Sample records for airframes

  1. Airframe/TPS Session (United States)

    Welch, Sharon; Bowles, David


    This viewgraph presentation gives an overview of the second generation Reusable Launch Vehicle (RLV) airframe configuration, including details on the structures and materials, tanks, airframe/cryotank demonstrations, internal assemblies, weight growth and margin, and safety and cost requirements.

  2. Fuel Efficiencies Through Airframe Improvements (United States)

    Bezos-O'Connor, Gaudy M.; Mangelsdorf, Mark F.; Maliska, Heather A.; Washburn, Anthony E.; Wahls, Richard A.


    The factors of continuing strong growth in air traffic volume, the vital role of the air transport system on the economy, and concerns about the environmental impact of aviation have added focus to the National Aeronautics Research Policy. To address these concerns in the context of the National Policy, NASA has set aggressive goals in noise reduction, emissions, and energy consumption. With respect to the goal of reducing energy consumption in the fleet, the development of promising airframe technologies is required to realize the significant improvements that are desired. Furthermore, the combination of advances in materials and structures with aerodynamic technologies may lead to a paradigm shift in terms of potential configurations for the future. Some of these promising airframe technologies targeted at improved efficiency are highlighted.

  3. Airframe-Jet Engine Integration Noise (United States)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)


    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  4. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu


    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  5. Airframe Noise Prediction by Acoustic Analogy: Revisited (United States)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.


    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  6. Airframe integrity based on Bayesian approach (United States)

    Hurtado Cahuao, Jose Luis

    Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability

  7. 2nd Generation RLV Airframe Structures and Materials (United States)

    Johnson, Theodore F.


    The goals and objectives of the project summarized in this viewgraph presentation are the following: (1) Develop and demonstrate verified airframe and cryotank structural design and analysis technologies, including damage tolerance, safety, reliability, and residual strength technologies, robust nonlinear shell and cryotank analysis technologies, high-fidelity analysis and design technologies for local structural detail features and joints, and high-fidelity analysis technologies for sandwich structures; (2) Demonstrate low cost, robust materials and processing, including polymeric matrix composite (PMC) and metallic materials and processing, and refractory composite and metallic hot structures materials and processing; (3) Develop and demonstrate robust airframe structures and validated integrated airframe structural concepts, including low cost fabrication and joining, operations efficient designs and inspection techniques (non-destructive evaluation), scale-up and integrated thermal structure tests, and airframe structures IVHM; (4) Demonstrate low cost, robust repair techniques; and (5) Develop verified integrated airframe structural concepts, including integrated structural concepts.

  8. Airframe structural dynamic considerations in rotor design optimization (United States)

    Kvaternik, Raymond G.; Murthy, T. Sreekanta


    An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included.

  9. Airframe Icing Research Gaps: NASA Perspective (United States)

    Potapczuk, Mark


    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  10. The Study of Tactical Missile's Airframe Digital Optimization Design

    Institute of Scientific and Technical Information of China (English)

    LUO Zhiqing; QIAN Airong; LI Xuefeng; GAO Lin; LEI Jian


    Digital design and optimal are very important in modern design. The traditional design methods and procedure are not fit for the modern missile weapons research and development. Digital design methods and optimal ideas were employed to deal with this problem. The disadvantages of the traditional missile's airframe design procedure and the advantages of the digital design methods were discussed. A new concept of design process reengineering (DPR) was put forward. An integrated missile airframe digital design platform and the digital design procedure, which integrated the optimization ideas and methods, were developed. Case study showed that the design platform and the design procedure could improve the efficiency and quality of missile's airframe design, and get the more reasonable and optimal results.

  11. Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes (United States)

    Czech, Michael J.; Thomas, Russell H.


    As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided

  12. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or... (United States)


    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft engines... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  13. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airframe Curriculum Subjects C Appendix C to Part 147 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Pt. 147, App....

  14. 14 CFR 65.85 - Airframe rating; additional privileges. (United States)


    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Airframe rating; additional privileges. 65.85 Section 65.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... developed by the manufacturer or a person acceptable to the FAA....

  15. Computational Structures Technology for Airframes and Propulsion Systems (United States)

    Noor, Ahmed K. (Compiler); Housner, Jerrold M. (Compiler); Starnes, James H., Jr. (Compiler); Hopkins, Dale A. (Compiler); Chamis, Christos C. (Compiler)


    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory.

  16. Experimental Analysis of Flow over a Highly Maneuverable Airframe (United States)

    Spirnak, Jonathan; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Eaton, John; Team HMA Team


    One way to reduce the collateral damage in war is by increasing the accuracy of indirect fire weapons. The Army Research Laboratory is currently developing a Highly Maneuverable Airframe (HMA) consisting of four deflecting canards to provide in-flight maneuverability while fins maintain short duration aerodynamic stability. An experiment was conducted using Magnetic Resonance Velocimetry (MRV) techniques to gather three dimensional, three-component velocity data for fluid flow over a scaled down HMA model. Tests were performed at an angle of attack of 2.3° and canard deflection angles of 0° and 2°. The resulting data serve to both validate computational fluid dynamics (CFD) simulations and understand the flow over this complex geometry. Particular interest is given to the development of the tip and inboard vortices that originate at the canard/body junction and the canard tips to determine their effects on airframe stability. Results show the development of a strong tip vortex and four weaker inboard vortices off each canard. Although the weaker inboard vortices dissipate rapidly downstream of the canard trailing edges, the stronger tip vortices persist until reaching the fins approximately six chord lengths downstream of the canard trailing edges. Team HMA designed and built the water channel and airframe for this experiment.

  17. Fluidic actuators for active flow control on airframe (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.


    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  18. Airframe Noise from a Hybrid Wing Body Aircraft Configuration (United States)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.


    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  19. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics (United States)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.


    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  20. Integrating CFD, CAA, and Experiments Towards Benchmark Datasets for Airframe Noise Problems (United States)

    Choudhari, Meelan M.; Yamamoto, Kazuomi


    Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. The combination of geometric complexity, high Reynolds number turbulence, multiple regions of separation, and a strong coupling with adjacent physical components makes the problem of airframe noise highly challenging. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate state of the art computational fluid dynamics, computational aeroacoustics, and in depth, holistic, and multifacility measurements targeting a selected set of canonical yet realistic configurations. This paper provides a brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far.

  1. Corrosion and corrosion fatigue of airframe aluminum alloys (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.


    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  2. Reliability-Based Design Optimization of a Composite Airframe Component (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.


    A stochastic design optimization methodology (SDO) has been developed to design components of an airframe structure that can be made of metallic and composite materials. The design is obtained as a function of the risk level, or reliability, p. The design method treats uncertainties in load, strength, and material properties as distribution functions, which are defined with mean values and standard deviations. A design constraint or a failure mode is specified as a function of reliability p. Solution to stochastic optimization yields the weight of a structure as a function of reliability p. Optimum weight versus reliability p traced out an inverted-S-shaped graph. The center of the inverted-S graph corresponded to 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponds to unity for reliability p (or p = 1). Weight can be reduced to a small value for the most failure-prone design with a reliability that approaches zero (p = 0). Reliability can be changed for different components of an airframe structure. For example, the landing gear can be designed for a very high reliability, whereas it can be reduced to a small extent for a raked wingtip. The SDO capability is obtained by combining three codes: (1) The MSC/Nastran code was the deterministic analysis tool, (2) The fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and (3) NASA Glenn Research Center s optimization testbed CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life raked wingtip structure of the Boeing 767-400 extended range airliner made of metallic and composite materials.

  3. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction Project (United States)

    National Aeronautics and Space Administration — We propose to develop a novel, high-accuracy, high-fidelity, multiresolution (MRES), wavelet-based framework for efficient prediction of airframe noise sources and...

  4. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction Project (United States)

    National Aeronautics and Space Administration — An integrated framework is proposed for efficient prediction of rotorcraft and airframe noise. A novel wavelet-based multiresolution technique and high-order...

  5. Design and Test of an Improved Crashworthiness Small Composite Airframe (United States)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark


    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  6. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle (United States)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.


    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  7. A Simple Buckling Analysis Method for Airframe Composite Stiffened Panel by Finite Strip Method (United States)

    Tanoue, Yoshitsugu

    Carbon fiber reinforced plastics (CFRP) have been used in structural components for newly developed aircraft and spacecraft. The main structures of an airframe, such as the fuselage and wings, are essentially composed of stiffened panels. Therefore, in the structural design of airframes, it is important to evaluate the buckling strength of the composite stiffened panels. Widely used finite element method (FEM) can analyzed any stiffened panel shape with various boundary conditions. However, in the early phase of airframe development, many studies are required in structural design prior to carrying out detail drawing. In this phase, performing structural analysis using only FEM may not be very efficient. This paper describes a simple buckling analysis method for composite stiffened panels, which is based on finite strip method. This method can deal with isotropic and anisotropic laminated plates and shells with several boundary conditions. The accuracy of this method was verified by comparing it with theoretical analysis and FEM analysis (NASTRAN). It has been observed that the buckling coefficients calculated via the present method are in agreement with results found by detail analysis methods. Consequently, this method is designed to be an effective calculation tool for the buckling analysis in the early phases of airframe design.

  8. Global-local Knowledge Coupling Approach to Support Airframe Structural Design

    NARCIS (Netherlands)

    Wang, H.


    The outsourcing that has taken place in the aircraft industry over the last few decades has created a globalized supply chain from and to a limited number of original equipment manufacturers (OEMs). This has led to multi-level design due to the shift from airframe subsystem design to suppliers. Incr

  9. Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test (United States)

    Annett, Martin; Littell, Justin


    Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  10. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests (United States)

    Annett, Martin; Littell, Justin


    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  11. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test (United States)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph


    In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy

  12. A coordination policy for the NATO SEASPARROW Missile and the Rolling Airframe Missile using dynamic programming


    Drennan, Arthur Paul


    This thesis develops a dynamic program, the SEASPARROW Coordinated Assignment Model (SCAM), that determines the optimal coordinated assignment policy for the SEASPARROW missile in a shipboard self defense weapon configuration consisting of the NATO SEASPARROW Missile System, the Rolling Airframe Missile and the Phalanx Close-In Weapon System. Threat scenarios are described by the type of' anti-ship cruise missile, the number of threat missiles, the total duration of the arrival window and the...

  13. Small Engine Technology (SET). Task 33: Airframe, Integration, and Community Noise Study (United States)

    Lieber, Lys S.; Elkins, Daniel; Golub, Robert A. (Technical Monitor)


    Task Order 33 had four primary objectives as follows: (1) Identify and prioritize the airframe noise reduction technologies needed to accomplish the NASA Pillar goals for business and regional aircraft. (2) Develop a model to estimate the effect of jet shear layer refraction and attenuation of internally generated source noise of a turbofan engine on the aircraft system noise. (3) Determine the effect on community noise of source noise changes of a generic turbofan engine operating from sea level to 15,000 feet. (4) Support lateral attenuation experiments conducted by NASA Langley at Wallops Island, VA, by coordinating opportunities for Contractor Aircraft to participate as a noise source during the noise measurements. Noise data and noise prediction tools, including airframe noise codes, from the NASA Advanced Subsonic Technology (AST) program were applied to assess the current status of noise reduction technologies relative to the NASA pillar goals for regional and small business jet aircraft. In addition, the noise prediction tools were applied to evaluate the effectiveness of airframe-related noise reduction concepts developed in the AST program on reducing the aircraft system noise. The AST noise data and acoustic prediction tools used in this study were furnished by NASA.

  14. AH-1G flight vibration correlation using NASTRAN and the C81 rotor/airframe coupled analysis (United States)

    Dompka, R. V.; Corrigan, J. J.


    Analytical results are presented bearing on the accuracy of state-of-the-art NASTRAN FEM modeling techniques and rotor/airframe coupling methods for the prediction of flight vibrations; these results have been studied by NASA and industry experts in order to ensure scientific control of the analysis/correlation exercise. The rotor loads predicted by the dynamically coupled rotor/airframe analysis showed good agreement between calculated and experimental blade loads, as did the predominant excitation frequency vibration levels predicted by NASTRAN.

  15. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration (United States)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen


    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  16. State of the Art in Beta Titanium Alloys for Airframe Applications (United States)

    Cotton, James D.; Briggs, Robert D.; Boyer, Rodney R.; Tamirisakandala, Sesh; Russo, Patrick; Shchetnikov, Nikolay; Fanning, John C.


    Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.

  17. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments (United States)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.


    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  18. Research of structural concept to heat-resistant airframe of HOPE. HOPE tainetsu kozo gainen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Matsushita, T.; Atsumi, M. (National Space Development Agency, Tokyo (Japan))


    This paper states the concept of a heat-resistant structure of the HOPE airframe having a 10 ton weight when lifting off and also the research situation of heat-resistant structural materials. To study the structure, established are design conditions for lift-off, reentry to the atmosphere and landing. As to the load condition, the load at the time of lift-off is most critical. Relating to the temperature environment condition, thermal analysis is made of the time when a HOPE is on the orbit (low-temperature range) and reenters the atmosphere (high-temperature range), when the temperature environment is critical. The analysis shows that the temrerature environment is in a {minus}80-1700{degree}C (range). The heat-resistant structural materials are developed so as to meet these conditions. The paper describes distribution of the airframe surface temperature by aerodynamic heating at the reentry, conceptual figures of the airframe structure and structural materials. Results of the study of heat-resistant structural materials indicate an outlook for fabrication technique of a small-size component. Using thermal/temperature environment conditions, strucutre patterns and characteristics values of applied materials, a structure conceptual design model (a finite element model) is made, the analyses of the structure and heat resistance are conducted and a possibility of formation of the model is obtained. 4 refs., 13 figs., 5 tabs.

  19. Toward Establishing a Realistic Benchmark for Airframe Noise Research: Issues and Challenges (United States)

    Khorrami, Mehdi R.


    The availability of realistic benchmark configurations is essential to enable the validation of current Computational Aeroacoustic (CAA) methodologies and to further the development of new ideas and concepts that will foster the technologies of the next generation of CAA tools. The selection of a real-world configuration, the subsequent design and fabrication of an appropriate model for testing, and the acquisition of the necessarily comprehensive aeroacoustic data base are critical steps that demand great care and attention. In this paper, a brief account of the nose landing-gear configuration, being proposed jointly by NASA and the Gulfstream Aerospace Company as an airframe noise benchmark, is provided. The underlying thought processes and the resulting building block steps that were taken during the development of this benchmark case are given. Resolution of critical, yet conflicting issues is discussed - the desire to maintain geometric fidelity versus model modifications required to accommodate instrumentation; balancing model scale size versus Reynolds number effects; and time, cost, and facility availability versus important parameters like surface finish and installation effects. The decisions taken during the experimental phase of a study can significantly affect the ability of a CAA calculation to reproduce the prevalent flow conditions and associated measurements. For the nose landing gear, the most critical of such issues are highlighted and the compromises made to resolve them are discussed. The results of these compromises will be summarized by examining the positive attributes and shortcomings of this particular benchmark case.

  20. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration (United States)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.


    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  1. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications (United States)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  2. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model (United States)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.


    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  3. Summary of the Tandem Cylinder Solutions from the Benchmark Problems for Airframe Noise Computations-I Workshop (United States)

    Lockard, David P.


    Fifteen submissions in the tandem cylinders category of the First Workshop on Benchmark problems for Airframe Noise Computations are summarized. Although the geometry is relatively simple, the problem involves complex physics. Researchers employed various block-structured, overset, unstructured and embedded Cartesian grid techniques and considerable computational resources to simulate the flow. The solutions are compared against each other and experimental data from 2 facilities. Overall, the simulations captured the gross features of the flow, but resolving all the details which would be necessary to compute the noise remains challenging. In particular, how to best simulate the effects of the experimental transition strip, and the associated high Reynolds number effects, was unclear. Furthermore, capturing the spanwise variation proved difficult.

  4. Technology transfer and other public policy implications of multi-national arrangements for the production of commercial airframes (United States)

    Gellman, A. J.; Price, J. P.


    A study to examine the question of technology transfer through international arrangements for production of commercial transport aircraft is presented. The likelihood of such transfer under various representative conditions was determined and an understanding of the economic motivations for, effects of, joint venture arrangements was developed. Relevant public policy implications were also assessed. Multinational consortia with U.S. participation were focused upon because they generate the full range of pertinent public issues (including especially technology transfer), and also because of recognized trends toward such arrangements. An extensive search and analysis of existing literature to identify the key issues, and in-person interviews with executives of U.S. and European commercial airframe producers was reviewed. Distinctions were drawn among product-embodied, process, and management technologies in terms of their relative possibilities of transfer and the significance of such transfer. Also included are observations on related issues such as the implications of U.S. antitrust policy with respect to the formation of consortia and the competitive viability of the U.S. aircraft manufacturing industry.

  5. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs (United States)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)


    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  6. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements (United States)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary


    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  7. Ramjets: Airframe integration

    NARCIS (Netherlands)

    Moerel, J.L.; Halswijk, W.


    These notes deal with the integration of a (sc)ramjet engine in either an axisymmetric or a waverider type of cruise missile configuration. The integration aspects relate to the integration of the external and internal flow paths in geometrical configurations that are being considered worldwide. Int





    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...


    Institute of Scientific and Technical Information of China (English)

    贺天鹏; 李书; 李小龙


    This paper first briefly reviews the types of the dynamic instability of helicopter rotor/airframe,including the isolated blade dynamic instabilities such as the rotor flap-pitch coupling,pitch-lag instability,the coupled flap-lag aeroelastic instability,the flap-lag-pitch coupled instability,and the coupled rotor/airframe instabilities,such as the ground resonance and the air resonance.The related studies are reviewed from 3 aspects,the aerodynamic and structural numerical models with high precisions,the numerical methods of dynamic stability,and the model testing.The major fields of the analytical technology for dynamic stability of helicopter rotor/airframe are discussed,including the rotor aeroelastic stability analysis using the coupled computational fluid dynamics/computational structural dynamics,the dynamic stability analysis of composite rotor with consideration of material uncertainty,the dynamic stability analysis of coupled rotor/airframe with lag damper,and helicopters with advanced configurations.In the end,the future development of dynamic stability of helicopter rotor/airframe is commented.%首先对直升机旋翼/机体动不稳定性问题的种类进行了简要概述,包括旋翼挥舞/变距、变距/摆振、挥舞/摆振和挥舞/摆振/变距耦合等孤立旋翼动不稳定性问题,以及直升机地面共振和空中共振等旋翼/机体耦合动不稳定性问题,然后分别从气动力与结构的高精度数值模型、动稳定性的计算分析方法和实验模型测试3个方面详细介绍了直升机旋翼/机体动不稳定性问题的研究现状,并着重讨论了直升机旋翼/机体动稳定性分析技术最近的主要研究方向:耦合CFD(computational fluid dynamics)/CSD(computational structural dynamics)的直升机旋翼气弹动稳定性分析、复合材料旋翼动稳定性分析及其材料不确定性影响、带减摆器的旋翼/机体动稳定性分析和先进直升机构型的旋翼/机体动稳定性

  10. Future Design for Composite Airframe Structures


    Degenhardt, Richard; Kling, Alexander


    European space and aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribut...

  11. Multi-Layered Integrated Airframe System Project (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher performance ablative thermal protection systems (TPS) than is currently available for future exploration of our solar system's...

  12. Computational methods for inlet airframe integration (United States)

    Towne, Charles E.


    Fundamental equations encountered in computational fluid dynamics (CFD), and analyses used for internal flow are introduced. Irrotational flow; Euler equations; boundary layers; parabolized Navier-Stokes equations; and time averaged Navier-Stokes equations are treated. Assumptions made and solution methods are outlined, with examples. The overall status of CFD in propulsion is indicated.

  13. Multi-Layered Integrated Airframe System Project (United States)

    National Aeronautics and Space Administration — This proposed Phase II program builds on the Phase I effort addressing NASA's future mission requirements by: 1) developing higher performing TPS materials capable...

  14. Landing Gear Door Liners for Airframe Noise Reduction (United States)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)


    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  15. Parallel Tracking and Mapping for Controlling VTOL Airframe


    Michal Jama; Dale Schinstock


    This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution pres...

  16. Aircraft Scheduled Airframe Maintenance and Downtime Integrated Cost Model

    Directory of Open Access Journals (Sweden)

    Remzi Saltoğlu


    Full Text Available Aviation industry has grown rapidly since the first scheduled commercial aviation started one hundred years ago. There is a fast growth in the number of passengers, routes, and frequencies, with high revenues and low margins, which make this industry one of the most challenging businesses in the world. Every operator aims to undertake the minimum operating cost and gain profit as much as possible. One of the significant elements of operator’s operating cost is the maintenance cost. During maintenance scheduling, operator calculates the maintenance cost that it needs to budget. Previous works show that this calculation includes only costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. Some of previous works also discuss the existence of another cost throughout aircraft downtime, which is defined as cost of revenue loss. Nevertheless, there is not any standard model that shows how to define and calculate downtime cost. For that reason, the purpose of this paper is to introduce a new model and analysis technique that can be used to calculate aircraft downtime cost due to maintenance.

  17. Inlet, engine, airframe controls integration development for supercruising aircraft (United States)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.


    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  18. Structural-Acoustic Simulations in Early Airframe Design Project (United States)

    National Aeronautics and Space Administration — The structural design during the early development of an aircraft focuses on strength, fatigue, corrosion, maintenance, inspection, and manufacturing. Usually the...

  19. Multifunctional Core Materials for Airframe Primary Structures Project (United States)

    National Aeronautics and Space Administration — As the use of composite materials on commercial airlines grows the technology of the composites must grow with it. Presently the efficiency gained by the...

  20. Parallel Tracking and Mapping for Controlling VTOL Airframe

    Directory of Open Access Journals (Sweden)

    Michal Jama


    Full Text Available This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV. This is a monocular vision based, simultaneous localization and mapping (SLAM system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution presented in this paper extends and significantly modifies a recent open-source algorithm that solves SLAM problem using approach fundamentally different from a traditional approach. Proposed modifications provide the position measurements necessary for the navigation solution on a UAV. The main contributions of this work include: (1 extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; (2 improved performance of the SLAM algorithm for lower camera frame rates; and (3 the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible.

  1. Full Field Stress Measurement for in Situ Structural Health Monitoring of Airframe Components and Repairs


    Rajic, Nik; Street, N.; Brooks, C.; Galea, S.


    International audience The fatigue usage monitoring systems installed on various military aircraft rely primarily on strain gauges for sensory information, and for good reason. Strain gauges have a well established certification framework, a relatively good track record of reliability and they directly target the parameter that drives fatigue. Extending the role of strain gauges to structural health monitoring however is problematic. The reasons are manifold but a key one is that strain gr...

  2. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft (United States)

    Khorrami, Mehdi R.; Fares, Ehab


    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  3. Computations in turbulent flows and off-design performance predictions for airframe-integrated scramjets (United States)

    Goglia, G. L.; Spiegler, E.


    The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'.

  4. Advances in Stability of Composite Airframe Structures Regarding Collapse, Robust Design and Dynamic Loading


    Degenhardt, Richard


    European aircraft industry demands for reduced development and operating costs, by 20% and 50% in the short and long term, respectively. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents new achievements from the area of computational and experimental stability resear...

  5. Mesh Independent Probabilistic Residual Life Prediction of Metallic Airframe Structures Project (United States)

    National Aeronautics and Space Administration — Global Engineering and Materials, Inc. (GEM) along with its team members, Clarkson University and LM Aero, propose to develop a mesh independent probabilistic...

  6. Safety of a Commercial Aircraft after Damage to Airframe due to Terrorist Attack


    Lošťák, Miroslav


    Teroristické útoky znamenají dnes velké nebezpečí pro civilní dopravní letouny. V této práci jsou analyzovány možné způsoby útoků a je vybrán nejnebezpečnější. Jedná se o teroristický útok z vnějšku letounu za použití tříštivé bojové hlavice rakety. Tato bojová hlavice působí poškození draku letounu rojem střepin vzniklých při výbuchu. Je definován způsob určení zasažené plochy letounu za použití analytické geometrie. Analytickými rovnicemi jsou popsány geometrie rozptylu střepin a geometrie ...

  7. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints (United States)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.


    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  8. Robust gas turbine and airframe system design in light of uncertain fuel and CO2 prices


    Langmaak, Stephan; Scanlan, James; Sobester, Andras


    This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should fly at and whether a conventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft productivity, the passenger value of time, and the modal shift into account. To an...

  9. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach (United States)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.


    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  10. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation (United States)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick


    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  11. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian


    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  12. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian


    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  13. An analysis of the efficiency of the functional matching between a flying wing MAV airframe and different types of micro propellers


    Ionică CÎRCIU; BOSCOIANU Mircea


    This paper aims to present specific methods for optimizing the design of micro propellersfor small Reynolds numbers. In order to better understand the aim of this contribution, the effects of amicro propeller on the aerodynamic surfaces of a micro air vehicle (for example a flying wingconfiguration) are presented together with the analysis of the specific tools for the design of micropropellers. The final part aims to renew the interest in predicting the influence of the propeller-wingflow in...

  14. An analysis of the efficiency of the functional matching between a flying wing MAV airframe and different types of micro propellers

    Directory of Open Access Journals (Sweden)

    Ionică CÎRCIU


    Full Text Available This paper aims to present specific methods for optimizing the design of micro propellersfor small Reynolds numbers. In order to better understand the aim of this contribution, the effects of amicro propeller on the aerodynamic surfaces of a micro air vehicle (for example a flying wingconfiguration are presented together with the analysis of the specific tools for the design of micropropellers. The final part aims to renew the interest in predicting the influence of the propeller-wingflow interaction on the aerodynamic characteristics of deflected slipstream and small flying wingMAV.

  15. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates...

  16. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project (United States)

    National Aeronautics and Space Administration — The research proposed targets airframe noise (AFN) prediction and reduction. AFN originates from complex interactions of turbulent flow with airframe components...

