In this work we use the method described above to investigate abundances for two distinct orientations of the density structure. Our results show that for typical signal to noise ratios obtained from long-slit spectroscopy, only large abundance variations can be determined with good precision.

  10. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  11. Bringing Planetary Science to the Public

    Science.gov (United States)

    Chapman, C. R.

    1999-09-01

    Since I am not fluent in Italian, I won't presume to give a "public" science lecture in Padua (that will happen in the year 2000 before an English-speaking audience). But I will discuss the gap between the arcane practice of planetary research and the yearnings of a poorly educated public to participate in planetary exploration. Education and public outreach (E&PO) is a vital enterprise for our profession to be engaged in. But that does not mean that every researcher needs to become proficient at public communication. Our interdisciplinary field advances because of our diverse talents and we should do what we are good at. It is good that entities like the DPS and NASA are encouraging scientists to engage in E&PO, yet I fear that this endeavor is already, in its infancy, becoming bureaucratized. An E&PO cottage industry is developing, complete with its own jargon and checklists. The essential thing is for us all to realize that science is a human activity, supported by the public as part of our civilization's culture. As we do our science, we should do it with consciousness of our public role and use whatever creative talents we have to synthesize our specialized results for the broader scientific community, to articulate them to science communicators (educators, journalists, writers), and to share them directly with the public.

  12. Disentangling stellar activity and planetary signals

    CERN Document Server

    Boisse, I; Hebrard, G; Bonfils, X; Santos, N C; Vauclair, S

    2010-01-01

    Photospheric stellar activity might be an important source of noise and confusion in the radial-velocity measurements. RV planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the photometry, RV and spectral line shapes are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at Prot and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD189733, GJ674, CoRoT-7 and iHor. We succeed in fitting simultaneously activity and planetary signa...

  13. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface

  14. The 3-dimensional architecture of the Upsilon Andromedae planetary system

    CERN Document Server

    Deitrick, Russell; McArthur, Barbara; Quinn, Thomas R; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G Fritz

    2014-01-01

    The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by about 30 degrees, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or about 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 $M_{Jup}$ and has an inclination angle from the...

  15. An Analytic Criterion for Turbulent Disruption of Planetary Resonances

    Science.gov (United States)

    Batygin, Konstantin; Adams, Fred C.

    2017-03-01

    Mean motion commensurabilities in multi-planet systems are an expected outcome of protoplanetary disk-driven migration, and their relative dearth in the observational data presents an important challenge to current models of planet formation and dynamical evolution. One natural mechanism that can lead to the dissolution of commensurabilities is stochastic orbital forcing, induced by turbulent density fluctuations within the nebula. While this process is qualitatively promising, the conditions under which mean motion resonances can be broken are not well understood. In this work, we derive a simple analytic criterion that elucidates the relationship among the physical parameters of the system, and find the conditions necessary to drive planets out of resonance. Subsequently, we confirm our findings with numerical integrations carried out in the perturbative regime, as well as direct N-body simulations. Our calculations suggest that turbulent resonance disruption depends most sensitively on the planet–star mass ratio. Specifically, for a disk with properties comparable to the early solar nebula with α ={10}-2, only planet pairs with cumulative mass ratios smaller than ({m}1+{m}2)/M≲ {10}-5∼ 3{M}\\oplus /{M}ȯ are susceptible to breaking resonance at semimajor axis of order a∼ 0.1 {au}. Although turbulence can sometimes compromise resonant pairs, an additional mechanism (such as suppression of resonance capture probability through disk eccentricity) is required to adequately explain the largely non-resonant orbital architectures of extrasolar planetary systems.

  16. Radar TopoMapper concept for planetary exploration

    Science.gov (United States)

    Madsen, Soren N.; Lou, Yun-Ling; Hensley, Scott; Harvey, Wayne L.; McKinnon, William B.

    2004-12-01

    Topographic information is key to interpreting the geology and geophysics of planetary bodies such as the icy Galilean satellites. Traditionally elevation information has been derived from stereo-photogrammetry, but the last couple of decades have offered new techniques, including radar interferometry, photoclinometry (shape from shading) and laser altimetry. Combining synthetic aperture radar (SAR) technology with interferometry (InSAR) enables high resolution imaging with elevation information at each image point. With two appropriately spaced antennas on a spacecraft, single-pass imaging radar interferometry can provide wide swath topographic data, independent of solar illumination, as was recently demonstrated on Earth by the Shuttle Topographic Radar Mission (SRTM; www.jpl.nasa.gov/srtm). We will present the science requirements, measurement principle, a straw-man"s design, and the predicted performance of a "compact SRTM" which could be flown on NASA missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). In this paper we discuss challenges, including the calibration strategy and critical technology elements such as the high power RF-amplifier. We expect that the performance, both in terms of elevation accuracy and mapping rate would suffice to 1) determine topography on local and regional scales; 2) search for active geological change on the time scale of JIMO"s orbit around, e.g., Europa (30-60 days); and 3) determine the global tidal amplitude at Europa, Callisto, and Ganymede, which would constitute direct proof of the existence of oceans in all three icy moons.

  17. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  18. Isotopic enrichment of forming planetary systems from supernova pollution

    Science.gov (United States)

    Lichtenberg, Tim; Parker, Richard J.; Meyer, Michael R.

    2016-11-01

    Heating by short-lived radioisotopes (SLRs) such as 26Al and 60Fe fundamentally shaped the thermal history and interior structure of Solar system planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar system is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disc present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of 26Al and 60Fe based on N-body simulations of typical to large clusters (103-104 stars) with a range of initial conditions. We quantify the pollution of protoplanetary discs by supernova ejecta and show that the likelihood of enrichment levels similar to or higher than the Solar system can vary considerably, depending on the cluster morphology. Furthermore, many enriched systems show an excess in radiogenic heating compared to Solar system levels, which implies that the formation and evolution of planetesimals could vary significantly depending on the birth environment of their host stars.

  19. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    Science.gov (United States)

    Baruteau, Clément; Bai, Xuening; Mordasini, Christoph; Mollière, Paul

    2016-12-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets internal evolution, like cooling and contraction, the mass-luminosity relation, and the bulk composition expressed in the mass-radius and mass-mean density relations.

  20. Chaotic diffusion in the Gliese-876 planetary system

    Science.gov (United States)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  1. The Inner Debris Structure in the Fomalhaut Planetary System

    CERN Document Server

    Su, Kate Y L; Defrere, Denis; Wang, Kuo-Song; Lai, Shih-Ping; Wilner, David J; van Lieshout, Rik; Lee, Chin-Fei

    2015-01-01

    Fomalhaut plays an important role in the study of debris disks and small bodies in other planetary systems. The proximity and luminosity of the star make key features of its debris, like the water ice-line, accessible. Here we present ALMA cycle 1, 870 \\mu m (345 GHz) observations targeted at the inner part of the Fomalhaut system with a synthesized beam of 0.45"x0.37" (~3 AU linear resolution at the distance of Fomalhaut) and a rms of 26 \\mu Jy/beam. The high angular resolution and sensitivity of the ALMA data enable us to place strong constraints on the nature of the warm excess revealed by Spitzer and Herschel observations. We detect a point source at the star position with a total flux consistent with thermal emission from the stellar photosphere. No structures that are brighter than 3\\sigma\\ are detected in the central 15 AU x 15 AU region. Modeling the spectral energy distribution using parameters expected for a dust-producing planetesimal belt indicates a radial location in the range ~8-15 AU. This is ...

  2. Relating binary-star planetary systems to central configurations

    Science.gov (United States)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  3. Magnetism, planetary rotation and convection in the solar system

    CERN Document Server

    1985-01-01

    On the 6th, 7th' and 8th April 1983, a conference entitled "Magnetism, planetary rotation and convection in the Solar System" was held in the School of Physics at the University of Newcastle upon Tyne. The purpose of the meeting was to celebrate the 60th birthday of Prof. Stanley Keith Runcorn and his, and his students' and associates', several decades of scientific achievement. The social programme, which consisted of excursions in Northumberland and Durham with visits to ancient castles and churches, to Hexham Abbey and Durham Cathedral, and dinners in Newcastle and Durham, was greatly enjoyed by those attending the meeting and by their guests. The success ofthe scientific programme can be judged by this special edition of Geophysical Surveys which is derived mainly from the papers given at the meeting. The story starts in the late 1940s when the question of the origin of the magnetic field of the Earth and such other heavenly bodies as had at that time been discovered as having a magnetic field, was exerci...

  4. On the Stability of Extrasolar Planetary Systems and other Closely Orbiting Pairs

    CERN Document Server

    Adams, Fred C

    2014-01-01

    This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems --- where one mass is much smaller than the other. The application of these stability criteria to a subset of the Kepler sample indicates that the majority of the systems are not in a stable equilibrium state. Motivated by this finding, we generalize the stability calculation to include the quadrupole moment for the host star. In general, a stable equilibrium requires that the total system angular momentum exceeds a minimum value (denoted here as $L_X$) and that the orbital angular momentum of the planet exceeds a minimum fraction of the total. Most, but not all, of the observed planetary systems in the sample have enough total angular momentum to allow an equilibrium state. Even with the generalizations of this paper, however, most systems have too lit...

  5. The Dynamical Origin of the Multi-Planetary System HD45364

    CERN Document Server

    Rein, Hanno; Kley, Wilhelm

    2009-01-01

    The recently discovered planetary system HD45364 which consists of a Jupiter and Saturn mass planet is very likely in a 3:2 mean motion resonance. The standard scenario to form planetary commensurabilities is convergent migration of two planets embedded in a protoplanetary disc. When the planets are initially separated by a period ratio larger than two, convergent migration will most likely lead to a very stable 2:1 resonance for moderate migration rates. To avoid this fate, formation of the planets close enough to prevent this resonance may be proposed. However, such a simultaneous formation of the planets within a small annulus, seems to be very unlikely. Rapid type III migration of the outer planet crossing the 2:1 resonance is one possible way around this problem. In this paper, we investigate this idea in detail. We present an estimate for the required convergent migration rate and confirm this with N-body and hydrodynamical simulations. If the dynamical history of the planetary system had a phase of rap...

  6. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos

    Science.gov (United States)

    Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei; Monteleone, Brian; Shimizu, Nobumichi

    2016-10-01

    The abundances of volatile elements in the Earth's mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body--in which carbon has been preferentially partitioned into the mantle--may explain the Earth's carbon and sulfur budgets.

  7. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    OpenAIRE

    Hamilton, Trinity L.; Donald A Bryant; Macalady, Jennifer L.

    2015-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and m...

  8. Planetary boundaries: guiding human development on a changing planet

    NARCIS (Netherlands)

    Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.; Biggs, R.; Vries, de W.

    2015-01-01

    The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on t

  9. Signifying Bodies

    DEFF Research Database (Denmark)

    of biosemiosis connect signifying bodies with their natural surroundings, cultural activities and subjective experiences. Health stretches all the way from the ecosocial surroundings, through the skin and into the self-organizing processes of every living cell. Signifying Bodies lays out a new approach to health...... and health care. Eschewing all forms of dualism, the authors emphasise the interdependency of how we act, think, feel and function. They advocate a relational turn in health care, in which bodies live and learn from suffering and care. In this view, health is inseparable from both living beings...... of, for example, how rheumatoid arthritis sufferers view their treatment, how decisions are made in simulated emergencies, and how therapists and homeopaths use distributed language and cognition with their clients....

  10. Stability of 2-body orbits in retarded gravitation theory (RGT)

    CERN Document Server

    Raju, C K

    2015-01-01

    The recently formulated retarded gravitation theory (RGT) explains the non-Newtonian velocities of stars in spiral galaxies, *without any new hypothesis*, and may hence be tested even in the laboratory. However, doubts have been expressed that those higher rotation velocities in RGT may be due to instabilities. We resolve these doubts by solving the full functional differential equations of RGT for a model 2-body planetary system. The solution is stable and closely agrees with the Newtonian solution for this planetary case. Thus, the big difference between RGT and Newtonian gravity for a spiral galaxy is not due to any instability in RGT.

  11. Uncovering Circumbinary Planetary Architectural Properties from Selection Biases

    CERN Document Server

    Li, Gongjie; Tao, Molei

    2016-01-01

    The new discoveries of circumbinary planetary systems shed light on the understanding of planetary system formation. Learning the architectural properties of these systems is essential for constraining the different formation mechanisms. We first revisit the stability limit of circumbinary planets. Next, we focus on eclipsing stellar binaries and obtain an analytical expression for the transit probability in a realistic setting, where finite observation period and planetary orbital precession are included. Then, understanding of the architectural properties of the currently observed transiting systems is refined, based on Bayesian analysis and a series of hypothesis tests. We find 1) it is not a selection bias that the innermost planets reside near the stability limit for eight of the nine observed systems, and this is consistent with a log uniform distribution of the planetary semi-major axis; 2) it is not a selection bias that the planetary and stellar orbits are nearly coplanar ($\\lesssim 3^\\circ$), and th...

  12. Revised planetary protection policy for solar system exploration.

    Science.gov (United States)

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  13. Body parts

    Science.gov (United States)

    Ayiter, Elif

    2010-01-01

    In this project, the artist wishes to examine corporeality in the virtual realm, through the usage of the (non)-physical body of the avatar. An art installation created in the virtual world of Second Life, which is meant to be accessed with site specific avatars, will provide the creative platform whereby this investigation is undertaken. Thus, "body parts" seeks to challenge the residents of virtual environments into connecting with the virtual manifestations, i.e., avatars of others in an emotionally expressive/intimate manner.

  14. Body Rainbow

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Phubu did not know how long hehad walked after leaving Baxoi, buthe did know that he was halfwaybetween home and Lhasa. Feelingthe weight of the sack containingPhumo's body on his back, Fhubuhad calmed down from the grief anddesperation. He had just one wish:to carry Phumo to Lhasa. He knewthat Phumo had gone, and her soulwas no longer in this body. But hewas determined to finish the trip, notonly because he had promised so, butalso that he believed that it would beredemption for him.

  15. Planetary Population Synthesis: the importance of the solids accretion rate

    Science.gov (United States)

    Fortier, A.; Alibert, Y.; Carron, F.; Mordasini, C.; Benz, W.