  17. 前飞状态直升机旋翼/机体耦合动稳定性分析模型%An Analytical Model of Coupled Rotor/Airframe Helicopter Dynamic Stability in Forward Flight

    Institute of Scientific and Technical Information of China (English)

    胡国才; 向锦武; 张晓谷



  18. The Model Of One-Type Aircraft Fleet Behaviour While Service And Advantages SHM V. NDT Implementation


    Lewitowicz Jerzy; Kustroń Kamila


    The paper defines the essence of durability characteristics of the designing structure of an airframe in terms of flight safety. Particular attention is drawn to one of the main factors influencing the durability characteristics of the airframe – diagnostics system for the health assessment of the airframe during the process of operation. The effectiveness of the use of integrated solutions to the structure of the airframe providing a continuous assessment of the technical condition is presen...

  19. Preliminary weight and cost estimates for transport aircraft composite structural design concepts (United States)


    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  20. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01. (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  1. Broadband Trailing-Edge Noise Predictions - Overview of BANC-III Results

    DEFF Research Database (Denmark)

    Herr, M.; Ewert, R.; Rautmann, C.;


    The Third Workshop on Benchmark Problems for Airframe Noise Computations, BANCIII, was held on 14-15 June 2014 in Atlanta, Georgia, USA. The objective of this workshop was to assess the present computational capability in the area of physics-based prediction of different types of airframe noise p...

  2. Overview of mechanics of materials branch activities in the computational structures area (United States)

    Poe, C. C., Jr.


    Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.

  3. Multifunctional Aerogel Thermal Protection Systems for Hypersonic Vehicles Project (United States)

    National Aeronautics and Space Administration — The push to hypersonic flight regimes requires novel materials that are lightweight as well as thermally and structurally efficient for airframes and thermal...

  4. RIDES: Raman Icing Detection System Project (United States)

    National Aeronautics and Space Administration — Inflight icing of engines and airframe presents a significant hazard to air transport, especially at lower flight elevations during take-off or on approach. Ice...

  5. Damage Adaptation Using Integrated Structural, Propulsion, and Aerodynamic Control Project (United States)

    National Aeronautics and Space Administration — The proposed SBIR Phase I plan of research seeks to develop and demonstrate an integrated architecture designed to compensate for combined propulsion, airframe,...

  6. All-Fiber-Optic Ultrasonic Health Management System Project (United States)

    National Aeronautics and Space Administration — Health management of composite airframe components is essential for safety and reliability of future aircrafts. It reduces the risk of catastrophic failures and...

  7. Plasma Fairings for Quieting Aircraft Landing Gear Noise Project (United States)

    National Aeronautics and Space Administration — A major component of airframe noise for commercial transport aircraft is the deployed landing gear. The noise from the gear originates due to complex, unsteady...

  8. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance (United States)


    ..., selectivity, distortion, spurious radiation, AVC characteristics, or ability to meet environmental test... welding, are airframe major repairs. (i) Box beams. (ii) Monocoque or semimonocoque wings or control... reduction gearing. (iii) Special repairs to structural engine parts by welding, plating, metalizing,...

  9. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight (United States)

    Dorpinghaus, R.


    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  10. 78 FR 703 - 36(b)(1) Arms Sales Notification (United States)


    ... airframe and the ability to integrate the Helmet Mounted Cueing System. The software algorithms are the.... No software source code or algorithms will be released. 2. The AIM-9X-2 will result in the...

  11. Costs and Benefits of Advanced Aeronautical Technology (United States)

    Bobick, J. C.; Denny, R. E.


    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  12. Unstructured, High-Order Scheme Module with Low Dissipation Flux Difference Splitting for Noise Prediction Project (United States)

    National Aeronautics and Space Administration — Thorough understanding of aircraft airframe and engine noise mechanisms and the subsequent acoustic propagation to the farfield is necessary to develop and evaluate...

  13. Reduction of Flight Control System/Structural Mode Interaction Project (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing...

  14. Effect of Engine Installation on Jet Noise using a Hybrid LES/RANS Approach Project (United States)

    National Aeronautics and Space Administration — Installation effects arising from propulsion airframe interaction are known to produce substantial variations in the in-situ jet noise. A hybrid LES/RANS...

  15. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  16. 26 CFR 1.1031(a)-2 - Additional rules for exchanges of personal property. (United States)


    ... freight, and all helicopters (airframes and engines) (asset class 00.21), (v) Automobiles, taxis (asset... construction (asset class 00.28), and (xiii) Industrial steam and electric generation and/or...

  17. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 2 (United States)

    Adams, K. M.; Lucas, J. J.


    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.

  18. Experimental assessment of low noise landing gear component design


    Dobrzynski, Werner; Chow, Leung Choi; Smith, Malcolm; Boillot, Antoine; Dereure, Olivier; Molin, Nicolas


    Landing gear related airframe noise is one of the dominant aircraft noise components at approach. It therefore is essential to particularly reduce landing gear noise. In the European SILENCER project, advanced low noise gears had been designed and tested at full scale. In the current European co-financed project TIMPAN (Technologies to IMProve Airframe Noise) still more advanced low noise design concepts were investigated and noise tested on a ¼ scaled main landing gear model in the German-Du...

  19. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)


    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  20. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne


    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  1. The Model Of One-Type Aircraft Fleet Behaviour While Service And Advantages SHM V. NDT Implementation

    Directory of Open Access Journals (Sweden)

    Lewitowicz Jerzy


    Full Text Available The paper defines the essence of durability characteristics of the designing structure of an airframe in terms of flight safety. Particular attention is drawn to one of the main factors influencing the durability characteristics of the airframe – diagnostics system for the health assessment of the airframe during the process of operation. The effectiveness of the use of integrated solutions to the structure of the airframe providing a continuous assessment of the technical condition is presented. Continuous diagnostics system integrated with the airframe, SHM, is classified as an intelligent solution. This paper presents a model of the behavior of one-type aircraft operating in the air operator’s fleet in terms of susceptibility to failure. Justified assumption in the description of this behavior, in the form of a “bathtub curve”. The analysis is supported by real data of failures. The benefits of using a continuous diagnostics system integrated with the airframe, SHM, is interpreted in relation to the classical approach with the use of non-destructive testing, NDT, for the three phases of the bathtub curve.

  2. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.


    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  3. Modeling and Analysis of Helicopter Thermal and Infrared Radiation

    Institute of Scientific and Technical Information of China (English)

    PAN Chengxiong; ZHANG Jingzhou; SHAN Yong


    The temperature distributions on the helicopter airframe and in the exhaust plume are affected seriously by the engine exhaust system,rotor downwash and solar irradiance.To precisely simulate temperature distribution on the helicopter airframe and in the exhaust plume,the effects of rotor downwash and solar irradiance are considered in three-dimensional flow and heat transfer calculation under helicopter hovering.Based on the temperature distribution,a forward-backward ray tracing method is used to calculate the helicopter infrared(IR)radiation intensity.A numerical study is conducted on a fictitious helicopter model with an integrated exhaust system-tail airframe configuration,and the thermal and infrared radiation characteristics are analyzed.

  4. Costs and benefits of composite material applications to a civil STOL aircraft (United States)

    Logan, T. R.


    Costs and benefits of advanced composite primary airframe structure were studied to determine cost-effective applications to a civil STOL aircraft designed for introduction in the early 1980 time period. Applications were assessed by comparing costs and weights with a baseline metal aircraft which served as a basis of comparison throughout the study. Costs as well as weights were estimated from specific designs of principal airframe components, thus establishing a cost-data base for the study. Cost effectiveness was judged by an analysis that compared direct operating costs and return on investment of the composite and baseline aircraft. A systems operations analysis was performed to judge effects of the smaller, lighter composite aircraft. It was determined that broad applications of advanced composites to the airframe considered could be cost-effective, but this advantage is strongly influenced by structural configuration and several key cost categories.

  5. Technology challenges for the National Aero-Space Plane (United States)

    Piland, William M.


    The National Aerospace Plane (NASP) will require an exceptionally high degree of integration between propulsion and aerodynamic configuration, in order to achieve the requisite specific impulse and low structural weight. This is to be achieved through the use of forebody shock compression and afterbody exhaust expansion. Attention is presently given to the materials and structural concepts required for the realization of these NASP airframe functions, in view of the exceptionally high aerothermodynamic loads that will be experienced at hypersonic speeds. Active cooling will have to be used in certain critical airframe and propulsion components. CFD characterizations of these processes must be carefully developed and fully validated.

  6. British government, industry agree to fund Hotel launcher studies (United States)

    Brown, D. A.


    A program status assessment is presented for the horizontal takeoff and landing 'Hotol' single-stage-to-orbit space launcher, for which parallel, two-year airframe and propulsion system proof-of-concept studies have been approved. A two-year initial development program for the airframe would be followed by a four-year development and manufacturing phase that would begin upon the propulsion system concept's successful demonstration. Flight trials could begin in 1996. A number of significant modifications have already been made to the initial design concept, such as to the foreplanes, afterbody, engine intake, and orbital control system.

  7. Finite element model reduction application to parametric studies and optimization of rotorcraft structures (United States)

    Hashemi-Kia, M.; Toossi, M.


    As a result of this work, a reduction procedure has been developed which can be applied to large finite element model of airframe type structures. This procedure, which is tailored to be used with MSC/NASTRAN finite element code, is applied to the full airframe dynamic finite element model of AH-64A Attack Helicopter. The applicability of the resulting reduced model to parametric and optimization studies is examined. Through application of the design sensitivity analysis, the viability and efficiency of this reduction technique has been demonstrated in a vibration reduction study.

  8. 14 CFR 23.572 - Metallic wing, empennage, and associated structures. (United States)


    ... Structure Fatigue Evaluation § 23.572 Metallic wing, empennage, and associated structures. (a) For normal... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Metallic wing, empennage, and associated... the airframe structure whose failure would be catastrophic must be evaluated under one of...

  9. Aircraft Landing Gear, Ice and Rain Control Systems (Course Outline), Aviation Mechanics 3 (Air Frame):9067.02. (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with operation, inspection, troubleshooting, and repair of aircraft landing gear, ice and rain control systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe…

  10. 75 FR 2831 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, and MD-10-10F... (United States)


    ... Corporation Model DC- 10-10, DC-10-10F, and MD-10-10F Airplanes AGENCY: Federal Aviation Administration (FAA..., Aerospace Engineer, Airframe Branch, ANM-120L, FAA, Los Angeles Aircraft Certification Office, 3960... United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I,...

  11. Haptic Interface for UAV Teleoperation

    NARCIS (Netherlands)

    Lam, T.M.


    In the teleoperation of an uninhabited aerial vehicle (UAV), the human operator is physically separated from the vehicle and lacks various multiple-sensory information such as sound, motions, and vibrations of the airframe. The operator is usually only provided with visual information, e.g., from ca

  12. 14 CFR 23.335 - Design airspeeds. (United States)


    ... variations (such as horizontal gusts), and the penetration of jet streams or cold fronts), instrument errors, airframe production variations, and must not be less than Mach 0.05. (c) Design maneuvering speed V A. For... coefficients, C NA ; and (ii) n is the limit maneuvering load factor used in design (2) The value of V A...

  13. Active noise control in fuselage design

    NARCIS (Netherlands)

    Krakers, L.A.; Tooren, M.J.L. van; Beukers, A.; Berkhof, A.P.; Goeje, M.P. de


    To achieve comfortable noise levels inside the passenger cabin, sound damping measures have to be taken to improve the sound insulation properties of the bare airframe. Usually the sound insulation requirements of a passenger cabin are met after the mechanical design of the fuselage structure is alr

  14. Detection of aeroacoustic sound sources on aircraft and wind turbines

    NARCIS (Netherlands)

    Oerlemans, Stefan


    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic

  15. ASNT 1993 fall conference and quality testing show. NDT: A partner in engineering innovation

    International Nuclear Information System (INIS)

    A host of topics were addressed at this conference ranging from ASNT certification programs, emerging nondestructive testing technologies, airframe inspections, life extension in marine structures, radiology, and ASNT strategic planning to general nondestructive testing applications. Separate abstracts were prepared for 39 papers in this book

  16. 78 FR 65176 - Airworthiness Directives; Bombardier, Inc. Airplanes (United States)

    2013-10-31 ; Internet . You may view this referenced service... Walker, Aerospace Engineer, Airframe and Mechanical Systems Branch, ANE-171, FAA, New York Aircraft... (516) 794-5531. SUPPLEMENTARY INFORMATION: Discussion We issued a notice of proposed rulemaking...

  17. 78 FR 65198 - Airworthiness Directives; Bombardier, Inc. Airplanes (United States)


    ...; telephone (516) 228-7318; fax (516) 794-5531. SUPPLEMENTARY INFORMATION: Discussion We issued a supplemental...-4539; email ; Internet . You may view this... INFORMATION CONTACT: Cesar Gomez, Aerospace Engineer, Airframe and Mechanical Systems Branch, ANE-171,...

  18. 78 FR 66859 - Airworthiness Directives; the Boeing Company Airplanes (United States)


    ... flap drive system disconnect in both TE flap rotary actuators, and a possible flap aerodynamic blowback... INFORMATION CONTACT: Berhane Alazar, Aerospace Engineer, Airframe Branch, ANM-120S, FAA, Seattle Aircraft...-917-6590; email: . SUPPLEMENTARY INFORMATION: Comments Invited We invite you...

  19. 76 FR 71470 - Airworthiness Directives; Bombardier, Inc. Airplanes (United States)


    ... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... the power control unit (PCU) to the airframe could result in a loss of the rudder actuating system. The loss of both rudder PCU actuators could result in free play of the rudder control surface...

  20. 78 FR 49655 - Special Conditions: Embraer, S.A., Model EMB-550 Airplane; Side-Facing Seats; Installation of... (United States)


    ..., Airframe and Cabin Safety Branch, ANM-115, Transport Airplane Directorate, Aircraft Certification Service... considered a novel design for transport category airplanes that include Amendment 25-64 in their... requirement to provide support for the pelvis, upper arm, chest, and head contained in the previous...

  1. 78 FR 42417 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes (United States)


    ... during production could reduce the structural integrity of the airplane. We are issuing this AD to... faulty rivets installed in the airframes during production could reduce the structural integrity of the airplane. We are issuing this AD to ensure the structural integrity of the airplane. (f) Actions...

  2. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads... (United States)


    ... thrust; and (b) the maximum acceleration of the engine. 2. For auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must be designed to withstand 1g level...: (a) Sudden APU deceleration due to malfunction or structural failure; and (b) The...

  3. 78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage (United States)


    ... airplane, was published in the Federal Register on September 25, 2012 (77 FR 58970). No comments were... auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must be... imposed by each of the following: (a) Sudden APU deceleration due to malfunction or structural...

  4. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion (United States)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.


    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  5. Comparison of Requirements for Composite Structures for Aircraft and Space Applications (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.


    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  6. AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, TX, Nov. 13, 14, 1989, Proceedings

    Energy Technology Data Exchange (ETDEWEB)


    Various papers on rotorcraft dynamics are presented. Individual topics addressed include: aeromechanical stability of helicopters, evolution and test history of the V-22 Aeroelastic Model Series, helicopter individual blade control through optimal output feedback, dynamic characteristics of composite beam structures, dynamic testing of thin-walled composite box beams in a vacuum chamber, fundamental dynamics issues for comprehensive rotorcraft analyses, and development of the second generation Comprehensive Helicopter Analysis System. Also considered are: experiences in NASTRAN airframe vibration predictions, application of CRFD program to total helicopter dynamics, vibration reduction on servoflap controlled rotor using HHC, V-22 MSC/NASTRAN airframe vibration analysis and correlation, responses of helicopter rotors to vibratory airloads, helicopter rotor load calculations, prediction and alleviation of V-22 rotor dynamic loads, free wake analysis of rotor configurations for reduced vibratory airloads.

  7. Use of LS-DYNA(Registered TradeMark) to Assess the Energy Absorption Performance of a Shell-Based Kevlar(TradeMark)/Epoxy Composite Honeycomb (United States)

    Polanco, Michael


    The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.

  8. In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics (United States)

    Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.


    The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.

  9. CFD Simulations of Tiltrotor Configurations in Hover (United States)

    Potsdam, Mark a.; Strawn, Roger C.


    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  10. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Sorensen, N.R.


    This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.


    Directory of Open Access Journals (Sweden)

    P. Reidelstürz


    The airframe´s wingspan is about 3,45m weighting 4.2 kg, ready to fly. The hand launchable UAV can start from any place in agricultural regions. The wing is configured with flaps, allowing steep approaches and short landings using a „butterfly“ brake configuration. In spite of the lightweight configuration the UAV yet proves its worth under windy baltic wether situations by collecting regular sharp images of fields under wind speed up to 15m/s (Beaufort 6 –7. In further projects the development of further payload modules and a user friendly flight planning tool is scheduled considering different payload – and airframe requirements for different precision farming purposes and forest applications. Data processing and workflow will be optimized. Cooperation with further partners to establish UAV systems in agricultural, forest and geodata aquisition is desired.

  12. The modeling and prediction of multiple jet VTOL aircraft flow fields in ground effect (United States)

    Kotansky, D. R.


    An engineering methodology based on an empirical data base and analytical fluid dynamic models was developed for the prediction of propulsive lift system induced aerodynamic effects for multiple lift jet VTOL aircraft operating in the hover mode in and out of ground effect. The effects of aircraft geometry, aircraft orientation (pitch, roll) as well as height above ground are considered. Lift jet vector and splay directions fit the airframe, lift jet exit flow conditions, and both axisymmetric and rectangular nozzle exit geometry are also accommodated. The induced suckdown flows are computed from the potential flowfield induced by the turbulent entrainment of both the free jets and wall jets in ground effect and from the free jets alone out of ground effect. The methodology emphasized geometric considerations, computation of stagnation lines and fountain upwash inclination, fountain upwash formation and development, and fountain impingement on the airframe.

  13. Robotic inspection of fiber reinforced composites using phased array UT (United States)

    Stetson, Jeffrey T.; De Odorico, Walter


    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  14. Optimal design and numerical analysis of a morphing flap structure


    Di Matteo, Natalia


    Over the next few years the aviation industry will face the challenge to develop a new generation of air vehicles characterised by high aerodynamic efficiency and low environmental impact. The technologies currently available, however, are inadequate to meet the demanding performance requirements and to comply with the stringent regulations in terms of polluting emissions. An innovative and very promising solution is offered by airframe morphing technologies. Morphing wing s...

  15. Damage tolerant wing-fuselage integration structural design applicable to future BWB transport aircraft


    Sodzi, P.


    Wing joint design is one of the most critical areas in aircraft structures. Efficient and damage tolerant wing-fuselage integration structure, applicable to the next generation of transport aircraft, will facilitate the realisation of the benefits offered by new aircraft concepts. The Blended Wing Body (BWB) aircraft concept represents a potential revolution in subsonic transport efficiency for large airplanes. Studies have shown the BWB to be superior to conventional airframes...

  16. Physics-based aeroacoustic modelling of bluff-bodies


    Peers, Edward


    In this work physics-based modelling of bluff-body noise was performed with application to landing gear noise production. The landing gear is a primary contributor to airframe noise during approach. Noise is primarily generated from the unsteady pressures resulting from the turbulent flow around various components. The research was initiated in response to the need for an improved understanding of landing gear noise prediction tools. A computational approach was adopted so that the noise ...

  17. On LAGOON nose landing gear CFD/CAA computation over unstructured mesh using a ZDES approach.


    De La Puente, F.; Sanders, L.; Vuillot, F


    This paper is part of ONERA's effort to compute the noise generation around landing gears, effort that has been shown with studies on a variety of configurations such as the ones included inside the BANC-II (Benchmark problems for Airframe Noise Computations). In this case, the addressed geometry is the LAGOON baseline nose landing gear. On the present computation, a refined unstructured mesh is generated for resolving the boundary layer up to y+ around one. The simulation of the flow was per...

  18. Landing Gear Aerodynamic Noise Prediction Using Building-Cube Method


    Daisuke Sasaki; Deguchi Akihito; Hiroshi Onda; Kazuhiro Nakahashi


    Landing gear noise prediction method is developed using Building-Cube Method (BCM). The BCM is a multiblock-structured Cartesian mesh flow solver, which aims to enable practical large-scale computation. The computational domain is composed of assemblage of various sizes of building blocks where small blocks are used to capture flow features in detail. Because of Cartesian-based mesh, easy and fast mesh generation for complicated geometries is achieved. The airframe noise is predicted through ...

  19. Computational analysis of the effect of bogie inclination angle on landing gear noise


    van Mierlo, K.J.; Takeda, K.; Peers, E.


    Airframe noise and in particular main landing gear noise is a major noise source during the approach phase. Wind tunnel tests have shown a strong relationship between the inclination angle of the bogie and the noise radiation of a main landing gear. Using Computational Fluid Dynamics, this paper investigates the flow features around three different configurations of a simplified four wheel main landing gear. The three configurations consist of a horizontal, 10 degree toe up and 10 degree t...

  20. Numerical investigation of landing gear noise


    Liu, Wen


    Noise generated by aircraft landing gears is a major contributor to the overall airframe noise of a commercial aircraft during landing approach. Because of the complex geometry of landing gears, the prediction of landing gear noise has been very difficult and currently relies on empirical tools, which have limited reliability and flexibility on the applications of unconventional gear architectures. The aim of this research is to develop an efficient and accurate numerical method to investigat...

  1. Impact of dynamic loads on propulsion integration (United States)

    Seiner, J. M.


    Aircraft dynamic loads produced by engine exhaust plumes are examined for a class of military fighter and bomber configurations in model and full scale. The configurations examined are associated with the USAF F-15 and B-1B aircraft, and the US F-18 HARV and ASTOVL programs. The experience gained as a result of these studies is used to formulate a level of understanding concerning this phenomena that could be useful at the preliminary stage of propulsion/airframe design.

  2. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)


    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  3. Aerial robotic data acquisition system

    International Nuclear Information System (INIS)

    A small unmanned aerial vehicle (UAV) equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology. (author) 10 refs

  4. Assessing/Optimising Bio-fuel Combustion Technologies for Reducing Civil Aircraft Emissions


    Mazlan, Nurul Musfirah


    Gas turbines are extensively used in aviation because of their advantageous volume as weight characteristics. The objective of this project proposed was to look at advanced propulsion systems and the close coupling of the airframe with advanced prime mover cycles. The investigation encompassed a comparative assessment of traditional and novel prime mover options including the design, off-design, degraded performance of the engine and the environmental and economic analysis of the system. The ...

  5. Characterization of the Vacuum Assisted Resin Transfer Molding Process for Fabrication of Aerospace Composites


    Grimsley, Brian William


    This work was performed under a cooporative research effort sponsored by the National Aeronautics and Space Administration (NASA) in conjunction with the aerospace industry and acedemia. One of the primary goals of NASA is to improve the safety and affordability of commercial air flight. Part of this goal includes research to reduce fuel consumption by developing lightweight carbon fiber, polymer matrix composites to replace existing metallic airframe structure. In the Twenty-first Aircraft T...

  6. Experimental Investigation of Fan Rotor Response to Inlet Swirl Distortion


    Frohnapfel, Dustin Joseph


    Next generation aircraft design focuses on highly integrated airframe/engine architectures that exploit advantages in system level efficiency and performance. One such design concept incorporates boundary layer ingestion which locates the turbofan engine inlet near enough to the lifting surface of the aircraft skin that the boundary layer is ingested and reenergized. This process reduces overall aircraft drag and associated required thrust, resulting in fuel savings and decreased emissions;...

  7. Maintaining NASTRAN :the politics and technics of aerospace computing


    Hu, Minghui


    This thesis describes a process of how NASA maintained the NASTRAN (NASA Structural Analysis) computer program. Chapter one addresses my theoretical concern and suggests to learn from both critical theorists and social constructivists. Chapters Two and Three tell the story of NASA and NASTRAN, a computer program developed by NASA for solving problems of airframes and space structures. The story of NASA and NASTRAN demonstrates a structural imbalance between social groups of NAS...

  8. Computational Methods for Failure Analysis and Life Prediction (United States)

    Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)


    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.

  9. Investigation of a jet-noise-shielding methodology


    O'Reilly, Ciarán J.; Rice, Henry J.


    Ongoing research toward the reduction of environmental noise from aircraft is investigating the possible shielding of engine-noise sources by novel airframe configurations. To assess the noise-reduction benefits attainable from such configurations, it is necessary to develop appropriate acoustic evaluation tools. In this paper, a jet-noise-shielding- prediction methodology is described. The Tam–Auriault (“Jet Mixing Noise from Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 14...

  10. Development of an approach and tool to improve the conceptual design process of the wing box structure of low-subsonic transport aircraft


    Syamsudin, Hendri


    To produce a better airframe design, it is imperative to investigate the problems of design and manufacturing integration early on at the conceptual design stage. A new design approach and support tool is required which will aid the designer in future product development. This is a particular necessity in the current context of increasing complexity and challenging economic situations. The present work focuses on the development of a design approach and design aids for designing metallic w...

  11. Aerial robotic data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)


    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  12. Electronics plus fluidics for V/STOL flight control (United States)

    Hendrick, R. C.


    The redundant digital fly by wire flight control system coupled with a fluidic system, which uses hydraulic pressure as its signal transmission means to provide pilot and feedback sensor control of airframe forcing functions is considered for application to the V/STOL aircraft. A potential fluidics system is introduced, and anticipated performance, weight, and reliability is discussed. Integration with the redundant electronic channels is explored, with the safety and mission reliability of alternate configurations estimated.

  13. Analisa Sifat Fisis Dan Koefisien Serap Bunyi Material Komposit Polymeric Foam Dengan Variabel Polyurethane Untuk Pembuatan Badan Pesawat Uav


    Dinata, Frans


    Acoustic material is a material engineering whose main function is to absorb the sound. Acoustic material is a material that can absorb sound energy, but the amount of absorbed energy is different for each material. The general objective of this research is to analyze the physical properties and sound absorption coefficient of composite polymeric foam material reinforced by palm trunk fiber to be used on airframe. From this research found that the variable II has a good physical properties an...

  14. Matlab as a robust control design tool (United States)

    Gregory, Irene M.