    2011-10-01

    In the framework of the nucleated instability model, the formation time-scale of giant planets is very sensitive to the time it takes to build the solid core. The accretion of solids can be described by two different, consecutive regimes: it first proceeds in a very fast fashion, known as runaway growth, and later on in a much slower regime, the so-called oligarchic growth. The transition between the runaway and the oligarchic growth depends on many parameters (e.g. the isolation mass and the size of the accreted planetesimals), but as a general rule we can assume that an embryo of a Lunar mass is already an oligarch. Then, the timescale to build a 10 Earth masses (M⊙) core is regulated by the oligarchic regime, as the previous runaway stage proceeds in a negligible amount of time compared to the oligarchic timescale. In this work we show the results of adopting the oligarchic growth for the core in planetary population synthesis calculations. In previous works (see [1], [2]) a fast solids accretion rate was prescribed, leading to a very fast formation of massive solid embryos. Here we show that when considering the oligarchic growth, the formation of giant planets is more difficult, especially in the outer parts of the disk, where the formation of big planets is almost impossible under these hypothesis. On the other hand, many Earth to Super- Earth sized planets are found in the very innermost parts of the disk. However, if the size of the accreted planetesimals is reduced, the formation of giant planets is more likely, preserving also a large amount of smaller planets. We also consider the formation of planetary systems, including the N-body interaction between the forming planets and the collisions that may occur among them during their migration. In the case of many planets forming in the same disk, we find that the final masses of the planets are smaller (but not too small) than in the case of a single planet per star.

  16. An integral approach to investigate planetary cores

    Science.gov (United States)

    Fei, Y.

    2012-12-01

    The same core-mantle differentiation process was in operation during the early formation of the terrestrial planets, but it led to unique cores for the Earth, Venus, Mars, and Mercury, with different magnetic fields, reflecting their different dynamic, physical, and chemical states. Assuming all terrestrial planets shared the same materials of the building block, the differences must be resulted from the different conditions of the early accretion and the subsequent planetary evolution unique to each planet. The pressures at the core-mantle boundary of the terrestrial planets range from as low as 7 GPa to 136 GPa. The physical state (liquid or solid) for each planetary core is closely tied to the melting and chemical composition of the cores. In order to determine the minimal temperature of a liquid core or the maximal temperature of a solid core, we have systematically investigated melting relations in the binary systems Fe-FeS, Fe-C, and Fe-FeSi, move toward unravelling the crystallization sequence and element partitioning between solid and liquid metal in the ternary and quaternary systems up to 25 GPa, using multi-anvil apparatus. We have developed new techniques to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focus ion beam (FIB) milling, high-resolution SEM imaging, and quantitative chemical analysis with silicon drift detector EDS. With precision milling of the laser-heating spot, we determined melting using quenching texture criteria imaged with high-resolution SEM and the sulfur partitioning between solid and liquid at submicron spatial resolution. We have also re-constructed 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures in the laser-heating diamond-anvil cell. In addition to the static experiments, we also used

  17. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    Science.gov (United States)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  18. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed ~10^3 Pa to allow organisms that rely

  19. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  1. Introducing PLIA: Planetary Laboratory for Image Analysis

    Science.gov (United States)

    Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.

    2005-08-01

    We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  2. Resonant Removal of Exomoons During Planetary Migration

    CERN Document Server

    Spalding, Christopher; Adams, Fred C

    2015-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star's habitable zone formed further out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called "evection resonance." Within this resonance, the lunar orbit's eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about 10 planetary radii are susceptible to this mechanism, with the exact number dependent ...

  3. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    The investigation of the magnetism of the Solar system planets is became one of the important issues for understanding their evolution and history. This has special relevance at Mars after the NASA MGS mission unexpectedly detected higher crustal magnetic anomalies than those existing on Earth....... The mass, power and volume are important factors when designing planetary magnetometers. However, the performance must not be compromised. The DTU magnetometer consisting of a triaxial fluxgate sensor and controlling electronics is a miniaturized version of the instruments flown on the Oersted, Astrid-2...... satellite, the instrument (including hardness) weights less than 1 kg and the electronics unit (featuring redundancy) of the instrument and the sensor has dimensions of 100x100x40 mm and 54x46x33 mm. For a lander, station and/or aerial platform, the instrument can be delivered for direct assembly in a board...

  4. Vibroacoustical diagnosis of planetary precessional kinematical transmission

    Science.gov (United States)

    Malcoci, Iu; Bodnariuc, I.

    2016-08-01

    An ideal dynamical system should not generate any vibrations, because vibrations mean a loss of energy. Vibration in planetary precessional gear box occurs at bearings, gear wheels, misaligned shafts, imbalance rotating parts, couplings. If damage occurs, not only the dynamic processes change, but also the forces that act on system components. Regarding this aspects, sound level was measured by using Brüel & Kjær Sound Level Meter Type 2250 Light that has everything needed to perform high-precision, Class 1 measurement tasks in environmental, occupational and industrial application areas. Obtained and measured results were presented in diagrams and tables to be compared with German standard VDI-2058 Limit value for vibration severity and noise level.

  5. Adaptive multisensor fusion for planetary exploration rovers

    Science.gov (United States)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  6. Investigating potential planetary nebula/cluster pairs

    CERN Document Server

    Bidin, Christian Moni; Bonatto, Charles; Mauro, Francesco; Turner, David; Geisler, Doug; Chene, Andres-Nicolas; Gormaz-Matamala, Alex C; Borissova, Jura; Kurtev, Radostin G; Minniti, Dante; Carraro, Giovanni; Gieren, Wolfgang

    2013-01-01

    Fundamental parameters characterizing the end-state of intermediate-mass stars may be constrained by discovering planetary nebulae (PNe) in open clusters (OCs). Cluster membership may be exploited to establish the distance, luminosity, age, and physical size for PNe, and the intrinsic luminosity and mass of its central star. Four potential PN-OC associations were investigated, to assess the cluster membership for the PNe. Radial velocities were measured from intermediate-resolution optical spectra, complemented with previous estimates in the literature. When the radial velocity study supported the PN/OC association, we analyzed if other parameters (e.g., age, distance, reddening, central star brightness) were consistent with this conclusion. Our measurements imply that the PNe VBe3 and HeFa1 are not members of the OCs NGC5999 and NGC6067, respectively, and likely belong to the background bulge population. Conversely, consistent radial velocities indicate that NGC2452/NGC2453 could be associated, but our resul...

  7. Seasonal constraints on inferred planetary heat content

    Science.gov (United States)

    McKinnon, Karen A.; Huybers, Peter

    2016-10-01

    Planetary heating can be quantified using top of the atmosphere energy fluxes or through monitoring the heat content of the Earth system. It has been difficult, however, to compare the two methods with each other because of biases in satellite measurements and incomplete spatial coverage of ocean observations. Here we focus on the the seasonal cycle whose amplitude is large relative to satellite biases and observational errors. The seasonal budget can be closed through inferring contributions from high-latitude oceans and marginal seas using the covariance structure of National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM1). In contrast, if these regions are approximated as the average across well-observed regions, the amplitude of the seasonal cycle is overestimated relative to satellite constraints. Analysis of the same CESM1 simulation indicates that complete measurement of the upper ocean would increase the magnitude and precision of interannual trend estimates in ocean heating more than fully measuring the deep ocean.

  8. Debris disc formation induced by planetary growth

    CERN Document Server

    Kobayashi, Hiroshi

    2014-01-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  9. Atlas of monochromatic images of planetary nebulae

    CERN Document Server

    Weidmann, W A; Valdarenas, R R Vena; Ahumada, J A; Volpe, M G; Mudrik, A

    2016-01-01

    We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture telescopes, at the Complejo Astron\\'omico El Leoncito (CASLEO), and the Estaci\\'on Astrof\\'isica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.

  10. Proposed nomenclature for Extragalactic Planetary Nebulae

    CERN Document Server

    Parker, Q A; Parker, Quentin A

    2004-01-01

    The ability to identify and distinguish between the wide variety of celestial objects benefits from application of a systematic and logical nomenclature. This often includes value-added information within the naming convention which can aid in placing the object positionally either via an RA/DEC or l,b concatenation. All new nomenclatures should be created following IAU guidelines. However as the number density of specific object types on the sky increases, as in the case of PN in external galaxies, a useful positional identifier becomes problematic. This brief but timely paper attempts to progress the debate on this vexing issue for the case of extragalactic planetary nebulae (EPN). There is a clear need to rationalise the current ad-hoc system now that many thousands of Extragalactic PN are being discovered.

  11. Planetary Nebula Surveys: Past, Present and Future

    CERN Document Server

    Parker, Quentin A

    2010-01-01

    In this review we cover the detection, identification and astrophysical importance of planetary nebulae (PN). The legacy of the historic Perek & Kohoutek and Acker et al. catalogues is briefly covered before highlighting the more recent but significant progress in PN discoveries in our Galaxy and the Magellanic Clouds. We place particular emphasis on the major MASH and the IPHAS catalogues, which, over the last decade alone, have essentially doubled Galactic and LMC PN numbers. We then discuss the increasing role and importance that multi-wavelength data is playing in both the detection of candidate PN and the elimination of PN mimics that have seriously biased previous PN compilations. The prospects for future surveys and current efforts and prospects for PN detections in external galaxies are briefly discussed due to their value both as cosmic distance indicators and as kinematical probes of galaxies and dark matter properties.

  12. Probing Planetary Formation and Evolution Through Occultations

    Science.gov (United States)

    Rodriguez, Joseph E.; KELT Team

    2016-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Through this dissertation project, we are discovering and characterizing both disk eclipsing systems and exoplanets using the Kilodegree Extremely Little Telescope (KELT) project. KELT is a photometric survey for transiting planets orbiting bright stars (8 TYC 2505-672-1, the latter now representing the longest-period eclipsing object known (period ~ 69 years). I will describe our results for planet atmosphere characterization and for protoplanetary disk structure and composition, and discuss how to search for these kinds of systems in future surveys such as LSST.

  13. Searching for Planetary Transits in Star Clusters

    CERN Document Server

    Weldrake, David T F

    2007-01-01

    Star clusters provide an excellent opportunity to study the role of environment on determining the frequencies of short period planets. They provide a large sample of stars which can be imaged simultaneously, with a common distance, age and pre-determined physical parameters. This allows the search to be tailor-made for each specific cluster. Several groups are attempting to detect transiting planets in open clusters. Three previous surveys have also targeted the two brightest globular clusters. No cluster survey has yet detected a planet. This contribution presents a brief overview of the field, highlighting the pros and cons of performing such a search, and presents the expected and current results, with implications for planetary frequencies in regions of high stellar density and low metallicity.

  14. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  15. Exploiting the HASH Planetary Nebula Research Platform

    CERN Document Server

    Parker, Quentin A; Frew, David J

    2016-01-01

    The HASH (Hong Kong/ AAO/ Strasbourg/ H{\\alpha}) planetary nebula research platform is a unique data repository with a graphical interface and SQL capability that offers the community powerful, new ways to undertake Galactic PN studies. HASH currently contains multi-wavelength images, spectra, positions, sizes, morphologies and other data whenever available for 2401 true, 447 likely, and 692 possible Galactic PNe, for a total of 3540 objects. An additional 620 Galactic post-AGB stars, pre-PNe, and PPN candidates are included. All objects were classified and evaluated following the precepts and procedures established and developed by our group over the last 15 years. The complete database contains over 6,700 Galactic objects including the many mimics and related phenomena previously mistaken or confused with PNe. Curation and updating currently occurs on a weekly basis to keep the repository as up to date as possible until the official release of HASH v1 planned in the near future.

  16. Planetary geomorphology: Some historical/analytical perspectives

    Science.gov (United States)

    Baker, V. R.

    2015-07-01

    Three broad themes from the history of planetary geomorphology provide lessons in regard to the logic (valid reasoning processes) for the doing of that science. The long controversy over the origin of lunar craters, which was dominated for three centuries by the volcanic hypothesis, provides examples of reasoning on the basis of authority and a priori presumptions. Percival Lowell's controversy with geologists over the nature of linear markings on the surface of Mars illustrates the role of tenacity in regard to the beliefs of some individual scientists. Finally, modern controversies over the role of water in shaping the surface of Mars illustrate how the a priori method, i.e., belief produced according to reason, can seductively cloud the scientific openness to the importance of brute facts that deviate from a prevailing paradigm.

  17. Relativistic Effects in Extrasolar Planetary Systems

    CERN Document Server

    Adams, F C; Adams, Fred C.; Laughlin, Gregory

    2006-01-01

    This paper considers general relativistic (GR) effects in currently observed extrasolar planetary systems. Although GR corrections are small, they can compete with secular interactions in these systems and thereby play an important role. Specifically, some of the observed multiple planet systems are close to secular resonance, where the dynamics is extremely sensitive to GR corrections, and these systems can be used as laboratories to test general relativity. For the three-planet solar system Upsilon Andromedae, secular interaction theory implies an 80% probability of finding the system with its observed orbital elements if GR is correct, compared with only a 2% probability in the absence of GR. In the future, tighter constraints can be obtained with increased temporal coverage.

  18. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  19. Rotating, hydromagnetic laboratory experiment modelling planetary cores

    Science.gov (United States)

    Kelley, Douglas H.