    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  15. Design & modelling of a composite rudderless aeroelastic fin structure


    Trapani, Matteo


    This thesis presents the study of a gapless and rudderless aeroelastic fin (GRAF) to enhance the directional stability and controllability of an aircraft. The GRAF concept was proposed and developed in the wake of previous research, targeted to improve flight performance and manoeuvrability, and to reduce fuel consumption and airframe weight. The study involved the subjects of aerodynamics, structural design and analysis, and flight mechanics. The work includes conceptual de...

  16. F-5M DTA Program


    Daniel Ferreira V. Mattos; Alberto W. S. Mello Junior; Fabrício N. Ribeiro


    The Brazilian F-5 was submitted to avionics and weapons upgrade. This “new” aircraft has proven to be heavier and more capable. A comprehensive damage tolerance analysis is being performed to evaluate how the new mission profiles and weight distribution may affect the airframe structural integrity. Operational data were collected at the Brazilian Air Force Bases where the fighter is flown. Software was developed in order to acquire, filter and analyze flight data. This data was used for compa...

  17. Ruine des structures aéronautiques rivetées aux chargements de type explosion ou pression dynamique


    Langrand, Bertrand


    The context of the presented research concerns the vulnerability of airframes faced to blast explosions. Resuming the ruin scenario of a fuselage during a bomb attack, three research areas contribute to the issue set down in the report. The first one deals with the dynamic loading resulting from the explosion of a bomb within the fuselage. The second and third ones concerns the assemblies ; the characterisation and modelling of their mechanical behaviour and failure are particularly studied a...

  18. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests (United States)

    Littell, Justin D.


    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  19. Comparison of induced velocity models for helicopter flight mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.E.; Houston, S.S.


    Modeling of rotor-induced velocity receives continued attention in the literature as the rotorcraft community addresses limitations in the fidelity of simulations of helicopter stability, control, and handling qualities. A comparison is presented of results obtained using a rigid-blade rotor-fuselage model configured with two induced velocity models: a conventional, first-order, finite state, dynamic inflow model and a wake model that solves a vorticity transport equation on a computational mesh enclosing the rotorcraft. Differences between the two models are quantified by comparing predictions of trimmed rotor blade flap, lag and feather angles, airframe pitch and roll attitudes, cross-coupling derivatives, response to control inputs, and airframe vibration. Results are presented in the context of measurements taken on a Puma aircraft in steady flight from hover to high speed. More accurate predictions of the cross-coupling derivatives, response to control, and airframe vibration obtained using the vorticity transport model suggest that incorporation of real flowfield effects is important to extending the bandwidth of applicability of helicopter simulation models. Unexpectedly small differences in some of the trim predictions obtained using the two wake models suggest that an overall improvement in simulation fidelity may not be achieved without equivalent attention to the rotor dynamic model. (Author)

  20. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling. (United States)

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L


    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  1. A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology (United States)

    Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.


    The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.

  2. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)


    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  3. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion (United States)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.


    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  4. Low-Cost Composite Materials and Structures for Aircraft Applications (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.


    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  5. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1 (United States)

    Adams, K. M.; Lucas, J. J.


    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  6. 大型客机发动机振动载荷传递特性研究%Exploring Wing-Mounted Engine Vibration Transmission for New Generation Airplanes with Turbofan Engines of High Bypass Ratio

    Institute of Scientific and Technical Information of China (English)

    陈熠; 贺尔铭; 扈西枝; 韩峰


    The use of turbofan engines of high bypass ratio has caused the low-frequency structure-borne noise. To investigate the medium and low frequency vibration transmission through wing structure to airframe, we introduce the double-beam dynamic model of a wing and build the "pylon-wing-airframe" dynamic half model of a full airplane, which takes into account the dynamics of an actual airplane. Sections 1 through 4 of the full paper explain the exploration mentioned in the title; their core consists of; ( 1) we use the vibration spectrum of the turbofan engines to calculate the vibration load of the airplane at each section of the airframe transmitted from wing to the air-frame , which provides the input data for estimating the noise level of the pressurized cabin; (2) through simulation , we identify the main path of engines' vibration transmission to the airframe; the simulation results, given in Figs. 6 and 7, and their analysis form, in our opinion, a useful preparation for pylon structure vibration reduction, engine vibration isolation mounting and the acoustic design inside the cabin.%高涵道比涡扇发动机的振动冲击频段向低频转移,使得飞机舱内噪声频率分布中的低频结构传递噪声变得更加突出.为了研究发动机振动载荷通过机翼向机身传递的中低频振动特性,文章针对真实客机的结构动力特性,创新地提出了机翼双梁动力学模型概念,建立了“吊架-机翼-机身”全机动力学有限元模型;基于发动机的振动载荷谱,分析了发动机振动通过机翼向机身结构传递的载荷特性,为后续舱内噪声预计提供了数据输入;并仿真辨识了发动机振动传递的主路径,为舱内声学设计及发动机隔振安装提供了基础数据.文中研究结果对我国大型客机的减振降噪设计工作有重要的工程参考价值.

  7. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness (United States)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.


    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  8. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart


    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  9. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases (United States)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.


    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  10. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.


    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  11. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II


    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  12. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin


    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  13. Landing gear noise attenuation (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)


    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  14. Synthesis of aircraft structures using integrated design and analysis methods (United States)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.


    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  15. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.


    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  16. Structural requirements and basic design concepts for a two-stage winged launcher system (Saenger) (United States)

    Kuczera, H.; Keller, K.; Kunz, R.


    An evaluation is made of materials and structures technologies deemed capable of increasing the mass fraction-to-orbit of the Saenger two-stage launcher system while adequately addressing thermal-control and cryogenic fuel storage insulation problems. Except in its leading edges, nose cone, and airbreathing propulsion system air intakes, Ti alloy-based materials will be the basis of the airframe primary structure. Lightweight metallic thermal-protection measures will be employed. Attention is given to the design of the large lower stage element of Saenger.

  17. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development (United States)

    Bryson, L. L.; Mccarty, J. E.


    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  18. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss (United States)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William


    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  19. The electric power feeding on signal/electric power supply circuits, as a process for the simulation of external radio-frequency interferences (United States)

    Brenner, Alfred


    When designing and checking modern aircrafts, the electromagnetic interference environment in power station range has to be considered. On account of the geometrical dimensions of planes, the airframe and the cabling in resonance take up a great deal of the interference activity. The drawbacks of the classical methods being outlined, a new process for the simulation of external high frequency disturbances was developed: the Bulk Current Injection Test (BCIT). Its principles are reported, it is shown that for the determination of an improvement factor the method is very useful, as well as for relative measurements. But the BCIT method takes a lot of time, even using computers.

  20. Predicted thermal superluminescence in low-pressure air

    CERN Document Server

    Aramyan, A R; Galechyan, G A; Mangasaryan, N R; Nersisyan, H B


    It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300-3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.

  1. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines (United States)

    Smith, A. L.


    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  2. Propulsion integration for a hybrid propulsive-lift system (United States)

    Bowden, M. K.; Renshaw, J. H.; Sweet, H. S.


    In a discussion of STOL vehicles with conventional high-lift devices, the need for efficient power-augmented lift systems is presented, and the implications of quiet operation are noted. The underlying philosophy of a promising hybrid lift system with major interactions between aerodynamic, thermodynamic, acoustic, and configuration design technologies is derived. The technique by which engine and airframe-related characteristics for this application may be matched in an optimum manner is described and illustrated by describing the features of a particular short-haul commercial STOL vehicle.

  3. Tools Lighten Designs, Maintain Structural Integrity (United States)


    Collier Research Corporation of Hampton, Virginia, licensed software developed at Langley Research Center to reduce design weight through the use of composite materials. The first license of NASA-developed software, it has now been used in everything from designing next-generation cargo containers, to airframes, rocket engines, ship hulls, and train bodies. The company now has sales of the NASA-derived software topping $4 million a year and has recently received several Small Business Innovation Research (SBIR) contracts to apply its software to nearly all aspects of the new Orion crew capsule design.

  4. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.


    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  5. Rotorcraft Technology for HALE Aeroelastic Analysis (United States)

    Young, Larry; Johnson, Wayne


    Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.

  6. AirGuardian - UAV Hardware and Software System for Small Size UAVs

    Directory of Open Access Journals (Sweden)

    Dániel Stojcsics


    Full Text Available AirGuardian is a complex of an Unmanned Aerial Vehicle and ground station UAV hardware and software systems which has been developed at Obuda University. The hardware and software of the autopilot (AERObot, the antenna tracker station and the ground control station were simultaneously created resulting in the optimal cooperation of the modules. The aim of the research on AERObot ‐ the special autopilot ‐ was to create a generic autopilot which is capable of controlling different designs, weights and structures of airframes without any complex mathematical model recalculation.

  7. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21 (United States)

    Sakata, I. F.; Davis, G. W.


    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  8. A structural design for a hypersonic research aircraft (United States)

    Jackson, L. R.; Taylor, A. H.


    A research aircraft is being studied that has potential for large-scale demonstration of advanced propulsive, structural, and aerodynamic technologies for hypersonic application. Versatility is achieved through a large removable payload bay with removable thermal protection, by removable wings, and by the configuration, which considers engine-airframe integration. Design criteria have been applied to an effective heat-sink structure of Lockalloy (Be-38Al), wherein thermal stress alleviation is a prime consideration in the design. Structural analyses are being performed with the SPAR computer program. Results indicate that no critical problems exist and the resulting structural weight is within initial estimates.

  9. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 1: Sections 1 through 6 (United States)

    Sakata, I. F.; Davis, G. W.


    The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.

  10. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb


    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  11. Computer technology forecast study for general aviation (United States)

    Seacord, C. L.; Vaughn, D.


    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  12. 某型柴油机发生捣缸原因分析及预防措施%Reasons Aanlysis of Cylinder Knock and Its Preventive Measures

    Institute of Scientific and Technical Information of China (English)

    龚伦超; 彭敦


    针对MTU16V396TE94型船用柴油机连杆断裂发生敲击捣缸故障,进行了原因分析,提出了有效的解决方法。%Based on marine engine MTU16V396TE94, the failure of the connecting-rod is illustrated briefly. Upon analysis, the main reason for the knocking of the connecting-rod is that the crack in the airframe, the paper puts forward an effective solution.

  13. Recent developments in the dynamics of advanced rotor systems (United States)

    Johnson, W.


    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  14. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology) (United States)

    Ellis, Rod


    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  15. Fitting aerodynamics and propulsion into the puzzle (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.


    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  16. Input/output models for general aviation piston-prop aircraft fuel economy (United States)

    Sweet, L. M.


    A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.

  17. Research status of key techniques for shock-induced combustion ramjet(shcramjet) engine

    Institute of Scientific and Technical Information of China (English)


    As one of the most promising propulsion systems in the future,shock-induced combustion ramjet engine can remedy the disadvantages in the integrated design of scramjet engine and airframe.It can shorten the length of the combustor,lighten the structure weight of the engine and keep better performance in a broad range of flight Mach number.The elementary principle of shock-induced combustion ramjet engine is introduced.The key technologies of this kind of propulsion system are described,while their research status is presented in detail.Suggestion on the development of shcramjet engine in China is put forward.

  18. Preliminary development of a VTOL unmanned air vehicle for the close-range mission.


    Kress, Gregory A.


    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAVs and include the wings from a U...

  19. Development of an Ultralight with a Ducted Fan

    Directory of Open Access Journals (Sweden)

    Jiří Brabec


    Full Text Available This paper introduces the UL-39 project, an ultralight aircraft with a ducted fan, and some of the problems that have arisen in the course of its development. Several problems with the design of a non-traditional aircraft of this kind are mentioned, e.g. the design of the airframe, and the design of the propulsion unit. The paper describes the specific procedure for determining the basic thrust characteristics of this unusual aircraft concept, and also the experimental determination of these characteristics. Further options for applying the experience gained during the work, and the futurefocus of work on these issues, are outlined at the end of the paper.

  20. Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Mark T. Whittaker


    Full Text Available Although originally discovered in the 18th century [1], the titanium industry did not experience any significant advancement until the middle of the 20th century through the development of the gas turbine engine [2]. Since then, the aerospace sector has dominated worldwide titanium use with applications in both engines and airframe structures [3]. The highly desirable combination of properties, which include excellent corrosion resistance, favourable strength to weight ratios, and an impressive resistance to fatigue, has led to an extensive range of applications [4], with only high extraction and processing costs still restricting further implementation. [...

  1. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography (United States)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.


    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  2. Sensitivity analysis in multipole-accelerated panel methods for potential flow (United States)

    Leathrum, James F., Jr.


    In the design of an airframe, the effect of changing the geometry on resulting computations is necessary for design optimization. The geometry is defined in terms of a series of design variables, including design variables to define the wing planform, tail, canard, pylon, and nacelle. Design optimization in this research is based on how these design variable affect the potential flow. The potential flow is computed as a function of the geometry and location of a series of panels describing the airframe, which are in turn a function of the design variables. Multipole accelerated panel methods improve the computational complexity of the problem and thus are an attractive approach. To utilize the methods in design optimization, it was necessary to define the appropriate sensitivity derivatives. The overhead incurred from finding the sensitivity derivatives in conjunction with the original computation should be small. This research developed the background for multipole-accelerated panel methods and the framework for finding sensitivity derivatives in the methods. Potential flow panel codes are commonly used for powered-lift aerodynamic predictions for three dimensional geometries. Given an airframe which has been discretized into a series of panels to define the airframe geometry, potential is computed as a function of the influence of all panels on all other panels. This is a computationally intensive problem for which efficient solutions are desired to improve the computational time and to allow greater resolution by use of more panels. One such solution is the use of hierarchical multipole methods which entail approximations of the effects of far-field terms. Hierarchical multipole methods have become prevalent in molecular dynamics and gravitational physics, and have been introduced into the fields of capacitance calculations, computational fluid dynamics, and electromagnetics. The methods utilize multipole expansions to describe the effect of bodies (i

  3. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)


    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  4. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping


    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  5. Assessment of NASA's Aircraft Noise Prediction Capability (United States)

    Dahl, Milo D. (Editor)


    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  6. Hydrodynamic impact analysis and testing of an unmanned aerial vehicle (United States)

    Bird, Isabel

    Analysis and testing have been conducted to assess the feasibility of a small UAV that can be landed in the water and recovered for continued use. Water landings may be desirable in a number of situations, for example when testing UAVs outside of the territorial waters of the US to avoid violating FAA regulations. Water landings may also be desirable when conducting surveillance missions in marine environments. Although the goal in landing is to have the UAV lightly set down on the water, rough seas or gusty winds may result in a nose-in landing where the UAV essentially impacts the surface of the water. The tested UAV is a flying wing design constructed of expanded polypropylene foam wings with a hollowed out center-section for the avionics. Acceleration data was collected by means of LIS331 3-axis accelerometers positioned at five locations, including the wingtips. This allowed conclusions to be drawn with respect to the loads experienced on impact throughout the airframe. This data was also used to find loads corresponding to the maximum decelerations experienced during impact. These loads were input into a finite element analysis model of the wing spars to determine stress in the wing spars. Upon impact, the airframe experienced high-frequency oscillation. Surprisingly, peak accelerations at the wingtips were observed at up to 15g greater than corresponding accelerations at the center of the fuselage.

  7. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.


    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  8. COINS: A composites information database system (United States)

    Siddiqi, Shahid; Vosteen, Louis F.; Edlow, Ralph; Kwa, Teck-Seng


    An automated data abstraction form (ADAF) was developed to collect information on advanced fabrication processes and their related costs. The information will be collected for all components being fabricated as part of the ACT program and include in a COmposites INformation System (COINS) database. The aim of the COINS development effort is to provide future airframe preliminary design and fabrication teams with a tool through which production cost can become a deterministic variable in the design optimization process. The effort was initiated by the Structures Technology Program Office (STPO) of the NASA LaRC to implement the recommendations of a working group comprised of representatives from the commercial airframe companies. The principal working group recommendation was to re-institute collection of composite part fabrication data in a format similar to the DOD/NASA Structural Composites Fabrication Guide. The fabrication information collection form was automated with current user friendly computer technology. This work in progress paper describes the new automated form and features that make the form easy to use by an aircraft structural design-manufacturing team.

  9. Materials analysis: A key to unlocking the mystery of the Columbia tragedy (United States)

    Mayeaux, Brian M.; Collins, Thomas E.; Jerman, Gregory A.; McDanels, Steven J.; Piascik, Robert S.; Russell, Richard W.; Shah, Sandeep R.


    Materials analyses of key forensic evidence helped unlock the mystery of the loss of space shuttle Columbia that disintegrated February 1, 2003 while returning from a 16-day research mission. Following an intensive four-month recovery effort by federal, state, and local emergency management and law officials, Columbia debris was collected, catalogued, and reassembled at the Kennedy Space Center. Engineers and scientists from the Materials and Processes (M&P) team formed by NASA supported Columbia reconstruction efforts, provided factual data through analysis, and conducted experiments to validate the root cause of the accident. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The team also assessed left hand (LH) airframe components that were believed to be associated with a structural breach of Columbia. Analytical data collected by the M&P team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH reinforced carbon carbon (RCC) panels 8 and 9. The analysis also showed exposure to temperatures in excess of 1,649°C, which would severely degrade the support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC panel 8.

  10. Structural concept trends for commercial supersonic cruise aircraft design (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.


    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  11. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis (United States)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji


    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  12. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph


    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  13. Polymer-matrix Composites for High-temperature Applications

    Directory of Open Access Journals (Sweden)

    P.D. Mangalgiri


    Full Text Available Over the last decade, applications of fibre-reinforced composites using polymer matrices have seen tremendous growth. In spite of the complexity of their behaviour and the unconventionalnature of fabrication and other aspects, the usage of such composites, even for primary loadbearing structures in military fighters and transport aircraft, and satellites and space vehicles has been beneficially realised. Most of such usage constituted structural applications (such as in airframe where service temperatures are not expected to he beyond 120 'C. Attention is now focussed on expanding the usage of such composites to other areas where temperatures could be higher-in the range 200400 "C. The intended applications are structural and non-structural parts on or around the aero-engines and airframe components for supersonic or hypersonic aircraft. The development of polymer matrices-such as bismaleimides, polyimides, cyanates, and liquid crystalline polymers and others-has brought such applications within the realm of practicability. The associated problems have been in terms of suitable processing technologies and in balancing the requirements of the performance with those of the processing. This paper describes briefly such developments and reviews the potential application scenario.

  14. Basic research on design analysis methods for rotorcraft vibrations (United States)

    Hanagud, S.


    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  15. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover (United States)

    Chen, Robert T. N.


    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  16. The Philosophy which underlies the structural tests of a supersonic transport aircraft with particular attention to the thermal cycle (United States)

    Ripley, E. L.


    The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.

  17. A KBE-enabled design framework for cost/weight optimization study of aircraft composite structures (United States)

    Wang, H.; La Rocca, G.; van Tooren, M. J. L.


    Traditionally, minimum weight is the objective when optimizing airframe structures. This optimization, however, does not consider the manufacturing cost which actually determines the profit of the airframe manufacturer. To this purpose, a design framework has been developed able to perform cost/weight multi-objective optimization of an aircraft component, including large topology variations of the structural configuration. The key element of the proposed framework is a dedicated knowledge based engineering (KBE) application, called multi-model generator, which enables modelling very different product configurations and variants and extract all data required to feed the weight and cost estimation modules, in a fully automated fashion. The weight estimation method developed in this research work uses Finite Element Analysis to calculate the internal stresses of the structural elements and an analytical composite plate sizing method to determine their minimum required thicknesses. The manufacturing cost estimation module was developed on the basis of a cost model available in literature. The capability of the framework was successfully demonstrated by designing and optimizing the composite structure of a business jet rudder. The study case indicates the design framework is able to find the Pareto optimal set for minimum structural weight and manufacturing costin a very quick way. Based on the Pareto set, the rudder manufacturer is in conditions to conduct both internal trade-off studies between minimum weight and minimum cost solutions, as well as to offer the OEM a full set of optimized options to choose, rather than one feasible design.

  18. SRμCT study of crack propagation within laser-welded aluminum-alloy T-joints (United States)

    Herzen, J.; Beckmann, F.; Riekehr, S.; Bayraktar, F. S.; Haibel, A.; Staron, P.; Donath, T.; Utcke, S.; Kocak, M.; Schreyer, A.


    Using laser welding in fabrication of metallic airframes reduces the weight and hence fuel consumption. Currently only limited parts of the airframes are welded. To increase laser beam welded parts, there is the need for a better understanding of crack propagation and crack-pore interaction within the welds. Laser beam welded Al-alloys may contain isolated small process pores and their role and interaction with growing crack need to be investigated. The present paper presents the first results of a crack propagation study in laser beam welded (LBW) Al-alloy T-joints using synchrotron radiation based micro computed tomography (SRμCT). A region-of-interest technique was used, since the specimens exceeded the field of view of the X-ray detector. As imaging with high density resolution at high photon energies is very challenging, a feasibility measurement on a small laser weld, cut cylindrically from the welded region of a T-joint, was done before starting the crack-propagation study. This measurement was performed at the beamline HARWI-II at DESY to demonstrate the potential of the SRμCT as non-destructive testing method. The result has shown a high density resolution, hence, the different Al alloys used in the T-joint and the weld itself were clearly separated. The quantitative image analysis of the 3D data sets allows visualizing non-destructively and calculating the pore size distribution.

  19. Development of a SMA-Based Slat-Cove Filler for Reduction of Aeroacoustic Noise Associated With Transport-Class Aircraft Wings (United States)

    Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.


    Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.

  20. Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction (United States)

    Scholten, William; Hartl, Darren; Turner, Travis


    Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.

  1. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview (United States)

    Dorsey, John T.; Poteet, Carl C.; Chen, Roger R.; Wurster, Kathryn E.


    A technology development program was conducted to evolve an earlier metallic thermal protection system (TPS) panel design, with the goals of: improving operations features, increasing adaptability (ease of attaching to a variety of tank shapes and structural concepts), and reducing weight. The resulting Adaptable Robust Metallic Operable Reusable (ARMOR) TPS system incorporates a high degree of design flexibility (allowing weight and operability to be traded and balanced) and can also be easily integrated with a large variety of tank shapes, airframe structural arrangements and airframe structure/material concepts. An initial attempt has been made to establish a set of performance based TPS design requirements. A set of general (FARtype) requirements have been proposed, focusing on defining categories that must be included for a comprehensive design. Load cases required for TPS design must reflect the full flight envelope, including a comprehensive set of limit loads, However, including additional loads. such as ascent abort trajectories, as ultimate load cases, and on-orbit debris/micro-meteoroid hypervelocity impact, as one of the discrete -source -damage load cases, will have a significant impact on system design and resulting performance, reliability and operability. Although these load cases have not been established, they are of paramount importance for reusable vehicles, and until properly included, all sizing results and assessments of reliability and operability must be considered optimistic at a minimum.

  2. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project (United States)

    Withrow, Colleen A.; Reveley, Mary S.


    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  3. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.


    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  4. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.


    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  5. Analysis of Influence of Aircraft Flexibility on Nose Landing Gear Shimmy%飞机柔性对前起落架摆振的影响分析

    Institute of Scientific and Technical Information of China (English)

    冯飞; 常正; 聂宏; 张明; 彭一明


    以某型客机为对象,研究了飞机滑跑时前起落架的摆振动力学问题.基于多体动力学理论,采用子结构模态综合法将关键部件柔性化,建立了计及前起落架和机身弹性的全机地面滑跑刚柔耦合动力学模型,并进行了摆振稳定性仿真分析.采用起落架静力试验和模态试验的结果对模型进行校验,仿真结果与试验结果吻合较好.给出了以飞机速度和防摆阻尼系数组成的飞机摆振稳定区域图,研究了机身刚体运动与弹性对摆振的影响.结果表明:采用线性防摆阻尼时,定义摆振临界稳定所需的初始摆角对临界防摆阻尼的影响可忽略不计;采用简化方法将起落架弹性等效为起落架和机身连接刚度的方法会带来较大的误差,仅适用于定性分析;机身刚体运动对防摆阻尼影响很小,机身柔性的影响相对较大,使得中高速情况下所需防摆阻尼平均增加了12.1%.%The dynamics of nose landing gear shimmy is studied in this paper with a certain type of aircraft. Based on the multi-body dynamics theory.a dynamics model of shimmy is developed which takes into consideration the flexibility of nose landing gear and airframe by means of the component mode synthesis method, to investigate the stability of shimmy. The model is verified with the data of static tests and mode tests. Diagrams of the stable region are presented accordingly, formed by the taxiing speed and critical anti-shimmy damping coefficients,to explore the influence of the movement and flexibility of the airframe. The result shows that,the initial angle of nose wheel contributes little to shimmy analysis. A simplified method,which replaces the flexibility of the nose landing gear by the connection stiffness between the nose landing gear and airframe,is not accurate enough and can only be applied to qualitative analysis. The movement of the rigid airframe exerts little influences on the critical damping coefficient

  6. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity (United States)

    Newman, Brett A.


    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth

  7. Initial noise predictions for rudimentary landing gear (United States)

    Spalart, Philippe R.; Shur, Mikhail L.; Strelets, Mikhail Kh.; Travin, Andrey K.


    A four-wheel "rudimentary" landing gear (RLG) truck was designed for public-domain research, with a level of complexity which is manageable in current numerical simulations, and a weak Reynolds-number sensitivity. Experimental measurements of wall-pressure fluctuations are allowing a meaningful test of unsteady simulations with emphasis on noise generation. We present three Detached-Eddy Simulations (DES) using up to 18 million points in the high-order NTS code. The first is incompressible with the model placed in the wind tunnel, as requested for the 2010 workshop on Benchmark problems for Airframe Noise Computations (BANC-I), intended for force and surface-pressure studies. The second and third are at Mach 0.115 and Mach 0.23, with only one wall, a "ceiling" analogous to a wing (but infinite and inviscid), and are used to exercise far-field noise prediction by coupling the Detached-Eddy Simulations and a Ffowcs-Williams/Hawkings calculation. The results include wall-pressure, and far-field-noise intensities and spectra. The wall pressure signals in the three simulations are very similar and, in a comparison published separately, agree well with experiment and other simulations. In the absence of experimental noise data, the attention is focused on internal quality checks, by varying the permeable Ffowcs-Williams/Hawkings calculation surface and then by using only the solid surface. An unexpected finding at these Mach numbers is an apparent strong role for quadrupoles, revealed by a typical deficit of 3 dB in the solid-surface results, relative to the permeable-surface results. The solid-surface approach has variants, related to the presence of the ceiling (a plane of symmetry), which can increase this error further; there is little consensus on the exact configuration of the solid surfaces in the Ffowcs-Williams/Hawkings calculation procedure. Tentative theoretical arguments suggest that a balance somewhat in favor of quadrupoles over dipoles is plausible at Mach

  8. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai (United States)


    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration

  9. Corrosion detection in multi-layered rotocraft structures

    Energy Technology Data Exchange (ETDEWEB)



    Rotorcraft structures do not readily lend themselves to quantifiable inspection methods due to airframe construction techniques. Periodic visual inspections are a common practice for detecting corrosion. Unfortunately, when the telltale signs of corrosion appear visually, extensive repair or refurbishment is required. There is a need to nondestructively evaluate airframe structures in order to recognize and quantify corrosion before visual indications are present. Nondestructive evaluations of rotorcraft airframes face inherent problems different from those of the fixed wing industry. Most rotorcraft lap joints are very narrow, contain raised fastener heads, may possess distortion, and consist of thinner gage materials ({approximately}0.012--0.125 inches). In addition the structures involve stack-ups of two and three layers of thin gage skins that are separated by sealant of varying thickness. Industry lacks the necessary data techniques, and experience to adequately perform routine corrosion inspection of rotorcraft. In order to address these problems, a program is currently underway to validate the use of eddy current inspection on specific rotorcraft lap joints. Probability of detection (POD) specimens have been produced that simulate two lap joint configurations on a model TH-57/206 helicopter. The FAA's Airworthiness Assurance Center (AANC) at Sandia Labs and Bell Helicopter have applied single and dual frequency eddy current (EC) techniques to these test specimens. The test results showed enough promise to justify beta site testing of the eddy current methods evolved in this study. The technique allows users to distinguish between corrosion signals and those caused by varying gaps between the assembly of skins. Specific structural joints were defined as prime corrosion areas and a series of corrosion specimens were produced with 5--20% corrosion distributed among the layers of each joint. Complete helicopter test beds were used to validate the laboratory

  10. X-3 Stiletto on Ramp - View from Side (United States)


    This NACA High-Speed Flight Station photograph shows a side-view of the X-3 Stiletto research aircraft on the ramp at Edwards Air Force Base in 1954. The X-3 Stiletto was a single-place jet aircraft with a slender fuselage and a long tapered nose, manufactured by the Douglas Aircraft Company. The X-3's primary mission was to investigate the design features of an aircraft suitable for sustained supersonic speeds, which included the first use of titanium in major airframe components. It was delivered to the NACA High-Speed Flight Station in August of 1954 after some Douglas and Air Force evaluation testing. The Douglas X-3, known as the Stiletto, was built to investigate the design of an aircraft suitable for sustained supersonic speeds. The X-3 was intended for sustained flight research above Mach 2, but was hampered by use of underpowered Westinghouse J34 turbojet engines which could not power the aircraft past Mach 1 in level flight. This aircraft was built by the Douglas Aircraft Company. The X-3 had, perhaps, the most highly refined supersonic airframe of its day as well as other important advances including one of the first machined structures. It included the first use of titanium in major airframe components. Its long fuselage gave the Stiletto a high-fineness ratio and a low-aspect ratio (the ratio of the wing's span to its chord; in other words, it was short and stubby). Despite this refined configuration, the maximum speed it attained was Mach 1.21, during a dive. The general consensus was that the aircraft was sluggish and extremely underpowered. The X-3 also demonstrated coupling instability during abrupt rolling maneuvers, which could cause it to go wildly out of control, as happened on a flight on October 27, 1954, with National Advisory Committee for Aeronautics (NACA) pilot Joe Walker at the controls. The principle contribution of the X-3 was its data on inertial coupling (roll divergence)--a tendency to diverge from the intended flight path. The

  11. Near DC eddy current measurement of aluminum multilayers using MR sensors and commodity low-cost computer technology (United States)

    Perry, Alexander R.


    Low Frequency Eddy Current (EC) probes are capable of measurement from 5 MHz down to DC through the use of Magnetoresistive (MR) sensors. Choosing components with appropriate electrical specifications allows them to be matched to the power and impedance characteristics of standard computer connectors. This permits direct attachment of the probe to inexpensive computers, thereby eliminating external power supplies, amplifiers and modulators that have heretofore precluded very low system purchase prices. Such price reduction is key to increased market penetration in General Aviation maintenance and consequent reduction in recurring costs. This paper examines our computer software CANDETECT, which implements this approach and permits effective probe operation. Results are presented to show the intrinsic sensitivity of the software and demonstrate its practical performance when seeking cracks in the underside of a thick aluminum multilayer structure. The majority of the General Aviation light aircraft fleet uses rivets and screws to attach sheet aluminum skin to the airframe, resulting in similar multilayer lap joints.

  12. Thermal stress analysis of the NASA Dryden hypersonic wing test structure (United States)

    Morris, Glenn


    Present interest in hypersonic vehicles has resulted in a renewed interest in thermal stress analysis of airframe structures. While there are numerous texts and papers on thermal stress analysis, practical examples and experience on light gage aircraft structures are fairly limited. A research program has been undertaken at General Dynamics to demonstrate the present state of the art, verify methods of analysis, gain experience in their use, and develop engineering judgement in thermal stress analysis. The approach for this project has been to conduct a series of analyses of this sample problem and compare analysis results with test data. This comparison will give an idea of how to use our present methods of thermal stress analysis, and how accurate we can expect them to be.

  13. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.


    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  14. Actively Controlled Landing Gear for Aircraft Vibration Reduction (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.


    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  15. Adaptive, tolerant and efficient composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Martin; Sinapius, Michael (eds.) [German Aerospace Center DLR, Braunschweig (Germany). Inst. of Composite Structures and Adaptive Systems


    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.

  16. Adaptive, tolerant and efficient composite structures

    CERN Document Server

    Sinapius, Michael


    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances.  Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along ...

  17. An approximation approach for uncertainty quantification using evidence theory

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ha-Rok; Grandhi, Ramana V.; Canfield, Robert A


    Over the last two decades, uncertainty quantification (UQ) in engineering systems has been performed by the popular framework of probability theory. However, many scientific and engineering communities realize that there are limitations in using only one framework for quantifying the uncertainty experienced in engineering applications. Recently evidence theory, also called Dempster-Shafer theory, was proposed to handle limited and imprecise data situations as an alternative to the classical probability theory. Adaptation of this theory for large-scale engineering structures is a challenge due to implicit nature of simulations and excessive computational costs. In this work, an approximation approach is developed to improve the practical utility of evidence theory in UQ analysis. The techniques are demonstrated on composite material structures and airframe wing aeroelastic design problem.

  18. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal (United States)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.


    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  19. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal (United States)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.


    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  20. HYTEX - Saenger trailblazer (United States)

    Bulloch, Chris

    The Hypersonic Technology Experimental, or 'HYTEX' vehicle is a proof-of-concept aircraft for the more ambitious Saenger two-stage-to-orbit reusable launch vehicle being developed by the DLR; in this, it mirrors NASA's intention to build the X-30 hypersonic test vehicle prior to full scale development of the National Aerospace Plane. Attention is presently given to the variable-geometry features of HYTEX's airframe-integrated propulsion system, which will employ two LH2/kerosene turboramjets. The maximum speed for HYTEX would be Mach 5.6, which is the minimum required for full verification of propulsion and structures technologies intended for use by Saenger's Mach 6.8-maximum-speed lower stage.

  1. Overview of Low-Speed Aerodynamic Tests on a 5.75% Scale Blended-Wing-Body Twin Jet Configuration (United States)

    Vicroy, Dan D.; Dickey, Eric; Princen, Norman; Beyar, Michael D.


    The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.

  2. An overview of aeroelasticity studies for the National Aero-Space Plane (United States)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.


    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  3. An overview of aeroelasticity studies for the National Aerospace Plane (United States)

    Ricketts, Rodney H.; Noll, Thomas E.; Huttsell, Lawrence J.; Hutsell, Lawrence J.


    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  4. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics (United States)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.


    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  5. The rotor systems research aircraft - A flying wind tunnel (United States)

    Linden, A. W.; Hellyar, M. W.


    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  6. Basic materials and structures aspects for hypersonic transport vehicles (HTV) (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  7. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter


    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  8. F-5M DTA Program

    Directory of Open Access Journals (Sweden)

    Daniel Ferreira V. Mattos


    Full Text Available The Brazilian F-5 was submitted to avionics and weapons upgrade. This “new” aircraft has proven to be heavier and more capable. A comprehensive damage tolerance analysis is being performed to evaluate how the new mission profiles and weight distribution may affect the airframe structural integrity. Operational data were collected at the Brazilian Air Force Bases where the fighter is flown. Software was developed in order to acquire, filter and analyze flight data. This data was used for comparison between the pre and post modernization mission profiles and to determine the stress level in each of the known aircraft fatigue critical locations (FCL. The results show that the change in aircraft weight and balance and the new operational profile can significantly change the inspection intervals of certain fatigue critical locations of the structure. A preliminary result for the horizontal tail has shown that this component will have a much more restrictive maintenance schedule to assure flight safety.

  9. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.


    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  10. Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept (United States)

    Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.


    The study presents results obtained at the compressor face of a 9.2-percent scale vectored thrust model in ground effects from Phases I and II of a test program to evaluate the hot ingestion phenomena and control techniques, and to conduct flow visualization of the model flowfield in and out of ground effects, respectively. A description of the model, facility, a new model support system, and a sheet laser illumination system are provided. The findings contain the compressor face pressure and temperature distortions, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also presented.

  11. Fuel property effects on Navy aircraft fuel systems (United States)

    Moses, C. A.


    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  12. Technologies Advance UAVs for Science, Military (United States)


    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  13. The Strategy of Drone Warfare

    Directory of Open Access Journals (Sweden)

    Mike Fowler


    Full Text Available There is a budding controversy with the combat use of Remotely Piloted Aircraft (RPA. Also known as Unmanned Aerial Vehicles (UAV, there is a growing literature critiquing the use of RPAs, often using the pejorative term “drone.” RPAs seem to get the blame for a variety of complaints about policy and employment that have little to do with the airframe or its processes. While all of the military functions of an RPA can and are done by manned aircraft, the RPAs must endure additional scrutiny. The decision to employ RPAs requires additional considerations at both the strategic and operational levels of war. This article explores the strategic issues that govern the decisions to employ RPAs in combat. The decision to employ RPAs involves a variety of strategic and operational concerns involving legal issues, technological constraints, operational efficiency, and an interdependency upon information operations.

  14. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)


    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  15. Multi-Element Airfoil System (United States)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)


    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.


    Institute of Scientific and Technical Information of China (English)

    F.H. Cao; Z. Zhang; Y.L. Cheng; J.F. Li; J.Q. Zhang; C.N. Cao


    The electrochemical features of commercial airframe material, Al alloy LY12, in 0. 349mol/L neutral sodium chloride (NaCl) and sodium sulfate (Na2SO4) solutions were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The microstructure of the as-tested samples was studied by scanning electron microscopy. The results show that the Nyquist plots of LY12 at different immersion time displayed different fe atures, indicating that the Cl- ions elevate the corrosion rate and inhibit the repassivation of a metastable pit. It also shows that the corrosion product of LY12 formed in SO2-4 solution isn't easy to dissolve, and it will cover the surface of working electrode in the electrolyte. SEM images indicate that the corrosion apparent area and pit number of LY12 in NaCl solution are greater than that in Na2SO4 solution.

  17. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team


    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  18. An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles (United States)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.


    The results of an assessment of the state-of-the-art in the design and manufacturing of large composite structures are described. The focus of the assessment is on the use of polymeric matrix composite materials for large airframe structural components. such as those in commercial and military aircraft and space transportation vehicles. Applications of composite materials for large commercial transport aircraft, general aviation aircraft, rotorcraft, military aircraft. and unmanned rocket launch vehicles are reviewed. The results of the assessment of the state-of-the-art include a summary of lessons learned, examples of current practice, and an assessment of advanced technologies under development. The results of the assessment conclude with an evaluation of the future technology challenges associated with applications of composite materials to the primary structures of commercial transport aircraft and advanced space transportation vehicles.

  19. Design and performance of airborne radomes - A review (United States)

    Crone, G. A. E.; Rudge, A. W.; Taylor, G. N.


    Radomes for airborne amplification can be classified as either (1) large aircraft radomes of the nose-cone or under-fuselage type, (2) small aircraft radomes flush-mounted to the airframe, or (3) missile radomes. The geometry of the radome often leads to severe degradation of the electrical performance of any enclosed antenna. The requirement for a good aerodynamic shape is shown to influence the electromagnetic design of the radome, and the choice of dielectric materials is limited by the needs for structural strength, low weight, thermal stability, and rain erosion resistance. The radome performance may also be compromised by the scattering of electromagnetic waves from metallic pilot tubes and lightning protection strips outside the radome, as well as dielectric pressure tubes within it. The electromagnetic design of the three types of radomes are reviewed, sources of degradation of the enclosed antenna radiation pattern are examined, and the design requirements of the radomes, with respect to their operational environment, are discussed.

  20. Radiated Emissions from a Remote-Controlled Airplane-Measured in a Reverberation Chamber (United States)

    Ely, Jay J.; Koppen, Sandra V.; Nguyen, Truong X.; Dudley, Kenneth L.; Szatkowski, George N.; Quach, Cuong C.; Vazquez, Sixto L.; Mielnik, John J.; Hogge, Edward F.; Hill, Boyd L.; Strom, Thomas H.


    A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.

  1. The drive for Aircraft Energy Efficiency (United States)

    James, R. L., Jr.; Maddalon, D. V.


    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  2. Fleet retrofit report (United States)


    Flight tests are evaluated of an avionics system which aids the pilot in making two-segment approaches for noise abatement. The implications are discussed of equipping United's fleet of Boeing 727-200 aircraft with two-segment avionics for use down to Category 2 weather operating minima. The experience is reported of incorporating two-segment approach avionics systems on two different aircraft. The cost of installing dual two-segment approach systems is estimated to be $37,015 per aircraft, including parts, labor, and spares. This is based on the assumption that incremental out-of-service and training costs could be minimized by incorporating the system at airframe overhaul cycle and including training in regular recurrent training. Accelerating the modification schedule could add up to 50 percent to the modification costs. Recurring costs of maintenance of the installation are estimated to be of about the same magnitude as the potential recurrent financial benefits due to fuel savings.

  3. Performance and Stability Analysis of a Shrouded-Fan UAV

    CERN Document Server

    de Divitiis, Nicola


    This paper deals with the estimation of the performance and stability for a shrouded-fan unmanned rotorcraft whose mission profile also prescribes the flight in ground effect. The not so simple estimation of the aerodynamic coefficients and of the thrust in the various situations makes the performance calculation and the stability analysis difficult tasks. This is due to the strong interaction between the fan flow and shroud that causes quite different flow structures about the airframe depending on flight conditions. A further difficulty is related to the ground effect which produces substantial modifications in the rotor thrust and aerodynamic coefficients. To evaluate performance and stability, two models have been developed. One determines the aerodynamic coefficients of the shroud, whereas the other one calculates thrust and moment of the rotors system. Both models take into account the mutual interference between fan flow and fuselage and ground effect. Performance and stability are then discussed with ...

  4. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.


    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  5. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.


    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  6. Finite element thermal analysis of convectively-cooled aircraft structures (United States)

    Wieting, A. R.; Thornton, E. A.


    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  7. Flight research with the MIT Daedalus prototype (United States)

    Bussolari, Steven R.; Youngren, Harold H.; Langford, John S.


    The MIT Light Eagle human-powered aircraft underwent long-duration testing over Rogers Dry Lake in California during January, 1987. Designed as a prototype for the MIT Daedalus Project, the Light Eagle's forty-eight flights provided pilot training, established new distance records for human-powered flight, and provided quantitative data through a series of instrumented flight experiments. The experiments focused on: (1) evaluating physiological loads on the pilot, (2) determining airframe power requirements, and (3) developing an electronic flight control system. This paper discusses the flight test program, its results and their implications for the follow-on Daedalus aircraft, and the potential uses of the Light Eagle as a low Reynolds number testbed.

  8. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight (United States)

    Rigsby, James Michael

    sensitivities with advance ratio, and advance ratio dependent control cross coupling. Hub moment response to rotor disturbances results in transients where rotor damping is reduced due to low Lock number blades and reduced rotor angular velocity. Experimentally identified frequency response shows dominant low frequency modes with advance ratio dependent damping and the frequencies are on the order of typical airframe modes. Rotor speed response to swashplate control perturbations from trim results in non-linear behavior that is advance ratio dependent, and which stems from cyclic flapping behavior at high advance ratio. Rotor control strategies were developed including the use of variable shaft incidence to achieve rotor speed control with hub moment suppression achieved through cyclic control. Flight dynamics characteristics resulting from the coupling of the rotor and airframe were predicted in flight using a baseline airframe with conventional fixed-wing controls, representative of the current interest in the concept vehicle. Results predicted by linearization of the non-linear models were compared with system identification results using the non-linear simulation as surrogate flight test data. Low frequency rotor response is shown to couple with the vehicle motion for short period and roll mode response to airframe control inputs. The rotor speed mode is shown to couple with short period and long period vehicle modes as the rotor torque balance is sensitive to vehicle speed and attitude changes.

  9. Application of the ABC helicopter to the emergency medical service role (United States)

    Levine, L. S.


    Attention is called to the use of helicopters in transporting the sick and injured to medical facilities. It is noted that the helicopter's speed of response and delivery increases patient survival rates and may reduce the cost of medical care and its burden on society. Among the vehicle characteristics desired for this use are a cruising speed of 200 knots, a single engine hover capability at 10,000 ft, and an absence of a tail rotor. Three designs for helicopters incorporating such new technologies as digital/optical control systems, all composite air-frames, and third-generation airfoils are presented. A sensitivity analysis is conducted to show the effect of design speed, mission radius, and single engine hover capability on vehicle weight, fuel consumption, operating costs, and productivity.

  10. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane (United States)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.


    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  11. An Icing Of Aircraft – Reasons, Consequences, Counteraction

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej


    Full Text Available The article presents reasons of an helicopter’s ising as well as an aircraft’s ising. The maion attention is addressed a conteraction of an ising. Autors divide the problem an two groups: an ising of an airframe – mostly lifting surfaces, an ising of engines. According to authors reasons, an extension (first of all consequences of airframe’s ising considerably differ from seemingly similar events in an engine. The considerable attention is concentrated on a connteraction of consequences of an ising during the flight. The most complicated ising referes to helicopters, considering their particular aerodynamics characteristics. The autors dedicated is greather attention. Results reached during investigations of heating rotor blades in ITWL are presented.

  12. Development and testing of the Perseus proof-of-concept aircraft. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Langford, J.S. [Aurora Flight Sciences Corp., Manassas, VA (United States)


    Many areas of global climate change research could benefit from a flexible, affordable, and near-term platform that could provide in situ measurements in the upper troposphere and lower stratosphere. To provide such a capability, the Perseus unmanned science research aircraft was proposed in 1989. As a first step toward the development of Perseus, a proof-of-concept (POC) demonstrator was constructed and tested during 1990 and 1991. The POC was a full scale Perseus airframe intended to validate the structural, aerodynamic, and flight control technologies for the Perseus within a total budget of about $1.5 million. Advanced propulsion systems needed for the operational Perseus were not covered in the POC program due to funding limitations. This report documents the design, development, and testing of the Perseus POC.

  13. Plastic media blasting activities at Hill Air Force Base (United States)

    Christensen, J. D.


    Hill Air Force Base in Utah developed plastic media blasting (PMB) paint removal process for removing paint from Air Force aircraft. The development of the process involved extensive testing of various abrasives and subsequent parameters to end up with an approved production process. Hill AFB has been using PMB in a production mode since 1985, and completely discontinued chemical stripping of airframes in 1989. We have recently installed and began operating a fully automated PMB facility that utilizes two nine-axis robots to strip an aircraft. This system has enabled us to further reduce the manhours required to strip an aircraft, and also allowed us to remove the employee from the blasting atmosphere into a control room. We have, and will continue to realize, significant environmental and economic savings by using PMB. Hill is also actively involved with the development of future paint stripping technologies.

  14. Supersonic cruise research aircraft structural studies: Methods and results (United States)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.


    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  15. Hybrid upper surface blown flap propulsive-lift concept for the Quiet Short-Haul Research Aircraft (United States)

    Cochrane, J. A.; Carros, R. J.


    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels, high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  16. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods (United States)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.


    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  17. Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element Method (United States)

    Quach, Cuong C.; Vazquez, Sixto L.; Tessler, Alex; Moore, Jason P.; Cooper, Eric G.; Spangler, Jan. L.


    NASA Langley Research Center is investigating a variety of techniques for mitigating aircraft accidents due to structural component failure. One technique under consideration combines distributed fiber optic strain sensing with an inverse finite element method for detecting and characterizing structural anomalies anomalies that may provide early indication of airframe structure degradation. The technique identifies structural anomalies that result in observable changes in localized strain but do not impact the overall surface shape. Surface shape information is provided by an Inverse Finite Element Method that computes full-field displacements and internal loads using strain data from in-situ fiberoptic sensors. This paper describes a prototype of such a system and reports results from a series of laboratory tests conducted on a test coupon subjected to increasing levels of damage.

  18. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics (United States)

    Tischler, Mark B.


    The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.

  19. Cross-stiffened continuous fiber structures (United States)

    Ewen, John R.; Suarez, Jim A.


    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.

  20. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe


    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  1. Personal Aircraft Point to the Future of Transportation (United States)


    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  2. Closing Symposium of the DFG Research Unit FOR 1066

    CERN Document Server

    Niehuis, Reinhard; Kroll, Norbert; Behrends, Kathrin


    The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of...

  3. Investigation of lateral-directional aerodynamic parameters identification method for fly-by-wire passenger airliners

    Institute of Scientific and Technical Information of China (English)

    Wu Zhao; Wang Lixin; Lin Jiaming; Ai Junqiang


    A new identification method is proposed to solve the problem of the influence on the loaded excitation signals brought by high feedback gain augmentation in lateral-directional aerody-namic parameters identification of fly-by-wire (FBW) passenger airliners. Taking for example an FBW passenger airliner model with directional relaxed-static-stability, through analysis of its signal energy distribution and airframe frequency response, a new method is proposed for signal type selec-tion, signal parameters design, and the appropriate frequency relationship between the aileron and rudder excitation signals. A simulation validation is presented of the FBW passenger airliner’s lat-eral-directional aerodynamic parameters identification. The validation result demonstrates that the designed signal can excite the lateral-directional motion mode of the FBW passenger airliner ade-quately and persistently. Meanwhile, the relative errors of aerodynamic parameters are less than 5%.

  4. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft (United States)

    Starke, E. A., Jr. (Editor)


    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  5. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines (United States)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos


    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  6. Superplasticity in Aeroengine Titanium Alloy VT-9 and its Modified Compositions

    Directory of Open Access Journals (Sweden)

    Abhijit Dutta


    Full Text Available The alloy (Ti-6.5AL-3.3 Mo-1.6Zr-O.3Si is a Soviet composition designated VT-9. Excellent superplastic characteristics found by us in this alloy prompted us to explore the possibility of use of Si-free VT-9 in sheet form for superplastic forming. An optimum thermomechanical processing produced a microstructure that resulted in an elongation of 1700 per cent at a fairly high deformation rate (2 X 10-3 set-1. Thus, the same aeroengine alloy (VT-9 can be used for superplastically formed airframe parts in the Si-free condition. The present study also shows that for making the forming process commercially viable, deformation temperature could be lowered by temporarily alloying with hydrogen in a particular concentration range (0.1 to 0.2 wt per cent.

  7. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.


    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  8. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft (United States)

    Ray, R. J.; Myers, L. P.


    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  9. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines (United States)

    Frost, Susan


    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  10. Shock capturing finite-difference and characteristic reference plane techniques for the prediction of three-dimensional nozzle-exhaust flowfields (United States)

    Dash, S.; Delguidice, P.


    This report summarizes work accomplished under Contract No. NAS1-12726 towards the development of computational procedures and associated numerical. The flow fields considered were those associated with airbreathing hypersonic aircraft which require a high degree of engine/airframe integration in order to achieve optimized performance. The exhaust flow, due to physical area limitations, was generally underexpanded at the nozzle exit; the vehicle afterbody undersurface was used to provide additional expansion to obtain maximum propulsive efficiency. This resulted in a three dimensional nozzle flow, initialized at the combustor exit, whose boundaries are internally defined by the undersurface, cowling and walls separating individual modules, and externally, by the undersurface and slipstream separating the exhaust flow and external stream.

  11. Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication (United States)

    Taminger, Karen M. B.; Hafley, Robert A.


    Researchers at NASA Langley Research Center are developing a new electron beam freeform fabrication (EB F(sup 3)) technique to fabricate metal parts. This process introduces metal wire into a molten pool created by a focused electron beam. Potential aerospace applications for this technology include ground-based fabrication of airframe structures and on-orbit construction and repair of space components and structures. Processing windows for reliably producing high quality 2219 aluminum parts using the EB F(sup 3) technique are being defined. The effects of translation speed, wire feed rate, and beam power on the resulting microstructures and mechanical properties are explored. Tensile properties (ultimate tensile strength, yield strength, and elongation) show little effect over the range of processing conditions tested. Basic processing-microstructure-property correlations are drawn for the EB F(sup 3) process.

  12. Dynamics of hypersonic flight vehicles exhibiting significant aeroelastic and aeropropulsive interactions (United States)

    Chavez, Frank R.; Schmidt, David K.