    2009-10-01

    This dissertation describes a series of laboratory experiments motivated by planetary cores and the dynamo effect, the mechanism by which the flow of an electrically conductive fluid can give rise to a spontaneous magnetic field. Our experimental apparatus, meant to be a laboratory model of Earth's core, contains liquid sodium between an inner, solid sphere and an outer, spherical shell. The fluid is driven by the differential rotation of these two boundaries, each of which is connected to a motor. Applying an axial, DC magnetic field, we use a collection of Hall probes to measure the magnetic induction that results from interactions between the applied field and the flowing, conductive fluid. We have observed and identified inertial modes, which are bulk oscillations of the fluid restored by the Coriolis force. Over-reflection at a shear layer is one mechanism capable of exciting such modes, and we have developed predictions of both onset boundaries and mode selection from over-reflection theory which are consistent with our observations. Also, motivated by previous experimental devices that used ferromagnetic boundaries to achieve dynamo action, we have studied the effects of a soft iron (ferromagnetic) inner sphere on our apparatus, again finding inertial waves. We also find that all behaviors are more broadband and generally more nonlinear in the presence of a ferromagnetic boundary. Our results with a soft iron inner sphere have implications for other hydromagnetic experiments with ferromagnetic boundaries, and are appropriate for comparison to numerical simulations as well. From our observations we conclude that inertial modes almost certainly occur in planetary cores and will occur in future rotating experiments. In fact, the predominance of inertial modes in our experiments and in other recent work leads to a new paradigm for rotating turbulence, starkly different from turbulence theories based on assumptions of isotropy and homogeneity, starting instead

  20. The San Pedro M\\'artir Planetary Nebula Kinematic Catalogue: Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G; Díaz-Méndez, E; Riesgo, H; Báez, S -H; García-Díaz, Ma -T; Meaburn, J; Clark, D M; Olvera, R M Calderón; Soto, G López; Rebolo, O Toledano

    2010-01-01

    We present kinematic data for 211 bright planetary nebulae in eleven Local Group galaxies: M31 (137 PNe), M32 (13), M33 (33), Fornax (1), Sagittarius (3), NGC 147 (2), NGC 185 (5), NGC 205 (9), NGC 6822 (5), Leo A (1), and Sextans A (1). The data were acquired at the Observatorio Astron\\'omico Nacional in the Sierra de San Pedro M\\'artir using the 2.1m telescope and the Manchester Echelle Spectrometer in the light of [\\ion{O}{3}]$\\lambda$5007 at a resolution of 11 km/s. A few objects were observed in H$\\alpha$. The internal kinematics of bright planetary nebulae do not depend strongly upon the metallicity or age of their progenitor stellar populations, though small systematic differences exist. The nebular kinematics and H$\\beta$ luminosity require that the nebular shells be accelerated during the early evolution of their central stars. Thus, kinematics provides an additional argument favoring similar stellar progenitors for bright planetary nebulae in all galaxies.

  1. IDIS Small Bodies and Dust Node

    Science.gov (United States)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    The EuroPlaNet information service provides access to lists of researchers, laboratories and data archives relevant to many aspects of planetary and space physics. Information can be accessed through EuroPlaNet website or, for advanced searches, via web-services available at the different thematic nodes. The goal of IDIS is to provide easy-to-use access to resources like people, laboratories, modeling activities and data archives related to planetary sciences. The development of IDIS is an international effort started under the European Commission's 6th Framework Programme and which will expand its capabilities during the 7th Framework Programme, as part of the Capacities Specific Programme/Research Infrastructures. IDIS is complemented by a set of other EuroPlaNet web-services maintained under the responsibility of separate institutions. Each activity maintains its own web-portal with cross-links pointing to the other elements of EuroPlaNet. General access is provided via the EuroPlaNet Homepage. IDIS is not a repository of original data but rather supports the access to various data sources. The final goal of IDIS is to provide Virtual Observatory tools for the access to data from laboratory measurements and ground- and spaced-based observations to modeling results, allowing the combination of as divergent data sources as feasible. IDIS is built around four scientific nodes located in different European countries. Each node deals with a subset of the disciplines related to planetary sciences and, working in cooperation with international experts in these fields, provides a wealth of information to the international planetary science community. The EuroPlaNet IDIS thematic node "Small Bodies and Dust Node" is hosted by the Istituto di Fisica dello Spazio Interplanetario and is established in close cooperation with the Istituto di Astrofisica Spaziale. Both these institutes are part of the Istituto Nazionale di Astrofisica (INAF). The IDIS Small Bodies and Dust

  2. Sacralising Bodies

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2010-01-01

    In post-revolution Iran, the sacred notion of martyrdom has been transformed into a routine act of government – a moral sign of order and state sovereignty. Moving beyond the debates of the secularisation of the sacred and the making sacred of the secular, this article argues that the moment...... of sacralisation is realised through co-production within a social setting when the object of sacralisation is recognised as such by others. In contemporary Iran, however, the moment of sacralising bodies by the state is also the moment of its own subversion as the political-theological field of martyrdom......-sacrifice became central to the mass mobilisation against the monarchy. Once the revolutionary government came into existence, this sacred tradition was regulated to create ‘martyrs’ as a fixed category, in order to consolidate the legacy of the revolution. In this political theatre, the dead body is a site...

  3. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Coll, Patrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Lebreton, Jean-Pierre; Orthous-Daunay, François-Régis; Pennanech, Cyril; Szopa, Cyril; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2016-10-01

    For decades of space exploration, mass spectrometry has proven to be a reliable instrumentation for the characterisation of the nature and energy of ionic and neutral, atomic and molecular species in the interplanetary medium and upper planetary atmospheres. It has been used as well to analyse the chemical composition of planetary and small bodies environments. The chemical complexity of these environments calls for the need to develop a new generation of mass spectrometers with significantly increased mass resolving power. The recently developed OrbitrapTM mass analyser at ultra-high resolution shows promising adaptability to space instrumentation, offering improved performances for in situ measurements. In this article, we report on our project named "Cosmorbitrap" aiming at demonstrating the adaptability of the Orbitrap technology for in situ space exploration. We present the prototype that was developed in the laboratory for demonstration of both technical feasibility and analytical capabilities. A set of samples containing elements with masses ranging from 9 to 208 u has been used to evaluate the performance of the analyser, in terms of mass resolving power (reaching 474,000 at m/z 9) and ability to discriminate between isobaric interferences, accuracy of mass measurement (below 15 ppm) and determination of relative isotopic abundances (below 5%) of various samples. We observe a good agreement between the results obtained with the prototype and those of a commercial instrument. As the background pressure is a key parameter for in situ exploration of atmosphere planetary bodies, we study the effect of background gas on the performanceof the Cosmorbitrap prototype, showing an upper limit for N2 in our set-up at 10-8 mbar. The results demonstrate the strong potential to adapt this technology to space exploration.

  4. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  5. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    Science.gov (United States)

    Benkhoff, J.

    2008-09-01

    Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed

  6. Plasma, magnetic, and electromagnetic measurements at nonmagnetic bodies

    Science.gov (United States)

    Russell, C. T.; Luhmann, J. G.

    The need to explore the magnetospheres of the Earth and the giant planets is widely recognized and is an integral part of our planetary exploration program. The equal need to explore the plasma, magnetic, and electromagnetic environments of the nonmagnetic bodies is not so widely appreciated. The previous, albeit incomplete, magnetic and electric field measurements at Venus, Mars, and comets have proven critical to our understanding of their atmospheres and ionospheres in areas ranging from planetary lightning to solar wind scavenging and accretion. In the cases of Venus and Mars, the ionospheres can provide communication paths over the horizon for low-altitude probes and landers, but we know little about their lower boundaries. The expected varying magnetic fields below these planetary ionospheres penetrates the planetary crusts and can be used to sound the electrical conductivity and the thermal profiles of the interiors. However, we have no knowledge of the levels of such fields, let alone their morphology. Finally, we note that the absence of an atmosphere and an ionosphere does not make an object any less interesting for the purposes of electromagnetic exploration. Even weak remanent magnetism such as that found on the Moon during the Apollo program provides insight into the present and past states of planetary interiors. We have very intriguing data from our space probes during times of both close and distant passages of asteroids that suggest they may have coherent magnetization. If true, this observation will put important constraints on how the asteroids formed and have evolved. Our planetary exploration program must exploit its full range of exploration tools if it is to characterize the bodies of the solar system thoroughly. We should especially take advantage of those techniques that are proven and require low mass, low power, and low telemetry rates to undertake.