    With analytic expressions previously developed for the forces and moments acting on a generic hypersonic vehicle, it is of interest to investigate the relative importance of the aerodynamic and propulsive effects on the vehicle dynamics. It is shown that the vehicle's aerodynamics and propulsive forces are both very significant in the evaluation of key stability derivatives which dictate the vehicle's dynamic characteristics. It is also shown that the vehicle model selected is unstable in pitch and exhibits strong airframe/engine/elastic coupling. With the use of literal expressions for both the systems poles and zeros, as well as the stability derivatives, key vehicle dynamic characteristics are investigated. For small errors, or uncertainties, in either the aerodynamic or propulsive forces, significant errors in the frequency and damping of the dominant modes and zero locations will arise.

  13. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion (United States)

    Follen, G.; Naiman, C.; Evans, A.


    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  14. International SAMPE Technical Conference, 23rd, Kiamesha Lake, NY, Oct. 21-24, 1991, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Carri, R.L.; Poveromo, L.M.; Gauland, J. (Grumman Aircraft Systems, Bethpage, NY (United States))


    The present conference discusses the cost of composite structures, microwave processing of thermoset resin-matrix composites at high pressure, the impact damage-tolerance of helicopter sandwich structures, novel fluorinated polybenzoxazole thermoplastics, low expansion coefficient polyimides containing metal-ion additives, thermoplastic polyimides for supersonic airframes, material properties and laser cutting of composites, fiber-matrix bond tests in composites, and a global/local stress analysis of stitched composites. Also discussed are moldless composite aircraft wing structural design modifications, advances in anhydride epoxy systems, medical applications of advanced composites, metal-joining processes for space fabrication, close-tolerance plastic master molds, the ballistic energy absorption of composites, soft and hard composite armors, resin-transfer molding of 3D composites, toughened cyanate ester resins, and thermoforming of thermoplastics.

  15. Flexible missile autopilot design studies with PC-MATLAB/386 (United States)

    Ruth, Michael J.


    Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.

  16. Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia


    Full Text Available The Helicopter Adaptive Aircraft (HADA is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  17. Termovision and electricity capacitance measurements as a evaluation of a helicopter rotor’s blades delamination

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej


    Full Text Available The article presents essential elements reached during investigations of heat section of rotor blades which have been done in AFIT. The investigations were related to a valuation of helicopter’s rotor blades delamination. They used a method of thermal field measurement as well as a electricity capacitance between an airframe and a heat element of the installation. A suggestion of such measurements appeared during the disassembly of rotor blade heat sections when some local unglue of heat element’s tape from the structure of blade’s heating pack has seen. Spots nearby separation of adhesive are a potential area of a local temperature increase, both the electric heating element and the mechanical structure of the blade. This is especially dangerous for composite structures. Overheated composite structures characterized by reduced flexibility and becomes prone to cracking. Therefore, the possibility of non-invasive monitoring adhesive spots, without removing the blades would be particularly useful.

  18. ASTM and VAMAS activities in titanium matrix composites test methods development (United States)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.


    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  19. High performance jet-engine flight test data base for HSR (United States)

    Kelly, Jeffrey


    The primary acoustic priority of the flight test data base for HSR is the validation of the NASA Aircraft Noise Prediction Program (ANOPP) and other source noise codes. Also, the noise measurements are an important support function for the High Lift Program devoted to HSR. Another concern that will be addressed is a possible noise problem 7-20 miles from take-off during climbout. The attention arises from the higher speeds envisioned for the HSCT compared to conventional aircraft causing levels to increase because of Doppler amplification in conjunction with high source levels due to jet noise. An attempt may be made to measure airframe noise for the F-16XL test which would provide an assessment of this noise component for delta wing aircraft.

  20. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB) (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.


    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  1. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter


    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  2. Volcano Gas Measurements from UAS - Customization of Sensors and Platforms (United States)

    Werner, C. A.; Dahlgren, R. P.; Kern, C.; Kelly, P. J.; Fladeland, M. M.; Norton, K.; Johnson, M. S.; Sutton, A. J.; Elias, T.


    Volcanic eruptions threaten not only the lives and property of local populations, but also aviation worldwide. Volcanic gas release is a key driving force in eruptive activity, and monitoring gas emissions is critical to assessing volcanic hazards, yet most volcanoes are not monitored for volcanic gas emission. Measuring volcanic gas emissions with manned aircraft has been standard practice for many years during eruptive crises, but such measurements are quite costly. As a result, measurements are typically only made every week or two at most during periods of unrest or eruption, whereas eruption dynamics change much more rapidly. Furthermore, very few measurements are made between eruptions to establish baseline emissions. Unmanned aerial system (UAS) measurements of volcanic plumes hold great promise for both improving temporal resolution of measurements during volcanic unrest, and for reducing the exposure of personnel to potentially hazardous conditions. Here we present the results of a new collaborative effort between the US Geological Survey and NASA Ames Research Center to develop a UAS specific for volcano gas monitoring using miniaturized gas sensing systems and a custom airframe. Two miniaturized sensing systems are being built and tested: a microDOAS system to quantify SO2 emission rates, and a miniature MultiGAS system for measuring in-situ concentrations of CO2, SO2, and H2S. The instruments are being built into pods that will be flown on a custom airframe built from surplus Raven RQ-11. The Raven is one of the smallest UAS (a SUAS), and has the potential to support global rapid response when eruptions occur because they require less crew for operations. A test mission is planned for fall 2015 or spring 2016 at the Crows Landing Airfield in central California. Future measurement locations might include Kilauea Volcano in Hawaii, or Pagan Volcano in the Marianas.

  3. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.


    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  4. Cooperative control theory and integrated flight and propulsion control (United States)

    Schmidt, David K.; Schierman, John D.


    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  5. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.


    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  6. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating (United States)


    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly

  7. 典型气动问题试验方法研究的综述%Summarizatipn pf experimental methpds asspciated with typical aerpdynamic issues

    Institute of Scientific and Technical Information of China (English)

    罗金玲; 周丹; 康宏琳; 王济康


    吸气式高超声速飞行器机体与推进系统高度一体化,飞行器内外流场复杂及相互影响,地面试验模拟技术难度大,有必要开展风洞试验方法研究。本文简要分析了吸气式高超声速飞行器的主要气动问题和试验需求。针对机体/推进一体化性能试验、边界层强制转捩试验与尖锐前缘电弧风洞等三类典型试验,梳理了国内外相关风洞试验的研究思路,提出了上述三类典型风洞试验应模拟的参数,对地面试验难以模拟的重要参数进行了影响分析。根据现有试验设施的模拟能力,总结了三类典型风洞试验方法,并提出了机体/推进一体化性能数据准确获取的有效方法。%Air-breathing hypersonic flight vehicles are highly airframe/propulsion integrated,especially the outer and inner flows of the flight vehicles are very complicated and interact strongly with each other, considerable difficulties should be solved rationally in ground testing.Therefore,it is of great necessity to conduct researches on the related experimental methodology.This paper presents a brief analysis of main aerodynamic issues concerned with air-breathing hypersonic flight vehicles as well as associated experimental testing requirements,in which three typical types of experimental testing are focused on,they are perform-ance testing of airframe/propulsion integrated vehicles,experiment of boundary layer transition with trips, and arc-heated facility testing of sharp leading edges.Besides,an overview of wind tunnel research methodol-ogies both in China and abroad is included.This paper also provides critical similarity parameters that need to be ensured for the three types of experiments mentioned above,followed by an influence analysis of those key parameters that are difficult to achieve in ground testing.Based on the testing capability of the current test facilities,three typical wind tunnel experimental methods have been put

  8. Uav for Geodata Acquisition in Agricultureal and Forestal Applications (United States)

    Reidelstürz, P.; Schrenk, L.; Littmann, W.


    of German Armed Forces in Neubiberg/Munich and the well-established precision farming company "Konsultationszentrum Liepen" to develop an applicable UAV for precision farming purposes. Currently Cis GmbH and Technologie Campus Freyung, with intense contact to the „flying robot"- team of DLR Oberpfaffenhofen, collaborate to optimize the existing UAV and to extend the applications from data aquisition for biomass diversity up to detect the water supply situation in agricultural fields, to support pest management systems as much as to check the possibilities to detect bark beetle attacks in european spruce in an early stage of attack (green attack phase) by constructing and integrating further payload modules with different sensors in the existing UAV airframe. Also effective data processing workflows are to be worked out. Actually in the existing UAV autopilotsystem "piccolo" (cloudcaptech) is integrated and also a replaceable payload module is available, carrying a VIS and a NIR camera to calculate maps of NDVI diversity as indicator of biomass diversity. Further modules with a 6 channel multispectral still camera and with a spectrometer are planned. The airframe's wingspan is about 3,45m weighting 4.2 kg, ready to fly. The hand launchable UAV can start from any place in agricultural regions. The wing is configured with flaps, allowing steep approaches and short landings using a „butterfly" brake configuration. In spite of the lightweight configuration the UAV yet proves its worth under windy baltic wether situations by collecting regular sharp images of fields under wind speed up to 15m/s (Beaufort 6 -7). In further projects the development of further payload modules and a user friendly flight planning tool is scheduled considering different payload - and airframe requirements for different precision farming purposes and forest applications. Data processing and workflow will be optimized. Cooperation with further partners to establish UAV systems in agricultural

  9. Aeroacoustic characterization of scaled canonical nose landing gear configurations (United States)

    Zawodny, Nikolas S.

    Aircraft noise is a critical issue in the commercial airline industry. Airframe noise is a subcomponent of aircraft noise and is generally dominant over jet engine noise during approach conditions, which can lead to high community impact. Landing gears have been identified as major components of airframe noise during landing configurations for commercial aircraft. They are perhaps the least understood contributors to airframe noise due to complex flow patterns associated with intricate gear component geometries. Nose landing gear in particular have received much attention in recent years, exhibiting acoustic signatures on the order of the main landing gear assembly of an aircraft, while simultaneously being more amenable to scaled wind tunnel testing. In order to characterize the acoustic signature of a complex geometry such as a nose landing gear, it is important to isolate, study, and understand the acoustic contributions of individual component geometries. The purpose of this dissertation is to develop a correlation between the complex flow field nature and far-field acoustic signature of a nose landing gear sub-system. The model under investigation is a 1/2-scale shock-strut cylinder coupled with an adjustable torque link apparatus. This geometry was chosen due to its fundamental importance and implementation across a wide span of commercial aircraft. The fluid dynamic (surface pressure and stereoscopic particle image velocimety) and aeroacoustic (far-field microphone and phased array) experiments were performed in the University of Florida Aeroacoustic Flow Facility. The experimental data compare favorably with the results of a numerical simulation using PowerFLOW, a lattice-Boltzmann solver developed by the Exa Corporation. The far-field acoustic results of this dissertation have shown non-uniform scaling behavior as a function of frequency for the different model configurations tested. For frequencies that appropriately satisfied the condition of acoustic

  10. The Role of Aircraft Motion in Airborne Gravity Data Quality (United States)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.


    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  11. F15B-Quiet Spike Aeroservoelastic Flight Test Data Analysis (United States)

    Brenner, Martin J.


    Airframe structural morphing technologies designed to mitigate sonic boom strength are being developed by Gulfstream Aerospace Corporation (GAC). Among these technologies is a concept in which an aircraft's frontend would be extended prior to supersonic acceleration. This morphing would effectively lengthen the vehicle, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. This combination of boom shaping techniques is predicted to transform the classic, high-impulse N-wave pattern typically generated by an aircraft traveling at supersonic speed into a signature more closely resembling a sinusoidal wave with a greatly reduced perceived loudness. 'QuietSpike' is GAC's nomenclature for its recently patented front-end vehicle morphing arrangement. The ability of Quiet Spike to effectively shape a vehicle's far- field sonic boom signature is highly dependent on the area distribution characteristics of the aircraft. The full aeroacoustic benefits of front-end morphing at farfield are only possible when the QuietSpike article and vehicle configuration are designed in consideration of each other. Adding QuietSpike technology to the airframe of an existing, non-boom-optimized supersonic vehicle is unlikely to result in an improved far-field signature due to the generally over-powering influence of wing- and inlet-generated shocks. Therefore, it is generally recognized within NASA and the industry that a clean-sheet vehicle design is required to demonstrate the theoretically predicted far-field aeroacoustic benefits of QuietSpike type morphing and other boom- mitigating concepts. NASA's Aeronautics Research Mission Directorate (ARMD) Supersonics Division has placed increased priority on near-term development and flight-testing of such a vehicle. To help achieve this objective, static and dynamic aerostructural proof-of-concept testing was considered a prudent step

  12. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay (United States)

    Eret, Petr; Kennedy, John; Bennett, Gareth J.


    In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz ≤ 50 000 N, V ≤ 100 m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled

  13. Optimal Aircraft Control Upset Recovery With and Without Component Failures (United States)

    Sparks, Dean W.; Moerder, Daniel D.


    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  14. High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement (United States)

    Quackenbush, Todd R.; McKillip, Robert M., Jr.


    One of key NASA goals is to develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. One of the technical priorities of this activity has been to account for and reduce noise via propulsion/airframe interactions, identifying advanced concepts to be integrated with the airframe to mitigate these noise-producing mechanisms. An adaptive geometry chevron using embedded smart structures technology offers the possibility of maximizing engine performance while retaining and possibly enhancing the favorable noise characteristics of current designs. New high-temperature shape memory alloy (HTSMA) materials technology enables the devices to operate in both low-temperature (fan) and high-temperature (core) exhaust flows. Chevron-equipped engines have demonstrated reduced noise in testing and operational use. It is desirable to have the noise benefits of chevrons in takeoff/landing conditions, but have them deployed into a minimum drag position for cruise flight. The central feature of the innovation was building on rapidly maturing HTSMA technology to implement a next-generation aircraft noise mitigation system centered on adaptive chevron flow control surfaces. In general, SMA-actuated devices have the potential to enhance the demonstrated noise reduction effectiveness of chevron systems while eliminating the associated performance penalty. The use of structurally integrated smart devices will minimize the mechanical and subsystem complexity of this implementation. The central innovations of the effort entail the modification of prior chevron designs to include a small cut that relaxes structural stiffness without compromising the desired flow characteristics over the surface; the reorientation of SMA actuation devices to apply forces to deflect the chevron tip, exploiting this relaxed stiffness; and the use of high-temperature SMA (HTSMA) materials to enable operation in the demanding core chevron environment

  15. On Noise Assessment for Blended Wing Body Aircraft (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.


    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  16. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle (United States)

    Spellman, Regina L.


    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design

  17. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    Energy Technology Data Exchange (ETDEWEB)



    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler

  18. Mitigating crack propagation in a highly maneuverable flight vehicle using life extending control logic (United States)

    Elshabasy, Mohamed Mostafa Yousef Bassyouny

    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle

  19. Hyper-X Engine Design and Ground Test Program (United States)

    Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.


    The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.

  20. Developing an Empirical Model for Jet-Surface Interaction Noise (United States)

    Brown, Clifford A.


    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  1. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams (United States)

    Tejada, Arturo


    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  2. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)


    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  3. Landing-gear noise prediction using high-order finite difference schemes (United States)

    Liu, Wen; Wook Kim, Jae; Zhang, Xin; Angland, David; Caruelle, Bastien


    Aerodynamic noise from a generic two-wheel landing-gear model is predicted by a CFD/FW-H hybrid approach. The unsteady flow-field is computed using a compressible Navier-Stokes solver based on high-order finite difference schemes and a fully structured grid. The calculated time history of the surface pressure data is used in an FW-H solver to predict the far-field noise levels. Both aerodynamic and aeroacoustic results are compared to wind tunnel measurements and are found to be in good agreement. The far-field noise was found to vary with the 6th power of the free-stream velocity. Individual contributions from three components, i.e. wheels, axle and strut of the landing-gear model are also investigated to identify the relative contribution to the total noise by each component. It is found that the wheels are the dominant noise source in general. Strong vortex shedding from the axle is the second major contributor to landing-gear noise. This work is part of Airbus LAnding Gear nOise database for CAA validatiON (LAGOON) program with the general purpose of evaluating current CFD/CAA and experimental techniques for airframe noise prediction.

  4. Landing Gear Aerodynamic Noise Prediction Using Building-Cube Method

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki


    Full Text Available Landing gear noise prediction method is developed using Building-Cube Method (BCM. The BCM is a multiblock-structured Cartesian mesh flow solver, which aims to enable practical large-scale computation. The computational domain is composed of assemblage of various sizes of building blocks where small blocks are used to capture flow features in detail. Because of Cartesian-based mesh, easy and fast mesh generation for complicated geometries is achieved. The airframe noise is predicted through the coupling of incompressible Navier-Stokes flow solver and the aeroacoustic analogy-based Curle’s equation. In this paper, Curle’s equation in noncompact form is introduced to predict the acoustic sound from an object in flow. This approach is applied to JAXA Landing gear Evaluation Geometry model to investigate the influence of the detail components to flows and aerodynamic noises. The position of torque link and the wheel cap geometry are changed to discuss the influence. The present method showed good agreement with the preceding experimental result and proved that difference of the complicated components to far field noise was estimated. The result also shows that the torque link position highly affects the flow acceleration at the axle region between two wheels, which causes the change in SPL at observation point.

  5. A Landing Gear Noise Reduction Study Based on Computational Simulations (United States)

    Khorrami, Mehdi R.; Lockard, David P.


    Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.

  6. Increased Fidelity in Prediction Methods For Landing Gear Noise (United States)

    Lopes, Leonard V.; Brentner, Kenneth S.; Morris, Philip J.; Lockhard, David P.


    An aeroacoustic prediction scheme has been developed for landing gear noise. The method is designed to handle the complex landing gear geometry of current and future aircraft. The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic, but generate noise representative of the physical components on a landing gear. The method sums the noise radiation from each component of the undercarriage in isolation accounting for interference with adjacent components through an estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made in the code LGMAP, which computes the sound pressure levels at various observer locations. The method can calculate the noise from the undercarriage in isolation or installed on an aircraft for both main and nose landing gear. Comparisons with wind tunnel and flight data are used to initially calibrate the method, then it may be used to predict the noise of any landing gear. In this paper, noise predictions are compared with wind tunnel data for model landing gears of various scales and levels of fidelity, as well as with flight data on fullscale undercarriages. The present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise.

  7. Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test (United States)

    Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.


    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.

  8. Aircraft noise prediction (United States)

    Filippone, Antonio


    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  9. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology (United States)

    Dahl, Milo D.


    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  10. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz


    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  11. Overview of Aircraft Noise Prediction Tools Assessment (United States)

    Dahl, Milo D.


    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  12. Technology approach to aero engine noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neise, W.; Enghardt, L. [Deutsches Zentrum fur Luft-und Raumfahrt -DLR, Institute of Propulsion Technology, Turbulence Research Div., Berlin (Germany)


    Transportation noise is one of the most pressing environmental problems of modern societies. Aircraft noise is second only to road traffic noise in drawing complaints from the public about noise pollution. Therefore intensive research efforts are necessary on the national levels as well as the European level to reduce the noise load around airports. The most effective and economical way to reach this goal is noise reduction at the source. The aero engines of today's transport aircraft are the dominant noise sources for most flight conditions, although air-frame noise does play an important role for landing aircraft. In this paper noise reduction studies for aero engines are described in which DLR are involved. The topics discussed are low noise fan design, active noise control using wall-flush loudspeakers as secondary sources, ANC using active stators as secondary sources, ANC using flow induced secondary sources at the rotor tips, reduction of low-pressure turbine noise, and flight tests for validation of add-on noise reduction devices. (authors)

  13. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; Gibson, Andrew R.; Foster, Trevor J.; Osterkamp, Philip G.


    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  14. Overview of NATO Background on Scramjet Technology. Chapter 1 (United States)

    Drummond, J. Philip; Bouchez, Marc; McClinton, Charles R.


    The purpose of the present overview is to summarize the current knowledge of the NATO contributors. All the topics will be addressed in this chapter, with references and some examples. This background enhances the level of knowledge of the NATO scramjet community, which will be used for writing the specific chapters of the Report. Some previous overviews have been published on scramjet technology worldwide. NASA, DOD, the U.S. industry and global community have studied scramjet-powered hypersonic vehicles for over 40 years. Within the U.S. alone, NASA, DOD (DARPA, U.S. Navy and USAF), and industry have participated in hypersonic technology development. Over this time NASA Langley Research Center continuously studied hypersonic system design, aerothermodynamics, scramjet propulsion, propulsion-airframe integration, high temperature materials and structural architectures, and associated facilities, instrumentation and test methods. These modestly funded programs were substantially augmented during the National Aero-Space Plane (X-30) Program, which spent more than $3B between 1984 and 1995, and brought the DOD and other NASA Centers, universities and industry back into hypersonics. In addition, significant progress was achieved in all technologies required for hypersonic flight, and much of that technology was transferred into other programs, such as X-33, DC-X, X-37, X-43, etc. In addition, technology transfer impacted numerous other industries, including automotive, medical, sports and aerospace.

  15. 弹载共形遥测天线的设计%Design of conformal telemetry antenna on missiles

    Institute of Scientific and Technical Information of China (English)

    周旭冉; 高宝建; 伍捍东; 任宇辉


    In this paper, a microstrip antenna on missiles is proposed. The antenna is conformal with the curved surface of missile, and the convex height of radome is less than 8 mm. This proposal will not have any influence on both dynamic characteristics of the missile body and mechanical strength of the airframe. The antenna can obtain the high gain of 8.4dBi, its simulation pattern is almost consistent with the measured pattern results, and the antenna has the stable radiation characteristics in operating frequency range. Therefore it is very suitable to be fuze, telemetry antennas on missiles.%设计了一种弹载微带天线,该天线与弹体曲面共形,加上天线罩所凸出的曲面高度不超过8 mm,不仅不影响弹体的动力学特性,而且也不损伤弹体的机械强度.该天线具有较高的增益(8.4 dBi),仿真方向图与实测方向图吻合良好,且在整个工作频段内辐射特性稳定,非常适合作为弹载引信、遥测天线.

  16. Skylon Aerodynamics and SABRE Plumes (United States)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir


    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  17. Experimental Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Take-off and Landing Conditions (United States)

    James, Kevin D.; Tompkins, Daniel M.; Carter, Melissa B.; Shea, Patrick R.; Flamm, Jeffrey D.; Schuh, Michael; Sexton, Matthew R.; Beyar, Michael D.


    As part of the NASA Environmentally Responsible Aircraft project, an ultra high bypass ratio engine integration on a hybrid wing body demonstration was planned. The goal was to include engine and airframe integration concepts that reduced fuel consumption by at least 50% while still reducing noise 42 db cumulative on the ground. Since the engines would be mounted on the upper surface of the aft body of the aircraft, the inlets may be susceptible to vortex ingestion from the wing leading edge at high angles of attack and sideslip, and separated wing/body flow. Consequently, experimental and computational studies were conducted to collect flow surveys useful for characterizing engine operability. The wind tunnel tests were conducted at two NASA facilities, the 14- by 22-foot at NASA Langley and the 40- by 80-foot at NASA Ames Research Center. The test results included in this paper show that the distortion and pressure recovery levels were acceptable for engine operability. The CFD studies conducted to compare to experimental data showed excellent agreement for the angle of attacks examined, although failed to match the low speed experimental data at high sideslip angles.

  18. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing. (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan


    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  19. Evaluation of modal-based damage detection techniques for composite aircraft sandwich structures (United States)

    Oliver, J. A.; Kosmatka, J. B.


    Composite sandwich structures are important as structural components in modern lightweight aircraft, but are susceptible to catastrophic failure without obvious forewarning. Internal damage, such as disbonding between skin and core, is detrimental to the structures' strength and integrity and thus must be detected before reaching critical levels. However, highly directional low density cores, such as Nomex honeycomb, make the task of damage detection and health monitoring difficult. One possible method for detecting damage in composite sandwich structures, which seems to have received very little research attention, is analysis of global modal parameters. This study will investigate the viability of modal analysis techniques for detecting skin-core disbonds in carbon fiber-Nomex honeycomb sandwich panels through laboratory testing. A series of carbon fiber prepreg and Nomex honeycomb sandwich panels-representative of structural components used in lightweight composite airframes-were fabricated by means of autoclave co-cure. All panels were of equal dimensions and two were made with predetermined sizes of disbonded areas, created by substituting areas of Teflon release film in place of epoxy film adhesive during the cure. A laser vibrometer was used to capture frequency response functions (FRF) of all panels, and then real and imaginary FRFs at different locations on each plate and operating shapes for each plate were compared. Preliminary results suggest that vibration-based techniques hold promise for damage detection of composite sandwich structures.

  20. Automated metrology and NDE measurements for increased throughput in aerospace component manufacture (United States)

    MacLeod, Charles N.; Pierce, S. Gareth; Morozov, Maxim; Summan, Rahul; Dobie, Gordon; McCubbin, Paul; McCubbin, Coreen; Dearie, Scott; Munro, Gavin


    Composite materials, particularly Carbon-Fibre-Reinforced Polymer (CFRP), find extensive use in construction of modern airframe structures. Quality and conformance checks can be a serious limitation on production throughput in aerospace manufacturing. Traditionally Non-Destructive Evaluation (NDE) and metrology measurements are undertaken at different stages of a product manufacture cycle using specific dedicated equipment and personnel. However, since both processes involve direct interaction with the component's surface, an opportunity exists to combine these to potentially reduce overall cycle time. In addition when considering moves towards automation of both inspection processes, it is clear that measured metrology data is an essential input parameter to the automated NDE workflow. The authors present the findings of a proof of concept combined sub-scale NDE and Metrology demonstrator cell for aerospace components. Permitting a maximum part area size of 3 × 1 m2, KUKA KR5 6 degree of freedom robotic manipulators were utilised to deploy two inspection payloads. Firstly automated non-contact photogrammetric metrology measurement was employed to inspect the structure for conformance of dimension in relation to reference designs (available from CAD). Secondly automated phased array technology was deployed to inspect and produce ultrasonic thickness mapping of components of nominal 20mm thickness. Parameters such as overall cycle time, part dimensional accuracy, robotic path accuracy and data registration are assessed in the paper to highlight both the current state of the art performance available and the future direction of required research focus.