  7. Simulation of Vertical Planetary Mill Based on Virtual Prototyping

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical model of vertical planetary mill is set up, whose dynamic and kinetic characteristics are described as well. Based on the analysis of system dynamics of vertical planetary mill, virtual prototyping technology is applied in the simulation of this mill. The development of virtual prototype of equipment, virtual test and optimization of virtual prototype are stated in detail. Some useful conclusions which have theoretical meaning for the manufacturing of vertical planetary mill have been obtained. Furthermore, it is pointed out that virtual prototyping technology shows great advantage and is bound to become a main method of developing product in the future.

  8. Physics of Planetary Rings. Celestial Mechanics of Continuous Media.

    Science.gov (United States)

    Fridman, Alexei M., Gorkavyi, Nikolai N.

    Physics of Planetary Rings describes striking structures of the planetary rings of Saturn, Uranus, Jupiter, and Neptune: Narrow ringlets, spiral waves, and a chain of clumps. The author has contributed essential ideas to the full understanding of planetary rings via the stability analysis of dynamical systems. The combination of a high-quality description, the set of interesting illustrations, as well as the fascinating and natural presentation will make this book of considerable interest to astronomers, physicists, and mathematicians as well as students. There is no competing text for this book so far.

  9. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2016-06-01

    Full Text Available The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train will form the main element of the research in hand.

  10. Planetary and exoplanetary low frequency radio observations from the Moon

    Science.gov (United States)

    Zarka, P.; Bougeret, J.-L.; Briand, C.; Cecconi, B.; Falcke, H.; Girard, J.; Grießmeier, J.-M.; Hess, S.; Klein-Wolt, M.; Konovalenko, A.; Lamy, L.; Mimoun, D.; Aminaei, A.

    2012-12-01

    We analyze the planetary and exoplanetary science that can be carried out with precursor as well as future low frequency radio instruments on the Moon, assessing the limiting noise sources, comparing them to the average and peak spectra of all planetary radio components as they will be seen from the Lunar surface or orbit. We identify which objectives will be accessible with each class of instrument, and discuss the interest of these observations compared to observations by planetary probes and to ground-based observations by large low-frequency radio arrays. The interest of goniopolarimetry is emphasized for pathfinder missions.

  11. Impact cratering: The effect of crustal strength and planetary gravity

    OpenAIRE

    O'Keefe, John D.; Ahrens, Thomas J.

    1981-01-01

    Upon impact of a meteorite with a planetary surface the resulting shock wave both ‘processes’ the material in the vicinity of the impact and sets a larger volume of material than was subjected to high pressure into motion. Most of the volume which is excavated by the impact leaves the crater after the shock wave has decayed. The kinetic energy which has been deposited in the planetary surface is converted into reversible and irreversible work, carried out against the planetary gravity field a...

  12. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    Science.gov (United States)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  13. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    CERN Document Server

    Tamayo, Daniel; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-01-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine learning methods. We find that training a state-of-the-art machine learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated ($10^7$ orbits), it is 3 orders of magnitude faster than direct N-body simulations. Optimized machine learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite (TESS).

  14. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-12-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.

  15. Dynamical Screening of Gravitational Interaction and Planetary Motions in Modified Solar Potential

    CERN Document Server

    Bashkirov, A G; Pechernikova, G V

    2001-01-01

    A density disturbance in a system of gravitating mass, induced by a moving selected body gives rise to a dynamical screening of Newtonian potential of this body. When applied to the solar planetary system it means that as a result of the motion of the Sun in the Galaxy its effective force potential appears more weak than the Newtonian potential. The relevant modifications of main relations of the solar dynamics are considered here and it is found in particular that the reestimated period of the Earth revolution around the Sun rises in 1 second per year and semimajor axis of the Earth orbit increases on 4 kilometers. Similar relations are obtained for other planets too. It may be supposed that the inclusion of these effects can help to explain the observable anomalous acceleration of spacecrafts Pioneer 10 and 11.

  16. Efficiency Formulas for the 2K-H Type Planetary Gear Train (A II Type Planetary Gear Train with an Idie Planet Pinion)

    OpenAIRE

    岸, 佐年; 両角, 宗晴

    1989-01-01

    A new 2K-H type planetary gear train with an idle planet pinion is devised. This planetary gear train consists of only spur gears. The function of this planetary gear train is equal to those of the internal 2K-H type planetary gear train and the bevel gear type planetary gear train. The efficiency formulas of this planetary gear train are derived from the theoretical analysis and tabulated. The formulas tabulated can be utilized safely without any understanding of the underlying theory.

  17. Multi-Robot Planetary Exploration Architectures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space policy direction is shifting, particularly with respect to human goals. Given the uncertainty of future missions to the moon, Mars, and other bodies, a tool...

  18. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  19. Emirates Mars Mission Planetary Protection Plan

    Science.gov (United States)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  20. New Carriers and Sensors for Robotic Planetary Exploration

    Science.gov (United States)

    Romstedt, J.; Schiele, A.; Boudin, N.; Coste, P.; Lindner, R.

    The robotic element of planetary exploration missions does play a crucial role for a successful mission completion. The development of reliable and rugged systems with at the same time low resource requirements and a generous acceptance of harsh environmental conditions is an important constituent of supportive research and development programs. This paper introduces a selection of new technologies developed by ESA support programs to foster the European scientific community and industry. Presented is a focused selection of potential scientific payload carrier modules and its highly integrated scientific instruments designed for in-situ exploration missions to planets and small bodies of our solar system. These developments could serve surface modules with very low resource availability. Low resource requirements and a highly integrated character is an important technology driver of all development plans. The Nanokhod micro-rover is a mobile element capable to explore the surrounding of a stationary lander unit within a radius of 50 meter. Via a tether connection the provision of all communication and power distribution is ensured. The Nanokhod concepts merges the idea of the design of an "as small as possible" mobile element yet keeping the capability to carry a substantial scientific payload suite to analyse the near-by landing site. The engineering model has been build and will undergo a challenging test campaign in the near future. The development of the Geochemistry Instrument Package Facility (GIPF), the payload suite designed for the Nanokhod rover, has been finalized and delivered to ESA. It consists of an Alpha Particle X-ray Spectrometer (APXS), a Mössbauer spectrometer (MIMOS2) and a micro camera (MIROCAM). The instrument front ends have already been thermally qualified at cryogenic temperatures. Beyond a partial heritage from existing flight models all instruments were modified towards an accommodation in the rover's payload cabin and an increased

  1. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  2. Challenges in Predicting Planetary Granular Mechanics

    Science.gov (United States)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  3. Hierarchies of Models: Toward Understanding Planetary Nebulae

    Science.gov (United States)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2003-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  4. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  5. The "impressionist" force of creation stories in planetary sciences education and outreach

    Science.gov (United States)

    Urban, Z.

    2014-04-01

    Any truly meaningful presentation of a planetary science topic to both pupils/students and the general public should contain three modules. First, there should be all the necessary phenomenology, detailed description of "players" (i.e., planetary bodies and the sources of external influences). Second, there should be similarly complete description of "rules" (i.e., natural forces and factors). Third, one should not forget to provide a "life story", the evolutionary background (i.e., scenarios for origin, development and probable end of relevant planetary bodies). There is nothing new in this basic classification of the material presented to the class or to the general audience. It is a summary of collective wisdom of experienced teachers as well as that of non-teacher scientists engaged in public understanding of science activities. Nevertheless, there is an important caveat in this sequence. The audience could get lost a touch with the topic. This would lead to diminished attention in both the first module (overwhelming by facts and associated numbers) and in the second one (overwhelming by the complexity of interactions). It is suggested that this could be averted by partial inversion of the above working sequence in "emergency situations". For example, if the audience is distracted by some strong influence, like crucial football/ice-hockey match or a fashion display. That means, one should not present the topical material strictly in a usual 1-2-3 style (phenomenologycausality-evolution) but in modified 3-1-2-3 style (evolution-phenomenology-causality-evolution). Of course, a very natural question arises here: Is it possible, at all, to talk or write about evolution without presenting known facts and causes and effects involved beforehand? The answer, based on a large number of trial-and-error efforts, now seems to be: Yes, it is. One should take a lesson from great painters of the second half of the 19th century who have started and then pursued systematically

  6. THE INNER DEBRIS STRUCTURE IN THE FOMALHAUT PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kate Y. L.; Rieke, George H.; Defrére, Denis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Wang, Kuo-Song; Lee, Chin-Fei [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lieshout, Rik van, E-mail: ksu@as.arizona.edu [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-02-10

    Fomalhaut plays an important role in the study of debris disks and small bodies in other planetary systems. The proximity and luminosity of the star make key features of its debris, like the water ice line, accessible. Here we present ALMA cycle 1, 870 μm (345 GHz) observations targeted at the inner part of the Fomalhaut system with a synthesized beam of 0.″45 × 0.″37 (∼3 AU linear resolution at the distance of Fomalhaut) and an rms of 26 μJy beam{sup −1}. The high angular resolution and sensitivity of the ALMA data enable us to place strong constraints on the nature of the warm excess revealed by Spitzer and Herschel observations. We detect a point source at the star position with a total flux consistent with thermal emission from the stellar photosphere. No structures that are brighter than 3σ are detected in the central 15 AU × 15 AU region. Modeling the spectral energy distribution using parameters expected for a dust-producing planetesimal belt indicates a radial location in the range of ∼8–15 AU. This is consistent with the location where ice sublimates in Fomalhaut, i.e., an asteroid-belt analog. The 3σ upper limit for such a belt is <1.3 mJy at 870 μm. We also interpret the 2 and 8–13 μm interferometric measurements to reveal the structure in the inner 10 AU region as dust naturally connected to this proposed asteroid belt by Poynting–Robertson drag, dust sublimation, and magnetically trapped nanograins.

  7. Planetary subsurface investigation by 3D visualization model .

    Science.gov (United States)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  8. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  9. Highly Efficient Compact Laser for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the solicitation for advances in critical components of instruments for enhanced scientific investigations on future planetary mission, Q-Peak...

  10. The Spectroscopic Properties of Bright Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G

    2006-01-01

    The properties of bright extragalactic planetary nebulae are reviewed based upon the results of low and high resolution spectroscopy. It is argued that bright extragalactic planetary nebulae from galaxies (or subsystems) with and without star formation have different distributions of central star temperature and ionization structure. As regards the chemical compositions, oxygen and neon are generally found to be unchanged as a result of the evolution of the stellar progenitors. Nitrogen enrichment may occur as a result of the evolution of the progenitors of bright planetary nebulae in all stellar populations, though this enrichment may be (more) random in old stellar populations. Helium abundances appear to be influenced by the chemical evolution of the host galaxy, with planetary nebulae in dwarf spheroidals having systematically elevated abundances. Neither the age nor the metallicity of the progenitor stellar population has a strong effect upon the kinematics observed for nebular shells. Both the range of ...

  11. In Situ Instrument to Detect Prebiotic Compounds in Planetary Ices

    Science.gov (United States)

    Getty, Stephanie A.; Dworkin, Jason; Glavin, Daniel P.; Southard, Adrian; Balvin, Manuel; Kotecki, Carl; Ferrance, Jerome

    2013-01-01

    The development of an in situ LC-MS instrument for future planetary science missions to icy surfaces that are of high astrobiology and astrochemistry potential will advance our understanding of organics in the solar system.

  12. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  13. Planetary Protection Considerations for Human And Robotic Missions to Mars

    Science.gov (United States)

    Mogul, R.; Stabekis, P. D.; Race, M. S.; Conley, C. A.

    2012-06-01

    Incorporating planetary protection into human missions, as supported by NASA Policy Directive NPD 8020.7G, is essential to preventing the forward contamination of Mars, ensuring astronaut health, and preventing backward contamination of Earth.

  14. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  15. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  16. Novel Polymer Microfluidics Technology for In Situ Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new polymer based microfluidics technology for NASA planetary science applications. In particular, we will design, build and...

  17. Multi-Robot Systems for Subsurface Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a heterogeneous multi-robot team developed as a platform for effective subsurface planetary exploration. State-of-art robotic exploration...

  18. International Conference on Large Meteorite Impacts and Planetary Evolution

    Science.gov (United States)

    1992-01-01

    The papers that were accepted for the International Conference on Large Meteorite Impacts and Planetary Evolution, 31 Aug. - 2 Sep. 1992, are presented. One of the major paper topics was the Sudbury project.

  19. Mars & Multi-Planetary Electrical Environment Spectrum Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to develop MENSA as a highly integrated planetary radio and digital spectrum analyzer cubesat payload that can be deployed as a satellite instrument...

  20. One-Meter Class Drilling for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic planetary exploration missions will need to perform in-situ analysis of rock and/or regolith samples or returning samples back to earth. Obtaining and...

  1. The Effect of CO on Planetary Haze Formation

    CERN Document Server

    Hörst, Sarah M

    2014-01-01

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N$_{2}$/CH$_{4}$ to a variety of energy sources. However, many N$_{2}$/CH$_{4}$ atmospheres in both our solar system and extrasolar planetary systems also contain CO. We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  2. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  3. Planetary-Whigs: Optical MEMS-Based Seismometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I, Michigan Aerospace Corporation will adapt the design of an optical MEMS seismometer for lunar and other planetary science instrumentation. The...

  4. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface exploration of planetary environments with current robotic technologies relies heavily on human control and power-hungry active sensors to perform even the...

  5. Planetary Instrument Definition and Development Program (PIDDP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Results of PIDDP have contributed to the development of flight hardware flown on, or selected for, many of NASA’s planetary missions. The instrument...

  6. Planetary geometry handbook: Jupiter positional data, 1985 - 2020, volume 4

    Science.gov (United States)

    Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.

    1983-01-01

    Graphical data necessary for the analysis of planetary exploration missions to Jupiter are presented. Positional and geometric information spanning the time period from 1985 through 2020 is provided. The data and their usage are explained.