  1. Measurement of the effect of manufacturing deviations on natural laminar flow for a single engine general aviation airplane (United States)


    Renewed interest in natural laminar flow (NLF) had rekindled designer concern that manufacuring deviations may destroy the effectiveness of NLF for an operational aircraft. Experiments are summarized that attemtped to measure total drag changes associated with three different wing surface conditions on an aircraft typical of current general aviation high performance singles. The speed power technique was first used in an attempt to quantify the changes in total drag. Predicted and measured boundary layer transition locations for three different wing surface conditions were also compared, using two different forms of flow visualization. The three flight test phases included: assessment of an unpainted airframe, flight tests of the same aircraft after painstakingly filling and sanding the wings to design contours, and similar measurement after this aricraft was painted. In each flight phase, transition locations were monitored using with sublimating chemicals or pigmented oil. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag coefficient was approximately 20 counts between the unpainted aircraft and the hand-smoothed aircraft for typical cruise flight conditions.

  2. Overcoming the Adoption Barrier to Electric Flight (United States)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; Samuel, Aamod G.


    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  3. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts (United States)

    Metschan, S.


    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  4. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet (United States)

    Kim, Hyun Dae; Felder, James L.


    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  5. Aircraft Lightning Electromagnetic Environment Measurement (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.


    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  6. Development of a Technique and Method of Testing Aircraft Models with Turboprop Engine Simulators in a Small-scale Wind Tunnel - Results of Tests

    Directory of Open Access Journals (Sweden)

    A. V. Petrov


    Full Text Available This report presents the results of experimental investigations into the interaction between the propellers (Ps and the airframe of a twin-engine, twin-boom light transport aircraft with a Π-shaped tail. An analysis was performed of the forces and moments acting on the aircraft with rotating Ps. The main features of the methodology for windtunnel testing of an aircraft model with running Ps in TsAGI’s T-102 wind tunnel are outlined.The effect of 6-blade Ps slipstreams on the longitudinal and lateral aerodynamic characteristics as well as the effectiveness of the control surfaces was studied on the aircraft model in cruise and takeoff/landing configurations. The tests were conducted at flow velocities of V∞ = 20 to 50 m/s in the ranges of angles of attack α =  -6 to 20 deg, sideslip angles of β = -16 to 16 deg and blade loading coefficient of B 0 to 2.8. For the aircraft of unusual layout studied, an increase in blowing intensity is shown to result in decreasing longitudinal static stability and significant asymmetry of the directional stability characteristics associated with the interaction between the Ps slipstreams of the same (left-hand rotation and the empennage.

  7. Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector

    Directory of Open Access Journals (Sweden)

    Jeonghoon Mo


    Full Text Available The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale.

  8. Re-Educating Jet-Engine-Researchers to Stay Relevant (United States)

    Gal-Or, Benjamin


    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  9. UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations (United States)

    Davila, Carlos G.


    Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.

  10. A Turbine-powered UAV Controls Testbed (United States)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.


    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  11. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research (United States)

    Funaki, Minoru; Hirasawa, Naohiko; the Ant-Plane Group

    As part of the Ant-Plane project for summertime scientific research and logistics in the coastal region of Antarctica, we developed six types of small autonomous UAVs (unmanned aerial vehicles, similar to drones; we term these vehicles ‘Ant-Planes’) based on four types of airframe. In test flights, Ant-Plane 2 cruised within 20 m accuracy along a straight course during calm weather at Sakurajima Volcano, Kyushu, Japan. During a period of strong winds (22 m/s) at Mt. Chokai, Akita Prefecture, Japan, Ant-Plane 2 maintained its course during a straight flight but deviated when turning leeward. An onboard 3-axis magneto-resistant magnetometer (400 g) recorded variations in the magnetic field to an accuracy of 10 nT during periods of calm wind, but strong magnetic noise was observed during high winds, especially head winds. Ant-Plane 4-1 achieved a continuous flight of 500 km, with a maximum flight altitude of 5690 m. The Ant-Plane can be used for various types of Antarctic research as a basic platform for airborne surveys, but further development of the techniques employed in takeoff and landing are required, as well as ready adjustment of the engine and the development of small onboard instruments with greater reliability.

  12. Framework for Small-Scale Experiments in Software Engineering: Guidance and Control Software Project: Software Engineering Case Study (United States)

    Hayhurst, Kelly J.


    Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.

  13. Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel (United States)

    Gulsine Ozdemir, Nazli; Scarpa, Fabrizio; Craciun, Monica; Remillat, Chrystel; Lira, Cristian; Jagessur, Yogesh; Da Rocha-Schmidt, Luiz


    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic (TP) nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes.

  14. Experimental observations of a complex, supersonic nozzle concept (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team


    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  15. Impact of aviation upon the atmosphere. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, J. [Comite Avion-Ozone, 75 - Paris (France)


    The commercial air traffic, either for business or for tourism will induce a special increase of long haul flights, with cruising altitudes of about 10 to 12 km. These altitudes correspond to the upper troposphere for the low latitudes (tropical zones) and to the lower stratosphere for middle and high latitudes. The prospect of a world air traffic multiplied by a factor 2 within the next fifteen years, with an increasing part of the long-haul flights, raises the problem of the impact of aircraft emissions on the upper troposphere and on the lower stratosphere. The air traffic growth which is forecast for the next two decades as well as for long term will be larger than the GDP growth. But technical progress concerning airframes, engines, navigation systems and improvements of air traffic control and airports will keep the aircraft emissions growth at a rate which will not exceed the GDP growth rate. The aviation`s share of global anthropogenic emissions will remain lower than 3 percent. The regulations related to NO{sub x} emissions from aircraft will reduce the aviation`s share of nitrogen oxides from human sources at a level of 1 percent. (R.P.)

  16. DC-9 Flight Demonstration Program with Refanned JT8D Engines. Volume 3; Performance and Analysis (United States)


    The JT8D-109 engine has a sea level static, standard day bare engine takeoff thrust of 73,840 N. At sea level standard day conditions the additional thrust of the JT8D-109 results in 2,040 kg additional takeoff gross weight capability for a given field length. Range loss of the DC-9 Refan airplane for long range cruise was determined. The Refan airplane demonstrated stall, static longitudinal stability, longitudinal control, longitudinal trim, minimum control speeds, and directional control characteristics similar to the DC-9-30 production airplane and complied with airworthiness requirements. Cruise, climb, and thrust reverser performance were evaluated. Structural and dynamic ground test, flight test and analytical results substantiate Refan Program requirements that the nacelle, thrust reverser hardware, and the airplane structural modifications are flightworthy and certifiable and that the airplane meets flutter speed margins. Estimated unit cost of a DC-9 Refan retrofit program is 1.338 million in mid-1975 dollars with about an equal split in cost between airframe and engine.

  17. DC-9 flight demonstration program with refanned JT8D engines. Volume 1: Summary (United States)


    The design, analysis, fabrication, and ground and flight testing of DC-9 airframe/nacelle hardware with prototype JT8D-109 engines are discussed. The installation of the JT8D-109 engine on the DC-9 Refan airplane required new or modified hardware for the pylon, nacelle, and fuselage. The acoustic material used in the nose cowl was bonded aluminum honeycomb sandwich and the exhaust duct acoustic material was Inconel 625 Stresskin. The sea level static, standard day bare engine takeoff thrust, the cruise TSFC and the maximum available cruise thrust for the JT8D-109 engine were compared with those of the JT8D-9 engine. The range capabilities of the DC-9 Refan and the production DC-9 airplane were also compared. The Refan airplane demonstrated flight characteristics similar to the production DC-9-30 and satisfied airworthiness requirements. Flyover noise levels were determined for the DC-9 Refan and the DC-9 C-9A airplane for takeoff and landing conditions. Cost estimates were also made.

  18. Active vibration-suppression systems applied to twin-tail buffeting (United States)

    Hopkins, Mark A.; Henderson, Douglas A.; Moses, Robert W.; Ryall, Thomas G.; Zimcik, David G.; Spangler, Ronald L., Jr.


    Buffeting is an aeroelastic phenomenon that plagues high performance aircraft, especially those with twin vertical tails. Unsteady cortices emanate form wing/fuselage leading edge extensions when these aircraft maneuver at high angles of attack. These aircraft are designed such that the vortices shed while maneuvering at high angels of attack and improve the lift-to-drag ratio of the aircraft. With proper placement and sizing of the vertical tails, this improvement may be maintained without adverse effects to the tails. However, there are tail locations and angels of attack where these vortices burst and immerse the vertical tails in their wake inducing severe structural vibrations. The resulting buffet loads and severe vertical tail response because an airframe life and maintenance concern as life cycle costs increased. Several passive methods have been investigated to reduce the buffeting of these vertical tails with limited success. As demonstrated through analyses, wind-tunnel investigations, and full-scale ground tests, active control system offer a promising solution to alleviate buffet induced strain and increase the fatigue life of vertical tails. A collaborative research project including the US, Canada, and Australia is in place to demonstrate active buffet load alleviation systems on military aircraft. The present paper provides details on this collaborative project and other research efforts to reduce the buffeting response of vertical tails in fighter aircraft.

  19. Active Structural Acoustic Control in an Original A400M Aircraft Structure (United States)

    Koehne, C.; Sachau, D.; Renger, K.


    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  20. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla


    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  1. Common Analysis Tool Being Developed for Aeropropulsion: The National Cycle Program Within the Numerical Propulsion System Simulation Environment (United States)

    Follen, Gregory J.; Naiman, Cynthia G.


    The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.

  2. Information Management for a Large Multidisciplinary Project (United States)

    Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.


    In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.

  3. An expert system to perform on-line controller restructuring for abrupt model changes (United States)

    Litt, Jonathan S.


    Work in progress on an expert system used to reconfigure and tune airframe/engine control systems on-line in real time in response to battle damage or structural failures is presented. The closed loop system is monitored constantly for changes in structure and performance, the detection of which prompts the expert system to choose and apply a particular control restructuring algorithm based on the type and severity of the damage. Each algorithm is designed to handle specific types of failures and each is applicable only in certain situations. The expert system uses information about the system model to identify the failure and to select the technique best suited to compensate for it. A depth-first search is used to find a solution. Once a new controller is designed and implemented it must be tuned to recover the original closed-loop handling qualities and responsiveness from the degraded system. Ideally, the pilot should not be able to tell the difference between the original and redesigned systems. The key is that the system must have inherent redundancy so that degraded or missing capabilities can be restored by creative use of alternate functionalities. With enough redundancy in the control system, minor battle damage affecting individual control surfaces or actuators, compressor efficiency, etc., can be compensated for such that the closed-loop performance in not noticeably altered. The work is applied to a Black Hawk/T700 system.

  4. DLR HABLEG- High Altitude Balloon Launched Experimental Glider (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.


    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  5. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff. (United States)

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E


    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  6. Investigation of Inner Loop Flight Control Strategies for High-Speed Research (United States)

    Newman, Brett; Kassem, Ayman


    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  7. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application

    Directory of Open Access Journals (Sweden)

    Diego José Inforzato


    Full Text Available Creep-age forming (CAF is an interesting process for the airframe industry, as it is able to form or shape panels into smooth, but complex, curvatures. In the CAF process, the ageing cycle of the alloy is used to relax external loads imposed to the part, through creep mechanisms. Those relaxed stresses impose a new curvature to the part. At the end of the process, significant spring back (sometimes about 70% is observed and the success in achieving the desired form depends on how the spring back can be predicted in order to compensate it by tooling changes. Most of the applications relate to simple (non stiffened panels. The present work deals with the CAF of aluminum panels for aircraft wing skin application. CAF was performed using vacuum-bagging autoclave technique in small scale complex shape stiffened panels, machined from an AA7475 alloy plate. An analytical reference model from the literature was employed estimate the spring back effect in such panel geometry. This model that deals with simple plates was adapted to stiffened panels using a geometric simplification, resulting in a semi-empirical model. The results demonstrate that CAF is a promising process to form stiffened panels, and the spring back can be roughly estimated through a simple model and few experiments.

  8. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.


    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  9. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures (United States)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.


    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  10. Research on Inspection Procedure of Finite Element Analysis for Full-Scale Aircraft Structure%飞机结构全机有限元计算检查方法初探

    Institute of Scientific and Technical Information of China (English)

    杨晓东; 邬旭辉


    This paper describes data check and an inspection procedure for four steps in full-scale Finite Element Analysis ( FEA) of aircraft structure, which are FEA model assembling, external loads processing and check, FEM nodes loads generating and typical load cases analysis. Based on strict and timely checking of FEA model and ex-ternal loads, not only human errors on data processing will be reduced, but also the FEA efficiency of airframe structures will be improved. Furthermore, the capability of aircraft structural strength design will be enhanced as well.%为有限元模型组装、原始载荷处理、节点载荷生成、典型工况计算四个全机有限元计算步骤建立了数据校对和检查方法。对计算模型和载荷数据严格的检查流程不仅可以降低分析中人为疏失的概率,而且可以提高效率,进而提升飞机结构强度设计能力。

  11. Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft (United States)

    Gern, Frank H.


    Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.

  12. PRSEUS Structural Concept Development (United States)

    Velicki, Alex; Jegley, Dawn


    A lighter, more robust airframe is one of the key technological advancements necessary for the successful launch of any large next-generation transport aircraft. Such a premise dictates that considerable improvements beyond current state-of-the-art aluminum structures is needed, and that improvements of this magnitude will require an extensive use of composite materials that are not only lightweight, but also economical to produce. To address this challenge, researchers at NASA and The Boeing Company are developing a novel structural concept called the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) under the Environmentally Responsible Aviation (ERA) Project. It is an integrally stiffened panel concept that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. In addition to improved structural performance, an important facet of this unique arrangement of stitched carbon fibers is its innovative manufacturing method that has the potential to lower fabrication costs by eliminating fasteners and autoclave cures. The rationale and development status for this new approach forms the basis of the work described in this paper. The test specimens described herein were fabricated, or are currently being fabricated, by The Boeing Company, while the structural analyses and testing tasks are being performed by NASA and Boeing personnel.

  13. Concept development of a Mach 4 high-speed civil transport (United States)

    Domack, Christopher S.; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl A.; Mcgraw, Marvin E., Jr.; Shields, Elwood W.; Swanson, Edward E.


    A study was conducted to configure and analyze a 250 passenger, Mach 4 High Speed Civil Transport with a design range of 6500 n.mi. The design mission assumed an all-supersonic cruise segment and no community noise or sonic boom constraints. The study airplane was developed in order to examine the technology requirements for such a vehicle and to provide an unconstrained baseline from which to assess changes in technology levels, sonic boom limits, or community noise constraints in future studies. The propulsion, structure, and materials technologies utilized in the sizing of the study aircraft were assumed to represent a technology availability date of 2015. The study airplane was a derivative of a previously developed Mach 3 concept and utilized advanced afterburning turbojet engines and passive airframe thermal protection. Details of the configuration development, aerodynamic design, propulsion system, mass properties, and mission performance are presented. The study airplane was estimated to weigh approx. 866,000 lbs. Although an aircraft of this size is a marginally acceptable candidate to fit into the world airport infrastructure, it was concluded that the inclusion of community noise or sonic boom constraints would quickly cause the aircraft to grow beyond acceptable limits using the assumed technology levels.

  14. Blended Wing Body Concept Development with Open Rotor Engine Intergration (United States)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.


    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  15. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3 (United States)

    Kneafsey, J. T.; Hill, R. M.


    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  16. Candidate control design metrics for an agile fighter (United States)

    Murphy, Patrick C.; Bailey, Melvin L.; Ostroff, Aaron J.


    Success in the fighter combat environment of the future will certainly demand increasing capability from aircraft technology. These advanced capabilities in the form of superagility and supermaneuverability will require special design techniques which translate advanced air combat maneuvering requirements into design criteria. Control design metrics can provide some of these techniques for the control designer. Thus study presents an overview of control design metrics and investigates metrics for advanced fighter agility. The objectives of various metric users, such as airframe designers and pilots, are differentiated from the objectives of the control designer. Using an advanced fighter model, metric values are documented over a portion of the flight envelope through piloted simulation. These metric values provide a baseline against which future control system improvements can be compared and against which a control design methodology can be developed. Agility is measured for axial, pitch, and roll axes. Axial metrics highlight acceleration and deceleration capabilities under different flight loads and include specific excess power measurements to characterize energy meneuverability. Pitch metrics cover both body-axis and wind-axis pitch rates and accelerations. Included in pitch metrics are nose pointing metrics which highlight displacement capability between the nose and the velocity vector. Roll metrics (or torsion metrics) focus on rotational capability about the wind axis.

  17. Fuel system design concepts for broad property fuels (United States)

    Versaw, E. F.


    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  18. Considerations of a ship defense with a pulsed COIL (United States)

    Takehisa, K.


    Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.

  19. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments (United States)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.


    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  20. Detailed design of a lattice composite fuselage structure by a mixed optimization method (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.


    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  1. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology (United States)

    Haller, Bill


    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  2. Engine Validation of Noise and Emission Reduction Technology Phase I (United States)

    Weir, Don (Editor)


    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  3. Electronic/electric technology benefits study. [avionics (United States)

    Howison, W. W.; Cronin, M. J.


    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  4. Delivering better power: the role of simulation in reducing the environmental impact of aircraft engines. (United States)

    Menzies, Kevin


    The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process.

  5. A plume capture technique for the remote characterization of aircraft engine emissions. (United States)

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L


    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  6. Acoustics of Jet Surface Interaction - Scrubbing Noise (United States)

    Khavaran, Abbas


    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  7. Analysis Regarding the Effects of Atmospheric Turbulence on Aircraft Dynamics

    Directory of Open Access Journals (Sweden)

    Gabriela STROE


    Full Text Available This paper will analyze the Gust Load Alleviation (GLA systems which can be used to reduce the effects of atmospheric turbulences generated by wind gusts on vertical acceleration of aircraft. Their purpose is to reduce airframe loads and to improve passenger comfort. The dynamic model of the aircraft is more realistic than a rigid-body model, since it includes the structural flexibility; due to its complexity, such model can make feedback control design for gust load alleviation more challenging. The gust is generated with the Dryden power spectral density model. This kind of model lends itself well to frequency-domain performance specifications in the form of the weighting functions. Two classical analytical representations for the power spectral density (PSD function of atmospheric turbulence as given by Von Kármán and Dryden, were used. The analysis is performed for a set of specified values for flight velocity and altitude (as test cases, with different gust signals that must be generated with the required intensity, scale lengths and PSD functions.

  8. Magnetic levitation systems for future aeronautics and space research and missions (United States)

    Blankson, Isaiah M.; Mankins, John C.


    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  9. Progress on the relationship between chemerin and glucose and lipid metabolism%Chemerin与糖脂代谢关系的研究进展

    Institute of Scientific and Technical Information of China (English)

    李静; 左笑丛


    Chemerin, a novel adipokine,expressed highly by adipocyte, promotes adipocyte differentiation and glucose transport of adipocyte via its own receptor CMKLR1, Chemerin influences adipose tissue and lipid metabolism through the autocrine and paracrine ways. The recent researcher found that chemerin not only has chemotactic function of inflammation factors but also has close relationship with obesity, insulin resistance and metabolic syndrome. Therefore chemerin plays an important role in air-frame glucose and lipid metabolism.%Chemerin是新发现的一种脂肪因子,在脂肪组织中高度表达,它能通过自分泌途径,作用于自身受体CMKLRI,促进脂肪细胞分化及葡萄糖转运,并可通过自分泌或旁分泌途径,对脂肪组织及脂质代谢产生一系列影响.近期研究发现,Chemerin除具有炎症因子的趋化作用外,还与肥胖、胰岛素抵抗和代谢综合征有密切关系.

  10. The impact of materials technology and operational constraints on the economics of cruise speed selection (United States)

    Clauss, J. S., Jr.; Bruckman, F. A.; Horning, D. L.; Johnston, R. H.; Werner, J. V.


    Six material concepts at Mach 2.0 and three material concepts at Mach 2.55 were proposed. The resulting evaluations, based on projected development, production, and operating costs, indicate that aircraft designs with advanced composites as the primary material ingredient have the lowest fare premiums at both Mach 2.0 and 2.55. Designs having advanced metallics as the primary material ingredient are not economical. Advanced titanium, employing advanced manufacturing methods such as SFF/DB, requires a fare premium of about 30 percent at both Mach 2.0 and 2.55. Advanced aluminum, usable only at the lower Mach number, requires a fare premium of 20 percent. Cruise speeds in the Mach 2.0-2.3 regime are preferred because of the better economics and because of the availability of two material concepts to reduce program risk - advanced composites and advanced aluminums. This cruise speed regime also avoids the increase in risk associated with the more complex inlets and airframe systems and higher temperature composite matrices required at the higher Mach numbers typified by Mach 2.55.

  11. Mercury Lightcraft Project Update: 3-D Modeling, Systems Analysis and Integration (United States)

    Buckton, Thomas W.; Myrabo, Leik N.


    This paper is a progress report on the laser-propelled Mercury Lightcraft Project at Rensselaer Polytechnic Institute. The laser-propelled, 1-person craft has a diameter of 252-cm, height of 217-cm, internal volume of 3 m3, `dry' mass of 700 kg, and gross liftoff mass of 1 metric ton. Expendable liquids including 70 kg of liquid hydrogen, and an equivalent mass (at least) of de-ionized water serves as open-cycle coolants for the 520 MWe laser/electric power conversion system. Its hyper-energetic airbreathing engine can easily accelerate the vehicle at 10 Gs or more. The tractor-beam lightcraft is intended as a prototype for use in a future global aerospace transportation system based on a constellation of satellite solar power stations in geostationary orbit, with laser relay stations in low Earth orbit. Using SolidWorks® 3-D modeling software, several important features were successfully integrated into the Mercury lightcraft model - principally: a rotating shroud (for spin stabilization) simple actuation system for a new variable-geometry air inlet; refined optical train for the laser-heated H2 plasma generators; pneumatically deployed, robotic quadra-pod landing gear; ejection seat/pod/hatch system; and a more detailed airframe structural concept. The CAD effort has brought the Mercury Lightcraft concept one significant step closer to reality.

  12. Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests (United States)

    Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.


    Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.

  13. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach (United States)

    Rizzi, Stephen A.


    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  14. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.


    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  15. Environmental impact analysis with the airspace concept evaluation system (United States)

    Augustine, Stephen; Capozzi, Brian; DiFelici, John; Graham, Michael; Thompson, Terry; Miraflor, Raymond M. C.


    The National Aeronautics and Space Administration (NASA) Ames Research Center has developed the Airspace Concept Evaluation System (ACES), which is a fast-time simulation tool for evaluating Air Traffic Management (ATM) systems. This paper describes linking a capability to ACES which can analyze the environmental impact of proposed future ATM systems. This provides the ability to quickly evaluate metrics associated with environmental impacts of aviation for inclusion in multi-dimensional cost-benefit analysis of concepts for evolution of the National Airspace System (NAS) over the next several decades. The methodology used here may be summarized as follows: 1) Standard Federal Aviation Administration (FAA) noise and emissions-inventory models, the Noise Impact Routing System (NIRS) and the Emissions and Dispersion Modeling System (EDMS), respectively, are linked to ACES simulation outputs; 2) appropriate modifications are made to ACES outputs to incorporate all information needed by the environmental models (e.g., specific airframe and engine data); 3) noise and emissions calculations are performed for all traffic and airports in the study area for each of several scenarios, as simulated by ACES; and 4) impacts of future scenarios are compared to the current NAS baseline scenario. This paper also provides the results of initial end-to-end, proof-of-concept runs of the integrated ACES and environmental-modeling capability. These preliminary results demonstrate that if no growth is likely to be impeded by significant environmental impacts that could negatively affect communities throughout the nation.

  16. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft (United States)

    Starke, E. A., Jr.


    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  17. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels (United States)

    Collier, Craig S.


    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  18. HOTOL - The other aerospaceplane (United States)

    Demeis, R.


    Plans are described for a reusable, single-stage, unmanned launcher called HOTOL (for HOrizontal TakeOff and Landing), conceived to launch satellites more cheaply than the Shuttle. British Aerospace and Rolls-Royce have begun two-year proof-of-concept studies for the airframe and its key propulsion system, respectively, with the British government paying half of the $4.2 million bill. British Aerospace is soliciting ESA support for the project, although a European agreement would cede some design leadership to the French. HOTOL's heart is a still unproven dual-mode main propulsion system. The 200-metric-ton vehicle would take off from a runway (actually a trolley to minimize landing gear weight and enhance payload). Atmospheric oxygen would be used to burn liquid hydrogen fuel until Mach 5 and 85,000 feet are reached. Orbit is achieved as a rocket, using on-board liquid oxygen. A 7-metric ton payload up to 15 feet in diameter (the same as for the Shuttle) would be carried in a payload bay at the center of gravity. The fuselage would be 62-m long and the chined-delta, Concorde-derived wings would span 20 meters. Landings will make use of British-pioneered commerical autoland technology currently in use. When the system is proven, about 1998, people pods with up to 60 passengers could be carried in the cargo bay and delivered gate to gate from Britain to Australia in little more than an hour.

  19. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Marcel J. [Dept. of Gas Turbines and Structural Integrity, National Aerospace Laboratory NLR, Amsterdam (Netherlands)


    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

  20. A Terminal Area Icing Remote Sensing System (United States)

    Reehorst, Andrew L.; Serke, David J.


    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  1. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer (United States)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan


    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  2. High-resolution LCD projector for extra-wide-field-of-view head-up display (United States)

    Brown, Robert D.; Modro, David H.; Quast, Gerhardt A.; Wood, Robert B.


    LCD projection-based cockpit displays are beginning to make entry into military and commercial aircraft. Customers for commercial Head-Up Displays (HUDs)(including airframe manufacturers) are now interested in the adaptation of the technology into existing and future HUD optical systems. LCD projection can improve mean-time-between-failure rates because the LCDs are very robust and the light sources can be replaced with scheduled maintenance by the customer without the need for re-calibration. LCD projectors promise to lower the cost of the HUD because the cost of these displays continues to drop while the cost of CRTs remain stable. LCD projectors provide the potential for multi-colors, higher brightness raster, and all-digital communication between the flight computer and display unit. Another potential benefit of LCD projection is the ability to increase field of view and viewing eyebox without exceeding existing power budgets or reducing display lifetime and reliability compared to the capabilities provided by CRTs today. This paper describes the performance requirements and improved performance of a third-generation LCD projection image source for use in a wide field of view head-up display (HUD) optical system. This paper will focus on new HUD requirements and the application of various technologies such as LCOS microdisplays, arc lamps, and rear-projection screens. Measured performance results are compared to the design requirements.

  3. Aeroacoustics research in Europe: The CEAS-ASC report on 2014 highlights (United States)

    Detandt, Yves


    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. Each year the committee highlights some of the research and development projects in Europe. This paper is the 2014 issue of this collection of Aeroacoustic Highlights, compiled from informations submitted to the CEAS-ASC. The contributions are classified in different topics; the first categories being related to specific aeroacoustic challenges (airframe noise, fan and jet noise, helicopter noise, aircraft interior noise) and two last sections are respectively devoted to recent improvements and emerging techniques and to general advances in aeroacoustics. For each section, the present paper focus on accomplished projects, providing the state of the art in each research category in 2014. A number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarised in this paper, as well as highlights funded by national programmes or by industry.

  4. Confidence metrics analysis of a fixed-wing UAV (United States)

    Polgar, Janos

    Uninhabited aerial vehicles (UAVs) are becoming popular in the development process of full scale aircrafts and as research platforms. Due to their complexity they provide development and test environments for a wide range of applications. Supporting research projects in safety critical systems, classes, the University of Minnesota Department of Aerospace Engineering and Mechanics have been developing a low-cost UAV research facility. This facility includes models of a family of fixed wing airframes, controllers, a diverse set of guidance algorithms. A flight software is written which implements an autopilot system, including the aforementioned algorithms, and provides datalogging. The software package is equipped with tools to evaluate flight test results. The model of any plant is never 100% accurate. There are always differences between the real system and the dynamical model of it. Uncertainties can be introduced into the model, which are trying to capture uncertainty in model parameters and unmodeled dynamics. Even though the aircraft model in the package is fairly accurate, it is interesting to investigate 'how good' the model is, i.e. how robust the model in the closed loop is against uncertainties. Earlier work in this project mainly focused on plant modeling and controller design. Extensive controller analysis, however, has not performed yet, what motivates the work behind this thesis.

  5. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing. (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan


    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  6. Supersonic airplane study and design (United States)

    Cheung, Samson


    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  7. Predicting Tail Buffet Loads of a Fighter Airplane (United States)

    Moses, Robert W.; Pototzky, Anthony S.


    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  8. Tension-tension fatigue behavior of the Space Shuttle strain-isolation-pad material (United States)

    Phillips, E. P.


    The room temperature fatigue behavior of 0.41-cm (0.16-in) thick strain-isolation-pad (SIP) material was explored in a series of constant- and random-amplitude loading tests. The SIP material is used on the Space Shuttle to isolate the ceramic insulating tiles from the strains and deflections of the aluminum alloy airframe. In all tests, 12.7 by 12.7 cm (5.0 by 5.0 in) SIP specimens were subjected to tension-tension loading in the through-the-thickness direction at a frequency of 10 Hz. When subjected to cyclic loading, the SIP material exhibited a monotonic increase in thickness and a monotonic increase in tensile tangent moduli. The rate of thickness growth increased with increasing test stress level and decreased with increasing number cycles endured. Power law equations were found to provide a good representation of the thickness growth rate data. Tensile tangent moduli increased by as much as 80 percent during fatigue tests. Simple cumulative damage fatigue models predicted the mean thickness growth under random-amplitude loading with reasonable accuracy (factor of 2 on life).

  9. Modeling and Prediction of Krueger Device Noise (United States)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.


    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  10. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development (United States)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.


    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  11. Preliminary development of a VTOL unmanned air vehicle for the close-range mission (United States)

    Kress, Gregory A.


    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAV's and include the wings from a U.S. Army Aquila and the ducted fan from the U.S. Marine Corps AROD. Accomplishments include: (1) the design and fabrication of a carry-through spar, and (2) the design and construction of an engine test stand. The through spar was designed using finite element analysis and constructed from composite materials. The purpose of the test stand is to measure torque, horsepower, and thrust of an entire ducted fan or an individual engine. Completion of this thesis will pave the way for future NPS research into the growing interest in VTOL UAV technology.

  12. A Design Tool for Matching UAV Propeller and Power Plant Performance (United States)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  13. A Collection of Nonlinear Aircraft Simulations in MATLAB (United States)

    Garza, Frederico R.; Morelli, Eugene A.


    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  14. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center (United States)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.


    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  15. Using Virtual Testing for Characterization of Composite Materials (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  16. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials (United States)

    Beaumont, Peter W. R.


    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  17. VLM Tool for IDS Integration

    Directory of Open Access Journals (Sweden)

    Cǎtǎlin NAE


    Full Text Available This paper is dedicated to a very specific type of analysis tool (VLM - Vortex Lattice Method to be integrated in a IDS - Integrated Design System, tailored for the usage of small aircraft industry. The major interest is to have the possibility to simulate at very low computational costs a preliminary set of aerodynamic characteristics for basic aerodynamic global characteristics (Lift, Drag, Pitching Moment and aerodynamic derivatives for longitudinal and lateral-directional stability analysis. This work enables fast investigations of the influence of configuration changes in a very efficient computational environment. Using experimental data and/or CFD information for a specific calibration of VLM method, reliability of the analysis may me increased so that a first type (iteration zero aerodynamic evaluation of the preliminary 3D configuration is possible. The output of this tool is basic state aerodynamic and associated stability and control derivatives, as well as a complete set of information on specific loads on major airframe components.The major interest in using and validating this type of methods is coming from the possibility to integrate it as a tool in an IDS system for conceptual design phase, as considered for development for CESAR project (IP, UE FP6.

  18. Open Circuit Resonant (SansEC) Sensor for Composite Damage Detection and Diagnosis in Aircraft Lightning Environments (United States)

    Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.


    Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.

  19. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.


    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  20. Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover (United States)

    Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.


    A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.

  1. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John


    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.


    Directory of Open Access Journals (Sweden)

    Corneliu STOICA


    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  3. Thermal Analysis of Hypersonic Inlet Flow with Exergy-Based Design Methods

    Directory of Open Access Journals (Sweden)

    James P. Prendergast


    Full Text Available This paper presents results of work that has been done in developing use of the Second Law of Thermodynamics and methods such as exergy and thermoeconomics into a system-level analysis and design methodology. The application of these methods to the design of a complete flight vehicle is illustrated by considering an integrated airframe/propulsion system as a device to do work. This shows how system-level consideration of exergy applies to all vehicle systems in consistent terms. For the hypersonic inlet flow problem, it is shown that a thermal energy exchange with the inlet flow could be used to position the inlet shock in the optimum shock-on-lip position for off-nominal flight conditions. The thermal heat exchange analysis has been done for a full range of Mach numbers both higher and lower than nominal. It is shown that there is a potential benefit in terms of reduced exergy destroyed using thermal energy addition than by the shock at higher Mach numbers. The paper then discusses how a device to accomplish this result would have to be integrated into a complete vehicle design.

  4. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study (United States)

    Mukhopadhyay, Vivek


    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  5. Testing of a Stitched Composite Large-Scale Multi-Bay Pressure Box (United States)

    Jegley, Dawn; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew


    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce aviation's impact on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together. The PRSEUS concept is designed to maintain residual load carrying capabilities under a variety of damage scenarios. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this article under maneuver load and internal pressure load conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and through-the-thickness strength are design considerations.

  6. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.S.


    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA. 14 refs.

  7. Surface damping effect of anchored constrained viscoelastic layers on the flexural response of simply supported structures (United States)

    Karim, K. R.; Chen, G. D.


    Viscoelastic (VE) materials are commonly used to control vibration-induced fatigue in airframes and to suppress general vibration in various structures. This study investigates the effects of anchored constrained VE layers on the flexural response of simply supported Euler beams or plate strips under base excitations. Emphasis is placed on the development of two surface damping treatments: one VE layer anchored at one end, and two VE layers anchored at their different ends. Each anchorage is realized with a thin stiff layer in tension, such as a fiber reinforced polymer sheet, bonded to the surface of a VE layer and anchored to one end of the beam for maximum shear deformation in the constrained VE layer. Non-uniform shear deformation in VE layers is taken into account in the new solution formulation. Sensitivity analyses are performed to understand and quantify the effects of various parameters on flexural responses of the structures. The minimum thickness of VE layers is mainly bounded by the relative stiffness between the VE layers and the constraining face layer. The performances of various configurations are compared and the two-end anchored configuration is found most effective in vibration suppression.

  8. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz


    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  9. HELIPLAT: design of high altitude very-long endurance solar powered platform for telecommunication and earth observation (United States)

    Romeo, Giulio; Frulla, Giacomo


    A research is being carried out at the Turin Polytechnic University aiming at the design of an HAVE/UAV (High Altitude Very-long Endurance/Uninhabited Air Vehicle) and manufacturing of a scale-sized solar-powered prototype. The vehicle should climg to 17-20 km by taking advantage, mainly, of direct sun radiation and maintaining; electric energy not requeired for propulsion and payload operation is pumped back into the fuel cells energy storage system for the night. A computer program has been developed for carrying out a parametric study for the platform design, by taking into account the solar radiation change over one year, the altitude, masses and efficiencies of solar cells and fuel cells, aerodynamic performances, etc. A parametric study shows as fuel cells and solar cells efficiency and mass give the most influence on the platform dimensions. A wide use of high modulus CFRP has been made in designing the structure in order to minimise the airframe weight. The whole mass resulted of 70 kg. The classical hydraulic loading rig was designed for applying the ultimate shear-bending-torsion load to the structure and to verify the theoretical behaviour. A finite element analysis has been carried out by using the MSC/PATRAN/NASTRAN code in order to predict th static and dynamic behaviour. A good correlation has been obtained between the theoretical, numerical and experimental results up to a load corresponding to 5g.

  10. A unified approach for composite cost reporting and prediction in the ACT program (United States)

    Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid


    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.

  11. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels (United States)

    Collier, Craig S.


    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  12. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition (United States)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  13. Advanced Aerodynamic Technologies for Future Green Regional Aircraft

    Directory of Open Access Journals (Sweden)

    Catalin NAE


    Full Text Available Future Green Regional Aircraft (GRA will operate over airports located in the neighborhood of densely populated areas, with high frequency of takeoff/ landing events and, hence, strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental normative worldwide and therefore re-designed to incorporate advanced active aerodynamic technologies. The new concept behind GRA is based on several mainstream technologies: airframe low-noise (LN, aerodynamic load control (LC and load alleviation (LA. These technologies integrate relevant concepts for hybrid and natural laminar flow (HLC/NLF wing, active control of wing movables and aeroelastic tailoring for LC/LA functions, passive means (micro-riblets for turbulent flow drag reduction, innovative gapless architectures (droop nose, morphing flap beside conventional high-lift devices (HLDs, active flow control through synthetic jets, low-noise solutions applied to HLDs (liners, fences, and to fuselage-mounted main and nose landing gears (bay/doors acoustic treatments, fairings, wheels hub cap. The paper deals with the technological readiness level (TRL assessment of the most promising technologies and overall integration in the new generation of GRA, as a highly optimized configuration able to meet requirements for FlighPath 2050.

  14. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation (United States)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry


    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  15. Survival analysis of aging aircraft (United States)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  16. 无人机气动力地面车载测试系统%A ground test vehicle(GTV) system to measure the aerodynamic characteristics of unmanned air vehicles

    Institute of Scientific and Technical Information of China (English)

    贾毅; 张永升; 刘丹; 皮祖成; 郎卫东


    介绍了中国航天空气动力技术研究院开发的一种用于测量全尺寸无人机气动力的地面车载测试系统(GTV).车载测试系统采用一辆中型卡车进行相关改造,将试验无人机机身安装在其顶部,通过汽车牵引能够达到40km/h的速度.一套专用的测试天平系统和数据采集系统用于记录试验中无人机产生的升力、阻力以及俯仰力矩等数据.主要介绍测试天平系统的设计,数据采集测试系统,测试方法和试验结果.多元静态原位校准加载结果表明天平测试系统输出信号线性度以及重复性较好.动态校准试验采用一副定常展弦比6的机翼进行,试验结果与已知的风洞试验数据进行了比对.车载测试系统试验结果的升力和俯仰力矩数据不同车次之间重复性较好,并且与风洞试验数据基本一致.但阻力数据的离散度要比风洞试验时大得多,并且试验结果比风洞试验时偏小一些,试验证明地面车载测试系统的阻力测量难度较大.%A Ground Test Vehicle (GTV) system has been developed by China Academy of Aerospace Aerodynamics (CAAA) to provide a safe method for determining an experimental Unmanned Air Vehicle's (UAV) aerodynamic characteristics before flight.The GTV is a medium truck which has been modified to allow an UAV airframe to be mounted on top while propelling it up to 40km/h.A force balance and data acquisition system are used to measure and record the lift,drag and pitching moment of the test airframe.This paper describes the balance design,the data acquisition system,and the results of calibrations made to check the GTV data.A series of combined static loadings showed the force balance output to be linear and repeatable.A wing of constant chord aspect ratio 6 was tested,and the results were compared with available wind tunnel data.The lift and pitching moment data measured by the GTV for the test wing was repeatable for every run,and compared well with the

  17. Editorial on Future Jet Technologies (United States)

    Gal-Or, Benjamin


    The jet engine is the prime flight controller in post-stall flight domains where conventional flight control fails, or when the engine prevents catastrophes in training, combat, loss of all airframe hydraulics (the engine retains its own hydraulics), loss of one engine, pilot errors, icing on the wings, landing gear and runway issues in takeoff and landing and in bad-whether recoveries. The scientific term for this revolutionary technology is "jet-steering", and in engineering practice - "thrust vectoring", or "TV". Jet-Steering in advanced fighter aircraft designs is integrated with stealth technology. The resulting classified Thrust-Vectoring-Stealth ("TVS") technology has generated a second jet-revolution by which all Air-&-Sea-Propulsion Science and R&D are now being reassessed. Classified F-22, X-47B/C and RQ-180 TVS-vehicles stand at the front of this revolution. But recent transfers of such sensitive technologies to South Korea and Japan [1-5], have raised various fundamental issues that are evaluated by this editorial-review. One, and perhaps a key conclusion presented here, means that both South Korea and Japan may have missed one of their air-&-sea defenses: To develop and field low-cost unmanned fleets of jet-drones, some for use with expensive, TVS-fighter aircraft in highly congested areas. In turn, the U.S., EU, Russia and China, are currently developing such fleets at various TVS levels and sizes. China, for instance, operates at least 15,000 drones ("UAVs") by 2014 in the civilian sector alone. All Chinese drones have been developed by at least 230 developers/manufacturers [1-16]. Mobile telecommunication of safe links between flyers and combat drones ("UCAVs") at increasingly deep penetrations into remote, congested areas, can gradually be purchased-developed-deployed and then operated by extant cader of tens of thousands "National Champion Flyers" who have already mastered the operation of mini-drones in free-to-all sport clubs under national

  18. A game-based decision support methodology for competitive systems design (United States)

    Briceno, Simon Ignacio

    This dissertation describes the development of a game-based methodology that facilitates the exploration and selection of research and development (R&D) projects under uncertain competitive scenarios. The proposed method provides an approach that analyzes competitor positioning and formulates response strategies to forecast the impact of technical design choices on a project's market performance. A critical decision in the conceptual design phase of propulsion systems is the selection of the best architecture, centerline, core size, and technology portfolio. This selection can be challenging when considering evolving requirements from both the airframe manufacturing company and the airlines in the market. Furthermore, the exceedingly high cost of core architecture development and its associated risk makes this strategic architecture decision the most important one for an engine company. Traditional conceptual design processes emphasize performance and affordability as their main objectives. These areas alone however, do not provide decision-makers with enough information as to how successful their engine will be in a competitive market. A key objective of this research is to examine how firm characteristics such as their relative differences in completing R&D projects, differences in the degree of substitutability between different project types, and first/second-mover advantages affect their product development strategies. Several quantitative methods are investigated that analyze business and engineering strategies concurrently. In particular, formulations based on the well-established mathematical field of game theory are introduced to obtain insights into the project selection problem. The use of game theory is explored in this research as a method to assist the selection process of R&D projects in the presence of imperfect market information. The proposed methodology focuses on two influential factors: the schedule uncertainty of project completion times and

  19. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model (United States)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas


    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  20. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.


    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  1. Prediction of Landing Gear Noise Reduction and Comparison to Measurements (United States)

    Lopes, Leonard V.


    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  2. Discussion of the large aircraft nacelle reduction technology on noise%大型民机短舱降噪技术综述

    Institute of Scientific and Technical Information of China (English)

    任方; 李海波; 陈严华; 刘振皓; 秦朝红


    Aircraft nacelle noise is one of the most important problems in aircraft design and environment protection. The problem is so complex and involves many domains that lots of researchers are interested in. This paper gives a brief overview of the airframe noise including mechanism of large aircraft noise and the main sources,foundation of internal research. The noise source of mechanism and reduction method are discussed, Finally, the orientation methods and approach of the nacelle noise research are advanced,this is very important problem to research the comfort,economy and safety of aircraft, there is important practical significance for our country to develop long-range aircraft project.%飞机短舱噪声是飞机设计和环境保护面临的重大问题之一,因其问题复杂涉及的学科多,一直备受关注.对大型民机噪声的国内外研究状况进行概述,总结了国内研究基础,分析飞机噪声的本质和来源,针对飞机短舱讨论了噪声产生机理及降噪方法,最后提出了当前亟需研究的方向、方法和途径,对于飞机的安全性、经济性、舒适性都是很重要的课题,对于发展国家大飞机工程有很重要的现实意义.

  3. Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation (United States)

    Schwabe, O.; Shehab, E.; Erkoyuncu, J.


    The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis

  4. Design for Super-short-range Low-cost Intercept Missile of Active Protection System%超近程低成本主动防护系统拦截导弹设计

    Institute of Scientific and Technical Information of China (English)

    李富贵; 夏群利; 郭龙昌


    针对末端近距防御的特殊需求,研究了低成本主动防护系统拦截导弹设计方法.分析了拦截导弹的总体设计方案,利用工程算法和CFD平台设计优化了拦截导弹的气动外形,研究了侧向喷流干扰并提出了抑制措施,提出了拦截导弹控制资源分配方案并设计了非线性控制策略.建立了六自由度拦截对抗模型,利用蒙特卡洛方法分析了设计方法的有效性和鲁棒性.研究结果表明,在简易制导条件下,采用轨控脉冲发动机非线性操纵方式可满足拦截导弹的总体需求.%To satisfy terminal short-distance defense requirement,design methods for low-cost intercept missile of active protection system were presented.The general scheme was analyzed,and project methods and CFD platform were used to design and optimize the airframe of missile.The disturbance of lateral jet was simulated and analyzed,and the restrained approach was derived.Then the control resources arrangement was presented,which was suited with nonlinear control measures.Six-DOF intercept model was established,and the validity and robustness of previous design method were tested by Monte-Carlo simulation.The result shows that under the conditions of simple guidance,utilizing divert pulse motor in a nonlinear way can satisfy the general requirements.


    Institute of Scientific and Technical Information of China (English)

    耿宏; 高远


    在长期飞行过程中,由于飞行环境的复杂性,飞机的气动模型会因为机体结构疲劳损伤和腐蚀损伤而略微有所变化.针对这一现象,将能够实时反应飞行状态的快速存取记录器QAR(Quick Access Recorder)所记录的飞行数据应用于飞机气动力参数辨识.通过对QAR数据进行译码、野值剔除与补正、滤波等预处理,运用分段最小二乘法进行参数辨识,并运用交叉验证法进行参数检验,建立完整的气动模型.模型精度达到模拟飞行、仿真维修等领域的要求.%Plane's aerodynamics model will vary slightly due to the airframe structural fatigue damage and corrosion damage in complex environment during the long-term flight.Aiming at this phenomenon,the flight data from quick access recorder (QAR) which can response the flight state in real time is applied to the plane aerodynamic parameters identification.A complete aerodynamic model is built after the pretreatment on the data including the QAR data decoding,outliers excluding and correction and the filtration,and the method of piecewise least squares is used to identify the parameters,and the cross validation method is employed in parameters test as well.The accuracy of the model can meet the requirements of flight simulator and the maintenance simulation,etc.

  6. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics (United States)

    Goodrich, John W.; Dyson, Rodger W.


    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that

  7. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys (United States)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.


    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  8. Optimization Testbed Cometboards Extended into Stochastic Domain (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.


    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  9. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft (United States)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.


    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  10. DC-9/JT8D refan, Phase 1. [technical and economic feasibility of retrofitting DC-9 aircraft with refan engine to achieve desired acoustic levels (United States)


    Analyses and design studies were conducted on the technical and economic feasibility of installing the JT8D-109 refan engine on the DC-9 aircraft. Design criteria included minimum change to the airframe to achieve desired acoustic levels. Several acoustic configurations were studied with two selected for detailed investigations. The minimum selected acoustic treatment configuration results in an estimated aircraft weight increase of 608 kg (1,342 lb) and the maximum selected acoustic treatment configuration results in an estimated aircraft weight increase of 809 kg (1,784 lb). The range loss for the minimum and maximum selected acoustic treatment configurations based on long range cruise at 10 668 m (35,000 ft) altitude with a typical payload of 6 804 kg (15,000 lb) amounts to 54 km (86 n. mi.) respectively. Estimated reduction in EPNL's for minimum selected treatment show 8 EPNdB at approach, 12 EPNdB for takeoff with power cutback, 15 EPNdB for takeoff without power cutback and 12 EPNdB for sideline using FAR Part 36. Little difference was estimated in EPNL between minimum and maximum treatments due to reduced performance of maximum treatment. No major technical problems were encountered in the study. The refan concept for the DC-9 appears technically feasible and economically viable at approximately $1,000,000 per airplane. An additional study of the installation of JT3D-9 refan engine on the DC-8-50/61 and DC-8-62/63 aircraft is included. Three levels of acoustic treatment were suggested for DC-8-50/61 and two levels for DC-8-62/63. Results indicate the DC-8 technically can be retrofitted with refan engines for approximately $2,500,000 per airplane.

  11. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.


    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  12. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles (United States)

    Stanley, Thomas Troy; Alexander, Reginald


    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  13. Analytical Model of Elastomeric Lag Damper Kinematic Coupling and Its Effect on Helicopter Air Resonance in Hover%粘弹减摆器几何耦合模型及对直升机悬停空中共振的影响.

    Institute of Scientific and Technical Information of China (English)

    胡国才; 向锦武; 张晓谷


    For an elastomeric lag damper with nonlinear properties and kinematic couplings, its differential equation about equilibrium position was derived in a rotating frame. The equation was then transformed into a non-rotating frame by multi-blade transformation and incorporated into the rotor/airframe differential equations for eigen analysis. The effects of damper steady displacement and kinematic couplings on helicopter air resonance in hover were analyzed. The results demonstrate that the elastomeric damper can increase helicopter dynamic stability; however, its available damping will decrease as its steady displacement increased. For the notional rotor system, the damper steady displacement will decrease when kinematic couplings are introduced, and hence the regressive lag modal damping can be increased.%针对具有几何耦合的非线性粘弹减摆器,在旋转坐标系下建立了其在平衡位置附近的小扰动微分方程,然后通过多桨叶坐标转换的方法将方程变换到不转坐标系中,并与直升机悬停时的线化小扰动方程结合起来进行特征值分析;减摆器静态位移和几何耦合对直升机空中共振稳定性的影响进行了分析.结果表明,粘弹减摆器会提高直升机空中共振稳定性;增大减摆器的静态位移会降低其有效阻尼;对于所考虑的旋翼系统来说,几何耦合可能会减小减摆器的静态位移,从而提高摆振后通型模态的阻尼.

  14. On Electro Discharge Machining of Inconel 718 with Hollow Tool (United States)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep


    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  15. Challenges and Progress in Aerodynamic Design of Hybrid Wingbody Aircraft with Embedded Engines (United States)

    Liou, Meng-Sing; Kim, Hyoungjin; Liou, May-Fun


    We summarize the contributions to high-fidelity capabilities for analysis and design of hybrid wingbody (HWB) configurations considered by NASA. Specifically, we focus on the embedded propulsion concepts of the N2-B and N3-X configurations, some of the future concepts seriously investigated by the NASA Fixed Wing Project. The objective is to develop the capability to compute the integrated propulsion and airframe system realistically in geometry and accurately in flow physics. In particular, the propulsion system (including the entire engine core-compressor, combustor, and turbine stages) is vastly more difficult and costly to simulate with the same level of fidelity as the external aerodynamics. Hence, we develop an accurate modeling approach that retains important physical parameters relevant to aerodynamic and propulsion analyses for evaluating the HWB concepts. Having the analytical capabilities at our disposal, concerns and issues that were considered to be critical for the HWB concepts can now be assessed reliably and systematically; assumptions invoked by previous studies were found to have serious consequences in our study. During this task, we establish firmly that aerodynamic analysis of a HWB concept without including installation of the propulsion system is far from realistic and can be misleading. Challenges in delivering the often-cited advantages that belong to the HWB are the focus of our study and are emphasized in this report. We have attempted to address these challenges and have had successes, which are summarized here. Some can have broad implications, such as the concept of flow conditioning for reducing flow distortion and the modeling of fan stages. The design optimization capability developed for improving the aerodynamic characteristics of the baseline HWB configurations is general and can be employed for other applications. Further improvement of the N3-X configuration can be expected by expanding the design space. Finally, the support of

  16. Performance of free-space laser communication systems as a function of the sampling rate in the tracking loop (United States)

    Nikulin, V.; Sofka, J.; Khandekar, R.