  7. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  8. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  9. Rigid Body Mechanics Mathematics, Physics and Applications

    CERN Document Server

    Heard, William B

    2005-01-01

    This textbook is a modern, concise and focused treatment of the mathematical techniques, physical theories and applications of rigid body mechanics, bridging the gap between the geometric and more classical approaches to the topic. It emphasizes the fundamentals of the subject, stresses the importance of notation, integrates the modern geometric view of mechanics and offers a wide variety of examples -- ranging from molecular dynamics to mechanics of robots and planetary rotational dynamics. The author has unified his presentation such that applied mathematicians, mechanical and astro-aerodyna

  10. Visualization of Kepler’s laws of planetary motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-03-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.

  11. Vibration characteristics of single-stage planetary gear transmissions

    OpenAIRE

    Molina Vicuña,Cristián

    2014-01-01

    Condition monitoring based on vibration measurement and analysis of planetary gear transmissions has not provided the same good results observed in conventional fixed-shaft gear transmissions. One of the causes being the improper interpretation of the vibration spectrum. The structure of the lines present in the spectrum of the vibrations measured on a non-faulty planetary gear transmission, with a sensor mounted on the outer part of the ring gear, is strictly related to the geometry of the t...

  12. Stars and Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2000-01-01

    We compare the populations of Red Giant stars and Planetary Nebulae in the Galactic Bulge, in the light of recent determinations of their abundances patterns. We find both populations to be compatible. From the planetary nebulae, we find evidences that the Bulge did not form stars recently. The whole abundances pattern remains however puzzling, some elements favoring a quick evolution of the Galactic Bulge (Mg and Ti), and others a much slower one (He, O, Si, S, Ar and Ca).

  13. Orientation of Galactic Bulge Planetary Nebulae toward the Galactic Center

    CERN Document Server

    Danehkar, A

    2014-01-01

    We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$\\alpha$ emission line were used to determine the kinematic features and nebular orientations. Our findings show that some bulge planetary nebulae toward the Galactic center have a particular orientation.

  14. Mass transfer during ice particle collisions in planetary rings

    Science.gov (United States)

    Mcdonald, J. S. B.; Hatzes, A.; Bridges, F.; Lin, D. N. C.

    1989-01-01

    Experimental results are presented from laboratory environment simulations of the ice particle collisional properties defining the structure and dynamical evolution of planetary rings. It is inferred from these data that there is a dependence of the interacting volume on the impact velocity. Although the volume fraction exchanged during a collision is small, the net amount of material transferred can be substantially smaller. Attention is given to the implications of these determinations for planetary ring structure and evolution.

  15. FITTING PHOTOIONIZATION MODELS TO PLANETARY NEBULAE

    Directory of Open Access Journals (Sweden)

    J. Bohigas

    2009-01-01

    Full Text Available Good to excellent photoionization models based on the Cloudy code were obtained for 13 out of 19 spectra of planetary nebulae. The two most important assumptions are that the photoionizing continuum is a Rauch model star, with gravity set by the condition that the stellar mass must be 1 M , and density is constant and determined from the observed [S II]6717/6731 ratio. The temperature and luminosity of the central star, the inner radius of the nebula and the abundance of carbon are treated as free parameters in each model run, destined to obtain the best possible t to the relative intensities of He II 4686, [O III]5007 and [N II]6584. Observed and modeled nebular temperatures derived from [N II] (6548+6584 /5755 agree within 10%, but models usually underestimate temperatures found from [O III] (4959+5007 /4363, more so when the slit does not cover the in-depth extent of the ionized region. Helium, nitrogen, oxygen, neon, sulfur and argon model abundances are uncertain at the 15%, 15%, 10%, 7%, 30% and 7% level. It is shown that neon abundance in PNe has been consistently overestimated, and an alternative ionization correction factor is recommended.

  16. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  17. Planetary Nebulae in the Small Magellanic Cloud

    CERN Document Server

    Ventura, P; Di Criscienzo, M; García-Hernández, D A; Dell'Agli, F

    2016-01-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range $10^{-3} \\leq Z \\leq 4\\times 10^{-3}$ and mass $0.9 M\\odot < M < 8M\\odot$, evolved through the asymptotic giant branch (AGB) phase. The models used account for dust formation in the circumstellar envelope. To characterise the PNe sample of the SMC, we compare the observed abundances of the various species with the final chemical composition of the AGB models: this study allows us to identify the progenitors of the PNe observed, in terms of mass and chemical composition. According to our interpretation, most of the PNe descend from low-mass ($M < 2 M\\odot$) stars, which become carbon rich, after experiencing repeated third dredge-up episodes, during the AGB phase. A fraction of the PNe showing the signature of advanced CNO processing are interpreted as the progeny of massive AGB stars, with mass above $\\sim 6 M\\odot$, undergoing strong hot bottom ...

  18. Radio Planetary Nebulae in the Magellanic Clouds

    CERN Document Server

    Filipović, M D; Reid, W A; Payne, J L; Parker, Q A; Crawford, E J; Bojičić, I S; De Horta, A Y; Hughes, A; Dickel, J; Stootman, F

    2009-01-01

    We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high resolution radio, optical and IR observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ~2.5 mJy and ~2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio peak luminosity because it is ~3 times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 MCs PNe vary from very small (~0.08 pc or ...

  19. The chemistry of compact planetary nebulae

    CERN Document Server

    Josselin, E

    2003-01-01

    We report high-sensitivity millimetre observations of several molecular species (13CO, HCN, HNC, CN, HCO+ and N2H+) in a sample of compact planetary nebulae. Some species such as HCO+ and CN are particularly abundant compared to envelopes around AGB stars or even interstellar clouds. We have estimated the following average values for the column densities ratios: CN/HCN~2.6, HCO+/HCN~0.5, and HNC/HCN~0.4. Thus, the chemical composition of the molecular envelopes in these compact PNe appears somewhat intermediate between the composition of proto-PNe (such as CRL 2688 or CRL 618) and well evolved PNe (such as the Ring, M4--9, or the Helix). From observations of the CO isotopomers, we have estimated that the 12C/13C ratio is in the range 10 ~< 12C/13C ~< 40. These values are below those expected from standard asymptotic giant branch models and suggest non-standard mixing processes. The observed molecular abundances are compared to very recent modelling work, and we conclude that the observations are well ex...

  20. Kn 26, a New Quadrupolar Planetary Nebula

    CERN Document Server

    Guerrero, Martin A; Ramos-Larios, Gerardo; Vazquez, Roberto

    2013-01-01

    Once classified as an emission line source, the planetary nebula (PN) nature of the source Kn 26 has been only recently recognized in digital sky surveys. To investigate the spectral properties and spatio-kinematical structure of Kn 26, we have obtained high spatial-resolution optical and near-IR narrow-band images, high-dispersion long-slit echelle spectra, and intermediate-resolution spectroscopic observations. The new data reveal an hourglass morphology typical of bipolar PNe. A detailed analysis of its morphology and kinematics discloses the presence of a second pair of bipolar lobes, making Kn 26 a new member of the subclass of quadrupolar PNe. The time-lap between the ejection of the two pairs of bipolar lobes is much smaller than their dynamical ages, implying a rapid change of the preferential direction of the central engine. The chemical composition of Kn 26 is particularly unusual among PNe, with a low N/O ratio (as of type II PNe) and a high helium abundance (as of type I PNe), although not atypica...