    Laser technology plays an ever-increasing role in aerospace and communication systems and is often viewed as a technology that has the potential for providing the material base for high-bandwidth applications. Laser provides the most logical connectivity channel for mobile systems requiring high data rates, low power consumption, covert operation, and high resistance to jamming. While advancements in modern opto-electronics have resulted in small size, reliable and power efficient lasers and modulators, successful operation of any communication technology hinges upon the ability to develop an equally advanced beam steering/positioning system. In many aerospace applications, when the transmitting optical platform is placed on board of an airplane, the ability to track the target is affected by the complex high-speed maneuvers performed by the aircraft and the resident vibration of the airframe. The tracking system must assure that in spite of the relative motion of both the transmitting and receiving stations and adverse environments, such as vibration, mutual alignment of two systems will be maintained to minimize communication errors. The work presented in this paper concentrates on the development of agile beam steering systems for laser communication terminals. Acousto-optic Bragg cells are used as deflectors while feedback information is generated by a quadrant detector. The control system is synthesized using a relatively simple constant-gain controller augmented with an adaptive Kalman filter to mitigate the effects of measurement noise in the tracking system. Laboratory experiments are conducted to investigate communication performance as a function of the sampling rate in the beam position feedback.

  17. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad−1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  18. A system-of-systems perspective for simultaneous UAV sizing and allocation using design of experiments and simulation (United States)

    Bociaga, Michael L.

    Traditional approaches to aircraft sizing focus on maximizing the performance of the individual airframe as a standalone system. Customers, such as the Department of Defense, have recently looked more towards all-encompassing solutions to large problems by using a System-of-Systems approach instead of maximizing capability from a single aircraft or similar monolithic system. Shrinking budgets call for making the most efficient use of existing assets and addressing capability gaps in broad frameworks. The result is that optimizing the aircraft alone may not provide the customer with needed capabilities. Unmanned Aerial Vehicles (UAVs) performing Intelligence, Surveillance, and Reconnaissance (ISR) missions provide an example of systems designed to operate with other independent systems as part of a system-of-systems. In this research, a fleet of UAVs will provide wildfire detection in high terrain. The research investigates how to allocate existing systems along with a number of yet-to-be-defined UAVs. In this manner, the new UAVs may not be optimal for individual aircraft-based performance metrics, but they will enhance the capabilities of the fleet. Such a large, complex problem requires decomposition into a resource allocation problem using a Design of Experiments (DoE) to select configurations of UAV fleets to test by simulation using STK's Aircraft Mission Modeler software package at the System-of-Systems level, and an aircraft sizing sub-problem using an SQP algorithm and the Breguet endurance equation to size the new UAV. The STK output is modeled using main effects and a response surface that shows the tradeoff between cost and coverage, enabling the customer to select the optimal allocation of existing and new UAVs and determine the key characteristics of the new UAVs that fit into this fleet. The new UAV sized for this specific mission, but from a System-of-Systems perspective, complements the UAV fleet, enhancing the capabilities of the System

  19. Active Flow Effectors for Noise and Separation Control (United States)

    Turner, Travis L.


    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  20. On the development of a strength prediction methodology for fibre metal laminates in pin bearing (United States)

    Krimbalis, Peter Panagiotis

    The development of Fibre Metal Laminates (FMLs) for application into aerospace structures represents a paradigm shift in airframe and material technology. By consolidating both monolithic metallic alloys and fibre reinforced composite layers, a new material structure is born exhibiting desired qualities emerging from its heterogeneous constituency. When mechanically fastened via pins, bolts and rivets, these laminated materials develop damage and ultimately fail via mechanisms that were not entirely understood and different than either their metallic or composite constituents. The development of a predictive methodology capable of characterizing how FMLs fastened with pins behave and fail would drastically reduce the amount of experimentation necessary for material qualification and be an invaluable design tool. The body of this thesis discusses the extension of the characteristic dimension approach to FMLs and the subsequent development of a new failure mechanism as part of a progressive damage finite element (FE) modeling methodology with yielding, delamination and buckling representing the central tenets of the new mechanism. This yielding through delamination buckling (YDB) mechanism and progressive FE model were investigated through multiple experimental studies. The experimental investigations required the development of a protocol with emphasis on measuring deformation on a local scheme in addition to a global one. With the extended protocol employed, complete characterization of the material response was possible and a new definition for yield in a pin bearing configuration was developed and subsequently extended to a tensile testing configuration. The performance of this yield definition was compared directly to existing definitions and was shown to be effective in both quasi-isotropic and orthotropic materials. The results of the experiments and FE simulations demonstrated that yielding (according to the new definition), buckling and delamination

  1. Modeling ultrasonic NDE and guided wave based structural health monitoring (United States)

    Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian


    Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

  2. Development of Stitched Composite Structure for Advanced Aircraft (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna


    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  3. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.


    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  4. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber

    Directory of Open Access Journals (Sweden)

    M. A. Miracolo


    Full Text Available Field experiments were performed to investigate the effects of photo-oxidation on fine particle emissions from an in-use CFM56-2B gas turbine engine mounted on a KC-135 Stratotanker airframe. Emissions were sampled into a portable smog chamber from a rake inlet installed one-meter downstream of the engine exit plane of a parked and chocked aircraft. The chamber was then exposed to sunlight and/or UV lights to initiate photo-oxidation. Separate tests were performed at different engine loads (4, 7, 30, 85 %. Photo-oxidation created substantial secondary particulate matter (PM, greatly exceeding the direct PM emissions at each engine load after an hour or less of aging at typical summertime conditions. After several hours of photo-oxidation, the ratio of secondary-to-primary PM mass was on average 35 ± 4.1, 17 ± 2.5, 60 ± 2.2, and 2.7 ± 1.1 for the 4, 7, 30, and 85 % load experiments, respectively. The composition of secondary PM formed strongly depended on load. At 4 % load, secondary PM was dominated by secondary organic aerosol (SOA. At higher loads, the secondary PM was mainly secondary sulfate. A traditional SOA model that accounts for SOA formation from single-ring aromatics and other volatile organic compounds underpredicts the measured SOA formation by ~60 % at 4 % load and ~40 % at 85 % load. Large amounts of lower-volatiliy organic vapors were measured in the exhaust; they represent a significant pool of SOA precursors that are not included in traditional SOA models. These results underscore the importance of accounting for atmospheric processing when assessing the influence of aircraft emissions on ambient PM levels. Models that do not account for this processing will likely underpredict the contribution of aircraft emissions to local and regional air pollution.

  5. F5D-1 on ramp with Neil Armstrong preparing to fly a Dyna-Soar simulation (United States)


    The Douglas F5D-1 Skylancer being pre-flighted by the pilot while the crew chief prepares to pull the wheel chocks on the 'hot gun' ramp at Edwards Air Force Base, California. The aircraft was one of two prototype F5D-1s obtained by NASA Flight Research Center in 1961. The F5D-1 Skylancer (Bu. No. 142350) had a red and white paint pattern with a NASA identification number of 213 which later became NASA 708. The Douglas F5D-1 Skylancer was built by the Navy as an all-weather fighter interceptor that never made the jump to production. Four test aircraft were developed with the same basic airframe as the Douglas F4D Skyray. With increasing modifications the four aircraft were re-designated F5D-1s before their first flights. Future Astronaut Neil Armstrong was one of the NASA research pilots assigned to support duties for the Dyna-Soar program. In addition to working at the Boeing facility in Washington state, Armstrong also tested the Dyna-Soar launch abort profile using this F5D-1, which had a similar wing shape to the Dyna-Soar. The aircraft arrived at the Flight Research Center on June 15, 1961. After the Dyna-Soar program was cancelled in December 1963, this F5D-1 continued to be used, serving as a flying simulator for the M2-F2 and as a chase plane for lifting-body flights (providing the lifting-body pilot with an extra set of eyes to assist in emergencies and avert potential crashes) This F5D-1 left the Flight Research Center (later designated the Dryden Flight Research Center) on May 19, 1970, and was donated to the Neil A. Armstrong Museum in Wapakoneta, Ohio.

  6. Buffet induced structural/flight-control system interaction of the X-29A aircraft (United States)

    Voracek, David F.; Clarke, Robert


    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  7. Automated Tow Placed LaRC(TM)-PETI-5 Composites (United States)

    Hou, T. H.; Belvin, H. L.; Johnston, N. J.


    LaRC(TM)-PETI-5 is a PhenylEthynyl-Terminated Imide resin developed at NASA Langley Research Center (LaRC) during the 1990s. It offers a combination of attractive composite and adhesive properties. IM7/LaRC(TM)-PETI-5 composites exhibit thermal and thermo-oxidative stability typical of polyimides, superior chemical resistance and processability, excellent mechanical properties, toughness and damage tolerance. It was selected for study in the High Speed Research program aimed at developing technologies for a future supersonic aircraft, the High Speed Civil Transport, with a projected life span of 60 000 h at a cruise speed up to Mach 2.4. Robust autoclave processing cycles for LaRC(TM)-PETI-5 composites have been thoroughly designed and demonstrated, which involved hand lay-up of solvent-ladened 'wet' prepregs. However, this type of processing is not only costly but also environmentally unfriendly. Volatile management and shrinkage could become serious problems in the fabrication of large complex airframe structural subcomponents. Robotic tow placement technology utilizing 'dry' material forms represents a new fabrication process which overcomes these deficiencies. This work evaluates and compares mechanical properties of composites fabricated by heated head automated tow placement (dry process) with those obtained by hand lay-up/autoclave fabrication (wet process). Thermal and rheological properties of the robotically as-placed uncured composites were measured. A post-cure cycle was designed due to the requirement of the PETI-5 resin for a 370 C/1 h hold to reach full cure, conditions which cannot be duplicated during heated head robotic placement. Mechanical properties such as 0 degree flexural strength and modulus, open hole tensile and compressive strength and moduli, reduced section compression dogbone compressive strength, and modified zippora-medium small (MZ-MS) tensile and compressive properties were obtained on the post-cured panels. These properties

  8. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    A proton exchange membrane fuel cell system integrated with a NaBH4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  9. NASA Puffin Electric Tailsitter VTOL Concept (United States)

    Moore, Mark D.


    Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.

  10. Strain energy density and thermodynamic entropy as prognostic measures of crack initiation in aluminum (United States)

    Ontiveros, Victor Luis

    A critical challenge to the continued use of engineering structures as they are asked to perform longer than their design life is the prediction of an initiating crack and the prevention of damage, estimation of remaining useful life, schedule maintenance and to reduce costly downtimes and inspections. The research presented in this dissertation explores the cumulative plastic strain energy density and thermodynamic entropy generation up to crack initiation. Plastic strain energy density and thermodynamic entropy generation are evaluated to investigate whether they would be capable of providing a physical basis for fatigue life and structural risk and reliability assessments. Navy aircraft, specifically, the Orion P-3C, which represent an engineered structure currently being asked to perform past is design life, which are difficult and time consuming to inspect from carrier based operations and are currently evaluated using an empirically based damage index the, fatigue life expended, is used as an example in this investigation. A set of experimental results for aluminum alloy 7075-T651, used in airframe structures, are presented to determine the correlation between plastic strain energy dissipation and the thermodynamic entropy generation versus fatigue crack initiation over a wide range of fatigue loadings. Cumulative plastic strain energy and thermodynamic entropy generation measured from hysteresis energy and temperature rise proved to be valid physical indices for estimation of the probability of crack initiation. Crack initiation is considered as a major evidence of fatigue damage and structural integrity risk. A Bayesian estimation and validation approach is used to determine systematic errors in the developed models as well as other model uncertainties. Comparisons of the energy-based and entropy-based models are presented and benefits of using one over the other are discussed.

  11. Superconductors Enable Lower Cost MRI Systems (United States)


    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  12. Evaluation of Skin Friction Drag for Liner Applications in Aircraft (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.


    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  13. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition (United States)

    Brooks, Thomas F.; Humphreys, William M., Jr.


    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  14. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho


    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  15. The Behavior of a Stitched Composite Large-Scale Multi-Bay Pressure Box (United States)

    Jegley, Dawn C.; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew E.


    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series of tests is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this test article under maneuver and internal pressure loading conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and

  16. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  17. Experiments on Exhaust Noise of Tightly Integrated Propulsion Systems (United States)

    Bridges, James E.; Brown, Clifford A.; Bozak, Richard F.


    A wide-ranging series of tests have been completed that seek to map the effects of installation, including jet by jet interaction effects, on exhaust noise from various nozzles in forward flight. The primary data was far-field acoustic spectral directivity. The goals of the test series were (i) to generate enough data for empirical models of the different effects, and (ii) to provide data for advanced computational noise predictions methods applied to simplified yet realistic configurations. Data is presented that demonstrate several checks on data quality and that provide an overview of trends observed to date. Among the findings presented here: (i) Data was repeatable between jet rigs for single nozzles with and without surfaces to within +/- 0.5 dB. (ii) The presence of a second jet caused a strong reduction of the summed noise in the plane of the two plumes and an increase over the expected source doubling in most other azimuthal planes. (iii) The impact of the second jet was reduced when the jets were unheated. (iv) The impact of adding a second isolated rectangular jet was relatively independent of the nozzle aspect ratio up to aspect ratio 8:1. (v) Forward flight had similar impact on a high aspect ratio (8:1) jet as on an axisymmetric jet, except at the peak noise angle where the impact was less. (vi) The effect of adding a second round jet to a tightly integrated nozzle where the nozzle lip was less than a diameter from the surface was very dependent upon the length of the surface downstream of the nozzle. (vii) When the nozzles were rectangular and tightly integrated with the airframe surface the impact of a second jet was very dependent upon how close together the two jets were. This paper serves as an overview of the test; other papers presented in the same conference will give more detailed analysis of the results.

  18. Effects of rotor downwash on exhaust plume flow and helicopter infrared signature

    International Nuclear Information System (INIS)

    The effects of rotor downwash and exhaust direction on plume flow field, rear-fuselage temperature distribution and helicopter infrared signature were numerically investigated. The internal flow inside IR suppressor originated from engine exhaust nozzle and the external flow around helicopter airframe originated from rotor downwash were computed in a coupled mode to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that the exhaust plume takes on strong downwards deflection to the rear-fuselage, as well as to the rotor rotational direction under the action of rotor downwash. The rotor downwash has a complicated influence on the infrared radiation distribution of helicopter. It is benefit for reducing the infrared radiation intensity when the exhaust is ejected in oblique-turned or lateral-turned mode. While for the up-turned exhaust mode, the exhaust plume could heating the helicopter rear-fuselage and the infrared radiation intensity may be enhanced under the action of downwash. - Highlights: •Illustrate effects of rotor downwash and exhaust direction on plume flow field. •Modeling helicopter infrared signature taking into consideration of rotor downwash action. •Assessing different orientation of exhaust plume on helicopter infrared intensity. •Oblique-turned exhaust mode is reasonable for helicopter infrared suppressor. •Rotor downwash has a complicated influence on helicopter infrared radiation distribution

  19. Did Vertigo Kill America's Forgotten Astronaut? (United States)

    Bendrick, Gregg A.; Merlin, Peter W.


    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  20. Engine Development Design Margins Briefing Charts (United States)

    Bentz, Chuck


    New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose

  1. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment (United States)

    Robinson, Jeffrey S.


    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics


    Clark, B. J.


    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user

  3. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  4. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    utilizes a 50 channel digital receiver capable of navigating in high dynamic environments and high altitudes fed by antennas mounted diametrically opposed on the second stage airframe skin. To enhance cost effectiveness, the GPS MT System design implemented existing commercial parts and common environmental and interface requirements for both EELVs. The EELV GPS MT System design is complete, successfully qualified and has demonstrated that the system performs as simulated. This paper summarizes the current development status, system cost comparison, and performance capabilities of the EELV GPS MT System.

  5. Performance of Traffic-Alert Collision Avoidance (United States)

    Sampath, Krishna Sampath

    The performance of two TCAS systems is studied in the presence of electromagnetic scatterers. TCAS is an aircraft mounted angle of arrival (AOA) system, which estimates the bearing of a signal transmitted from a mode -S transponder on another nearby aircraft (intruder). Two systems are studied: (i) Comparison of Relative Amplitude system (CRA) and (ii) Spiral Phase Antenna (SPA). The CRA antenna receives the reply via four switched beams. The bearing is estimated by comparing the amplitudes of the received signal. The SPA is based on the phase interferometer, which utilizes the received phase via sum and difference beams. The AOA is computed by comparing the reply with similar values on a calibration table, which is generated by modeling the TCAS antenna on the bare fuselage of a Boeing 727-200. The antenna patterns for the TCAS are found via high frequency methods based on the Uniform Geometric Theory of Diffraction (UTD). By minimizing the standard deviation of the bearing error in a specified angular sector, optimal locations for top and bottom mounted TCAS antennas are found on the Boeing 727-200, 737-300 and 747-200 airframes. It will be shown that the overall bearing errors of the amplitude system are consistently smaller than the spiral phase TCAS. The effect of two types of nearby scatterers- -antennas, and engine inlets--is studied. The AT741 L-band blade, DMC60-1 VHF Communication antenna were chosen as being representative antenna interference examples. Models are derived for the blades via a moment method analysis followed by a least squares procedure to synthesize the scattering patterns. Studies were conducted to estimate the minimum separation between the two antennas for acceptable operation. It will be shown that the spiral phase TCAS is adversely affected by the presence of a blade antenna. The amplitude system does not suffer from this limitation, especially for the forward look angles which are of most interest here. A model to represent the

  6. UAS-Based Radar Sounding of Ice (United States)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.


    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally

  7. Polarized View of Supercooled Liquid Water Clouds (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas


    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  8. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel (United States)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.


    , the model airframe heating, and the location of the ground flow separation.

  9. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio


    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  10. 青少年田径运动损伤的调查研究%Investigation on Sports Injury of Junior Athletes

    Institute of Scientific and Technical Information of China (English)

    丁晓青; 颜彬


    体育教学与运动训练的主要任务是增强学生的体质,促进学生身心协调发展,培养学生的体育运动能力和良好的思想品质,使学生能够德、智、体全面发展。但是在运动训练过程中,常会有不同程度的运动损伤,机体一旦受到运动损伤,常要休息很长时间,并重新参加训练,才能达到以前的运动水平,所以可以根据损伤部位的规律和特点,及时地采取各种预防措施,合理安排损伤后的恢复性训练的强度和负荷,以及运用一些辅助的恢复性练习方法加速机体功能的恢复。怎样使得运动损伤在青少年田径运动中最大限度地避免,使得青少年一生健康幸福,便是本论文所要研究的内容。%The main task of physical education and sports training is to strengthen the students' physique,promote students' physical and mental coordinated development,cultivate the students' sports ability and the good thought quality,and enable the student to develop morally,intellectually and physically.However,in sports training,some different degrees of sports injury often occurs.Once injury,body often need to rest for a long time,and participate in training can reach the previous movement level,so according to injury parts rules and characteristics,timely adopted various prevention measures,reasonable arrangement after injury resumed training intensity and load,and using a few auxiliary of restorative practice method quicken airframe function recovery.How to make sports injury in youth athletics,of utmost avoid,making life is health and happiness of teenagers is the content of this article to study.

  11. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design (United States)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw


    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  12. Lessons learned about wireless technologies for data acquistion (United States)

    Mitchell, Kyle; Rao, Vittal S.; Pottinger, Hardy J.


    In recent years the electronics for developing sensor networks have become compact and cheaper. This has led to an interest in creating communities of distributed sensors that can collect and share data over a large area without being physically connected by wires. The Intelligent Systems Center at the University of Missouri-Rolla (UMR) has for several years been using commercial off-the-shelf (COTS) hardware and custom software to develop a system of stationary sensing nodes capable of pre processing their data locally and sharing processed data to produce global details. This distributed sensing and processing array is targeted for use in monitoring a wide variety of infrastructures. It has been laboratory tested for use in civil, automotive, and airframe monitoring. This paper is an overview of the technologies investigated and the level of functionality obtained from each hardware/sensor/target set. The current system consists of a web server, a central cluster and a collection of satellite clusters. The central cluster is a PC104 X 86 based computer with the satellite clusters being 8051 based single board computers. The satellite clusters are of the order 6 inch X 5 inch X 2 inch in size. There is an effort under way to place a short-range radio with a processor and a PZT sensor into a 2 inch X 1.5 inch X.5 inch package. Exercises have been carried out to demonstrate the ability of the central clusters to remotely control the satellite clusters and the web server's ability to control the central cluster. Further work is under way to integrate the entire system into a web server attached to the Internet and to a long distance communication device, currently employed is a cellular modem into the monitoring array. The web server communicates over standard phone lines to the central cluster, which is equipped with a cellular modem. The central cluster communicates with the satellite clusters using short-range wireless equipment. Proxim rangelan, Erickson

  13. The Integrated Mode Management Interface (United States)

    Hutchins, Edwin


    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  14. Jet Engine Noise Generation, Prediction and Control. Chapter 86 (United States)

    Huff, Dennis L.; Envia, Edmane


    Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters

  15. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions (United States)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.


    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  16. Advanced instrumentation for acousto-ultrasonic based structural health monitoring (United States)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik


    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  17. Material examination by neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography as a non-destructive testing technique has played a prominent role in the development of fuel for research and power reactors; studying of dimensional changes due to irradiation; inspection of corrosion in airframe structures and propeller blades; detection of light components and materials in explosive an investigation of diffusion of water into building materials etc. The development of neutron radiography facility by extracting a beam of thermal neutrons through a radial beam port around the Pakistan Research Reactor-1 is described. Graphite block of 30 cm thickness and bismuth block of 25 cm thickness have been used to boost-up thermal neutrons flux level and filter out high energy gamma radiation from the beam respectively. Thermal neutron flux level of the order of 1.06x10/sup 6/ -2/. s/sup -1/ and a neutron to gamma ratio of the order of 10/sup 5/ -2/.mR/sup -1/ have been measured at the object position which make the facility useful for investigation of material characteristics an properties applying direct neutron radiography method. The facility has been subjected to modifications and changes in order to enhance thermal neutron flux level and reduce the exposure time for better image quality at the object position. The use of beam purity and sensitivity indicators for determining the beam constituents and resolution of the technique is discussed. Visibility of holes under the lead and acrylic step wedges categorize the facility for direct applications. Neutron cross-sections for different metallic as well as composite materials have been determined by applying neutron radiographic technique. The use of neutron radiography as a complimentary technique to ensure the quality of nuclear fuel in addition to other applications like detection of light components in explosives and pyrotechnic devices is investigated. Detection of corrosion in aluminum joints, deformation in aeronautical components and honeycomb structures is

  18. Optimisation of the geometry of the drill bit and process parameters for cutting hybrid composite/metal structures in new aircrafts (United States)

    Isbilir, Ozden

    Owing to their desirable strength-to-weight characteristics, carbon fibre reinforced polymer composites have been favourite materials for structural applications in different industries such as aerospace, transport, sports and energy. They provide a weight reduction in whole structure and consequently decrease fuel consumption. The use of lightweight materials such as titanium and its alloys in modern aircrafts has also increased significantly in the last couple of decades. Titanium and its alloys offer high strength/weight ratio, high compressive and tensile strength at high temperatures, low density, excellent corrosion resistance, exceptional erosion resistance, superior fatigue resistance and relatively low modulus of elasticity. Although composite/metal hybrid structures are increasingly used in airframes nowadays, number of studies regarding drilling of composite/metal stacks is very limited. During drilling of multilayer materials different problems may arise due to very different attributes of these materials. Machining conditions of drilling such structures play an important role on tool wear, quality of holes and cost of machining.. The research work in this thesis is aimed to investigate drilling of CFRP/Ti6Al4V hybrid structure and to optimize process parameters and drill geometry. The research work consist complete experimental study including drilling tests, in-situ and post measurements and related analysis; and finite element analysis including fully 3-D finite element models. The experimental investigations focused on drilling outputs such as thrust force, torque, delamination, burr formation, surface roughness and tool wear. An algorithm was developed to analyse drilling induced delamination quantitatively based on the images. In the numerical analysis, novel 3-D finite element models of drilling of CFRP, Ti6Al4V and CFRP/Ti6Al4V hybrid structure were developed with the use of 3-D complex drill geometries. A user defined subroutine was developed

  19. Upcycling UAS into modular platforms for Earth science and autonomy research (United States)

    Dahlgren, R. P.; Dary, O. G.; Ogunbiyi, J. A.; Pinsker, E. A.; Reynolds, K. W.; Werner, C. A.


    This reports the results of a multidisciplinary project conducted at the NASA Ames Research Center (ARC) involving a number of student interns over the summers of 2014 and 2015. The project had a goal of applying rapid prototyping techniques, including 3D printing, to unmanned aircraft systems (UAS), and demonstrated that surplus UAS could be repurposed into new configurations suitable for conducting science missions. ARC received several units of the RQ-11 Raven and RQ-14 DragonEye manufactured by AeroVironment Corporation, along with ground stations and spare parts. These UAS have electric propulsion, a wingspan and length ~1m; they are designed to disassemble for transport, have a simple wing design with snap-together interfaces, made from lightweight materials. After removing all ITAR restricted technology these were made available to summer interns that also had access to 3D printing, CNC laser-cutting equipment through NASA's SpaceShop. The modular nature and simple wing profiles enabled the teams to deconstruct and subsequently reconfigure them into completely new airframes. Two multi-fuselage designs were assembled using Ardupilot-based common avionics architecture (CAA), with extended wingspans, an H-tail and an innovative cambered flap system. After NASA internal design reviews, the students fabricated new control surfaces and subcomponents necessary to splice the RQ-14 subcomponents back together. Laboratory testing was performed on test articles to determine bending modulus and safety factors, and documentation was prepared for airworthiness flight safety review. Upon receiving approval of documentation and flight readiness certification, the repurposed UAS were flown at Crows Landing airfield in Stanislaus County, California, initially under RC pilot control and subsequently under fully autonomous control. The RQ-11 is now being used to expand on the modularity design and the Team has been at work in designing different configurations and a payload pod

  20. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946 (United States)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft