WorldWideScience

Sample records for airframes

  1. Airframe noise prediction

    Science.gov (United States)

    1990-11-01

    This Data Item 90023, an addition to the Noise Sub-series, provides the FORTRAN listing of a computer program for a semi-empirical method that calculates the far-field airframe aerodynamic noise generated by turbo-fan powered transport aircraft or gliders in one-third octave bands over a frequency range specified by the user. The overall sound pressure level is also output. The results apply for a still, lossless atmosphere; other ESDU methods may be used to correct for atmospheric attenuation, ground reflection, lateral attenuation, and wind and temperature gradients. The position of the aircraft relative to the observer is input in terms of the height at minimum range, and the elevation and azimuthal angles to the aircraft; if desired the user may obtain results over a range of those angles in 10 degree intervals. The method sums the contributions made by various components, results for which can also be output individually. The components are: the wind (conventional or delta), tailplane, fin, flaps (single/double slotted or triple slotted), leading-edge slats, and undercarriage legs and wheels (one/two wheel or four wheel units). The program requires only geometric data for each component (area and span in the case of lifting elements, flap deflection angle, and leg length and wheel diameter for the undercarriage). The program was validated for aircraft with take-off masses from 42,000 to 390,000 kg (92,000 to 860,000 lb) at airspeeds from 70 to 145 m/s (135 to 280 kn). Comparisons with available experimental data suggest a prediction rms accuracy of 1 dB at minimum range, rising to between 2 and 3 dB at 60 degrees to either side.

  2. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    Science.gov (United States)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  3. Airframe-Jet Engine Integration Noise

    Science.gov (United States)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  4. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  5. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airframe Curriculum Subjects C Appendix C... Appendix C to Part 147—Airframe Curriculum Subjects This appendix lists the subjects required in at least 750 hours of each airframe curriculum, in addition to at least 400 hours in general...

  6. Aviation Maintenance Technology. Airframe. A201. Airframe Structures and Non-Metallic Structural Repairs. Instructor Material.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on airframe structures and nonmetallic structural repairs. The module contains four units that cover the following topics: (1) identifying aerodynamic and construction characteristics of aircraft structures; (2) inspecting wooden structures; (3) inspecting and…

  7. Airframe Noise Prediction by Acoustic Analogy: Revisited

    Science.gov (United States)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  8. Airframe integrity based on Bayesian approach

    Science.gov (United States)

    Hurtado Cahuao, Jose Luis

    Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability

  9. Airframe structural dynamic considerations in rotor design optimization

    Science.gov (United States)

    Kvaternik, Raymond G.; Murthy, T. Sreekanta

    1989-01-01

    An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included.

  10. Airframe Icing Research Gaps: NASA Perspective

    Science.gov (United States)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  11. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    Science.gov (United States)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  12. The Study of Tactical Missile's Airframe Digital Optimization Design

    Institute of Scientific and Technical Information of China (English)

    LUO Zhiqing; QIAN Airong; LI Xuefeng; GAO Lin; LEI Jian

    2006-01-01

    Digital design and optimal are very important in modern design. The traditional design methods and procedure are not fit for the modern missile weapons research and development. Digital design methods and optimal ideas were employed to deal with this problem. The disadvantages of the traditional missile's airframe design procedure and the advantages of the digital design methods were discussed. A new concept of design process reengineering (DPR) was put forward. An integrated missile airframe digital design platform and the digital design procedure, which integrated the optimization ideas and methods, were developed. Case study showed that the design platform and the design procedure could improve the efficiency and quality of missile's airframe design, and get the more reasonable and optimal results.

  13. Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes

    Science.gov (United States)

    Czech, Michael J.; Thomas, Russell H.

    2013-01-01

    As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided

  14. 14 CFR 65.85 - Airframe rating; additional privileges.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Airframe rating; additional privileges. 65.85 Section 65.85 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... developed by the manufacturer or a person acceptable to the FAA....

  15. Airframe technology for aircraft energy efficiency. [economic factors

    Science.gov (United States)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  16. Airframe and Powerplant Mechanics Certification Guide. Revised 1971.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide was prepared to provide information to prospective airframe and powerplant mechanics and other persons interested in the certification of mechanics. The requirements for a mechanic certificate are concerned with age, language ability, experience, knowledge, and skill. The sections of the guide explain the procedure for either…

  17. Avionics and airframe options: current usage and future plans.

    Science.gov (United States)

    Mayfield, T; Cady, G

    1994-01-01

    The 1994 Avionics and Airframe Survey was sent to 178 chief or lead pilots of helicopter emergency medical services (HEMS) programs in October 1993, and 100 (56%) were returned. Sixty-four programs (64%) reported that they operate one helicopter exclusively for EMS, 24 (24%) operate two, and 12 (12%) reported using three or more aircraft. Interestingly, the reported percentage of programs with two or more exclusive helicopters continues to rise, increasing by 5.6% to 36%. PMID:10131002

  18. Experimental Analysis of Flow over a Highly Maneuverable Airframe

    Science.gov (United States)

    Spirnak, Jonathan; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Eaton, John; Team HMA Team

    2015-11-01

    One way to reduce the collateral damage in war is by increasing the accuracy of indirect fire weapons. The Army Research Laboratory is currently developing a Highly Maneuverable Airframe (HMA) consisting of four deflecting canards to provide in-flight maneuverability while fins maintain short duration aerodynamic stability. An experiment was conducted using Magnetic Resonance Velocimetry (MRV) techniques to gather three dimensional, three-component velocity data for fluid flow over a scaled down HMA model. Tests were performed at an angle of attack of 2.3° and canard deflection angles of 0° and 2°. The resulting data serve to both validate computational fluid dynamics (CFD) simulations and understand the flow over this complex geometry. Particular interest is given to the development of the tip and inboard vortices that originate at the canard/body junction and the canard tips to determine their effects on airframe stability. Results show the development of a strong tip vortex and four weaker inboard vortices off each canard. Although the weaker inboard vortices dissipate rapidly downstream of the canard trailing edges, the stronger tip vortices persist until reaching the fins approximately six chord lengths downstream of the canard trailing edges. Team HMA designed and built the water channel and airframe for this experiment.

  19. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    Science.gov (United States)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  20. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  1. A probabilistic-based airframe integrity management model

    International Nuclear Information System (INIS)

    This paper proposes a lognormal distribution model to relate crack-length distribution to fatigue damage accumulated in aging airframes. The fatigue damage is expressed as fatigue life expended (FLE) and is calculated using the strain-life method and Miner's rule. A two-stage Bayesian updating procedure is constructed to determine the unknown parameters in the proposed semi-empirical model of crack length versus FLE. At the first stage of the Bayesian updating, the crack closure model is used to simulate the crack growth based upon generic but uncertain physical properties. The simulated crack-growth results are then used as data to update the uninformative prior distributions of the unknown parameters of the proposed semi-empirical model. At the second stage of the Bayesian updating, the crack-length data collected from field inspections are used as evidence to further update the posteriors from the first stage of the Bayesian updating. Two approaches are proposed to build the crack-length distribution for the fleet based on individual posterior crack distribution of each aircraft. The proposed distribution model of the crack length can be used to analyze the reliability of aging airframes by predicting, for instance, the probability that a crack will reach an unacceptable length after additional flight hours

  2. Integrating CFD, CAA, and Experiments Towards Benchmark Datasets for Airframe Noise Problems

    Science.gov (United States)

    Choudhari, Meelan M.; Yamamoto, Kazuomi

    2012-01-01

    Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. The combination of geometric complexity, high Reynolds number turbulence, multiple regions of separation, and a strong coupling with adjacent physical components makes the problem of airframe noise highly challenging. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate state of the art computational fluid dynamics, computational aeroacoustics, and in depth, holistic, and multifacility measurements targeting a selected set of canonical yet realistic configurations. This paper provides a brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far.

  3. Corrosion and corrosion fatigue of airframe aluminum alloys

    Science.gov (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  4. Reliability-Based Design Optimization of a Composite Airframe Component

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2009-01-01

    A stochastic design optimization methodology (SDO) has been developed to design components of an airframe structure that can be made of metallic and composite materials. The design is obtained as a function of the risk level, or reliability, p. The design method treats uncertainties in load, strength, and material properties as distribution functions, which are defined with mean values and standard deviations. A design constraint or a failure mode is specified as a function of reliability p. Solution to stochastic optimization yields the weight of a structure as a function of reliability p. Optimum weight versus reliability p traced out an inverted-S-shaped graph. The center of the inverted-S graph corresponded to 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponds to unity for reliability p (or p = 1). Weight can be reduced to a small value for the most failure-prone design with a reliability that approaches zero (p = 0). Reliability can be changed for different components of an airframe structure. For example, the landing gear can be designed for a very high reliability, whereas it can be reduced to a small extent for a raked wingtip. The SDO capability is obtained by combining three codes: (1) The MSC/Nastran code was the deterministic analysis tool, (2) The fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and (3) NASA Glenn Research Center s optimization testbed CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life raked wingtip structure of the Boeing 767-400 extended range airliner made of metallic and composite materials.

  5. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated framework is proposed for efficient prediction of rotorcraft and airframe noise. A novel wavelet-based multiresolution technique and high-order...

  6. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel, high-accuracy, high-fidelity, multiresolution (MRES), wavelet-based framework for efficient prediction of airframe noise sources and...

  7. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle

    Science.gov (United States)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    1999-01-01

    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  8. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    Science.gov (United States)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  9. Calculation of rotor impedance for use in design analysis of helicopter airframe vibrations

    Science.gov (United States)

    Nygren, Kip P.

    1990-01-01

    Excessive vibration is one of the most prevalent technical obstacles encountered in the development of new rotorcraft. The inability to predict these vibrations is primarily due to deficiencies in analysis and simulation tools. The Langley Rotorcraft Structural Dynamics Program was instituted in 1984 to meet long term industry needs in the area of rotorcraft vibration prediction. As a part of the Langley program, this research endeavors to develop an efficient means of coupling the rotor to the airframe for preliminary design analysis of helicopter airframe vibrations. The main effort was to modify the existing computer program for modeling the dynamic and aerodynamic behavior of rotorcraft called DYSCO (DYnamic System COupler) to calculate the rotor impedance. DYSCO was recently developed for the U.S. Army and has proven to be adaptable for the inclusion of new solution methods. The solution procedure developed to use DYSCO for the calculation of rotor impedance is presented. Verification of the procedure by comparison with a known solution for a simple wind turbine model is about 75 percent completed, and initial results are encouraging. After the wind turbine impedance is confirmed, the verification effort will continue by comparison to solutions of a more sophisticated rotorcraft model. Future work includes determination of the sensitivity of the rotorcraft airframe vibrations to helicopter flight conditions and rotor modeling assumptions. When completed, this research will ascertain the feasibility and efficiency of the impedance matching method of rotor-airframe coupling for use in the analysis of airframe vibrations during the preliminary rotorcraft design process.

  10. Airframe Repair Specialist, 2-3. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of five volumes of individualized, self-paced training manuals for use by those studying to be airframe repair technicians. Covered in the individual volumes are the following topics: fundamentals of organization and management (ground safety, aircraft ground safety, and aerospace and power…

  11. Airframe Assembly, Rigging and Inspection (Course Outline), Aviation Mechanics 2 (Air Frame): 9065.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for 135-hour course designed to familiarize the student with the manipulative skills and knowledge concerning airframe assembly, rigging, and inspection techniques in accordance with Federal Aviation Agency regulations. The aviation maintenance technician must be able to demonstrate a knowledge of assembly methods…

  12. Global-local Knowledge Coupling Approach to Support Airframe Structural Design

    NARCIS (Netherlands)

    Wang, H.

    2014-01-01

    The outsourcing that has taken place in the aircraft industry over the last few decades has created a globalized supply chain from and to a limited number of original equipment manufacturers (OEMs). This has led to multi-level design due to the shift from airframe subsystem design to suppliers. Incr

  13. A Simple Buckling Analysis Method for Airframe Composite Stiffened Panel by Finite Strip Method

    Science.gov (United States)

    Tanoue, Yoshitsugu

    Carbon fiber reinforced plastics (CFRP) have been used in structural components for newly developed aircraft and spacecraft. The main structures of an airframe, such as the fuselage and wings, are essentially composed of stiffened panels. Therefore, in the structural design of airframes, it is important to evaluate the buckling strength of the composite stiffened panels. Widely used finite element method (FEM) can analyzed any stiffened panel shape with various boundary conditions. However, in the early phase of airframe development, many studies are required in structural design prior to carrying out detail drawing. In this phase, performing structural analysis using only FEM may not be very efficient. This paper describes a simple buckling analysis method for composite stiffened panels, which is based on finite strip method. This method can deal with isotropic and anisotropic laminated plates and shells with several boundary conditions. The accuracy of this method was verified by comparing it with theoretical analysis and FEM analysis (NASTRAN). It has been observed that the buckling coefficients calculated via the present method are in agreement with results found by detail analysis methods. Consequently, this method is designed to be an effective calculation tool for the buckling analysis in the early phases of airframe design.

  14. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test

    Science.gov (United States)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

    2014-01-01

    In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy

  15. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  16. A coordination policy for the NATO SEASPARROW Missile and the Rolling Airframe Missile using dynamic programming

    OpenAIRE

    Drennan, Arthur Paul

    1994-01-01

    This thesis develops a dynamic program, the SEASPARROW Coordinated Assignment Model (SCAM), that determines the optimal coordinated assignment policy for the SEASPARROW missile in a shipboard self defense weapon configuration consisting of the NATO SEASPARROW Missile System, the Rolling Airframe Missile and the Phalanx Close-In Weapon System. Threat scenarios are described by the type of' anti-ship cruise missile, the number of threat missiles, the total duration of the arrival window and the...

  17. AH-1G flight vibration correlation using NASTRAN and the C81 rotor/airframe coupled analysis

    Science.gov (United States)

    Dompka, R. V.; Corrigan, J. J.

    1986-01-01

    Analytical results are presented bearing on the accuracy of state-of-the-art NASTRAN FEM modeling techniques and rotor/airframe coupling methods for the prediction of flight vibrations; these results have been studied by NASA and industry experts in order to ensure scientific control of the analysis/correlation exercise. The rotor loads predicted by the dynamically coupled rotor/airframe analysis showed good agreement between calculated and experimental blade loads, as did the predominant excitation frequency vibration levels predicted by NASTRAN.

  18. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  19. Toward Improved CFD Predictions of Slender Airframe Aerodynamics Using the F-16XL Aircraft (CAWAPI-2)

    Science.gov (United States)

    Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce

    2014-01-01

    A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.

  20. Evaluation of active cooling systems for a Mach 6 hypersonic transport airframe, part 2

    Science.gov (United States)

    Helenbrook, R. G.; Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Transpiration and convective cooling concepts are examined for the fuselage and tail surface of a Mach 6 hypersonic transport aircraft. Hydrogen, helium, and water are considered as coolants. Heat shields and radiation barriers are examined to reduce heat flow to the cooled structures. The weight and insulation requirements for the cryogenic fuel tanks are examined so that realistic totals can be estimated for the complete fuselage and tail. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy contruction materials. The results of the study are combined with results obtained on the wing structure, obtained in a previous study, to estimate weights for the complete airframe. The concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  1. State of the Art in Beta Titanium Alloys for Airframe Applications

    Science.gov (United States)

    Cotton, James D.; Briggs, Robert D.; Boyer, Rodney R.; Tamirisakandala, Sesh; Russo, Patrick; Shchetnikov, Nikolay; Fanning, John C.

    2015-06-01

    Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.

  2. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    Science.gov (United States)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  3. Research of structural concept to heat-resistant airframe of HOPE. HOPE tainetsu kozo gainen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Matsushita, T.; Atsumi, M. (National Space Development Agency, Tokyo (Japan))

    1991-11-05

    This paper states the concept of a heat-resistant structure of the HOPE airframe having a 10 ton weight when lifting off and also the research situation of heat-resistant structural materials. To study the structure, established are design conditions for lift-off, reentry to the atmosphere and landing. As to the load condition, the load at the time of lift-off is most critical. Relating to the temperature environment condition, thermal analysis is made of the time when a HOPE is on the orbit (low-temperature range) and reenters the atmosphere (high-temperature range), when the temperature environment is critical. The analysis shows that the temrerature environment is in a {minus}80-1700{degree}C (range). The heat-resistant structural materials are developed so as to meet these conditions. The paper describes distribution of the airframe surface temperature by aerodynamic heating at the reentry, conceptual figures of the airframe structure and structural materials. Results of the study of heat-resistant structural materials indicate an outlook for fabrication technique of a small-size component. Using thermal/temperature environment conditions, strucutre patterns and characteristics values of applied materials, a structure conceptual design model (a finite element model) is made, the analyses of the structure and heat resistance are conducted and a possibility of formation of the model is obtained. 4 refs., 13 figs., 5 tabs.

  4. Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad

    Science.gov (United States)

    Hahn, Andrew S.

    2012-01-01

    Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.

  5. Toward Establishing a Realistic Benchmark for Airframe Noise Research: Issues and Challenges

    Science.gov (United States)

    Khorrami, Mehdi R.

    2010-01-01

    The availability of realistic benchmark configurations is essential to enable the validation of current Computational Aeroacoustic (CAA) methodologies and to further the development of new ideas and concepts that will foster the technologies of the next generation of CAA tools. The selection of a real-world configuration, the subsequent design and fabrication of an appropriate model for testing, and the acquisition of the necessarily comprehensive aeroacoustic data base are critical steps that demand great care and attention. In this paper, a brief account of the nose landing-gear configuration, being proposed jointly by NASA and the Gulfstream Aerospace Company as an airframe noise benchmark, is provided. The underlying thought processes and the resulting building block steps that were taken during the development of this benchmark case are given. Resolution of critical, yet conflicting issues is discussed - the desire to maintain geometric fidelity versus model modifications required to accommodate instrumentation; balancing model scale size versus Reynolds number effects; and time, cost, and facility availability versus important parameters like surface finish and installation effects. The decisions taken during the experimental phase of a study can significantly affect the ability of a CAA calculation to reproduce the prevalent flow conditions and associated measurements. For the nose landing gear, the most critical of such issues are highlighted and the compromises made to resolve them are discussed. The results of these compromises will be summarized by examining the positive attributes and shortcomings of this particular benchmark case.

  6. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    Science.gov (United States)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  7. Life cycle strain mapping of composite airframe structures by using FBG sensors

    Science.gov (United States)

    Sekine, K.; Takahashi, I.; Kume, M.; Takeya, H.; Iwahori, Y.; Minakuchi, S.; Takeda, N.; Koshioka, Y.

    2011-04-01

    The objective of this work is to develop a system for monitoring the structural integrity of composite airframe structures by strain mapping over the entire lifecycle of the structure. Specifically, we use fiber Bragg grating sensors to measure strain in a pressure bulkhead made of carbon fiber reinforced plastics (CFRPs) through a sequence of lifecycle stages (molding, machining, assembly, operation and maintenance) and detect the damage, defects, and deformation that occurs at each stage from the obtained strain distributions. In previous work, we have evaluated strain monitoring at each step in the FRP molding and machining stages of the lifecycle. In the work reported here, we evaluate the monitoring of the changes in strain that occur at the time of bolt fastening during assembly. The results show that the FBG sensors can detect the changes in strain that occur when a load is applied to the structure during correction of thermal deformation or when there is an offset in the hole position when structures are bolted together. We also conducted experiments to evaluate the detection of damage and deformation modes that occur in the pressure bulkhead during operation. Those results show that the FBG sensors detect the characteristic changes in strain for each mode.

  8. Passive impact localisation for the structural health monitoring of new airframe materials

    International Nuclear Information System (INIS)

    This experimental work considers the use of permanently attached sensors for the detection and location of impacts to a carbon fibre reinforced plastic panel with stringers. Deterministic knowledge of the propagation of Lamb waves in the structure is not used. Instead a statistical measure of the signal is used to determine the arrival time of elastic waves propagating in the structure as a result of the impact. A comparison is made between a conventional method and the statistical method. The conventional method, which has been routinely used in industry for acoustic emission imaging, uses the timing of a peak in the recorded signal. The statistical method uses the Rayleigh maximum likelihood estimator. The statistical method is shown to provide both more precise and robust estimates of the elastic wave arrival time. An array of just four sensors is used to locate the impacts. The accuracy of the localisations is used to visualise the effectiveness of the two methods for the low sensor density used. Low sensor density is necessary for minimising system weight and cost. The equivalent net sensor density used in this experiment was five sensors per meter squared. Carbon fibre reinforced plastic is today used for both exterior surfaces and primary structure of airframes entering service. The industrial relevance of this work is to mitigate the diminishing role of visual inspection for evaluating the health of aerospace structures, where impact damage may not be visible

  9. Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Shockcell Noise

    Science.gov (United States)

    Mengle, Vinod G.; Ganz, Ulrich W.; Nesbitt, Eric; Bultemeier, Eric J.; Thomas, Russell H.; Nesbitt, Eric

    2006-01-01

    Azimuthally varying chevrons (AVC) which have been uniquely tailored to account for the asymmetric propulsion-airframe aeroacoustic interactions have recently shown significant reductions in jet-related community noise at low-speed take-off conditions in scale model tests of coaxial nozzles with high bypass ratio. There were indications that such AVCs may also provide shockcell noise reductions at high cruise speeds. This paper describes the flight test results when one such AVC concept, namely, the T-fan chevrons with enhanced mixing near the pylon, was tested at full-scale on a modern large twin-jet aircraft (777-300ER) with focus on shockcell noise at mid-cruise conditions. Shockcell noise is part of the interior cabin noise at cruise conditions and its reduction is useful from the viewpoint of passenger comfort. Noise reduction at the source, in the exhaust jet, especially, at low frequencies, is beneficial from the perspective of reduced fuselage sidewall acoustic lining. Results are shown in terms of unsteady pressure spectra both on the exterior surface of the fuselage at several axial stations and also microphone arrays placed inside the fuselage aft of the engine. The benefits of T-fan chevrons, with and without conventional chevrons on the core nozzle, are shown for several engine operating conditions at cruise involving supersonic fan stream and subsonic or supersonic core stream. The T-fan AVC alone provides up to 5 dB low-frequency noise reduction on the fuselage exterior skin and up to 2 dB reduction inside the cabin. Addition of core chevrons appears to increase the higher frequency noise. This flight test result with the previous model test observation that the T-fan AVCs have hardly any cruise thrust coefficient loss (< 0.05%) make them viable candidates for reducing interior cabin noise in high bypass ratio engines.

  10. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    Science.gov (United States)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  11. Unsteady Flowfield Around Tandem Cylinders as Prototype for Component Interaction in Airframe Noise

    Science.gov (United States)

    Khorrami, Meldi R.; Choudhari, Meelan M.; Jenkins, Luther N.; McGinley, Catherine B.

    2005-01-01

    Synergistic application of experiments and numerical simulations is crucial to understanding the underlying physics of airframe noise sources. The current effort is aimed at characterizing the details of the flow interaction between two cylinders in a tandem configuration. This setup is viewed to be representative of several component-level flow interactions that occur when air flows over the main landing gear of large civil transports. Interactions of this type are likely to have a significant impact on the noise radiation associated with the aircraft undercarriage. The paper is focused on two-dimensional, time-accurate flow simulations for the tandem cylinder configuration. Results of the unsteady Reynolds Averaged Navier-Stokes (URANS) computations with a two-equation turbulence model, at a Reynolds number of 0.166 million and a Mach number of 0.166, are presented. The experimental measurements of the same flow field are discussed in a separate paper by Jenkins, Khorrami, Choudhari, and McGinley (2005). Two distinct flow regimes of interest, associated with short and intermediate separation distances between the two cylinders, are considered. Emphasis is placed on understanding both time averaged and unsteady flow features between the two cylinders and in the wake of the rear cylinder. Predicted mean flow quantities and vortex shedding frequencies show reasonable agreement with the measured data for both cylinder spacings. Computations for short separation distance indicate decay of flow unsteadiness with time, which is not unphysical; however, the predicted sensitivity of mean lift coefficient to small angles of attack explains the asymmetric flowfield observed during the experiments.

  12. Effect of Directional Array Size on the Measurement of Airframe Noise Components

    Science.gov (United States)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    1999-01-01

    A study was conducted to examine the effects of overall size of directional (or phased) arrays on the measurement of aeroacoustic components. An airframe model was mounted in the potential core of an open-jet windtunnel, with the directional arrays located outside the flow in an anechoic environment. Two array systems were used; one with a solid measurement angle that encompasses 31.6 deg.of source directivity and a smaller one that encompasses 7.2 deg. The arrays, and sub-arrays of various sizes, measured noise from a calibrator source and flap edge model setups. In these cases, noise was emitted from relatively small, but finite size source regions, with intense levels compared to other sources. Although the larger arrays revealed much more source region detail, the measured source levels were substantially reduced due to finer resolution compared to that of the smaller arrays. To better understand the measurements quantitatively, an analytical model was used to define the basic relationships between array to source region sizes and measured output level. Also, the effect of noise scattering by shear layer turbulence was examined using the present data and those of previous studies. Taken together, the two effects were sufficient to explain spectral level differences between arrays of different sizes. An important result of this study is that total (integrated) noise source levels are retrievable and the levels are independent of the array size as long as certain experimental and processing criteria are met. The criteria for both open and closed tunnels are discussed. The success of special purpose diagonal-removal processing in obtaining integrated results is apparently dependent in part on source distribution. Also discussed is the fact that extended sources are subject to substantial measurement error, especially for large arrays.

  13. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    Science.gov (United States)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  14. Development of USES Specific Aptitude Test Battery S-111R84 for Airframe-and-Powerplant Mechanic (Aircraft-Aerospace Mfg.; Air Trans.) 621.281-014.

    Science.gov (United States)

    Oregon State Dept. of Human Resources, Salem.

    This report is designed to provide information required to evaluate the Specific Aptitude Test Battery (SATB) for Airframe-and-Powerplant Mechanic from three points of view: (1) technical adequacy of the research, (2) fairness to minorities, and (3) usefulness of the battery to Employment Service staff and employers in selecting individuals for…

  15. Summary of the Tandem Cylinder Solutions from the Benchmark Problems for Airframe Noise Computations-I Workshop

    Science.gov (United States)

    Lockard, David P.

    2011-01-01

    Fifteen submissions in the tandem cylinders category of the First Workshop on Benchmark problems for Airframe Noise Computations are summarized. Although the geometry is relatively simple, the problem involves complex physics. Researchers employed various block-structured, overset, unstructured and embedded Cartesian grid techniques and considerable computational resources to simulate the flow. The solutions are compared against each other and experimental data from 2 facilities. Overall, the simulations captured the gross features of the flow, but resolving all the details which would be necessary to compute the noise remains challenging. In particular, how to best simulate the effects of the experimental transition strip, and the associated high Reynolds number effects, was unclear. Furthermore, capturing the spanwise variation proved difficult.

  16. Development of Eddy Current Techniques for Detection of Deep Fatigue Cracks in Multi-Layer Airframe Components

    Science.gov (United States)

    Wincheski, Russell A.

    2008-01-01

    Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.

  17. Technology transfer and other public policy implications of multi-national arrangements for the production of commercial airframes

    Science.gov (United States)

    Gellman, A. J.; Price, J. P.

    1978-01-01

    A study to examine the question of technology transfer through international arrangements for production of commercial transport aircraft is presented. The likelihood of such transfer under various representative conditions was determined and an understanding of the economic motivations for, effects of, joint venture arrangements was developed. Relevant public policy implications were also assessed. Multinational consortia with U.S. participation were focused upon because they generate the full range of pertinent public issues (including especially technology transfer), and also because of recognized trends toward such arrangements. An extensive search and analysis of existing literature to identify the key issues, and in-person interviews with executives of U.S. and European commercial airframe producers was reviewed. Distinctions were drawn among product-embodied, process, and management technologies in terms of their relative possibilities of transfer and the significance of such transfer. Also included are observations on related issues such as the implications of U.S. antitrust policy with respect to the formation of consortia and the competitive viability of the U.S. aircraft manufacturing industry.

  18. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    Science.gov (United States)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  19. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    Science.gov (United States)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  20. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  1. CORROSION IN AIRFRAMES

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  2. Ramjets: Airframe integration

    OpenAIRE

    Moerel, J.L.; Halswijk, W.

    2010-01-01

    These notes deal with the integration of a (sc)ramjet engine in either an axisymmetric or a waverider type of cruise missile configuration. The integration aspects relate to the integration of the external and internal flow paths in geometrical configurations that are being considered worldwide. Integration of these two flow paths combined with the vehicle concept that flies an equilibrium cruise flight (lift = weight and thrust = drag) has led to an evaluation tool, HyTEC (Hypersonic Technol...

  3. Ramjets: Airframe integration

    NARCIS (Netherlands)

    Moerel, J.L.; Halswijk, W.

    2010-01-01

    These notes deal with the integration of a (sc)ramjet engine in either an axisymmetric or a waverider type of cruise missile configuration. The integration aspects relate to the integration of the external and internal flow paths in geometrical configurations that are being considered worldwide. Int

  4. RESEARCH PROGRESS OF DYNAMIC STABILITY OF HELICOPTER ROTOR/AIRFRAME%直升机旋翼/机体动稳定性研究进展

    Institute of Scientific and Technical Information of China (English)

    贺天鹏; 李书; 李小龙

    2013-01-01

    This paper first briefly reviews the types of the dynamic instability of helicopter rotor/airframe,including the isolated blade dynamic instabilities such as the rotor flap-pitch coupling,pitch-lag instability,the coupled flap-lag aeroelastic instability,the flap-lag-pitch coupled instability,and the coupled rotor/airframe instabilities,such as the ground resonance and the air resonance.The related studies are reviewed from 3 aspects,the aerodynamic and structural numerical models with high precisions,the numerical methods of dynamic stability,and the model testing.The major fields of the analytical technology for dynamic stability of helicopter rotor/airframe are discussed,including the rotor aeroelastic stability analysis using the coupled computational fluid dynamics/computational structural dynamics,the dynamic stability analysis of composite rotor with consideration of material uncertainty,the dynamic stability analysis of coupled rotor/airframe with lag damper,and helicopters with advanced configurations.In the end,the future development of dynamic stability of helicopter rotor/airframe is commented.%首先对直升机旋翼/机体动不稳定性问题的种类进行了简要概述,包括旋翼挥舞/变距、变距/摆振、挥舞/摆振和挥舞/摆振/变距耦合等孤立旋翼动不稳定性问题,以及直升机地面共振和空中共振等旋翼/机体耦合动不稳定性问题,然后分别从气动力与结构的高精度数值模型、动稳定性的计算分析方法和实验模型测试3个方面详细介绍了直升机旋翼/机体动不稳定性问题的研究现状,并着重讨论了直升机旋翼/机体动稳定性分析技术最近的主要研究方向:耦合CFD(computational fluid dynamics)/CSD(computational structural dynamics)的直升机旋翼气弹动稳定性分析、复合材料旋翼动稳定性分析及其材料不确定性影响、带减摆器的旋翼/机体动稳定性分析和先进直升机构型的旋翼/机体动稳定性

  5. Multi-Layered Integrated Airframe System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher performance ablative thermal protection systems (TPS) than is currently available for future exploration of our solar system's...

  6. Future Design for Composite Airframe Structures

    OpenAIRE

    Degenhardt, Richard; Kling, Alexander

    2011-01-01

    European space and aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribut...

  7. Computational methods for inlet airframe integration

    Science.gov (United States)

    Towne, Charles E.

    1988-01-01

    Fundamental equations encountered in computational fluid dynamics (CFD), and analyses used for internal flow are introduced. Irrotational flow; Euler equations; boundary layers; parabolized Navier-Stokes equations; and time averaged Navier-Stokes equations are treated. Assumptions made and solution methods are outlined, with examples. The overall status of CFD in propulsion is indicated.

  8. Multi-Layered Integrated Airframe System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase II program builds on the Phase I effort addressing NASA's future mission requirements by: 1) developing higher performing TPS materials capable...

  9. Advanced airframe alloys for supersonic transport

    International Nuclear Information System (INIS)

    With a specific gravity of 2.53 Mg m/sup -3/ compared with around 2.8 Mg m/sup -3/ for conventional aluminium alloys, the aluminium-lithium series offers the prospect of air frame weight savings equivalent to those anticipated with fibre-reinforced polymer composites, with the added advantage of continued use of well-established manufacturing routes. In seeking to identify materials for construction of future high-speed civil aircraft, with high-temperature capabilities superior to the current Concord alloy RR58, the creep and creep fracture properties of the aluminium-lithium alloy 8090-T.8771 have been compared with data available for three high strength conventional aluminium alloys, 2124-T851, 2419-T851 and 7010-T7351. At 427K, 890-T8771 displays similar stress-rupture characteristics and better creep resistance than 2124-T851, the test of the conventional aluminium alloys. The excellent creep performance of alloy 8090-T8771 then suggests that aluminium-lithium-matrix alloys suitably strengthened by a fine ceramic particle dispersion could be developed for high-temperature air frame applications. (author)

  10. Landing Gear Door Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  11. Parallel Tracking and Mapping for Controlling VTOL Airframe

    OpenAIRE

    Michal Jama; Dale Schinstock

    2011-01-01

    This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution pres...

  12. Towards Full Aircraft Airframe Noise Prediction: Detached Eddy Simulations

    Science.gov (United States)

    Khorrami, Mehdi R.; Mineck, Raymond E.

    2014-01-01

    Results from a computational study on the aeroacoustic characteristics of an 18%-scale, semi-span Gulf-stream aircraft model are presented in this paper. NASA's FUN3D unstructured compressible Navier-Stokes solver was used to perform steady and unsteady simulations of the flow field associated with this high-fidelity aircraft model. Solutions were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg, with the main gear off and on (the two baseline configurations). Initially, the study focused on accurately predicting the prominent noise sources at both flap tips for the baseline configuration with deployed flap only. Building upon the experience gained from this initial effort, subsequent work involved the full landing configuration with both flap and main landing gear deployed. For the unsteady computations, we capitalized on the Detached Eddy Simulation capability of FUN3D to capture the complex time-dependent flow features associated with the flap and main gear. To resolve the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips and the region surrounding the gear. Extensive comparison of the computed steady and unsteady surface pressures with wind tunnel measurements showed good agreement for the global aerodynamic characteristics and the local flow field at the flap inboard tip. However, the computed pressure coefficients indicated that a zone of separated flow that forms in the vicinity of the outboard tip is larger in extent along the flap span and chord than measurements suggest. Computed farfield acoustic characteristics from a FW-H integral approach that used the simulated pressures on the model solid surface were in excellent agreement with corresponding measurements.

  13. Structural-Acoustic Simulations in Early Airframe Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The structural design during the early development of an aircraft focuses on strength, fatigue, corrosion, maintenance, inspection, and manufacturing. Usually the...

  14. Inlet, engine, airframe controls integration development for supercruising aircraft

    Science.gov (United States)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  15. Parallel Tracking and Mapping for Controlling VTOL Airframe

    Directory of Open Access Journals (Sweden)

    Michal Jama

    2011-01-01

    Full Text Available This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV. This is a monocular vision based, simultaneous localization and mapping (SLAM system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution presented in this paper extends and significantly modifies a recent open-source algorithm that solves SLAM problem using approach fundamentally different from a traditional approach. Proposed modifications provide the position measurements necessary for the navigation solution on a UAV. The main contributions of this work include: (1 extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; (2 improved performance of the SLAM algorithm for lower camera frame rates; and (3 the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible.

  16. Low-frequency noise reduction of lightweight airframe structures

    Science.gov (United States)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  17. Flap Side Edge Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  18. Multifunctional Core Materials for Airframe Primary Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the use of composite materials on commercial airlines grows the technology of the composites must grow with it. Presently the efficiency gained by the...

  19. Computations in turbulent flows and off-design performance predictions for airframe-integrated scramjets

    Science.gov (United States)

    Goglia, G. L.; Spiegler, E.

    1977-01-01

    The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'.

  20. Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach

    Science.gov (United States)

    Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.

    2015-01-01

    Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.

  1. Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe

    Science.gov (United States)

    Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.

  2. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    Science.gov (United States)

    Leone, Frank A., Jr.; Lovejoy, Andrew E.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  3. Experimental and analytical study of an inlet forebody for an airframe-integrated scramjet concept

    Science.gov (United States)

    Andrews, E. H., Jr.; Agnone, A. M.; Pinckney, S. Z.

    1975-01-01

    Preliminary analytical and experimental inlet forebody investigations have been conducted at Mach numbers of 6.0 and 8.5. The forebody design concept consisted of a sharp-nosed right circular cone followed by elliptical cross sections. This concept resulted in swept isentropic compression which would allow swept cowl leading edges. Measurements were made to define the condition of the inviscid flow field developed by the forebody, including flow profiles in the vicinity of cowl leading-edge stations, and the three-dimensional boundary-layer effects. The investigation verified some of the expected differences between the predicted and the experimental results.

  4. Robust gas turbine and airframe system design in light of uncertain fuel and CO2 prices

    OpenAIRE

    Langmaak, Stephan; Scanlan, James; Sobester, Andras

    2016-01-01

    This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should fly at and whether a conventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft productivity, the passenger value of time, and the modal shift into account. To an...

  5. Full Field Stress Measurement for in Situ Structural Health Monitoring of Airframe Components and Repairs

    OpenAIRE

    Rajic, Nik; Street, N.; Brooks, C.; Galea, S.

    2014-01-01

    International audience The fatigue usage monitoring systems installed on various military aircraft rely primarily on strain gauges for sensory information, and for good reason. Strain gauges have a well established certification framework, a relatively good track record of reliability and they directly target the parameter that drives fatigue. Extending the role of strain gauges to structural health monitoring however is problematic. The reasons are manifold but a key one is that strain gr...

  6. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    Science.gov (United States)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  7. Numerical Simulation of Rolling-Airframes Using a Multi-Level Cartesian Method

    Science.gov (United States)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A supersonic rolling missile with two synchronous canard control surfaces is analyzed using an automated, inviscid, Cartesian method. Sequential-static and time-dependent dynamic simulations of the complete motion are computed for canard dither schedules for level flight, pitch, and yaw maneuver. The dynamic simulations are compared directly against both high-resolution viscous simulations and relevant experimental data, and are also utilized to compute dynamic stability derivatives. The results show that both the body roll rate and canard dither motion influence the roll-averaged forces and moments on the body. At the relatively, low roll rates analyzed in the current work these dynamic effects are modest, however the dynamic computations are effective in predicting the dynamic stability derivatives which can be significant for highly-maneuverable missiles.

  8. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  9. Safety of a Commercial Aircraft after Damage to Airframe due to Terrorist Attack

    OpenAIRE

    Lošťák, Miroslav

    2012-01-01

    Teroristické útoky znamenají dnes velké nebezpečí pro civilní dopravní letouny. V této práci jsou analyzovány možné způsoby útoků a je vybrán nejnebezpečnější. Jedná se o teroristický útok z vnějšku letounu za použití tříštivé bojové hlavice rakety. Tato bojová hlavice působí poškození draku letounu rojem střepin vzniklých při výbuchu. Je definován způsob určení zasažené plochy letounu za použití analytické geometrie. Analytickými rovnicemi jsou popsány geometrie rozptylu střepin a geometrie ...

  10. Mesh Independent Probabilistic Residual Life Prediction of Metallic Airframe Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Engineering and Materials, Inc. (GEM) along with its team members, Clarkson University and LM Aero, propose to develop a mesh independent probabilistic...

  11. Advances in Stability of Composite Airframe Structures Regarding Collapse, Robust Design and Dynamic Loading

    OpenAIRE

    Degenhardt, Richard

    2008-01-01

    European aircraft industry demands for reduced development and operating costs, by 20% and 50% in the short and long term, respectively. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents new achievements from the area of computational and experimental stability resear...

  12. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    Science.gov (United States)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  13. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    Science.gov (United States)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  14. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  15. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  16. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The research proposed targets airframe noise (AFN) prediction and reduction. AFN originates from complex interactions of turbulent flow with airframe components...

  17. An analysis of the efficiency of the functional matching between a flying wing MAV airframe and different types of micro propellers

    OpenAIRE

    Ionică CÎRCIU; BOSCOIANU Mircea

    2011-01-01

    This paper aims to present specific methods for optimizing the design of micro propellersfor small Reynolds numbers. In order to better understand the aim of this contribution, the effects of amicro propeller on the aerodynamic surfaces of a micro air vehicle (for example a flying wingconfiguration) are presented together with the analysis of the specific tools for the design of micropropellers. The final part aims to renew the interest in predicting the influence of the propeller-wingflow in...

  18. An analysis of the efficiency of the functional matching between a flying wing MAV airframe and different types of micro propellers

    Directory of Open Access Journals (Sweden)

    Ionică CÎRCIU

    2011-03-01

    Full Text Available This paper aims to present specific methods for optimizing the design of micro propellersfor small Reynolds numbers. In order to better understand the aim of this contribution, the effects of amicro propeller on the aerodynamic surfaces of a micro air vehicle (for example a flying wingconfiguration are presented together with the analysis of the specific tools for the design of micropropellers. The final part aims to renew the interest in predicting the influence of the propeller-wingflow interaction on the aerodynamic characteristics of deflected slipstream and small flying wingMAV.

  19. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates...

  20. The Model Of One-Type Aircraft Fleet Behaviour While Service And Advantages SHM V. NDT Implementation

    OpenAIRE

    Lewitowicz Jerzy; Kustroń Kamila

    2014-01-01

    The paper defines the essence of durability characteristics of the designing structure of an airframe in terms of flight safety. Particular attention is drawn to one of the main factors influencing the durability characteristics of the airframe – diagnostics system for the health assessment of the airframe during the process of operation. The effectiveness of the use of integrated solutions to the structure of the airframe providing a continuous assessment of the technical condition is presen...

  1. Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    Science.gov (United States)

    Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1976-01-01

    Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.

  2. Restructurable Controls Problem Definition and Future Research

    Science.gov (United States)

    Downing, D. R.

    1983-01-01

    Restructurable controls, failure classification, airframe design, failure type, control system type, post failure mission, plant identification, controller design techniques, and restructurable control concept validation tools are considered.

  3. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  4. Preliminary weight and cost estimates for transport aircraft composite structural design concepts

    Science.gov (United States)

    1973-01-01

    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  5. Multifunctional Aerogel Thermal Protection Systems for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The push to hypersonic flight regimes requires novel materials that are lightweight as well as thermally and structurally efficient for airframes and thermal...

  6. Plasma Fairings for Quieting Aircraft Landing Gear Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A major component of airframe noise for commercial transport aircraft is the deployed landing gear. The noise from the gear originates due to complex, unsteady...

  7. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    Science.gov (United States)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  8. Unstructured, High-Order Scheme Module with Low Dissipation Flux Difference Splitting for Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorough understanding of aircraft airframe and engine noise mechanisms and the subsequent acoustic propagation to the farfield is necessary to develop and evaluate...

  9. Costs and Benefits of Advanced Aeronautical Technology

    Science.gov (United States)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  10. Reduction of Flight Control System/Structural Mode Interaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing...

  11. Damage Adaptation Using Integrated Structural, Propulsion, and Aerodynamic Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed SBIR Phase I plan of research seeks to develop and demonstrate an integrated architecture designed to compensate for combined propulsion, airframe,...

  12. Effect of Engine Installation on Jet Noise using a Hybrid LES/RANS Approach Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Installation effects arising from propulsion airframe interaction are known to produce substantial variations in the in-situ jet noise. A hybrid LES/RANS...

  13. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 2

    Science.gov (United States)

    Adams, K. M.; Lucas, J. J.

    1977-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.

  14. RIDES: Raman Icing Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inflight icing of engines and airframe presents a significant hazard to air transport, especially at lower flight elevations during take-off or on approach. Ice...

  15. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    Science.gov (United States)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  16. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  17. All-Fiber-Optic Ultrasonic Health Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Health management of composite airframe components is essential for safety and reliability of future aircrafts. It reduces the risk of catastrophic failures and...

  18. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  19. Experimental assessment of low noise landing gear component design

    OpenAIRE

    Dobrzynski, Werner; Chow, Leung Choi; Smith, Malcolm; Boillot, Antoine; Dereure, Olivier; Molin, Nicolas

    2009-01-01

    Landing gear related airframe noise is one of the dominant aircraft noise components at approach. It therefore is essential to particularly reduce landing gear noise. In the European SILENCER project, advanced low noise gears had been designed and tested at full scale. In the current European co-financed project TIMPAN (Technologies to IMProve Airframe Noise) still more advanced low noise design concepts were investigated and noise tested on a ¼ scaled main landing gear model in the German-Du...

  20. Расчет на прочность модели «c» беспилотного летательного аппарата при различных условиях эксплуатации

    OpenAIRE

    Томило, Е. В.; ВАСИЛЕВИЧ Ю.В.

    2012-01-01

    The article describes the methodology analytically determining the stress state of airframe components of air drone. Additional element of rigidity of the wing is calculated. Physical and Mathematical simulation of the stress state of the wing which is strengthened tubular longeron of the airframe of air drone is performed using ANSYS software. As a result of theoretical calculations and simulation in ANSYS software, extreme angle of attack (18°) which had been found experimen- ...

  1. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  2. The Model Of One-Type Aircraft Fleet Behaviour While Service And Advantages SHM V. NDT Implementation

    Directory of Open Access Journals (Sweden)

    Lewitowicz Jerzy

    2014-12-01

    Full Text Available The paper defines the essence of durability characteristics of the designing structure of an airframe in terms of flight safety. Particular attention is drawn to one of the main factors influencing the durability characteristics of the airframe – diagnostics system for the health assessment of the airframe during the process of operation. The effectiveness of the use of integrated solutions to the structure of the airframe providing a continuous assessment of the technical condition is presented. Continuous diagnostics system integrated with the airframe, SHM, is classified as an intelligent solution. This paper presents a model of the behavior of one-type aircraft operating in the air operator’s fleet in terms of susceptibility to failure. Justified assumption in the description of this behavior, in the form of a “bathtub curve”. The analysis is supported by real data of failures. The benefits of using a continuous diagnostics system integrated with the airframe, SHM, is interpreted in relation to the classical approach with the use of non-destructive testing, NDT, for the three phases of the bathtub curve.

  3. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  4. An Investigation of the Impact of Aerodynamic Model Fidelity on Close-In Combat Effectiveness Prediction in Piloted Simulation

    Science.gov (United States)

    Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene

    2005-01-01

    Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.

  5. Costs and benefits of composite material applications to a civil STOL aircraft

    Science.gov (United States)

    Logan, T. R.

    1974-01-01

    Costs and benefits of advanced composite primary airframe structure were studied to determine cost-effective applications to a civil STOL aircraft designed for introduction in the early 1980 time period. Applications were assessed by comparing costs and weights with a baseline metal aircraft which served as a basis of comparison throughout the study. Costs as well as weights were estimated from specific designs of principal airframe components, thus establishing a cost-data base for the study. Cost effectiveness was judged by an analysis that compared direct operating costs and return on investment of the composite and baseline aircraft. A systems operations analysis was performed to judge effects of the smaller, lighter composite aircraft. It was determined that broad applications of advanced composites to the airframe considered could be cost-effective, but this advantage is strongly influenced by structural configuration and several key cost categories.

  6. Cooling system for high speed aircraft

    Science.gov (United States)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  7. Certification of the Cessna 152 on 100% ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    In June 1996, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, received a Supplemental Type Certificate (STC) for the use of 100% ethanol as a fuel for the Cessna 152, the most popular training aircraft in the world. This is the first certification granted by the Federal Aviation Administration (FAA) for a non-petroleum fuel. Certification of an aircraft on a new fuel requires a certification of the engine followed by a certification of the airframe/engine combination. This paper will describe the FAA airframe certification procedure, the tests required and their outcome using ethanol as an aviation fuel in a Cessna 152.

  8. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    Science.gov (United States)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  9. British government, industry agree to fund Hotel launcher studies

    Science.gov (United States)

    Brown, D. A.

    1986-02-01

    A program status assessment is presented for the horizontal takeoff and landing 'Hotol' single-stage-to-orbit space launcher, for which parallel, two-year airframe and propulsion system proof-of-concept studies have been approved. A two-year initial development program for the airframe would be followed by a four-year development and manufacturing phase that would begin upon the propulsion system concept's successful demonstration. Flight trials could begin in 1996. A number of significant modifications have already been made to the initial design concept, such as to the foreplanes, afterbody, engine intake, and orbital control system.

  10. QUANTITATIVE STUDY--AIRCRAFT INDUSTRY EMPLOYMENT NEEDS IN UTAH, COLORADO AND NEVADA. FINAL REPORT.

    Science.gov (United States)

    POMMERVILLE, ROBERT W.; STEPHENS, JOHN F.

    TO PROVIDE THE UTAH STATE BOARD OF EDUCATION WITH A BASIS FOR FUTURE DECISIONS REGARDING THE ESTABLISHMENT OF TRAINING PROGRAMS FOR AIRCRAFT PILOTS, AIRFRAME AND POWER PLANT MECHANICS, AND ELECTRONIC, RADIO, AND RADAR TECHNICIANS, A THREE-STATE EMPLOYMENT PROJECTION WAS MADE FOR THESE OCCUPATIONS. QUESTIONNAIRES WERE MAILED TO ADMINISTRATORS IN…

  11. Aircraft Landing Gear, Ice and Rain Control Systems (Course Outline), Aviation Mechanics 3 (Air Frame):9067.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with operation, inspection, troubleshooting, and repair of aircraft landing gear, ice and rain control systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe…

  12. 76 FR 71470 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Science.gov (United States)

    2011-11-18

    ... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... the power control unit (PCU) to the airframe could result in a loss of the rudder actuating system. The loss of both rudder PCU actuators could result in free play of the rudder control surface...

  13. Advanced Subsonic Airplane Design and Economic Studies

    Science.gov (United States)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  14. 78 FR 65176 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Science.gov (United States)

    2013-10-31

    ....qseries@aero.bombardier.com ; Internet http://www.bombardier.com . You may view this referenced service... Walker, Aerospace Engineer, Airframe and Mechanical Systems Branch, ANE-171, FAA, New York Aircraft... (516) 794-5531. SUPPLEMENTARY INFORMATION: Discussion We issued a notice of proposed rulemaking...

  15. 78 FR 65198 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Science.gov (United States)

    2013-10-31

    ...; telephone (516) 228-7318; fax (516) 794-5531. SUPPLEMENTARY INFORMATION: Discussion We issued a supplemental...-4539; email thd.qseries@aero.bombardier.com ; Internet http://www.bombardier.com . You may view this... INFORMATION CONTACT: Cesar Gomez, Aerospace Engineer, Airframe and Mechanical Systems Branch, ANE-171,...

  16. 78 FR 66859 - Airworthiness Directives; the Boeing Company Airplanes

    Science.gov (United States)

    2013-11-07

    ... flap drive system disconnect in both TE flap rotary actuators, and a possible flap aerodynamic blowback... INFORMATION CONTACT: Berhane Alazar, Aerospace Engineer, Airframe Branch, ANM-120S, FAA, Seattle Aircraft...-917-6590; email: Berhane.Alazar@faa.gov . SUPPLEMENTARY INFORMATION: Comments Invited We invite you...

  17. Haptic Interface for UAV Teleoperation

    NARCIS (Netherlands)

    Lam, T.M.

    2009-01-01

    In the teleoperation of an uninhabited aerial vehicle (UAV), the human operator is physically separated from the vehicle and lacks various multiple-sensory information such as sound, motions, and vibrations of the airframe. The operator is usually only provided with visual information, e.g., from ca

  18. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads...

    Science.gov (United States)

    2011-10-14

    ... thrust; and (b) the maximum acceleration of the engine. 2. For auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must be designed to withstand 1g level...: (a) Sudden APU deceleration due to malfunction or structural failure; and (b) The...

  19. 78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Science.gov (United States)

    2013-07-11

    ... airplane, was published in the Federal Register on September 25, 2012 (77 FR 58970). No comments were... auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must be... imposed by each of the following: (a) Sudden APU deceleration due to malfunction or structural...

  20. Detection of aeroacoustic sound sources on aircraft and wind turbines

    NARCIS (Netherlands)

    Oerlemans, Stefan

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic

  1. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Science.gov (United States)

    2010-01-01

    ... must constitute a turn that results if the launch vehicle's airframe rotates in an uncontrolled fashion... offset in a direction away from populated or other protected areas. The size of the offset must account... straight-up time determined as required by section A417.15 plus the duration of a potential...

  2. 14 CFR 25.335 - Design airspeeds.

    Science.gov (United States)

    2010-01-01

    ... under consideration. ER09FE96.017 ρ=density of air (slugs/ft3); c=mean geometric chord of the wing (feet... gusts, and penetration of jet streams and cold fronts) and for instrument errors and airframe...

  3. ASNT 1993 fall conference and quality testing show. NDT: A partner in engineering innovation

    International Nuclear Information System (INIS)

    A host of topics were addressed at this conference ranging from ASNT certification programs, emerging nondestructive testing technologies, airframe inspections, life extension in marine structures, radiology, and ASNT strategic planning to general nondestructive testing applications. Separate abstracts were prepared for 39 papers in this book

  4. 14 CFR 23.572 - Metallic wing, empennage, and associated structures.

    Science.gov (United States)

    2010-01-01

    ... Structure Fatigue Evaluation § 23.572 Metallic wing, empennage, and associated structures. (a) For normal... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Metallic wing, empennage, and associated... the airframe structure whose failure would be catastrophic must be evaluated under one of...

  5. Active noise control in fuselage design

    NARCIS (Netherlands)

    Krakers, L.A.; Tooren, M.J.L. van; Beukers, A.; Berkhof, A.P.; Goeje, M.P. de

    2003-01-01

    To achieve comfortable noise levels inside the passenger cabin, sound damping measures have to be taken to improve the sound insulation properties of the bare airframe. Usually the sound insulation requirements of a passenger cabin are met after the mechanical design of the fuselage structure is alr

  6. 78 FR 42417 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Science.gov (United States)

    2013-07-16

    ... during production could reduce the structural integrity of the airplane. We are issuing this AD to... faulty rivets installed in the airframes during production could reduce the structural integrity of the airplane. We are issuing this AD to ensure the structural integrity of the airplane. (f) Actions...

  7. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  8. The optimal control frequency response problem in manual control. [of manned aircraft systems

    Science.gov (United States)

    Harrington, W. W.

    1977-01-01

    An optimal control frequency response problem is defined within the context of the optimal pilot model. The problem is designed to specify pilot model control frequencies reflective of important aircraft system properties, such as control feel system dynamics, airframe dynamics, and gust environment, as well as man machine properties, such as task and attention allocation. This is accomplished by determining a bounded set of control frequencies which minimize the total control cost. The bounds are given by zero and the neuromuscular control frequency response for each control actuator. This approach is fully adaptive, i.e., does not depend upon user entered estimates. An algorithm is developed to solve this optimal control frequency response problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting dynamic properties.

  9. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Sorensen, N.R.

    1998-02-01

    This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.

  10. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  11. In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics

    Science.gov (United States)

    Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.

    2003-01-01

    The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.

  12. AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, TX, Nov. 13, 14, 1989, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Various papers on rotorcraft dynamics are presented. Individual topics addressed include: aeromechanical stability of helicopters, evolution and test history of the V-22 Aeroelastic Model Series, helicopter individual blade control through optimal output feedback, dynamic characteristics of composite beam structures, dynamic testing of thin-walled composite box beams in a vacuum chamber, fundamental dynamics issues for comprehensive rotorcraft analyses, and development of the second generation Comprehensive Helicopter Analysis System. Also considered are: experiences in NASTRAN airframe vibration predictions, application of CRFD program to total helicopter dynamics, vibration reduction on servoflap controlled rotor using HHC, V-22 MSC/NASTRAN airframe vibration analysis and correlation, responses of helicopter rotors to vibratory airloads, helicopter rotor load calculations, prediction and alleviation of V-22 rotor dynamic loads, free wake analysis of rotor configurations for reduced vibratory airloads.

  13. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  14. CFD Simulations of Tiltrotor Configurations in Hover

    Science.gov (United States)

    Potsdam, Mark a.; Strawn, Roger C.

    2002-01-01

    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  15. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  16. Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames

    Science.gov (United States)

    Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)

    2002-01-01

    A part of aviation accident mitigation is a crashworthy airframe structure, and an important measure of merit for a crashworthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crashworthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for a textile composite, circumferential fuselage frame subjected to a quasi-static, crash-type load. The test data for the frame are reported, and these data are used to develop and to validate methods for the progressive failure response.

  17. Comparison of the Flight Loads Spectra of Two Business Jets

    Directory of Open Access Journals (Sweden)

    Kliment Linda K.

    2014-06-01

    Full Text Available Operational flight loads have been analyzed from two business jets, a Global 5000 and a Global Express XRS. It is shown that both airframes were subjected to nearly the same number of ground-air-ground cycles, even though the flight times were much different. Flights have been divided into various phases, and loads and turbulence data have been categorized by altitude bands within each phase. Cumulative occurrences of incremental vertical gust load factors have been compared and shown to be comparable for the two airframes. Maneuver load factors have been shown to spread over a wider range of values for the 5000 in every phase. This has been confirmed through comparison of combined loads with those from a CRJ100 and an ERJ-145XR. Derived gust velocities, obtained from the load factors are presented in the form of exceedance spectra. These results from both aircraft are shown to agree well

  18. UAV FOR GEODATA ACQUISITION IN AGRICULTUREAL AND FORESTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Reidelstürz

    2012-09-01

    The airframe´s wingspan is about 3,45m weighting 4.2 kg, ready to fly. The hand launchable UAV can start from any place in agricultural regions. The wing is configured with flaps, allowing steep approaches and short landings using a „butterfly“ brake configuration. In spite of the lightweight configuration the UAV yet proves its worth under windy baltic wether situations by collecting regular sharp images of fields under wind speed up to 15m/s (Beaufort 6 –7. In further projects the development of further payload modules and a user friendly flight planning tool is scheduled considering different payload – and airframe requirements for different precision farming purposes and forest applications. Data processing and workflow will be optimized. Cooperation with further partners to establish UAV systems in agricultural, forest and geodata aquisition is desired.

  19. The modeling and prediction of multiple jet VTOL aircraft flow fields in ground effect

    Science.gov (United States)

    Kotansky, D. R.

    1982-01-01

    An engineering methodology based on an empirical data base and analytical fluid dynamic models was developed for the prediction of propulsive lift system induced aerodynamic effects for multiple lift jet VTOL aircraft operating in the hover mode in and out of ground effect. The effects of aircraft geometry, aircraft orientation (pitch, roll) as well as height above ground are considered. Lift jet vector and splay directions fit the airframe, lift jet exit flow conditions, and both axisymmetric and rectangular nozzle exit geometry are also accommodated. The induced suckdown flows are computed from the potential flowfield induced by the turbulent entrainment of both the free jets and wall jets in ground effect and from the free jets alone out of ground effect. The methodology emphasized geometric considerations, computation of stagnation lines and fountain upwash inclination, fountain upwash formation and development, and fountain impingement on the airframe.

  20. Status of Advanced Stitched Unitized Composite Aircraft Structures

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  1. Heat Insulation Analysis of an Aluminum Honeycomb Sandwich Structure

    OpenAIRE

    Konka, Kantha; Rao, Jayathirtha; Gupta, Kumar Swamy AVSS

    2015-01-01

    Heat-transfer has been performed on a sandwich thermal protection system (TPS) for future flight vehicles. The sandwich structures are built from thin walled metal sheets. These structures as a part of the airframe outer cover provide thermal protection to the interior parts mounted inside the vehicle. The temperature protection materials used for sandwich structures should have high strength even at the elevated temperatures. It is easier to simulate the 1500 C (after 1500 C material propert...

  2. Physics-based aeroacoustic modelling of bluff-bodies

    OpenAIRE

    Peers, Edward

    2009-01-01

    In this work physics-based modelling of bluff-body noise was performed with application to landing gear noise production. The landing gear is a primary contributor to airframe noise during approach. Noise is primarily generated from the unsteady pressures resulting from the turbulent flow around various components. The research was initiated in response to the need for an improved understanding of landing gear noise prediction tools. A computational approach was adopted so that the noise ...

  3. On LAGOON nose landing gear CFD/CAA computation over unstructured mesh using a ZDES approach.

    OpenAIRE

    De La Puente, F.; Sanders, L.; Vuillot, F

    2014-01-01

    This paper is part of ONERA's effort to compute the noise generation around landing gears, effort that has been shown with studies on a variety of configurations such as the ones included inside the BANC-II (Benchmark problems for Airframe Noise Computations). In this case, the addressed geometry is the LAGOON baseline nose landing gear. On the present computation, a refined unstructured mesh is generated for resolving the boundary layer up to y+ around one. The simulation of the flow was per...

  4. Landing Gear Aerodynamic Noise Prediction Using Building-Cube Method

    OpenAIRE

    Daisuke Sasaki; Deguchi Akihito; Hiroshi Onda; Kazuhiro Nakahashi

    2012-01-01

    Landing gear noise prediction method is developed using Building-Cube Method (BCM). The BCM is a multiblock-structured Cartesian mesh flow solver, which aims to enable practical large-scale computation. The computational domain is composed of assemblage of various sizes of building blocks where small blocks are used to capture flow features in detail. Because of Cartesian-based mesh, easy and fast mesh generation for complicated geometries is achieved. The airframe noise is predicted through ...

  5. Computational analysis of the effect of bogie inclination angle on landing gear noise

    OpenAIRE

    van Mierlo, K.J.; Takeda, K.; Peers, E.

    2010-01-01

    Airframe noise and in particular main landing gear noise is a major noise source during the approach phase. Wind tunnel tests have shown a strong relationship between the inclination angle of the bogie and the noise radiation of a main landing gear. Using Computational Fluid Dynamics, this paper investigates the flow features around three different configurations of a simplified four wheel main landing gear. The three configurations consist of a horizontal, 10 degree toe up and 10 degree t...

  6. Numerical investigation of landing gear noise

    OpenAIRE

    Liu, Wen

    2011-01-01

    Noise generated by aircraft landing gears is a major contributor to the overall airframe noise of a commercial aircraft during landing approach. Because of the complex geometry of landing gears, the prediction of landing gear noise has been very difficult and currently relies on empirical tools, which have limited reliability and flexibility on the applications of unconventional gear architectures. The aim of this research is to develop an efficient and accurate numerical method to investigat...

  7. Aerial robotic data acquisition system

    International Nuclear Information System (INIS)

    A small unmanned aerial vehicle (UAV) equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology. (author) 10 refs

  8. Assessing/Optimising Bio-fuel Combustion Technologies for Reducing Civil Aircraft Emissions

    OpenAIRE

    Mazlan, Nurul Musfirah

    2012-01-01

    Gas turbines are extensively used in aviation because of their advantageous volume as weight characteristics. The objective of this project proposed was to look at advanced propulsion systems and the close coupling of the airframe with advanced prime mover cycles. The investigation encompassed a comparative assessment of traditional and novel prime mover options including the design, off-design, degraded performance of the engine and the environmental and economic analysis of the system. The ...

  9. Characterization of the Vacuum Assisted Resin Transfer Molding Process for Fabrication of Aerospace Composites

    OpenAIRE

    Grimsley, Brian William

    2005-01-01

    This work was performed under a cooporative research effort sponsored by the National Aeronautics and Space Administration (NASA) in conjunction with the aerospace industry and acedemia. One of the primary goals of NASA is to improve the safety and affordability of commercial air flight. Part of this goal includes research to reduce fuel consumption by developing lightweight carbon fiber, polymer matrix composites to replace existing metallic airframe structure. In the Twenty-first Aircraft T...

  10. The Relationship between Unit Cost and Cumulative Quantity and the Evidence for Organizational Learning-by-Doing

    OpenAIRE

    Peter Thompson

    2012-01-01

    The concept of a learning curve for individuals has been around since the beginning of the twentieth century. The idea that an analogous phenomenon might also apply at the level of the organization took longer to emerge, but it had begun to figure prominently in military procurement and scheduling at least a decade before Wright's (1936) classic paper providing evidence that the cost of producing an airframe declined as cumulative output increased. Wright (1936) was careful not to describe hi...

  11. Aerial robotic data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  12. Design for Manufacturing of Composite Structures for Commercial Aircraft : The Development of a DFM strategy at SAAB Aerostructures

    OpenAIRE

    Andersson, Frida; Hagqvist, Astrid; Sundin, Erik; Björkman, Mats

    2014-01-01

    Within the aircraft industry, the use of composite materials such as carbon fiber reinforced plastics (CFRPs) is steadily increasing, especially in structural parts. Manufacturability needs to be considered in aircraft design to ensure a cost-effective manufacturing process. The aim of this paper is to describe the development of a new strategy for how SAAB Aerostructures addressing manufacturability issues during the development of airframe composite structures. Through literature review, be...

  13. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  14. Maintaining NASTRAN :the politics and technics of aerospace computing

    OpenAIRE

    Hu, Minghui

    1995-01-01

    This thesis describes a process of how NASA maintained the NASTRAN (NASA Structural Analysis) computer program. Chapter one addresses my theoretical concern and suggests to learn from both critical theorists and social constructivists. Chapters Two and Three tell the story of NASA and NASTRAN, a computer program developed by NASA for solving problems of airframes and space structures. The story of NASA and NASTRAN demonstrates a structural imbalance between social groups of NAS...

  15. Computational Methods for Failure Analysis and Life Prediction

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)

    1993-01-01

    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.

  16. Investigation of a jet-noise-shielding methodology

    OpenAIRE

    O'Reilly, Ciarán J.; Rice, Henry J.

    2015-01-01

    Ongoing research toward the reduction of environmental noise from aircraft is investigating the possible shielding of engine-noise sources by novel airframe configurations. To assess the noise-reduction benefits attainable from such configurations, it is necessary to develop appropriate acoustic evaluation tools. In this paper, a jet-noise-shielding- prediction methodology is described. The Tam–Auriault (“Jet Mixing Noise from Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 14...

  17. Analisa Sifat Fisis Dan Koefisien Serap Bunyi Material Komposit Polymeric Foam Dengan Variabel Polyurethane Untuk Pembuatan Badan Pesawat Uav

    OpenAIRE

    Dinata, Frans

    2014-01-01

    Acoustic material is a material engineering whose main function is to absorb the sound. Acoustic material is a material that can absorb sound energy, but the amount of absorbed energy is different for each material. The general objective of this research is to analyze the physical properties and sound absorption coefficient of composite polymeric foam material reinforced by palm trunk fiber to be used on airframe. From this research found that the variable II has a good physical properties an...

  18. PM200/PS200: Self-Lubricating Bearing and Seal Materials for Applications to 900 C

    Science.gov (United States)

    Sliney, Harold E.

    1991-01-01

    The development of the PS/PM200 class of self-lubricating material is described. The composition of the materials and their performance under temperature conditions from minus 160 degrees to 900 C (minus 250 to 1650 F) are examined. Applications in areas such as cylinder liner coatings, shaft seals, gas bearings, and airframe thermal expansion joints are proposed. Graphs and tables are provided to show service temperature limits, mechanical strength, linear thermal expansion, and thermal conductivity parameters.

  19. Ruine des structures aéronautiques rivetées aux chargements de type explosion ou pression dynamique

    OpenAIRE

    Langrand, Bertrand

    2010-01-01

    The context of the presented research concerns the vulnerability of airframes faced to blast explosions. Resuming the ruin scenario of a fuselage during a bomb attack, three research areas contribute to the issue set down in the report. The first one deals with the dynamic loading resulting from the explosion of a bomb within the fuselage. The second and third ones concerns the assemblies ; the characterisation and modelling of their mechanical behaviour and failure are particularly studied a...

  20. Development of an infrared gaseous radiation band model based on NASA SP-3080 for computational fluid dynamic code validation applications

    OpenAIRE

    Nelson, Edward L.

    1992-01-01

    The increased use of infrared imaging as a flow visualization technique and as a validation technique for computational fluid dynamics (CFD) codes has led to an in-depth study of infrared band models. The ability to create fast and accurate images of airframe and plume infrared emissions often depends on the complexity of the band model. An infrared band model code has been created based largely on the band model published in NASA SP-3080, Handbook of Infrared Radiation from Combustion Gases....

  1. Effect of chevrons on the slat noise of straight and swept wings

    Science.gov (United States)

    Belyaev, I. V.; Zaytsev, M. Yu.; Kopiev, V. F.

    2015-11-01

    An experimental study of the airframe noise for small-scale wing models with high-lift devices (slat and flap) is performed. It is shown that installation of chevrons on the lower edge of a slat leads to noise reduction on both straight and swept wings. Simultaneous acoustic and aerodynamic measurements show that chevrons lead to suppression of the slat tonal noise components without significantly affecting the wing aerodynamics.

  2. A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines

    Science.gov (United States)

    Lampkin, B. A.

    1980-01-01

    A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.

  3. The inclusion of semi-Markov reconfiguration transitions into the computer-aided Markov evaluator (CAME) program

    Science.gov (United States)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The modifications to the rule-based CAME program which allow it to more accurately model the fault-handling processes of fault-tolerant systems are described. This new capability is added to the CAME program by modeling the fault-handling processes of fault-tolerant systems. The integrated airframe/propulsion control system architecture (IAPSA II) reference configuration currently under development is detailed.

  4. Optimal design and numerical analysis of a morphing flap structure

    OpenAIRE

    Di Matteo, Natalia

    2012-01-01

    Over the next few years the aviation industry will face the challenge to develop a new generation of air vehicles characterised by high aerodynamic efficiency and low environmental impact. The technologies currently available, however, are inadequate to meet the demanding performance requirements and to comply with the stringent regulations in terms of polluting emissions. An innovative and very promising solution is offered by airframe morphing technologies. Morphing wing s...

  5. Damage tolerant wing-fuselage integration structural design applicable to future BWB transport aircraft

    OpenAIRE

    Sodzi, P.

    2009-01-01

    Wing joint design is one of the most critical areas in aircraft structures. Efficient and damage tolerant wing-fuselage integration structure, applicable to the next generation of transport aircraft, will facilitate the realisation of the benefits offered by new aircraft concepts. The Blended Wing Body (BWB) aircraft concept represents a potential revolution in subsonic transport efficiency for large airplanes. Studies have shown the BWB to be superior to conventional airframes...

  6. Development of a dynamic calculation tool forsimulation of ditching

    OpenAIRE

    Pilorget, Marc

    2011-01-01

    The present document is the final master thesis report written by Marc PILORGET,student at SUPAERO (home institution) and KTH (Royal Institute of Technology,Exchange University). This six months internship was done at DASSAULT AVIATION(Airframe engineering department) based in Saint-Cloud, France. It spanned from the 5thof July to the 23rd of December. The thesis work aims at developing an SPH (SmoothParticle Hydrodynamics) calculation method for ditching and implementing it in the finiteelem...

  7. Development of an approach and tool to improve the conceptual design process of the wing box structure of low-subsonic transport aircraft

    OpenAIRE

    Syamsudin, Hendri

    2009-01-01

    To produce a better airframe design, it is imperative to investigate the problems of design and manufacturing integration early on at the conceptual design stage. A new design approach and support tool is required which will aid the designer in future product development. This is a particular necessity in the current context of increasing complexity and challenging economic situations. The present work focuses on the development of a design approach and design aids for designing metallic w...

  8. Matlab as a robust control design tool

    Science.gov (United States)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  9. Design & modelling of a composite rudderless aeroelastic fin structure

    OpenAIRE

    Trapani, Matteo

    2010-01-01

    This thesis presents the study of a gapless and rudderless aeroelastic fin (GRAF) to enhance the directional stability and controllability of an aircraft. The GRAF concept was proposed and developed in the wake of previous research, targeted to improve flight performance and manoeuvrability, and to reduce fuel consumption and airframe weight. The study involved the subjects of aerodynamics, structural design and analysis, and flight mechanics. The work includes conceptual de...

  10. F-5M DTA Program

    OpenAIRE

    Daniel Ferreira V. Mattos; Alberto W. S. Mello Junior; Fabrício N. Ribeiro

    2009-01-01

    The Brazilian F-5 was submitted to avionics and weapons upgrade. This “new” aircraft has proven to be heavier and more capable. A comprehensive damage tolerance analysis is being performed to evaluate how the new mission profiles and weight distribution may affect the airframe structural integrity. Operational data were collected at the Brazilian Air Force Bases where the fighter is flown. Software was developed in order to acquire, filter and analyze flight data. This data was used for compa...

  11. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    Science.gov (United States)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  12. Adapting unmanned aerial vehicles for turbulence measurement

    Science.gov (United States)

    Witte, Brandon; Helvey, Jacob; Mullen, Jon; Thamann, Michael; Bailey, Sean

    2015-11-01

    We describe the approach of using highly instrumented and autonomous unmanned aerial vehicles (UAVs) to spatially interrogate the atmospheric boundary layer's turbulent flow structure. This approach introduces new capabilities not available in contemporary micro-meteorological measurement techniques such as instrumented towers, balloons, and manned aircraft. A key advantage in utilizing UAVs as an atmospheric turbulence research tool is that it reduces the reliance on assumptions regarding temporal evolution of the turbulence inherent within Taylor's frozen flow hypothesis by facilitating the ability to spatially sample the flow field over a wide range of spatial scales. In addition, UAVs offer the ability to measure in a wide range of boundary conditions and distance from the earth's surface, the ability to gather many boundary layer thicknesses of data during brief periods of statistical quasi-stationarity, and the ability to acquire data where and when it is needed. We describe recent progress made in manufacturing purpose-built airframes and adapting pre-fabricated airframes for these measurements by integrating sensors into those airframes and developing data analysis techniques to isolate the atmospheric turbulence from the measured velocity signal. This research is supported by NSF Award CBET-1351411.

  13. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  14. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1

    Science.gov (United States)

    Adams, K. M.; Lucas, J. J.

    1975-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  15. Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements

    Science.gov (United States)

    Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.

    1998-01-01

    An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.

  16. The X-43A (Hyper-X) Flies Into the Record Books

    Science.gov (United States)

    Grindle, Laurie; Bahm, Catherine

    2006-01-01

    The goal of the Hyper-X research program, conducted jointly by the NASA Dryden Flight Research Center and the NASA Langley Research Center, was to demonstrate and validate the technology, experimental techniques, and computation methods and tools for design and performance predictions of a hypersonic aircraft with an airframe-integrated, scramjet propulsion system. Three X-43A airframe-integrated, scramjet research vehicles were designed and fabricated to achieve that goal by flight test: two test flights at Mach 7 and one test flight at Mach 10. The first flight, conducted on June 2, 2001, experienced a launch vehicle failure and resulted in a 9-month mishap investigation. A two-year return-to-flight effort ensued and concluded when the second Mach 7 flight was successful on March 27, 2004. Just eight months later, on November 16, the X-43A successfully completed the third and final flight. These two flights were the first flight demonstrations, at Mach 7 and Mach 10 respectively, of an airframe-integrated, scramjet-powered, hypersonic vehicle.

  17. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  18. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    Science.gov (United States)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  19. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    Science.gov (United States)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  20. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  1. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  2. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  3. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  4. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  5. Predicted thermal superluminescence in low-pressure air

    CERN Document Server

    Aramyan, A R; Galechyan, G A; Mangasaryan, N R; Nersisyan, H B

    2009-01-01

    It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300-3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.

  6. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)

    Science.gov (United States)

    Ellis, Rod

    2000-01-01

    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  7. The electric power feeding on signal/electric power supply circuits, as a process for the simulation of external radio-frequency interferences

    Science.gov (United States)

    Brenner, Alfred

    1989-08-01

    When designing and checking modern aircrafts, the electromagnetic interference environment in power station range has to be considered. On account of the geometrical dimensions of planes, the airframe and the cabling in resonance take up a great deal of the interference activity. The drawbacks of the classical methods being outlined, a new process for the simulation of external high frequency disturbances was developed: the Bulk Current Injection Test (BCIT). Its principles are reported, it is shown that for the determination of an improvement factor the method is very useful, as well as for relative measurements. But the BCIT method takes a lot of time, even using computers.

  8. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    Science.gov (United States)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  9. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  10. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  11. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  12. Simulation of Hydrodynamic RAM of Aircraft Fuel Tank by Ballistic Penetration and Detonation

    Science.gov (United States)

    Kim, Jong H.; Jun, Seung M.

    Airframe survivability and hydrodynamic ram effect of aircraft are investigated. Penetration and internal detonation of a simple tank and ICW(Intermediate Complexity Wing) are simulated by nonlinear explicit calculation. Structural rupture and fluid burst are analytically realized using general coupling of FSI(Fluid-Structure Interaction) and adaptive master-slave contact. Besides, multi-material Eulerian solver and porosity algorithm are employed to model explosive inside fuel and tank bays which are defined in multi-coupling surfaces. Structure and fluid results are animated on the same viewport for enhanced visualization.

  13. A non-linear UAV altitude PSO-PD control

    Science.gov (United States)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  14. Recent developments in the dynamics of advanced rotor systems

    Science.gov (United States)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  15. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  16. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  17. Synthesis of aircraft structures using integrated design and analysis methods

    Science.gov (United States)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  18. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  19. Rotorcraft Technology for HALE Aeroelastic Analysis

    Science.gov (United States)

    Young, Larry; Johnson, Wayne

    2008-01-01

    Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.

  20. SOFIA: Flying the Telescope

    Science.gov (United States)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown

  1. Input/output models for general aviation piston-prop aircraft fuel economy

    Science.gov (United States)

    Sweet, L. M.

    1982-01-01

    A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.

  2. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography

    Science.gov (United States)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.

    1994-01-01

    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  3. Sensitivity analysis in multipole-accelerated panel methods for potential flow

    Science.gov (United States)

    Leathrum, James F., Jr.

    1995-01-01

    In the design of an airframe, the effect of changing the geometry on resulting computations is necessary for design optimization. The geometry is defined in terms of a series of design variables, including design variables to define the wing planform, tail, canard, pylon, and nacelle. Design optimization in this research is based on how these design variable affect the potential flow. The potential flow is computed as a function of the geometry and location of a series of panels describing the airframe, which are in turn a function of the design variables. Multipole accelerated panel methods improve the computational complexity of the problem and thus are an attractive approach. To utilize the methods in design optimization, it was necessary to define the appropriate sensitivity derivatives. The overhead incurred from finding the sensitivity derivatives in conjunction with the original computation should be small. This research developed the background for multipole-accelerated panel methods and the framework for finding sensitivity derivatives in the methods. Potential flow panel codes are commonly used for powered-lift aerodynamic predictions for three dimensional geometries. Given an airframe which has been discretized into a series of panels to define the airframe geometry, potential is computed as a function of the influence of all panels on all other panels. This is a computationally intensive problem for which efficient solutions are desired to improve the computational time and to allow greater resolution by use of more panels. One such solution is the use of hierarchical multipole methods which entail approximations of the effects of far-field terms. Hierarchical multipole methods have become prevalent in molecular dynamics and gravitational physics, and have been introduced into the fields of capacitance calculations, computational fluid dynamics, and electromagnetics. The methods utilize multipole expansions to describe the effect of bodies (i

  4. Computer technology forecast study for general aviation

    Science.gov (United States)

    Seacord, C. L.; Vaughn, D.

    1976-01-01

    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  5. Propulsion integration for a hybrid propulsive-lift system

    Science.gov (United States)

    Bowden, M. K.; Renshaw, J. H.; Sweet, H. S.

    1974-01-01

    In a discussion of STOL vehicles with conventional high-lift devices, the need for efficient power-augmented lift systems is presented, and the implications of quiet operation are noted. The underlying philosophy of a promising hybrid lift system with major interactions between aerodynamic, thermodynamic, acoustic, and configuration design technologies is derived. The technique by which engine and airframe-related characteristics for this application may be matched in an optimum manner is described and illustrated by describing the features of a particular short-haul commercial STOL vehicle.

  6. Tools Lighten Designs, Maintain Structural Integrity

    Science.gov (United States)

    2009-01-01

    Collier Research Corporation of Hampton, Virginia, licensed software developed at Langley Research Center to reduce design weight through the use of composite materials. The first license of NASA-developed software, it has now been used in everything from designing next-generation cargo containers, to airframes, rocket engines, ship hulls, and train bodies. The company now has sales of the NASA-derived software topping $4 million a year and has recently received several Small Business Innovation Research (SBIR) contracts to apply its software to nearly all aspects of the new Orion crew capsule design.

  7. An analysis of aerodynamic requirements for coordinated bank-to-turn autopilots

    Science.gov (United States)

    Arrow, A.

    1982-01-01

    Two planar missile airframes were compared having the potential for improved bank-to-turn control but having different aerodynamic properties. The comparison was made with advanced level autopilots using both linear and nonlinear 3-D aerodynamic models to obtain realistic missile body angular rates and control surface incidence. Cortical cross-coupling effects are identified and desirable aerodynamics are recommended for improved coordinated (BTT) (CBTT) performance. In addition, recommendations are made for autopilot control law analyses and design techniques for improving CBTT performance.

  8. Preliminary development of a VTOL unmanned air vehicle for the close-range mission.

    OpenAIRE

    Kress, Gregory A.

    1992-01-01

    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAVs and include the wings from a U...

  9. 某型柴油机发生捣缸原因分析及预防措施%Reasons Aanlysis of Cylinder Knock and Its Preventive Measures

    Institute of Scientific and Technical Information of China (English)

    龚伦超; 彭敦

    2012-01-01

    针对MTU16V396TE94型船用柴油机连杆断裂发生敲击捣缸故障,进行了原因分析,提出了有效的解决方法。%Based on marine engine MTU16V396TE94, the failure of the connecting-rod is illustrated briefly. Upon analysis, the main reason for the knocking of the connecting-rod is that the crack in the airframe, the paper puts forward an effective solution.

  10. Aircraft shielding experiments at general dynamics Fort Worth

    International Nuclear Information System (INIS)

    The Nuclear Aircraft Research Facility was established by Convair, Fort Worth, in 1950 under U.S. Air Force auspices to support the Aircraft Nuclear Propulsion Program in the areas of shielding and radiation effects problems affecting the airframe. The company subsequently became General Dynamics, Fort Worth. In 1954, an experimental shielding program was developed by B.P. Leonard and N.M. Schaeffer that incorporated air, ground, and structure scattering experiments with three sources: a large Co source, the gorund test reactor (GTR), and finally, the aircraft shield test reactor (ASTR). Shield penetration measurements were also planned with the GTR. Principal elements of this program are summarized in the paper

  11. Resin Transfer Moldable Polyimides Developed for High-Temperature Applications

    Science.gov (United States)

    Meador, Mary Ann

    2000-01-01

    High-temperature polyimides, such as PMR 15 (which was developed at the NASA Glenn Research Center at Lewis Field), are becoming an increasingly important class of materials for a variety of aerospace applications, such as aircraft engine components and propulsion and airframe components for reusable launch vehicles (RLV s). Because of their high specific strength and low density, use of these materials in place of more traditional aerospace materials, such as titanium, can significantly reduce component and vehicle weight, leading to reductions in fuel consumption (and pollutants), increases in payload and passenger capacity, and improvements in vehicle performance.

  12. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Science.gov (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  13. COINS: A composites information database system

    Science.gov (United States)

    Siddiqi, Shahid; Vosteen, Louis F.; Edlow, Ralph; Kwa, Teck-Seng

    1992-01-01

    An automated data abstraction form (ADAF) was developed to collect information on advanced fabrication processes and their related costs. The information will be collected for all components being fabricated as part of the ACT program and include in a COmposites INformation System (COINS) database. The aim of the COINS development effort is to provide future airframe preliminary design and fabrication teams with a tool through which production cost can become a deterministic variable in the design optimization process. The effort was initiated by the Structures Technology Program Office (STPO) of the NASA LaRC to implement the recommendations of a working group comprised of representatives from the commercial airframe companies. The principal working group recommendation was to re-institute collection of composite part fabrication data in a format similar to the DOD/NASA Structural Composites Fabrication Guide. The fabrication information collection form was automated with current user friendly computer technology. This work in progress paper describes the new automated form and features that make the form easy to use by an aircraft structural design-manufacturing team.

  14. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  15. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    Science.gov (United States)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  16. The Philosophy which underlies the structural tests of a supersonic transport aircraft with particular attention to the thermal cycle

    Science.gov (United States)

    Ripley, E. L.

    1972-01-01

    The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.

  17. Assessment of NASA's Aircraft Noise Prediction Capability

    Science.gov (United States)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  18. On the measurement of turbulence with unmanned aerial vehicles

    Science.gov (United States)

    Witte, Brandon; Thamann, Michael; Bailey, Sean

    2014-11-01

    We address the challenge of taking the novel approach of using highly instrumented and autonomous unmanned aerial vehicles (UAVs) to spatially interrogate the atmospheric boundary layer's turbulent flow structure over a wide range of length scales. This approach will introduce new capabilities not available in contemporary micro-meteorological measurement techniques: the ability to spatially sample the flow field over a wide range of spatial scales; a reduced reliance on assumptions regarding the temporal evolution of the turbulence; the ability to measure in a wide range of boundary conditions and distance from the earth's surface; the ability to gather many boundary layer thicknesses of data during brief periods of statistical quasi-stationarity; and the ability to acquire data where and when it is needed. We describe recent progress made in developing purpose-built airframes, integrating sensors into those airframes, and developing data analysis techniques to isolate the atmospheric turbulence from the measured velocity signal. This research is supported by NASA Kentucky Award NNX10AL96H and NSF Award CBET-1351411.

  19. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  20. A review of digital flight control system upsets caused by electromagnetic interference

    Science.gov (United States)

    Clough, Bruce T.

    Examinations of the MIL-STD-461C data base, operational experience, and specific tests show that upsets of digital flight-control systems are caused by low-frequency amplitude modulated signals corrupting the sensor inputs. Studies show that the current digital (and analog) flight-control systems are susceptible to electromagnetic radiation, that is, continuous wave, AM signal of 0 to 3 Hz modulation content, and has carrier frequencies of between 1 and 250 MHz. When the systems are placed in an airframe the frequency region constricts to 3 to 30 MHz, reflecting the influence of airframe/wire coupling. Field levels vary according to the electromagnetic interference susceptibility specifications the system was built to. Most current systems respond to average field levels of 200 V/m over some part of the carrier-frequency range. Steps to reduce the upset potential of analog portions are required if average field levels greater than 200 V/m are experienced during operation. Then, harder analog sensors and sensor/flight computer interfaces are required.

  1. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    Science.gov (United States)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  2. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji

    2014-01-01

    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  3. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  4. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  5. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    Science.gov (United States)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  6. A KBE-enabled design framework for cost/weight optimization study of aircraft composite structures

    Science.gov (United States)

    Wang, H.; La Rocca, G.; van Tooren, M. J. L.

    2014-10-01

    Traditionally, minimum weight is the objective when optimizing airframe structures. This optimization, however, does not consider the manufacturing cost which actually determines the profit of the airframe manufacturer. To this purpose, a design framework has been developed able to perform cost/weight multi-objective optimization of an aircraft component, including large topology variations of the structural configuration. The key element of the proposed framework is a dedicated knowledge based engineering (KBE) application, called multi-model generator, which enables modelling very different product configurations and variants and extract all data required to feed the weight and cost estimation modules, in a fully automated fashion. The weight estimation method developed in this research work uses Finite Element Analysis to calculate the internal stresses of the structural elements and an analytical composite plate sizing method to determine their minimum required thicknesses. The manufacturing cost estimation module was developed on the basis of a cost model available in literature. The capability of the framework was successfully demonstrated by designing and optimizing the composite structure of a business jet rudder. The study case indicates the design framework is able to find the Pareto optimal set for minimum structural weight and manufacturing costin a very quick way. Based on the Pareto set, the rudder manufacturer is in conditions to conduct both internal trade-off studies between minimum weight and minimum cost solutions, as well as to offer the OEM a full set of optimized options to choose, rather than one feasible design.

  7. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  8. Development and Utility of a Piloted Flight Simulator for Icing Effects Training

    Science.gov (United States)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.

    2003-01-01

    A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.

  9. ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests

    Science.gov (United States)

    Littell, Justin D.; Annett, Martin S.

    2016-01-01

    During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.

  10. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan

    2002-01-01

    A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.

  11. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth

  12. Analysis of Influence of Aircraft Flexibility on Nose Landing Gear Shimmy%飞机柔性对前起落架摆振的影响分析

    Institute of Scientific and Technical Information of China (English)

    冯飞; 常正; 聂宏; 张明; 彭一明

    2011-01-01

    以某型客机为对象,研究了飞机滑跑时前起落架的摆振动力学问题.基于多体动力学理论,采用子结构模态综合法将关键部件柔性化,建立了计及前起落架和机身弹性的全机地面滑跑刚柔耦合动力学模型,并进行了摆振稳定性仿真分析.采用起落架静力试验和模态试验的结果对模型进行校验,仿真结果与试验结果吻合较好.给出了以飞机速度和防摆阻尼系数组成的飞机摆振稳定区域图,研究了机身刚体运动与弹性对摆振的影响.结果表明:采用线性防摆阻尼时,定义摆振临界稳定所需的初始摆角对临界防摆阻尼的影响可忽略不计;采用简化方法将起落架弹性等效为起落架和机身连接刚度的方法会带来较大的误差,仅适用于定性分析;机身刚体运动对防摆阻尼影响很小,机身柔性的影响相对较大,使得中高速情况下所需防摆阻尼平均增加了12.1%.%The dynamics of nose landing gear shimmy is studied in this paper with a certain type of aircraft. Based on the multi-body dynamics theory.a dynamics model of shimmy is developed which takes into consideration the flexibility of nose landing gear and airframe by means of the component mode synthesis method, to investigate the stability of shimmy. The model is verified with the data of static tests and mode tests. Diagrams of the stable region are presented accordingly, formed by the taxiing speed and critical anti-shimmy damping coefficients,to explore the influence of the movement and flexibility of the airframe. The result shows that,the initial angle of nose wheel contributes little to shimmy analysis. A simplified method,which replaces the flexibility of the nose landing gear by the connection stiffness between the nose landing gear and airframe,is not accurate enough and can only be applied to qualitative analysis. The movement of the rigid airframe exerts little influences on the critical damping coefficient

  13. Aeroacoustic characterization of scaled canonical nose landing gear configurations

    Science.gov (United States)

    Zawodny, Nikolas S.

    Aircraft noise is a critical issue in the commercial airline industry. Airframe noise is a subcomponent of aircraft noise and is generally dominant over jet engine noise during approach conditions, which can lead to high community impact. Landing gears have been identified as major components of airframe noise during landing configurations for commercial aircraft. They are perhaps the least understood contributors to airframe noise due to complex flow patterns associated with intricate gear component geometries. Nose landing gear in particular have received much attention in recent years, exhibiting acoustic signatures on the order of the main landing gear assembly of an aircraft, while simultaneously being more amenable to scaled wind tunnel testing. In order to characterize the acoustic signature of a complex geometry such as a nose landing gear, it is important to isolate, study, and understand the acoustic contributions of individual component geometries. The purpose of this dissertation is to develop a correlation between the complex flow field nature and far-field acoustic signature of a nose landing gear sub-system. The model under investigation is a 1/2-scale shock-strut cylinder coupled with an adjustable torque link apparatus. This geometry was chosen due to its fundamental importance and implementation across a wide span of commercial aircraft. The fluid dynamic (surface pressure and stereoscopic particle image velocimety) and aeroacoustic (far-field microphone and phased array) experiments were performed in the University of Florida Aeroacoustic Flow Facility. The experimental data compare favorably with the results of a numerical simulation using PowerFLOW, a lattice-Boltzmann solver developed by the Exa Corporation. The far-field acoustic results of this dissertation have shown non-uniform scaling behavior as a function of frequency for the different model configurations tested. For frequencies that appropriately satisfied the condition of acoustic

  14. Initial noise predictions for rudimentary landing gear

    Science.gov (United States)

    Spalart, Philippe R.; Shur, Mikhail L.; Strelets, Mikhail Kh.; Travin, Andrey K.

    2011-08-01

    A four-wheel "rudimentary" landing gear (RLG) truck was designed for public-domain research, with a level of complexity which is manageable in current numerical simulations, and a weak Reynolds-number sensitivity. Experimental measurements of wall-pressure fluctuations are allowing a meaningful test of unsteady simulations with emphasis on noise generation. We present three Detached-Eddy Simulations (DES) using up to 18 million points in the high-order NTS code. The first is incompressible with the model placed in the wind tunnel, as requested for the 2010 workshop on Benchmark problems for Airframe Noise Computations (BANC-I), intended for force and surface-pressure studies. The second and third are at Mach 0.115 and Mach 0.23, with only one wall, a "ceiling" analogous to a wing (but infinite and inviscid), and are used to exercise far-field noise prediction by coupling the Detached-Eddy Simulations and a Ffowcs-Williams/Hawkings calculation. The results include wall-pressure, and far-field-noise intensities and spectra. The wall pressure signals in the three simulations are very similar and, in a comparison published separately, agree well with experiment and other simulations. In the absence of experimental noise data, the attention is focused on internal quality checks, by varying the permeable Ffowcs-Williams/Hawkings calculation surface and then by using only the solid surface. An unexpected finding at these Mach numbers is an apparent strong role for quadrupoles, revealed by a typical deficit of 3 dB in the solid-surface results, relative to the permeable-surface results. The solid-surface approach has variants, related to the presence of the ceiling (a plane of symmetry), which can increase this error further; there is little consensus on the exact configuration of the solid surfaces in the Ffowcs-Williams/Hawkings calculation procedure. Tentative theoretical arguments suggest that a balance somewhat in favor of quadrupoles over dipoles is plausible at Mach

  15. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai

    Science.gov (United States)

    2000-01-01

    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration

  16. Steady-State Cycle Deck Launcher Developed for Numerical Propulsion System Simulation

    Science.gov (United States)

    VanDrei, Donald E.

    1997-01-01

    One of the objectives of NASA's High Performance Computing and Communications Program's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to reduce the time and cost of generating aerothermal numerical representations of engines, called customer decks. These customer decks, which are delivered to airframe companies by various U.S. engine companies, numerically characterize an engine's performance as defined by the particular U.S. airframe manufacturer. Until recently, all numerical models were provided with a Fortran-compatible interface in compliance with the Society of Automotive Engineers (SAE) document AS681F, and data communication was performed via a standard, labeled common structure in compliance with AS681F. Recently, the SAE committee began to develop a new standard: AS681G. AS681G addresses multiple language requirements for customer decks along with alternative data communication techniques. Along with the SAE committee, the NPSS Steady-State Cycle Deck project team developed a standard Application Program Interface (API) supported by a graphical user interface. This work will result in Aerospace Recommended Practice 4868 (ARP4868). The Steady-State Cycle Deck work was validated against the Energy Efficient Engine customer deck, which is publicly available. The Energy Efficient Engine wrapper was used not only to validate ARP4868 but also to demonstrate how to wrap an existing customer deck. The graphical user interface for the Steady-State Cycle Deck facilitates the use of the new standard and makes it easier to design and analyze a customer deck. This software was developed following I. Jacobson's Object-Oriented Design methodology and is implemented in C++. The AS681G standard will establish a common generic interface for U.S. engine companies and airframe manufacturers. This will lead to more accurate cycle models, quicker model generation, and faster validation leading to specifications. The standard will facilitate cooperative work between

  17. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    Science.gov (United States)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  18. Noise reduction experience at Hughes Helicopter, Inc.

    Science.gov (United States)

    Janakiram, D. S.

    1982-01-01

    Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).

  19. Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2010-03-01

    Full Text Available The Helicopter Adaptive Aircraft (HADA is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  20. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    sensitivities with advance ratio, and advance ratio dependent control cross coupling. Hub moment response to rotor disturbances results in transients where rotor damping is reduced due to low Lock number blades and reduced rotor angular velocity. Experimentally identified frequency response shows dominant low frequency modes with advance ratio dependent damping and the frequencies are on the order of typical airframe modes. Rotor speed response to swashplate control perturbations from trim results in non-linear behavior that is advance ratio dependent, and which stems from cyclic flapping behavior at high advance ratio. Rotor control strategies were developed including the use of variable shaft incidence to achieve rotor speed control with hub moment suppression achieved through cyclic control. Flight dynamics characteristics resulting from the coupling of the rotor and airframe were predicted in flight using a baseline airframe with conventional fixed-wing controls, representative of the current interest in the concept vehicle. Results predicted by linearization of the non-linear models were compared with system identification results using the non-linear simulation as surrogate flight test data. Low frequency rotor response is shown to couple with the vehicle motion for short period and roll mode response to airframe control inputs. The rotor speed mode is shown to couple with short period and long period vehicle modes as the rotor torque balance is sensitive to vehicle speed and attitude changes.

  1. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System

    Science.gov (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  2. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    Science.gov (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  3. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe

    2012-11-01

    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  4. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics

    Science.gov (United States)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.

    2015-01-01

    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  5. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  6. Personal Aircraft Point to the Future of Transportation

    Science.gov (United States)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  7. The Computer Aided Aircraft-design Package (CAAP)

    Science.gov (United States)

    Yalif, Guy U.

    1994-01-01

    The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the 1970's, many computer programs have been written to help automate preliminary airplane design. Time and resource analyses have identified, 'a substantial decrease in project duration with the introduction of an automated design capability'. Proof-of-concept studies have been completed which establish 'a foundation for a computer-based airframe design capability', Unfortunately, today's design codes exist in many different languages on many, often expensive, hardware platforms. Through the use of a module-based system architecture, the Computer aided Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of existing programs. Through the use of an expert system, it will add an additional feature that could be described as indispensable to entry level engineers and students: the incorporation of 'expert' knowledge into the automated design process.

  8. Multi-Element Airfoil System

    Science.gov (United States)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

    2014-01-01

    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

  9. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  10. An approximation approach for uncertainty quantification using evidence theory

    International Nuclear Information System (INIS)

    Over the last two decades, uncertainty quantification (UQ) in engineering systems has been performed by the popular framework of probability theory. However, many scientific and engineering communities realize that there are limitations in using only one framework for quantifying the uncertainty experienced in engineering applications. Recently evidence theory, also called Dempster-Shafer theory, was proposed to handle limited and imprecise data situations as an alternative to the classical probability theory. Adaptation of this theory for large-scale engineering structures is a challenge due to implicit nature of simulations and excessive computational costs. In this work, an approximation approach is developed to improve the practical utility of evidence theory in UQ analysis. The techniques are demonstrated on composite material structures and airframe wing aeroelastic design problem

  11. ELECTROCHEMICAL FEATURES DURING PITTING CORROSION OF LY12 ALUMINUM ALLOY IN DIFFERENT NEUTRAL SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    F.H. Cao; Z. Zhang; Y.L. Cheng; J.F. Li; J.Q. Zhang; C.N. Cao

    2003-01-01

    The electrochemical features of commercial airframe material, Al alloy LY12, in 0. 349mol/L neutral sodium chloride (NaCl) and sodium sulfate (Na2SO4) solutions were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The microstructure of the as-tested samples was studied by scanning electron microscopy. The results show that the Nyquist plots of LY12 at different immersion time displayed different fe atures, indicating that the Cl- ions elevate the corrosion rate and inhibit the repassivation of a metastable pit. It also shows that the corrosion product of LY12 formed in SO2-4 solution isn't easy to dissolve, and it will cover the surface of working electrode in the electrolyte. SEM images indicate that the corrosion apparent area and pit number of LY12 in NaCl solution are greater than that in Na2SO4 solution.

  12. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  13. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  14. Finite element thermal analysis of convectively-cooled aircraft structures

    Science.gov (United States)

    Wieting, A. R.; Thornton, E. A.

    1981-01-01

    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  15. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  16. Shock capturing finite-difference and characteristic reference plane techniques for the prediction of three-dimensional nozzle-exhaust flowfields

    Science.gov (United States)

    Dash, S.; Delguidice, P.

    1978-01-01

    This report summarizes work accomplished under Contract No. NAS1-12726 towards the development of computational procedures and associated numerical. The flow fields considered were those associated with airbreathing hypersonic aircraft which require a high degree of engine/airframe integration in order to achieve optimized performance. The exhaust flow, due to physical area limitations, was generally underexpanded at the nozzle exit; the vehicle afterbody undersurface was used to provide additional expansion to obtain maximum propulsive efficiency. This resulted in a three dimensional nozzle flow, initialized at the combustor exit, whose boundaries are internally defined by the undersurface, cowling and walls separating individual modules, and externally, by the undersurface and slipstream separating the exhaust flow and external stream.

  17. Overview of Low-Speed Aerodynamic Tests on a 5.75% Scale Blended-Wing-Body Twin Jet Configuration

    Science.gov (United States)

    Vicroy, Dan D.; Dickey, Eric; Princen, Norman; Beyar, Michael D.

    2016-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.

  18. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  19. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    Science.gov (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  20. Skycrane Helicopter

    Science.gov (United States)

    1972-01-01

    The Sikorsky S-64 Skycrane helicopter, which saw service with the U.S.Army as the CH-54 Tarhe, flew at Langley in its later version, the CH-54B. The 'Crane' was used in studies into the handling of large helicopters, and as such sported various loads attached to the airframe. The Army retired its Skycranes in the 1970s and they were completely removed from military service in the 1980s. Ex-military Skycranes entered commercial service, where they are used in various heavy-lift roles, including the lumber industry. The U.S. military preferred a heavy-lift aircraft that also had a cabin capable of carrying cargo and troops.

  1. Adaptive, tolerant and efficient composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Martin; Sinapius, Michael (eds.) [German Aerospace Center DLR, Braunschweig (Germany). Inst. of Composite Structures and Adaptive Systems

    2013-07-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.

  2. Adaptive, tolerant and efficient composite structures

    CERN Document Server

    Sinapius, Michael

    2013-01-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances.  Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along ...

  3. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  4. Hybrid upper surface blown flap propulsive-lift concept for the Quiet Short-Haul Research Aircraft

    Science.gov (United States)

    Cochrane, J. A.; Carros, R. J.

    1975-01-01

    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels, high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  5. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    Science.gov (United States)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  6. International SAMPE Technical Conference, 23rd, Kiamesha Lake, NY, Oct. 21-24, 1991, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Carri, R.L.; Poveromo, L.M.; Gauland, J. (Grumman Aircraft Systems, Bethpage, NY (United States))

    1991-01-01

    The present conference discusses the cost of composite structures, microwave processing of thermoset resin-matrix composites at high pressure, the impact damage-tolerance of helicopter sandwich structures, novel fluorinated polybenzoxazole thermoplastics, low expansion coefficient polyimides containing metal-ion additives, thermoplastic polyimides for supersonic airframes, material properties and laser cutting of composites, fiber-matrix bond tests in composites, and a global/local stress analysis of stitched composites. Also discussed are moldless composite aircraft wing structural design modifications, advances in anhydride epoxy systems, medical applications of advanced composites, metal-joining processes for space fabrication, close-tolerance plastic master molds, the ballistic energy absorption of composites, soft and hard composite armors, resin-transfer molding of 3D composites, toughened cyanate ester resins, and thermoforming of thermoplastics.

  7. Radiated Emissions from a Remote-Controlled Airplane-Measured in a Reverberation Chamber

    Science.gov (United States)

    Ely, Jay J.; Koppen, Sandra V.; Nguyen, Truong X.; Dudley, Kenneth L.; Szatkowski, George N.; Quach, Cuong C.; Vazquez, Sixto L.; Mielnik, John J.; Hogge, Edward F.; Hill, Boyd L.; Strom, Thomas H.

    2011-01-01

    A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.

  8. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics

    Science.gov (United States)

    Tischler, Mark B.

    1987-01-01

    The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.

  9. Ultra Efficient Engine Technology Systems Integration and Environmental Assessment

    Science.gov (United States)

    Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)

    2002-01-01

    This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.

  10. Cross-stiffened continuous fiber structures

    Science.gov (United States)

    Ewen, John R.; Suarez, Jim A.

    1993-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.

  11. An Icing Of Aircraft – Reasons, Consequences, Counteraction

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2014-12-01

    Full Text Available The article presents reasons of an helicopter’s ising as well as an aircraft’s ising. The maion attention is addressed a conteraction of an ising. Autors divide the problem an two groups: an ising of an airframe – mostly lifting surfaces, an ising of engines. According to authors reasons, an extension (first of all consequences of airframe’s ising considerably differ from seemingly similar events in an engine. The considerable attention is concentrated on a connteraction of consequences of an ising during the flight. The most complicated ising referes to helicopters, considering their particular aerodynamics characteristics. The autors dedicated is greather attention. Results reached during investigations of heating rotor blades in ITWL are presented.

  12. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    Science.gov (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  13. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    Science.gov (United States)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  14. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    Science.gov (United States)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  15. Plastic media blasting activities at Hill Air Force Base

    Science.gov (United States)

    Christensen, J. D.

    1993-03-01

    Hill Air Force Base in Utah developed plastic media blasting (PMB) paint removal process for removing paint from Air Force aircraft. The development of the process involved extensive testing of various abrasives and subsequent parameters to end up with an approved production process. Hill AFB has been using PMB in a production mode since 1985, and completely discontinued chemical stripping of airframes in 1989. We have recently installed and began operating a fully automated PMB facility that utilizes two nine-axis robots to strip an aircraft. This system has enabled us to further reduce the manhours required to strip an aircraft, and also allowed us to remove the employee from the blasting atmosphere into a control room. We have, and will continue to realize, significant environmental and economic savings by using PMB. Hill is also actively involved with the development of future paint stripping technologies.

  16. The drive for Aircraft Energy Efficiency

    Science.gov (United States)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  17. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  18. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  19. Fleet retrofit report

    Science.gov (United States)

    1973-01-01

    Flight tests are evaluated of an avionics system which aids the pilot in making two-segment approaches for noise abatement. The implications are discussed of equipping United's fleet of Boeing 727-200 aircraft with two-segment avionics for use down to Category 2 weather operating minima. The experience is reported of incorporating two-segment approach avionics systems on two different aircraft. The cost of installing dual two-segment approach systems is estimated to be $37,015 per aircraft, including parts, labor, and spares. This is based on the assumption that incremental out-of-service and training costs could be minimized by incorporating the system at airframe overhaul cycle and including training in regular recurrent training. Accelerating the modification schedule could add up to 50 percent to the modification costs. Recurring costs of maintenance of the installation are estimated to be of about the same magnitude as the potential recurrent financial benefits due to fuel savings.

  20. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  1. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  2. Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element Method

    Science.gov (United States)

    Quach, Cuong C.; Vazquez, Sixto L.; Tessler, Alex; Moore, Jason P.; Cooper, Eric G.; Spangler, Jan. L.

    2005-01-01

    NASA Langley Research Center is investigating a variety of techniques for mitigating aircraft accidents due to structural component failure. One technique under consideration combines distributed fiber optic strain sensing with an inverse finite element method for detecting and characterizing structural anomalies anomalies that may provide early indication of airframe structure degradation. The technique identifies structural anomalies that result in observable changes in localized strain but do not impact the overall surface shape. Surface shape information is provided by an Inverse Finite Element Method that computes full-field displacements and internal loads using strain data from in-situ fiberoptic sensors. This paper describes a prototype of such a system and reports results from a series of laboratory tests conducted on a test coupon subjected to increasing levels of damage.

  3. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    Science.gov (United States)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  4. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    Science.gov (United States)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos

    2013-01-01

    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  5. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  6. Seal Technology for Hypersonic Vehicle and Propulsion: An Overview

    Science.gov (United States)

    Steinetz, Bruce M.

    2008-01-01

    Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.

  7. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    Science.gov (United States)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  8. Flight research with the MIT Daedalus prototype

    Science.gov (United States)

    Bussolari, Steven R.; Youngren, Harold H.; Langford, John S.

    1987-01-01

    The MIT Light Eagle human-powered aircraft underwent long-duration testing over Rogers Dry Lake in California during January, 1987. Designed as a prototype for the MIT Daedalus Project, the Light Eagle's forty-eight flights provided pilot training, established new distance records for human-powered flight, and provided quantitative data through a series of instrumented flight experiments. The experiments focused on: (1) evaluating physiological loads on the pilot, (2) determining airframe power requirements, and (3) developing an electronic flight control system. This paper discusses the flight test program, its results and their implications for the follow-on Daedalus aircraft, and the potential uses of the Light Eagle as a low Reynolds number testbed.

  9. A Web-based Computer-Aided Material-Selection System for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yuanpei Lan

    2011-05-01

    Full Text Available A web-based computer-aided material-selection system for aircraft design was put forward, applying a material-selection strategy combined screening and ranking methods. This combined strategy could make good use of selection experience and material testing data, thus making the selection results more reasonable and bringing more standardization to the material selection process. The system’s Browser/ Server (B/S architecture together with its implementation details was described. The B/S system could be accessed with web browser conveniently. The system’s effectiveness was demonstrated by two aircraft-design material-selection case in actual applications. This system could help designer select suitable materials for airframe, provide knowledge for inexperienced engineer and accumulate enterprise-level material-selection expertise.

  10. Consortium for Offshore Aviation Research : description of current projects

    International Nuclear Information System (INIS)

    The five projects which are currently underway or being evaluated through the Consortium for Offshore Aviation Research (COAR) were described. The projects are: (1) the use of narrow-beam, high intensity searchlights as approach aids for helicopter landings on helidecks in low visibility conditions, (2) establishment of a precipitation and fog characterization facility forecasting, (3) use of ice-phobic materials for airframe anti-icing, (4) use of differential global positioning satellite systems for offshore operations, and (5) the development of a virtual reality head-up-display for the approach to the Hibernia helideck (or any other helideck) to facilitate low visibility landings. Seed funding for these projects has been provided by the European Space Agency. Additional support is being provided by Hibernia, Petro-Canada, Husky Oil and Chevron Oil Canada. Initiatives to increase the number of partners are underway. 1 fig

  11. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  12. Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication

    Science.gov (United States)

    Taminger, Karen M. B.; Hafley, Robert A.

    2002-01-01

    Researchers at NASA Langley Research Center are developing a new electron beam freeform fabrication (EB F(sup 3)) technique to fabricate metal parts. This process introduces metal wire into a molten pool created by a focused electron beam. Potential aerospace applications for this technology include ground-based fabrication of airframe structures and on-orbit construction and repair of space components and structures. Processing windows for reliably producing high quality 2219 aluminum parts using the EB F(sup 3) technique are being defined. The effects of translation speed, wire feed rate, and beam power on the resulting microstructures and mechanical properties are explored. Tensile properties (ultimate tensile strength, yield strength, and elongation) show little effect over the range of processing conditions tested. Basic processing-microstructure-property correlations are drawn for the EB F(sup 3) process.

  13. Near DC eddy current measurement of aluminum multilayers using MR sensors and commodity low-cost computer technology

    Science.gov (United States)

    Perry, Alexander R.

    2002-06-01

    Low Frequency Eddy Current (EC) probes are capable of measurement from 5 MHz down to DC through the use of Magnetoresistive (MR) sensors. Choosing components with appropriate electrical specifications allows them to be matched to the power and impedance characteristics of standard computer connectors. This permits direct attachment of the probe to inexpensive computers, thereby eliminating external power supplies, amplifiers and modulators that have heretofore precluded very low system purchase prices. Such price reduction is key to increased market penetration in General Aviation maintenance and consequent reduction in recurring costs. This paper examines our computer software CANDETECT, which implements this approach and permits effective probe operation. Results are presented to show the intrinsic sensitivity of the software and demonstrate its practical performance when seeking cracks in the underside of a thick aluminum multilayer structure. The majority of the General Aviation light aircraft fleet uses rivets and screws to attach sheet aluminum skin to the airframe, resulting in similar multilayer lap joints.

  14. Performance and Stability Analysis of a Shrouded-Fan UAV

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    This paper deals with the estimation of the performance and stability for a shrouded-fan unmanned rotorcraft whose mission profile also prescribes the flight in ground effect. The not so simple estimation of the aerodynamic coefficients and of the thrust in the various situations makes the performance calculation and the stability analysis difficult tasks. This is due to the strong interaction between the fan flow and shroud that causes quite different flow structures about the airframe depending on flight conditions. A further difficulty is related to the ground effect which produces substantial modifications in the rotor thrust and aerodynamic coefficients. To evaluate performance and stability, two models have been developed. One determines the aerodynamic coefficients of the shroud, whereas the other one calculates thrust and moment of the rotors system. Both models take into account the mutual interference between fan flow and fuselage and ground effect. Performance and stability are then discussed with ...

  15. Closing Symposium of the DFG Research Unit FOR 1066

    CERN Document Server

    Niehuis, Reinhard; Kroll, Norbert; Behrends, Kathrin

    2016-01-01

    The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of...

  16. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight

    Science.gov (United States)

    Marshall, Laurie A.; Bahm, Catherine; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper provides an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The third and final flight, November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. The goals and objectives for the project as well as those for the third flight are presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter is discussed. The second flight of the X-43A was successfully conducted on March 27, 2004. Mission differences, vehicle modifications and lessons learned from the second flight as they applied to the third flight are also discussed. An overview of flight 3 results is presented.

  17. Development and testing of the Perseus proof-of-concept aircraft. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Langford, J.S. [Aurora Flight Sciences Corp., Manassas, VA (United States)

    1993-02-26

    Many areas of global climate change research could benefit from a flexible, affordable, and near-term platform that could provide in situ measurements in the upper troposphere and lower stratosphere. To provide such a capability, the Perseus unmanned science research aircraft was proposed in 1989. As a first step toward the development of Perseus, a proof-of-concept (POC) demonstrator was constructed and tested during 1990 and 1991. The POC was a full scale Perseus airframe intended to validate the structural, aerodynamic, and flight control technologies for the Perseus within a total budget of about $1.5 million. Advanced propulsion systems needed for the operational Perseus were not covered in the POC program due to funding limitations. This report documents the design, development, and testing of the Perseus POC.

  18. Flexible missile autopilot design studies with PC-MATLAB/386

    Science.gov (United States)

    Ruth, Michael J.

    1989-01-01

    Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.

  19. Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)

    Science.gov (United States)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.

  20. The Strategy of Drone Warfare

    Directory of Open Access Journals (Sweden)

    Mike Fowler

    2014-12-01

    Full Text Available There is a budding controversy with the combat use of Remotely Piloted Aircraft (RPA. Also known as Unmanned Aerial Vehicles (UAV, there is a growing literature critiquing the use of RPAs, often using the pejorative term “drone.” RPAs seem to get the blame for a variety of complaints about policy and employment that have little to do with the airframe or its processes. While all of the military functions of an RPA can and are done by manned aircraft, the RPAs must endure additional scrutiny. The decision to employ RPAs requires additional considerations at both the strategic and operational levels of war. This article explores the strategic issues that govern the decisions to employ RPAs in combat. The decision to employ RPAs involves a variety of strategic and operational concerns involving legal issues, technological constraints, operational efficiency, and an interdependency upon information operations.

  1. Thermal stress analysis of the NASA Dryden hypersonic wing test structure

    Science.gov (United States)

    Morris, Glenn

    1990-01-01

    Present interest in hypersonic vehicles has resulted in a renewed interest in thermal stress analysis of airframe structures. While there are numerous texts and papers on thermal stress analysis, practical examples and experience on light gage aircraft structures are fairly limited. A research program has been undertaken at General Dynamics to demonstrate the present state of the art, verify methods of analysis, gain experience in their use, and develop engineering judgement in thermal stress analysis. The approach for this project has been to conduct a series of analyses of this sample problem and compare analysis results with test data. This comparison will give an idea of how to use our present methods of thermal stress analysis, and how accurate we can expect them to be.

  2. The research of optical windows used in aircraft sensor systems

    International Nuclear Information System (INIS)

    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. High performance jet-engine flight test data base for HSR

    Science.gov (United States)

    Kelly, Jeffrey

    1992-01-01

    The primary acoustic priority of the flight test data base for HSR is the validation of the NASA Aircraft Noise Prediction Program (ANOPP) and other source noise codes. Also, the noise measurements are an important support function for the High Lift Program devoted to HSR. Another concern that will be addressed is a possible noise problem 7-20 miles from take-off during climbout. The attention arises from the higher speeds envisioned for the HSCT compared to conventional aircraft causing levels to increase because of Doppler amplification in conjunction with high source levels due to jet noise. An attempt may be made to measure airframe noise for the F-16XL test which would provide an assessment of this noise component for delta wing aircraft.

  4. F-5M DTA Program

    Directory of Open Access Journals (Sweden)

    Daniel Ferreira V. Mattos

    2009-01-01

    Full Text Available The Brazilian F-5 was submitted to avionics and weapons upgrade. This “new” aircraft has proven to be heavier and more capable. A comprehensive damage tolerance analysis is being performed to evaluate how the new mission profiles and weight distribution may affect the airframe structural integrity. Operational data were collected at the Brazilian Air Force Bases where the fighter is flown. Software was developed in order to acquire, filter and analyze flight data. This data was used for comparison between the pre and post modernization mission profiles and to determine the stress level in each of the known aircraft fatigue critical locations (FCL. The results show that the change in aircraft weight and balance and the new operational profile can significantly change the inspection intervals of certain fatigue critical locations of the structure. A preliminary result for the horizontal tail has shown that this component will have a much more restrictive maintenance schedule to assure flight safety.

  5. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  6. A Study to Estimate the Effectiveness of Visual Testing Training for Aviation Maintenance Management

    Science.gov (United States)

    Law, Lewis Lyle

    2007-01-01

    The Air Commerce Act of 1926 set the beginning for standards in aviation maintenance. Even after deregulation in the late l970s, maintenance standards and requirements still have not changed far from their initial criteria. After a potential candidate completes Federal Aviation Administration training prerequisites, they may test for their Airframe and Powerplant (A&P) certificate. Performing maintenance in the aviation industry for a minimum of three years, the technician may then test for their Inspection Authorization (IA). After receiving their Airframe and Powerplant certificate, a technician is said to have a license to perform. At no time within the three years to eligibility for Inspection Authorization are they required to attend higher-level inspection training. What a technician learns in the aviation maintenance industry is handed down from a seasoned technician to the new hire or is developed from lessons learned on the job. Only in Europe has the Joint Aviation Authorities (JAA) required higher-level training for their aviation maintenance technicians in order to control maintenance related accidents (Lu, 2005). Throughout the 1990s both the General Accounting Office (GAO) and the National Transportation Safety Board (NTSB) made public that the FAA is historically understaffed (GAO, 1996). In a safety recommendation the NTSB stated "The Safety Board continues to lack confidence in the FAA's commitment to provide effective quality assurance and safety oversight of the ATC system (NTSB, 1990)." The Federal Aviation Administration (FAA) has been known to be proactive in creating safer skies. With such reports you would suspect the FAA to also be proactive in developing more stringent inspection training for aviation maintenance technicians. The purpose of this study is to estimate the effectiveness of higher-level inspection training, such as Visual Testing (VT) for aviation maintenance technicians, to improve the safety of aircraft and to make

  7. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  8. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  9. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  10. In situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement

    Science.gov (United States)

    Davis, Claire; Baker, Wayne; Moss, Scott D.; Galea, Stephen C.; Jones, Rhys

    2002-11-01

    As the replacement costs of military aircraft escalate, there is an increasing trend to operate existing aircraft well beyond their original design life. As the fleet ages, structural problems such as airframe corrosion and cracking are becoming significant issues. In recent years, bonded composite patches or doublers have been developed to repair or reinforce defective regions of the airframe. However certification concerns have limited most application of these bonded composite repairs to secondary structures. In order to alleviate certification concerns, and thus facilitate the implementation of this repair technology to critical damage in primary structure, the 'smart patch' approach has been proposed. This approach involves incorporating sensors into the composite patch to self-monitor patch health. This paper describes the use of optical fibre Bragg gratings to measure the changes in thermal residual strain that occur when a composite patch starts to disbond from the parent structure. Conventionally, the Bragg sensing mechanism relies on a shift in reflected wavelength, which requires the use of costly optical measurement tools. A modified sensing arrangement is proposed, which incorporates two Bragg gratings, and a fibre optic coupler. The reflection from the first Bragg grating acts as a reference source for an active Bragg grating on the patch. This modified arrangement allows a relative wavelength shift to be translated into a change in the optical power, which can be measured easily using a low cost interrogation system. The modified sensing arrangement also allows us to more readily miniaturise the opto-electrical interrogation system, thus enabling these systems to be more easily implemented on operational aircraft.

  11. Cooperative control theory and integrated flight and propulsion control

    Science.gov (United States)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  12. Pegasus Rocket Booster Being Prepared for X-43A/Hyper-X Flight Test

    Science.gov (United States)

    1999-01-01

    Technicians prepare a Pegasus rocket booster for flight tests with the X-43A 'Hypersonic Experimental Vehicle,' or 'Hyper-X.' The X-43A, which will be attached to the Pegasus booster and drop launched from NASA's B-52 mothership, was developed to research dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet

  13. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    Science.gov (United States)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly

  14. 典型气动问题试验方法研究的综述%Summarizatipn pf experimental methpds asspciated with typical aerpdynamic issues

    Institute of Scientific and Technical Information of China (English)

    罗金玲; 周丹; 康宏琳; 王济康

    2014-01-01

    吸气式高超声速飞行器机体与推进系统高度一体化,飞行器内外流场复杂及相互影响,地面试验模拟技术难度大,有必要开展风洞试验方法研究。本文简要分析了吸气式高超声速飞行器的主要气动问题和试验需求。针对机体/推进一体化性能试验、边界层强制转捩试验与尖锐前缘电弧风洞等三类典型试验,梳理了国内外相关风洞试验的研究思路,提出了上述三类典型风洞试验应模拟的参数,对地面试验难以模拟的重要参数进行了影响分析。根据现有试验设施的模拟能力,总结了三类典型风洞试验方法,并提出了机体/推进一体化性能数据准确获取的有效方法。%Air-breathing hypersonic flight vehicles are highly airframe/propulsion integrated,especially the outer and inner flows of the flight vehicles are very complicated and interact strongly with each other, considerable difficulties should be solved rationally in ground testing.Therefore,it is of great necessity to conduct researches on the related experimental methodology.This paper presents a brief analysis of main aerodynamic issues concerned with air-breathing hypersonic flight vehicles as well as associated experimental testing requirements,in which three typical types of experimental testing are focused on,they are perform-ance testing of airframe/propulsion integrated vehicles,experiment of boundary layer transition with trips, and arc-heated facility testing of sharp leading edges.Besides,an overview of wind tunnel research methodol-ogies both in China and abroad is included.This paper also provides critical similarity parameters that need to be ensured for the three types of experiments mentioned above,followed by an influence analysis of those key parameters that are difficult to achieve in ground testing.Based on the testing capability of the current test facilities,three typical wind tunnel experimental methods have been put

  15. Uav for Geodata Acquisition in Agricultureal and Forestal Applications

    Science.gov (United States)

    Reidelstürz, P.; Schrenk, L.; Littmann, W.

    2011-09-01

    of German Armed Forces in Neubiberg/Munich and the well-established precision farming company "Konsultationszentrum Liepen" to develop an applicable UAV for precision farming purposes. Currently Cis GmbH and Technologie Campus Freyung, with intense contact to the „flying robot"- team of DLR Oberpfaffenhofen, collaborate to optimize the existing UAV and to extend the applications from data aquisition for biomass diversity up to detect the water supply situation in agricultural fields, to support pest management systems as much as to check the possibilities to detect bark beetle attacks in european spruce in an early stage of attack (green attack phase) by constructing and integrating further payload modules with different sensors in the existing UAV airframe. Also effective data processing workflows are to be worked out. Actually in the existing UAV autopilotsystem "piccolo" (cloudcaptech) is integrated and also a replaceable payload module is available, carrying a VIS and a NIR camera to calculate maps of NDVI diversity as indicator of biomass diversity. Further modules with a 6 channel multispectral still camera and with a spectrometer are planned. The airframe's wingspan is about 3,45m weighting 4.2 kg, ready to fly. The hand launchable UAV can start from any place in agricultural regions. The wing is configured with flaps, allowing steep approaches and short landings using a „butterfly" brake configuration. In spite of the lightweight configuration the UAV yet proves its worth under windy baltic wether situations by collecting regular sharp images of fields under wind speed up to 15m/s (Beaufort 6 -7). In further projects the development of further payload modules and a user friendly flight planning tool is scheduled considering different payload - and airframe requirements for different precision farming purposes and forest applications. Data processing and workflow will be optimized. Cooperation with further partners to establish UAV systems in agricultural

  16. Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight

    Science.gov (United States)

    1998-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  17. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay

    Science.gov (United States)

    Eret, Petr; Kennedy, John; Bennett, Gareth J.

    2015-10-01

    In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz ≤ 50 000 N, V ≤ 100 m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled

  18. On Noise Assessment for Blended Wing Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  19. Optimal Aircraft Control Upset Recovery With and Without Component Failures

    Science.gov (United States)

    Sparks, Dean W.; Moerder, Daniel D.

    2002-01-01

    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  20. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    Energy Technology Data Exchange (ETDEWEB)

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler

  1. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle

    Science.gov (United States)

    Spellman, Regina L.

    2003-01-01

    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design

  2. F15B-Quiet Spike Aeroservoelastic Flight Test Data Analysis

    Science.gov (United States)

    Brenner, Martin J.

    2007-01-01

    Airframe structural morphing technologies designed to mitigate sonic boom strength are being developed by Gulfstream Aerospace Corporation (GAC). Among these technologies is a concept in which an aircraft's frontend would be extended prior to supersonic acceleration. This morphing would effectively lengthen the vehicle, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. This combination of boom shaping techniques is predicted to transform the classic, high-impulse N-wave pattern typically generated by an aircraft traveling at supersonic speed into a signature more closely resembling a sinusoidal wave with a greatly reduced perceived loudness. 'QuietSpike' is GAC's nomenclature for its recently patented front-end vehicle morphing arrangement. The ability of Quiet Spike to effectively shape a vehicle's far- field sonic boom signature is highly dependent on the area distribution characteristics of the aircraft. The full aeroacoustic benefits of front-end morphing at farfield are only possible when the QuietSpike article and vehicle configuration are designed in consideration of each other. Adding QuietSpike technology to the airframe of an existing, non-boom-optimized supersonic vehicle is unlikely to result in an improved far-field signature due to the generally over-powering influence of wing- and inlet-generated shocks. Therefore, it is generally recognized within NASA and the industry that a clean-sheet vehicle design is required to demonstrate the theoretically predicted far-field aeroacoustic benefits of QuietSpike type morphing and other boom- mitigating concepts. NASA's Aeronautics Research Mission Directorate (ARMD) Supersonics Division has placed increased priority on near-term development and flight-testing of such a vehicle. To help achieve this objective, static and dynamic aerostructural proof-of-concept testing was considered a prudent step

  3. The Role of Aircraft Motion in Airborne Gravity Data Quality

    Science.gov (United States)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  4. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    Science.gov (United States)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the

  5. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    Science.gov (United States)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  6. Mitigating crack propagation in a highly maneuverable flight vehicle using life extending control logic

    Science.gov (United States)

    Elshabasy, Mohamed Mostafa Yousef Bassyouny

    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle

  7. Slush hydrogen (SLH2) technology development for application to the National Aerospace Plane (NASP)

    Science.gov (United States)

    Dewitt, Richard L.; Hardy, Terry L.; Whalen, Margaret V.; Richter, G. P.

    1990-01-01

    The National Aerospae Plane (NASP) program is giving us the opportunity to reach new unique answers in a number of engineering categories. The answers are considered enhancing technology or enabling technology. Airframe materials and densified propellants are examples of enabling technology. The National Aeronautics and Space Administration's Lewis Research Center has the task of providing the technology data which will be used as the basis to decide if slush hydrogen (SLH2) will be the fuel of choice for the NASP. The objectives of this NASA Lewis program are: (1) to provide, where possible, verified numerical models of fluid production, storage, transfer, and feed systems, and (2) to provide verified design criteria for other engineered aspects of SLH2 systems germane to an NASP. This program is a multiyear multimillion dollar effort. The present pursuit of the above listed objectives is multidimensional, covers a range of problem areas, works these to different levels of depth, and takes advantage of the resources available in private industry, academia, and the U.S. Government. The NASA Lewis overall program plan is summarized. The initial implementation of the plan will be unfolded and the present level of efforts in each of the resource areas will be discussed. Results already in hand will be pointed out. A description of additionally planned near-term experimental and analytical work is described.

  8. Open Circuit Resonant (SansEC) Sensor for Composite Damage Detection and Diagnosis in Aircraft Lightning Environments

    Science.gov (United States)

    Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.

    2012-01-01

    Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.

  9. Helicopter Rotor Antenna

    Science.gov (United States)

    Pogorzelski, Ronald J.; Cable, Vaughn P.

    2001-01-01

    This effort was directed toward demonstration of the efficacy of a concept for mitigation of the rotor blade modulation problem in helicopter communications. An antenna is envisioned with radiating elements mounted on the rotor and rotating with it. The rf signals are coupled to the radio stationary with respect to the airframe via a coupler of unique design. The coupler has an rf cavity within which a mode is established and the field distribution of this mode is sampled by probes rotating with the radiating elements. In this manner the radiated pattern is "despun" with respect to the rotor. Theoretical analysis has indicated that this arrangement will be less susceptible to rotor blade modulation that would be a conventional fixed mounted antenna. A small coupler operating at S-band was designed, fabricated, and mounted on a mockup representative of a helicopter body. A small electric motor was installed to rotate the rotor portion of the coupler along with a set of radiating elements during testing. This test article was be evaluated using the JPL Mesa Antenna Measurement Facility to establish its ability to mitigate rotor blade modulation. It was found that indeed such a coupler will result in a despun pattern and that such a pattern can be effective in mitigation of rotor blade modulation.

  10. NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration

    Science.gov (United States)

    Johnson, Wayne

    2010-01-01

    Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.

  11. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  12. Modeling and Prediction of Krueger Device Noise

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  13. Landing-gear noise prediction using high-order finite difference schemes

    Science.gov (United States)

    Liu, Wen; Wook Kim, Jae; Zhang, Xin; Angland, David; Caruelle, Bastien

    2013-07-01

    Aerodynamic noise from a generic two-wheel landing-gear model is predicted by a CFD/FW-H hybrid approach. The unsteady flow-field is computed using a compressible Navier-Stokes solver based on high-order finite difference schemes and a fully structured grid. The calculated time history of the surface pressure data is used in an FW-H solver to predict the far-field noise levels. Both aerodynamic and aeroacoustic results are compared to wind tunnel measurements and are found to be in good agreement. The far-field noise was found to vary with the 6th power of the free-stream velocity. Individual contributions from three components, i.e. wheels, axle and strut of the landing-gear model are also investigated to identify the relative contribution to the total noise by each component. It is found that the wheels are the dominant noise source in general. Strong vortex shedding from the axle is the second major contributor to landing-gear noise. This work is part of Airbus LAnding Gear nOise database for CAA validatiON (LAGOON) program with the general purpose of evaluating current CFD/CAA and experimental techniques for airframe noise prediction.

  14. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2010-03-01

    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  15. Landing Gear Aerodynamic Noise Prediction Using Building-Cube Method

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2012-01-01

    Full Text Available Landing gear noise prediction method is developed using Building-Cube Method (BCM. The BCM is a multiblock-structured Cartesian mesh flow solver, which aims to enable practical large-scale computation. The computational domain is composed of assemblage of various sizes of building blocks where small blocks are used to capture flow features in detail. Because of Cartesian-based mesh, easy and fast mesh generation for complicated geometries is achieved. The airframe noise is predicted through the coupling of incompressible Navier-Stokes flow solver and the aeroacoustic analogy-based Curle’s equation. In this paper, Curle’s equation in noncompact form is introduced to predict the acoustic sound from an object in flow. This approach is applied to JAXA Landing gear Evaluation Geometry model to investigate the influence of the detail components to flows and aerodynamic noises. The position of torque link and the wheel cap geometry are changed to discuss the influence. The present method showed good agreement with the preceding experimental result and proved that difference of the complicated components to far field noise was estimated. The result also shows that the torque link position highly affects the flow acceleration at the axle region between two wheels, which causes the change in SPL at observation point.

  16. A Landing Gear Noise Reduction Study Based on Computational Simulations

    Science.gov (United States)

    Khorrami, Mehdi R.; Lockard, David P.

    2006-01-01

    Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.

  17. Increased Fidelity in Prediction Methods For Landing Gear Noise

    Science.gov (United States)

    Lopes, Leonard V.; Brentner, Kenneth S.; Morris, Philip J.; Lockhard, David P.

    2006-01-01

    An aeroacoustic prediction scheme has been developed for landing gear noise. The method is designed to handle the complex landing gear geometry of current and future aircraft. The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic, but generate noise representative of the physical components on a landing gear. The method sums the noise radiation from each component of the undercarriage in isolation accounting for interference with adjacent components through an estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made in the code LGMAP, which computes the sound pressure levels at various observer locations. The method can calculate the noise from the undercarriage in isolation or installed on an aircraft for both main and nose landing gear. Comparisons with wind tunnel and flight data are used to initially calibrate the method, then it may be used to predict the noise of any landing gear. In this paper, noise predictions are compared with wind tunnel data for model landing gears of various scales and levels of fidelity, as well as with flight data on fullscale undercarriages. The present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise.

  18. Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover

    Science.gov (United States)

    Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.

    2001-01-01

    A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.

  19. Experimental Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Take-off and Landing Conditions

    Science.gov (United States)

    James, Kevin D.; Tompkins, Daniel M.; Carter, Melissa B.; Shea, Patrick R.; Flamm, Jeffrey D.; Schuh, Michael; Sexton, Matthew R.; Beyar, Michael D.

    2016-01-01

    As part of the NASA Environmentally Responsible Aircraft project, an ultra high bypass ratio engine integration on a hybrid wing body demonstration was planned. The goal was to include engine and airframe integration concepts that reduced fuel consumption by at least 50% while still reducing noise 42 db cumulative on the ground. Since the engines would be mounted on the upper surface of the aft body of the aircraft, the inlets may be susceptible to vortex ingestion from the wing leading edge at high angles of attack and sideslip, and separated wing/body flow. Consequently, experimental and computational studies were conducted to collect flow surveys useful for characterizing engine operability. The wind tunnel tests were conducted at two NASA facilities, the 14- by 22-foot at NASA Langley and the 40- by 80-foot at NASA Ames Research Center. The test results included in this paper show that the distortion and pressure recovery levels were acceptable for engine operability. The CFD studies conducted to compare to experimental data showed excellent agreement for the angle of attacks examined, although failed to match the low speed experimental data at high sideslip angles.

  20. Evaluation of modal-based damage detection techniques for composite aircraft sandwich structures

    Science.gov (United States)

    Oliver, J. A.; Kosmatka, J. B.

    2005-05-01

    Composite sandwich structures are important as structural components in modern lightweight aircraft, but are susceptible to catastrophic failure without obvious forewarning. Internal damage, such as disbonding between skin and core, is detrimental to the structures' strength and integrity and thus must be detected before reaching critical levels. However, highly directional low density cores, such as Nomex honeycomb, make the task of damage detection and health monitoring difficult. One possible method for detecting damage in composite sandwich structures, which seems to have received very little research attention, is analysis of global modal parameters. This study will investigate the viability of modal analysis techniques for detecting skin-core disbonds in carbon fiber-Nomex honeycomb sandwich panels through laboratory testing. A series of carbon fiber prepreg and Nomex honeycomb sandwich panels-representative of structural components used in lightweight composite airframes-were fabricated by means of autoclave co-cure. All panels were of equal dimensions and two were made with predetermined sizes of disbonded areas, created by substituting areas of Teflon release film in place of epoxy film adhesive during the cure. A laser vibrometer was used to capture frequency response functions (FRF) of all panels, and then real and imaginary FRFs at different locations on each plate and operating shapes for each plate were compared. Preliminary results suggest that vibration-based techniques hold promise for damage detection of composite sandwich structures.

  1. Overcoming the Adoption Barrier to Electric Flight

    Science.gov (United States)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; Samuel, Aamod G.

    2016-01-01

    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  2. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    Science.gov (United States)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  3. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    International Nuclear Information System (INIS)

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s-1. With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes

  4. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  5. Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

    Science.gov (United States)

    Khorrami, Mehdi R.; Neuhart, Danny H.

    2012-01-01

    In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

  6. Reference Models for Structural Technology Assessment and Weight Estimation

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd

    2005-01-01

    Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.

  7. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  8. Intelligent unmanned vehicle systems suitable for individual or cooperative missions

    Science.gov (United States)

    Anderson, Matthew O.; McKay, Mark D.; Wadsworth, Derek C.

    2007-04-01

    The Department of Energy's Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for over fifteen years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high-resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicles during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  9. Development of a Technique and Method of Testing Aircraft Models with Turboprop Engine Simulators in a Small-scale Wind Tunnel - Results of Tests

    Directory of Open Access Journals (Sweden)

    A. V. Petrov

    2004-01-01

    Full Text Available This report presents the results of experimental investigations into the interaction between the propellers (Ps and the airframe of a twin-engine, twin-boom light transport aircraft with a Π-shaped tail. An analysis was performed of the forces and moments acting on the aircraft with rotating Ps. The main features of the methodology for windtunnel testing of an aircraft model with running Ps in TsAGI’s T-102 wind tunnel are outlined.The effect of 6-blade Ps slipstreams on the longitudinal and lateral aerodynamic characteristics as well as the effectiveness of the control surfaces was studied on the aircraft model in cruise and takeoff/landing configurations. The tests were conducted at flow velocities of V∞ = 20 to 50 m/s in the ranges of angles of attack α =  -6 to 20 deg, sideslip angles of β = -16 to 16 deg and blade loading coefficient of B 0 to 2.8. For the aircraft of unusual layout studied, an increase in blowing intensity is shown to result in decreasing longitudinal static stability and significant asymmetry of the directional stability characteristics associated with the interaction between the Ps slipstreams of the same (left-hand rotation and the empennage.

  10. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    Science.gov (United States)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  11. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    Science.gov (United States)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  12. Confidence metrics analysis of a fixed-wing UAV

    Science.gov (United States)

    Polgar, Janos

    Uninhabited aerial vehicles (UAVs) are becoming popular in the development process of full scale aircrafts and as research platforms. Due to their complexity they provide development and test environments for a wide range of applications. Supporting research projects in safety critical systems, classes, the University of Minnesota Department of Aerospace Engineering and Mechanics have been developing a low-cost UAV research facility. This facility includes models of a family of fixed wing airframes, controllers, a diverse set of guidance algorithms. A flight software is written which implements an autopilot system, including the aforementioned algorithms, and provides datalogging. The software package is equipped with tools to evaluate flight test results. The model of any plant is never 100% accurate. There are always differences between the real system and the dynamical model of it. Uncertainties can be introduced into the model, which are trying to capture uncertainty in model parameters and unmodeled dynamics. Even though the aircraft model in the package is fairly accurate, it is interesting to investigate 'how good' the model is, i.e. how robust the model in the closed loop is against uncertainties. Earlier work in this project mainly focused on plant modeling and controller design. Extensive controller analysis, however, has not performed yet, what motivates the work behind this thesis.

  13. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    Directory of Open Access Journals (Sweden)

    Chulwoo Park

    2015-07-01

    Full Text Available To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  14. Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel

    Science.gov (United States)

    Gulsine Ozdemir, Nazli; Scarpa, Fabrizio; Craciun, Monica; Remillat, Chrystel; Lira, Cristian; Jagessur, Yogesh; Da Rocha-Schmidt, Luiz

    2015-12-01

    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic (TP) nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes.

  15. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    Science.gov (United States)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  16. Fuel system design concepts for broad property fuels

    Science.gov (United States)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  17. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    Science.gov (United States)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  18. Analytical and experimental investigations of the oblique detonation wave engine concept

    Science.gov (United States)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  19. Development of monofilar rotor hub vibration absorber

    Science.gov (United States)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  20. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    Science.gov (United States)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  1. Supersonic airplane study and design

    Science.gov (United States)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  2. Electronic/electric technology benefits study. [avionics

    Science.gov (United States)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  3. Aircraft wing fuel tank environmental simulator tests for evaluation of antimisting fuels. Final report, September 1982-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, P.M.; Tolle, F.F.; Mehta, H.K.

    1984-10-01

    The low-temperature performance of antimisting kerosene (AMK) in airframe fuel systems and in certain fuel system components was studied and compared to Jet A fuel. Water vapor ingested into fuel tanks during simulation of repeated descents through clouds and rain had little effect on AMK. AMK retained antimisting properties during exposure to severe environmental flight simulations. Jet-pump and boost-pump operation had no discernible effect on AMK flammability. Jet-pump performance with AMK was adversely affected. Main fuel boost pumps required up to 18% more power with AMK that with Jet A, and suction-feed performance was lower with ambient and -20/sup 0/C, but better than Jet A and -40/sup 0/C. Boost-pump performance was not affected by gel formations produced at low temperatures by the vapor-removal return flow shearing of AMK. Aerodynamic heating and cooling of AMK in the fuel tank was similar to Jet A. A high-pressure pump and needle valve used to degrade the AMK was inadequate, resulting in filter bypass at low temperatures.

  4. Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test

    Science.gov (United States)

    Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.

    2014-01-01

    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.

  5. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.

    1990-01-01

    A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  6. The impact of materials technology and operational constraints on the economics of cruise speed selection

    Science.gov (United States)

    Clauss, J. S., Jr.; Bruckman, F. A.; Horning, D. L.; Johnston, R. H.; Werner, J. V.

    1981-01-01

    Six material concepts at Mach 2.0 and three material concepts at Mach 2.55 were proposed. The resulting evaluations, based on projected development, production, and operating costs, indicate that aircraft designs with advanced composites as the primary material ingredient have the lowest fare premiums at both Mach 2.0 and 2.55. Designs having advanced metallics as the primary material ingredient are not economical. Advanced titanium, employing advanced manufacturing methods such as SFF/DB, requires a fare premium of about 30 percent at both Mach 2.0 and 2.55. Advanced aluminum, usable only at the lower Mach number, requires a fare premium of 20 percent. Cruise speeds in the Mach 2.0-2.3 regime are preferred because of the better economics and because of the availability of two material concepts to reduce program risk - advanced composites and advanced aluminums. This cruise speed regime also avoids the increase in risk associated with the more complex inlets and airframe systems and higher temperature composite matrices required at the higher Mach numbers typified by Mach 2.55.

  7. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  8. Active vibration-suppression systems applied to twin-tail buffeting

    Science.gov (United States)

    Hopkins, Mark A.; Henderson, Douglas A.; Moses, Robert W.; Ryall, Thomas G.; Zimcik, David G.; Spangler, Ronald L., Jr.

    1998-06-01

    Buffeting is an aeroelastic phenomenon that plagues high performance aircraft, especially those with twin vertical tails. Unsteady cortices emanate form wing/fuselage leading edge extensions when these aircraft maneuver at high angles of attack. These aircraft are designed such that the vortices shed while maneuvering at high angels of attack and improve the lift-to-drag ratio of the aircraft. With proper placement and sizing of the vertical tails, this improvement may be maintained without adverse effects to the tails. However, there are tail locations and angels of attack where these vortices burst and immerse the vertical tails in their wake inducing severe structural vibrations. The resulting buffet loads and severe vertical tail response because an airframe life and maintenance concern as life cycle costs increased. Several passive methods have been investigated to reduce the buffeting of these vertical tails with limited success. As demonstrated through analyses, wind-tunnel investigations, and full-scale ground tests, active control system offer a promising solution to alleviate buffet induced strain and increase the fatigue life of vertical tails. A collaborative research project including the US, Canada, and Australia is in place to demonstrate active buffet load alleviation systems on military aircraft. The present paper provides details on this collaborative project and other research efforts to reduce the buffeting response of vertical tails in fighter aircraft.

  9. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    Science.gov (United States)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  10. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  11. Predicting Tail Buffet Loads of a Fighter Airplane

    Science.gov (United States)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  12. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    Science.gov (United States)

    Collier, Craig S.

    1993-04-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  13. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research

    Science.gov (United States)

    Funaki, Minoru; Hirasawa, Naohiko; the Ant-Plane Group

    As part of the Ant-Plane project for summertime scientific research and logistics in the coastal region of Antarctica, we developed six types of small autonomous UAVs (unmanned aerial vehicles, similar to drones; we term these vehicles ‘Ant-Planes’) based on four types of airframe. In test flights, Ant-Plane 2 cruised within 20 m accuracy along a straight course during calm weather at Sakurajima Volcano, Kyushu, Japan. During a period of strong winds (22 m/s) at Mt. Chokai, Akita Prefecture, Japan, Ant-Plane 2 maintained its course during a straight flight but deviated when turning leeward. An onboard 3-axis magneto-resistant magnetometer (400 g) recorded variations in the magnetic field to an accuracy of 10 nT during periods of calm wind, but strong magnetic noise was observed during high winds, especially head winds. Ant-Plane 4-1 achieved a continuous flight of 500 km, with a maximum flight altitude of 5690 m. The Ant-Plane can be used for various types of Antarctic research as a basic platform for airborne surveys, but further development of the techniques employed in takeoff and landing are required, as well as ready adjustment of the engine and the development of small onboard instruments with greater reliability.

  14. Neutron radiographic nondestructive inspection for bonded composite structures

    International Nuclear Information System (INIS)

    Neutron radiography was found to be effective as a nondestructive inspection technique for detection of bondline voids/defects in a variety of composite structures. Radiographic data are presented from typical structures for which the neutron radiographic inspection technique offers advantages over more conventional inspection techniques. Complex composite joints such as box beam members, for example, are difficult to inspect by ultrasonic techniques, and the X-ray attenuation coefficients of the different materials in composite/metal combinations differ in such a manner as to yield very little nondestructive inspection information regarding the integrity of the bond. Accurate bondline defect information was achieved in such structures utilizing a transportable californium-252 (Cf-252) neutron radiography system containing approximately 2 mg of the CF-252 isotope. Through techniques developed at Vought Corp. Advanced Technology Center, resolution of simulated bondline voids as small as 0.127 mm diameter in laminated graphite/epoxy specimens was achieved. It is expected that continuing improvements in imaging techniques, and in mobility of neutron sources for radiography, will spawn wide usage of the neutron technique for nondestructive inspection of complex wing joints, control surfaces, and other airframe structures

  15. The impact of flying qualities on helicopter operational agility

    Science.gov (United States)

    Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John

    1993-01-01

    Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.

  16. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  17. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    Science.gov (United States)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  18. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2015-04-01

    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  19. Overview of Aircraft Noise Prediction Tools Assessment

    Science.gov (United States)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  20. Technology approach to aero engine noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neise, W.; Enghardt, L. [Deutsches Zentrum fur Luft-und Raumfahrt -DLR, Institute of Propulsion Technology, Turbulence Research Div., Berlin (Germany)

    2003-07-01

    Transportation noise is one of the most pressing environmental problems of modern societies. Aircraft noise is second only to road traffic noise in drawing complaints from the public about noise pollution. Therefore intensive research efforts are necessary on the national levels as well as the European level to reduce the noise load around airports. The most effective and economical way to reach this goal is noise reduction at the source. The aero engines of today's transport aircraft are the dominant noise sources for most flight conditions, although air-frame noise does play an important role for landing aircraft. In this paper noise reduction studies for aero engines are described in which DLR are involved. The topics discussed are low noise fan design, active noise control using wall-flush loudspeakers as secondary sources, ANC using active stators as secondary sources, ANC using flow induced secondary sources at the rotor tips, reduction of low-pressure turbine noise, and flight tests for validation of add-on noise reduction devices. (authors)

  1. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    Science.gov (United States)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  2. Overview of NATO Background on Scramjet Technology. Chapter 1

    Science.gov (United States)

    Drummond, J. Philip; Bouchez, Marc; McClinton, Charles R.

    2006-01-01

    The purpose of the present overview is to summarize the current knowledge of the NATO contributors. All the topics will be addressed in this chapter, with references and some examples. This background enhances the level of knowledge of the NATO scramjet community, which will be used for writing the specific chapters of the Report. Some previous overviews have been published on scramjet technology worldwide. NASA, DOD, the U.S. industry and global community have studied scramjet-powered hypersonic vehicles for over 40 years. Within the U.S. alone, NASA, DOD (DARPA, U.S. Navy and USAF), and industry have participated in hypersonic technology development. Over this time NASA Langley Research Center continuously studied hypersonic system design, aerothermodynamics, scramjet propulsion, propulsion-airframe integration, high temperature materials and structural architectures, and associated facilities, instrumentation and test methods. These modestly funded programs were substantially augmented during the National Aero-Space Plane (X-30) Program, which spent more than $3B between 1984 and 1995, and brought the DOD and other NASA Centers, universities and industry back into hypersonics. In addition, significant progress was achieved in all technologies required for hypersonic flight, and much of that technology was transferred into other programs, such as X-33, DC-X, X-37, X-43, etc. In addition, technology transfer impacted numerous other industries, including automotive, medical, sports and aerospace.

  3. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures

    Science.gov (United States)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.

    2016-02-01

    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  4. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    Science.gov (United States)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  5. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer

    Science.gov (United States)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan

    2012-04-01

    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  6. Design of 3-D Nacelle near Flat-Plate Wing Using Multiblock Sensitivity Analysis (ADOS)

    Science.gov (United States)

    Eleshaky, Mohamed E.; Baysal, Oktay

    1994-01-01

    One of the major design tasks involved in reducing aircraft drag is the integration of the engine nacelles and airframe. With this impetus, nacelle shapes with and without the presence of a flat-plate wing nearby were optimized. This also served as a demonstration of the 3-D version of the recently developed aerodynamic design optimization methodology using sensitivity analysis, ADOS. The required flow analyses were obtained by solving the three-dimensional, compressible, thin-layer Navier-Stokes equations using an implicit, upwind-biased, finite volume scheme. The sensitivity analyses were performed using the preconditioned version of the SADD scheme (sensitivity analysis on domain decomposition). In addition to demonstrating the present method's capability for automatic optimization, the results offered some insight into two important issues related to optimizing the shapes of multicomponent configurations in close proximity. First, inclusion of the mutual interference between the components resulted in a different shape as opposed to shaping an isolated component. Secondly, exclusion of the viscous effects compromised not only the flow physics but also the optimized shapes even for isolated components.

  7. Impact of aviation upon the atmosphere. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, J. [Comite Avion-Ozone, 75 - Paris (France)

    1997-12-31

    The commercial air traffic, either for business or for tourism will induce a special increase of long haul flights, with cruising altitudes of about 10 to 12 km. These altitudes correspond to the upper troposphere for the low latitudes (tropical zones) and to the lower stratosphere for middle and high latitudes. The prospect of a world air traffic multiplied by a factor 2 within the next fifteen years, with an increasing part of the long-haul flights, raises the problem of the impact of aircraft emissions on the upper troposphere and on the lower stratosphere. The air traffic growth which is forecast for the next two decades as well as for long term will be larger than the GDP growth. But technical progress concerning airframes, engines, navigation systems and improvements of air traffic control and airports will keep the aircraft emissions growth at a rate which will not exceed the GDP growth rate. The aviation`s share of global anthropogenic emissions will remain lower than 3 percent. The regulations related to NO{sub x} emissions from aircraft will reduce the aviation`s share of nitrogen oxides from human sources at a level of 1 percent. (R.P.)

  8. A Terminal Area Icing Remote Sensing System

    Science.gov (United States)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  9. National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)

    Science.gov (United States)

    Holmes, Bruce J.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  10. Precise thermal NDE for quantifying structural damage

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.

    1995-09-18

    The authors demonstrated a fast, wide-area, precise thermal NDE imaging system to quantify aircraft corrosion damage, such as percent metal loss, above a threshold of 5% with 3% overall uncertainties. The DBIR precise thermal imaging and detection method has been used successfully to characterize defect types, and their respective depths, in aircraft skins, and multi-layered composite materials used for wing patches, doublers and stiffeners. This precise thermal NDE inspection tool has long-term potential benefits to evaluate the structural integrity of airframes, pipelines and waste containers. They proved the feasibility of the DBIR thermal NDE imaging system to inspect concrete and asphalt-concrete bridge decks. As a logical extension to the successful feasibility study, they plan to inspect a concrete bridge deck from a moving vehicle to quantify the volumetric damage within the deck and the percent of the deck which has subsurface delaminations. Potential near-term benefits are in-service monitoring from a moving vehicle to inspect the structural integrity of the bridge deck. This would help prioritize the repair schedule for a reported 200,000 bridge decks in the US which need substantive repairs. Potential long-term benefits are affordable, and reliable, rehabilitation for bridge decks.

  11. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  12. Environmental impact analysis with the airspace concept evaluation system

    Science.gov (United States)

    Augustine, Stephen; Capozzi, Brian; DiFelici, John; Graham, Michael; Thompson, Terry; Miraflor, Raymond M. C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center has developed the Airspace Concept Evaluation System (ACES), which is a fast-time simulation tool for evaluating Air Traffic Management (ATM) systems. This paper describes linking a capability to ACES which can analyze the environmental impact of proposed future ATM systems. This provides the ability to quickly evaluate metrics associated with environmental impacts of aviation for inclusion in multi-dimensional cost-benefit analysis of concepts for evolution of the National Airspace System (NAS) over the next several decades. The methodology used here may be summarized as follows: 1) Standard Federal Aviation Administration (FAA) noise and emissions-inventory models, the Noise Impact Routing System (NIRS) and the Emissions and Dispersion Modeling System (EDMS), respectively, are linked to ACES simulation outputs; 2) appropriate modifications are made to ACES outputs to incorporate all information needed by the environmental models (e.g., specific airframe and engine data); 3) noise and emissions calculations are performed for all traffic and airports in the study area for each of several scenarios, as simulated by ACES; and 4) impacts of future scenarios are compared to the current NAS baseline scenario. This paper also provides the results of initial end-to-end, proof-of-concept runs of the integrated ACES and environmental-modeling capability. These preliminary results demonstrate that if no growth is likely to be impeded by significant environmental impacts that could negatively affect communities throughout the nation.

  13. Analysis of technological innovation and environmental performance improvement in aviation sector.

    Science.gov (United States)

    Lee, Joosung; Mo, Jeonghoon

    2011-09-01

    The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale. PMID:22016716

  14. Innovations in Aircraft Design

    Science.gov (United States)

    1997-01-01

    The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.

  15. PRSEUS Structural Concept Development

    Science.gov (United States)

    Velicki, Alex; Jegley, Dawn

    2014-01-01

    A lighter, more robust airframe is one of the key technological advancements necessary for the successful launch of any large next-generation transport aircraft. Such a premise dictates that considerable improvements beyond current state-of-the-art aluminum structures is needed, and that improvements of this magnitude will require an extensive use of composite materials that are not only lightweight, but also economical to produce. To address this challenge, researchers at NASA and The Boeing Company are developing a novel structural concept called the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) under the Environmentally Responsible Aviation (ERA) Project. It is an integrally stiffened panel concept that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. In addition to improved structural performance, an important facet of this unique arrangement of stitched carbon fibers is its innovative manufacturing method that has the potential to lower fabrication costs by eliminating fasteners and autoclave cures. The rationale and development status for this new approach forms the basis of the work described in this paper. The test specimens described herein were fabricated, or are currently being fabricated, by The Boeing Company, while the structural analyses and testing tasks are being performed by NASA and Boeing personnel.

  16. Concept development of a Mach 4 high-speed civil transport

    Science.gov (United States)

    Domack, Christopher S.; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl A.; Mcgraw, Marvin E., Jr.; Shields, Elwood W.; Swanson, Edward E.

    1990-01-01

    A study was conducted to configure and analyze a 250 passenger, Mach 4 High Speed Civil Transport with a design range of 6500 n.mi. The design mission assumed an all-supersonic cruise segment and no community noise or sonic boom constraints. The study airplane was developed in order to examine the technology requirements for such a vehicle and to provide an unconstrained baseline from which to assess changes in technology levels, sonic boom limits, or community noise constraints in future studies. The propulsion, structure, and materials technologies utilized in the sizing of the study aircraft were assumed to represent a technology availability date of 2015. The study airplane was a derivative of a previously developed Mach 3 concept and utilized advanced afterburning turbojet engines and passive airframe thermal protection. Details of the configuration development, aerodynamic design, propulsion system, mass properties, and mission performance are presented. The study airplane was estimated to weigh approx. 866,000 lbs. Although an aircraft of this size is a marginally acceptable candidate to fit into the world airport infrastructure, it was concluded that the inclusion of community noise or sonic boom constraints would quickly cause the aircraft to grow beyond acceptable limits using the assumed technology levels.

  17. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    Science.gov (United States)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  18. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    Science.gov (United States)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  19. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    Science.gov (United States)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  20. UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations

    Science.gov (United States)

    Davila, Carlos G.

    2016-01-01

    Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.

  1. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    Science.gov (United States)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  2. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  3. A Design Tool for Matching UAV Propeller and Power Plant Performance

    Science.gov (United States)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  4. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  5. A unified approach for composite cost reporting and prediction in the ACT program

    Science.gov (United States)

    Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid

    1991-01-01

    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.

  6. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; Gibson, Andrew R.; Foster, Trevor J.; Osterkamp, Philip G.

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  7. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    Science.gov (United States)

    Collier, Craig S.

    1993-01-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA.

  8. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  9. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  10. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.S.

    1993-01-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA. 14 refs.

  11. Considerations of a ship defense with a pulsed COIL

    Science.gov (United States)

    Takehisa, K.

    2015-10-01

    Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.

  12. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    Science.gov (United States)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  13. Re-Educating Jet-Engine-Researchers to Stay Relevant

    Science.gov (United States)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  14. Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector

    Directory of Open Access Journals (Sweden)

    Jeonghoon Mo

    2011-09-01

    Full Text Available The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale.

  15. Acoustic Surveys of a Scaled-Model CESTOL Transport Aircraft in Static and Forward Speed Conditions

    Science.gov (United States)

    Burnside, Nathan; Horne, Clifton

    2012-01-01

    An 11% scale-model of a Cruise-Efficient Short Take-off and Landing (CESTOL) scalemodel test was recently completed. The test was conducted in the AEDC National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The model included two over-wing pod-mounted turbine propulsion simulators (TPS). The hybrid blended wing-body used a circulation control wing (CCW) with leadingand trailing-edge blowing. The bulk of the test matrix included three forward velocities (40 kts, 60 kts, and 100kts), angle-of-attack variation between -5 and 25 , and CCW mass flow variation. Seven strut-mounted microphones outboard of the left wing provided source directivity. A phased microphone array was mounted outboard of the right wing for source location. The goal of this paper is to provide a preliminary look at the acoustic data acquired during the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) test for 0 angle-of-attack and 0 sideslip conditions. Data presented provides a good overview of the test conditions and the signal-to-noise quality of the data. TPS height variation showed a difference of 2 dB to 3 dB due to wing shielding. Variation of slot mass flow showed increases of 12 dB to 26 dB above the airframe noise and the TPS increased the overall levels an additional 5 dB to 10 dB.

  16. Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform

    International Nuclear Information System (INIS)

    A laser safety and hazard analysis was performed for the airborne AURA (Big Sky Laser Technology) lidar system based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances or ranges from the airborne platform. In order to protect personnel, who may be in the target area and may be subjected to exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength, calculate the Nominal Ocular Hazard Distance (NOHD), and determine the maximum 'eye-safe' dwell times for various operational altitudes and conditions. It was also necessary to calculate the appropriate minimum Optical Density (ODmin) of the laser safety eyewear used by authorized personnel who may receive hazardous exposures during ground base operations of the airborne AURA laser system (system alignment and calibration)

  17. Tension-tension fatigue behavior of the Space Shuttle strain-isolation-pad material

    Science.gov (United States)

    Phillips, E. P.

    1981-01-01

    The room temperature fatigue behavior of 0.41-cm (0.16-in) thick strain-isolation-pad (SIP) material was explored in a series of constant- and random-amplitude loading tests. The SIP material is used on the Space Shuttle to isolate the ceramic insulating tiles from the strains and deflections of the aluminum alloy airframe. In all tests, 12.7 by 12.7 cm (5.0 by 5.0 in) SIP specimens were subjected to tension-tension loading in the through-the-thickness direction at a frequency of 10 Hz. When subjected to cyclic loading, the SIP material exhibited a monotonic increase in thickness and a monotonic increase in tensile tangent moduli. The rate of thickness growth increased with increasing test stress level and decreased with increasing number cycles endured. Power law equations were found to provide a good representation of the thickness growth rate data. Tensile tangent moduli increased by as much as 80 percent during fatigue tests. Simple cumulative damage fatigue models predicted the mean thickness growth under random-amplitude loading with reasonable accuracy (factor of 2 on life).

  18. Framework for Small-Scale Experiments in Software Engineering: Guidance and Control Software Project: Software Engineering Case Study

    Science.gov (United States)

    Hayhurst, Kelly J.

    1998-01-01

    Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.

  19. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    Science.gov (United States)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  20. Aircraft recognition and pose estimation

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2000-05-01

    This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.

  1. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    Science.gov (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  2. Hyper-X Engine Design and Ground Test Program

    Science.gov (United States)

    Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.

    1998-01-01

    The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.

  3. A Turbine-powered UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  4. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development

    Science.gov (United States)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  5. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    Science.gov (United States)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  6. Preliminary development of a VTOL unmanned air vehicle for the close-range mission

    Science.gov (United States)

    Kress, Gregory A.

    1992-09-01

    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAV's and include the wings from a U.S. Army Aquila and the ducted fan from the U.S. Marine Corps AROD. Accomplishments include: (1) the design and fabrication of a carry-through spar, and (2) the design and construction of an engine test stand. The through spar was designed using finite element analysis and constructed from composite materials. The purpose of the test stand is to measure torque, horsepower, and thrust of an entire ducted fan or an individual engine. Completion of this thesis will pave the way for future NPS research into the growing interest in VTOL UAV technology.

  7. Acoustics of Jet Surface Interaction - Scrubbing Noise

    Science.gov (United States)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  8. Thermal Analysis of Hypersonic Inlet Flow with Exergy-Based Design Methods

    Directory of Open Access Journals (Sweden)

    James P. Prendergast

    2002-12-01

    Full Text Available This paper presents results of work that has been done in developing use of the Second Law of Thermodynamics and methods such as exergy and thermoeconomics into a system-level analysis and design methodology. The application of these methods to the design of a complete flight vehicle is illustrated by considering an integrated airframe/propulsion system as a device to do work. This shows how system-level consideration of exergy applies to all vehicle systems in consistent terms. For the hypersonic inlet flow problem, it is shown that a thermal energy exchange with the inlet flow could be used to position the inlet shock in the optimum shock-on-lip position for off-nominal flight conditions. The thermal heat exchange analysis has been done for a full range of Mach numbers both higher and lower than nominal. It is shown that there is a potential benefit in terms of reduced exergy destroyed using thermal energy addition than by the shock at higher Mach numbers. The paper then discusses how a device to accomplish this result would have to be integrated into a complete vehicle design.

  9. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  10. Synthetic vision in the cockpit: 3D systems for general aviation

    Science.gov (United States)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  11. Magnetic levitation systems for future aeronautics and space research and missions

    Science.gov (United States)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  12. Nonlinear stability and control study of highly maneuverable high performance aircraft

    Science.gov (United States)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  13. HELIPLAT: design of high altitude very-long endurance solar powered platform for telecommunication and earth observation

    Science.gov (United States)

    Romeo, Giulio; Frulla, Giacomo

    2002-07-01

    A research is being carried out at the Turin Polytechnic University aiming at the design of an HAVE/UAV (High Altitude Very-long Endurance/Uninhabited Air Vehicle) and manufacturing of a scale-sized solar-powered prototype. The vehicle should climg to 17-20 km by taking advantage, mainly, of direct sun radiation and maintaining; electric energy not requeired for propulsion and payload operation is pumped back into the fuel cells energy storage system for the night. A computer program has been developed for carrying out a parametric study for the platform design, by taking into account the solar radiation change over one year, the altitude, masses and efficiencies of solar cells and fuel cells, aerodynamic performances, etc. A parametric study shows as fuel cells and solar cells efficiency and mass give the most influence on the platform dimensions. A wide use of high modulus CFRP has been made in designing the structure in order to minimise the airframe weight. The whole mass resulted of 70 kg. The classical hydraulic loading rig was designed for applying the ultimate shear-bending-torsion load to the structure and to verify the theoretical behaviour. A finite element analysis has been carried out by using the MSC/PATRAN/NASTRAN code in order to predict th static and dynamic behaviour. A good correlation has been obtained between the theoretical, numerical and experimental results up to a load corresponding to 5g.

  14. Aerial radiological measuring system program

    International Nuclear Information System (INIS)

    The present ARMS aircraft has an effective survey time of four hours. Typical survey altitudes are 300 to 500 feet for terrain surveys and up to 20,000 feet for cloud tracks. A number of special airframe modifications have been made to accommodate the various sensor systems. The ARMS radiation measurement system consists of fourteen 4-inch diameter by 4-inch thick sodium iodide (NaI) detectors, a summing network for the detector signals, single and multichannel analyzers, analog computers, digital display and recording equipment, a doppler radar position computer, and strip chart recorders. Major subsystems include meteorology sensors, multispectral camera systems, and an infrared scanner for thermal mapping. Additional radiation detectors include an alpha spectrometer and a beta counter, used to count filter samples taken from a 150 cfm air sampler, which is a permanent part of the aircraft. A small lead shield houses a 1/2-in. x 3-in. NaI crystal for beta and gamma counting of air filter samples. Several BF3 neutron detectors are also available for neutron counting. The raw data from the gross gamma count and the gamma spectral measurements are permanently recorded on paper tape, and they must undergo reduction and analysis for final characterization of the radiological properties of the surveyed area. (U.S.)

  15. Active alignment and vibration control system for a large airborne optical system

    Science.gov (United States)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  16. Electro-magnetic compatibility

    Science.gov (United States)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  17. 弹载共形遥测天线的设计%Design of conformal telemetry antenna on missiles

    Institute of Scientific and Technical Information of China (English)

    周旭冉; 高宝建; 伍捍东; 任宇辉

    2013-01-01

    In this paper, a microstrip antenna on missiles is proposed. The antenna is conformal with the curved surface of missile, and the convex height of radome is less than 8 mm. This proposal will not have any influence on both dynamic characteristics of the missile body and mechanical strength of the airframe. The antenna can obtain the high gain of 8.4dBi, its simulation pattern is almost consistent with the measured pattern results, and the antenna has the stable radiation characteristics in operating frequency range. Therefore it is very suitable to be fuze, telemetry antennas on missiles.%设计了一种弹载微带天线,该天线与弹体曲面共形,加上天线罩所凸出的曲面高度不超过8 mm,不仅不影响弹体的动力学特性,而且也不损伤弹体的机械强度.该天线具有较高的增益(8.4 dBi),仿真方向图与实测方向图吻合良好,且在整个工作频段内辐射特性稳定,非常适合作为弹载引信、遥测天线.

  18. Common Analysis Tool Being Developed for Aeropropulsion: The National Cycle Program Within the Numerical Propulsion System Simulation Environment

    Science.gov (United States)

    Follen, Gregory J.; Naiman, Cynthia G.

    1999-01-01

    The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.

  19. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  20. Using Virtual Testing for Characterization of Composite Materials

    Science.gov (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  1. Advanced Aerodynamic Technologies for Future Green Regional Aircraft

    Directory of Open Access Journals (Sweden)

    Catalin NAE

    2014-04-01

    Full Text Available Future Green Regional Aircraft (GRA will operate over airports located in the neighborhood of densely populated areas, with high frequency of takeoff/ landing events and, hence, strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental normative worldwide and therefore re-designed to incorporate advanced active aerodynamic technologies. The new concept behind GRA is based on several mainstream technologies: airframe low-noise (LN, aerodynamic load control (LC and load alleviation (LA. These technologies integrate relevant concepts for hybrid and natural laminar flow (HLC/NLF wing, active control of wing movables and aeroelastic tailoring for LC/LA functions, passive means (micro-riblets for turbulent flow drag reduction, innovative gapless architectures (droop nose, morphing flap beside conventional high-lift devices (HLDs, active flow control through synthetic jets, low-noise solutions applied to HLDs (liners, fences, and to fuselage-mounted main and nose landing gears (bay/doors acoustic treatments, fairings, wheels hub cap. The paper deals with the technological readiness level (TRL assessment of the most promising technologies and overall integration in the new generation of GRA, as a highly optimized configuration able to meet requirements for FlighPath 2050.

  2. Developing an Empirical Model for Jet-Surface Interaction Noise

    Science.gov (United States)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  3. Design of a Data Acquisition System for a Flying Laboratory

    Directory of Open Access Journals (Sweden)

    M. Millar

    2000-01-01

    Full Text Available The University of Glasgow, Department of Aerospace Engineering has been in possession of a Czech manufactured Remotely Piloted Vehicle (RPV airframe 1 since 1996. Significant modifications have been made and will continue to be made in order to render the design functional and airworthy. The name ‘Condor’ was chosen as the moniker for the new aircraft. The latest phase of these modifications is the design and implementation of the Condor’s in-flight data acquisition (DAQ system. The paper will outline the various processes involved and decisions made in the design and implementation of a simple data acquisition system for a RPV. The requirements of the system were first identified, such as those quantities that were deemed essential to the effective operation of the RPV. For example, airspeed, angle of attack, angle of sideslip etc. and the necessary instrumentation for measuring such values chosen and the subsequent signal conditioning needed for the signals to be intelligible to the DAQ Card and computer.

  4. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  5. A Collection of Nonlinear Aircraft Simulations in MATLAB

    Science.gov (United States)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  6. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    Science.gov (United States)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  7. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    Science.gov (United States)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  8. Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform.

    Energy Technology Data Exchange (ETDEWEB)

    Augustoni, Arnold L.

    2004-02-01

    A laser safety and hazard analysis was performed for the airborne AURA (Big Sky Laser Technology) lidar system based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances or ranges from the airborne platform. In order to protect personnel, who may be in the target area and may be subjected to exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength, calculate the Nominal Ocular Hazard Distance (NOHD), and determine the maximum 'eye-safe' dwell times for various operational altitudes and conditions. It was also necessary to calculate the appropriate minimum Optical Density (ODmin) of the laser safety eyewear used by authorized personnel who may receive hazardous exposures during ground base operations of the airborne AURA laser system (system alignment and calibration).

  9. A game-based decision support methodology for competitive systems design

    Science.gov (United States)

    Briceno, Simon Ignacio

    This dissertation describes the development of a game-based methodology that facilitates the exploration and selection of research and development (R&D) projects under uncertain competitive scenarios. The proposed method provides an approach that analyzes competitor positioning and formulates response strategies to forecast the impact of technical design choices on a project's market performance. A critical decision in the conceptual design phase of propulsion systems is the selection of the best architecture, centerline, core size, and technology portfolio. This selection can be challenging when considering evolving requirements from both the airframe manufacturing company and the airlines in the market. Furthermore, the exceedingly high cost of core architecture development and its associated risk makes this strategic architecture decision the most important one for an engine company. Traditional conceptual design processes emphasize performance and affordability as their main objectives. These areas alone however, do not provide decision-makers with enough information as to how successful their engine will be in a competitive market. A key objective of this research is to examine how firm characteristics such as their relative differences in completing R&D projects, differences in the degree of substitutability between different project types, and first/second-mover advantages affect their product development strategies. Several quantitative methods are investigated that analyze business and engineering strategies concurrently. In particular, formulations based on the well-established mathematical field of game theory are introduced to obtain insights into the project selection problem. The use of game theory is explored in this research as a method to assist the selection process of R&D projects in the presence of imperfect market information. The proposed methodology focuses on two influential factors: the schedule uncertainty of project completion times and

  10. The Road to Mach 10: A History of the X-43A Hypersonic Flight Test Program at NASA Dryden...Toward the Future. Part II

    Science.gov (United States)

    Peebles, Curtis

    2007-01-01

    In terms of technology, the X-43A/Hyper-X represented a singular milestone. After nearly a half century of high hopes, studies, wind tunnel tests, proposals, and canceled projects, a scramjet-powered vehicle had flown. The performance of the engine qualified the scramjet design tools and scaling laws. In turn, the theoretical calculations and ground testing could be used to design more advanced engine concepts. Just as important, both the scramjet and vehicle systems had successfully operated in the variable temperatures and densities of the atmosphere. The X-43A systems were able to maintain the exact flight conditions necessary for the scramjet to operate properly. Control deflections to correct the engine-induced moments were close to pre-flight predictions. When the unexpected occurred, such as when the vehicle pitched up during the cowl opening on the second flight, the control system was sufficiently designed to correct the situation. The airframe and wing structure, the thermal protection material, and the internal conditions of the X-43A performed largely as predicted. The HXLV thermal anomaly during the ascent on the third flight and "the Mach 8 unpleasantness" during the descent indicated that the HXLV and X-43A were not as resilient to aerodynamic heating as expected. The X-43A 's airframe drag and lift both were slightly higher than predicted, but still within preflight uncertainty predictions. The stability and control were as predicted, as was the boundary layer transition. The biggest aerodynamic worry before the flight was the separation of the HXLV and the X- 43A. After all was said and done, this went exactly as predicted, proving that non-symmetrical/high-dynamic pressure stage separations could be performed. This in turn meant that two-stage-to-orbit vehicles employing this technology were feasible. The Hyper-X program also served as a training ground for a new generation of scramjet and hypersonic researchers. This included both NASA and

  11. 无人机气动力地面车载测试系统%A ground test vehicle(GTV) system to measure the aerodynamic characteristics of unmanned air vehicles

    Institute of Scientific and Technical Information of China (English)

    贾毅; 张永升; 刘丹; 皮祖成; 郎卫东

    2013-01-01

    介绍了中国航天空气动力技术研究院开发的一种用于测量全尺寸无人机气动力的地面车载测试系统(GTV).车载测试系统采用一辆中型卡车进行相关改造,将试验无人机机身安装在其顶部,通过汽车牵引能够达到40km/h的速度.一套专用的测试天平系统和数据采集系统用于记录试验中无人机产生的升力、阻力以及俯仰力矩等数据.主要介绍测试天平系统的设计,数据采集测试系统,测试方法和试验结果.多元静态原位校准加载结果表明天平测试系统输出信号线性度以及重复性较好.动态校准试验采用一副定常展弦比6的机翼进行,试验结果与已知的风洞试验数据进行了比对.车载测试系统试验结果的升力和俯仰力矩数据不同车次之间重复性较好,并且与风洞试验数据基本一致.但阻力数据的离散度要比风洞试验时大得多,并且试验结果比风洞试验时偏小一些,试验证明地面车载测试系统的阻力测量难度较大.%A Ground Test Vehicle (GTV) system has been developed by China Academy of Aerospace Aerodynamics (CAAA) to provide a safe method for determining an experimental Unmanned Air Vehicle's (UAV) aerodynamic characteristics before flight.The GTV is a medium truck which has been modified to allow an UAV airframe to be mounted on top while propelling it up to 40km/h.A force balance and data acquisition system are used to measure and record the lift,drag and pitching moment of the test airframe.This paper describes the balance design,the data acquisition system,and the results of calibrations made to check the GTV data.A series of combined static loadings showed the force balance output to be linear and repeatable.A wing of constant chord aspect ratio 6 was tested,and the results were compared with available wind tunnel data.The lift and pitching moment data measured by the GTV for the test wing was repeatable for every run,and compared well with the

  12. Editorial on Future Jet Technologies

    Science.gov (United States)

    Gal-Or, Benjamin

    2014-12-01

    The jet engine is the prime flight controller in post-stall flight domains where conventional flight control fails, or when the engine prevents catastrophes in training, combat, loss of all airframe hydraulics (the engine retains its own hydraulics), loss of one engine, pilot errors, icing on the wings, landing gear and runway issues in takeoff and landing and in bad-whether recoveries. The scientific term for this revolutionary technology is "jet-steering", and in engineering practice - "thrust vectoring", or "TV". Jet-Steering in advanced fighter aircraft designs is integrated with stealth technology. The resulting classified Thrust-Vectoring-Stealth ("TVS") technology has generated a second jet-revolution by which all Air-&-Sea-Propulsion Science and R&D are now being reassessed. Classified F-22, X-47B/C and RQ-180 TVS-vehicles stand at the front of this revolution. But recent transfers of such sensitive technologies to South Korea and Japan [1-5], have raised various fundamental issues that are evaluated by this editorial-review. One, and perhaps a key conclusion presented here, means that both South Korea and Japan may have missed one of their air-&-sea defenses: To develop and field low-cost unmanned fleets of jet-drones, some for use with expensive, TVS-fighter aircraft in highly congested areas. In turn, the U.S., EU, Russia and China, are currently developing such fleets at various TVS levels and sizes. China, for instance, operates at least 15,000 drones ("UAVs") by 2014 in the civilian sector alone. All Chinese drones have been developed by at least 230 developers/manufacturers [1-16]. Mobile telecommunication of safe links between flyers and combat drones ("UCAVs") at increasingly deep penetrations into remote, congested areas, can gradually be purchased-developed-deployed and then operated by extant cader of tens of thousands "National Champion Flyers" who have already mastered the operation of mini-drones in free-to-all sport clubs under national

  13. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  14. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition

    Science.gov (United States)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2005-01-01

    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  15. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho

    2015-12-01

    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  16. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    Science.gov (United States)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  17. Large Payload Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.; Pope, James C.

    2011-01-01

    Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure - roads, bridges, airframes, and buildings - necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider how large spacecraft are designed, and where they are manufactured, tested, or launched, could result in unforeseen cost to modify/develop infrastructure, or incur additional risk due to increased handling or elimination of key verifications. During test and verification planning for the Altair project, a number of transportation and test issues related to the large payload diameter were identified. Although the entire Constellation Program - including Altair - was canceled in the 2011 NASA budget, issues identified by the Altair project serve as important lessons learned for future payloads that may be developed to support national "heavy lift" strategies. A feasibility study performed by the Constellation Ground Operations (CxGO) project found that neither the Altair Ascent nor Descent Stage would fit inside available transportation aircraft. Ground transportation of a payload this large over extended distances is generally not permitted by most states, so overland transportation alone would not have been an option. Limited ground transportation to the nearest waterway may be permitted, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary

  18. Acoustic challenges of the A400M for active systems

    Science.gov (United States)

    Breitbach, Harald; Sachau, Delf; Böhme, Sten

    2006-03-01

    In some types of aircraft tonal interior noise with high sound pressure level (up to 110 dB(A)) occurs at low frequencies (f acoustic properties are usually not taken into account. In order to obtain an acceptable interior noise level, and to guarantee both work-safety and comfort in the aircraft interiors, passive methods are commonly used - e.g. adding material with high damping or vibration absorbing qualities. Especially when low frequency noise has to be reduced, adding material results in a lot of unwanted additional weight. In order to avoid this extra weight, the concept of active noise reduction (ANR) and tunable vibration absorber systems (TVA), which focus on the unwanted tonal noise, are a good compromise of treating noise and the amount of additional weight in aircraft design. This paper briefly discusses two different possible methods to reduce the low frequency noise. The noise reduction of tuned vibration absorbers (TVA) mounted on the airframe are nowadays commonly used in propeller driven aircraft and can be predicted by vibroacoustic finite element calculations, which is described in this paper. In order to abide to industrial safety regulations, the noise level inside the semi closed loadmaster area (LMA) must be reduced down to a noise level, which is even 8 dB(A) below the specified cargo hold noise level. The paper describes also the phases of development of an ANR system that could be used to control the sound pressure level inside the LMA. The concept is verified by experimental investigations within a mock up of the LMA.

  19. Design for Super-short-range Low-cost Intercept Missile of Active Protection System%超近程低成本主动防护系统拦截导弹设计

    Institute of Scientific and Technical Information of China (English)

    李富贵; 夏群利; 郭龙昌

    2013-01-01

    针对末端近距防御的特殊需求,研究了低成本主动防护系统拦截导弹设计方法.分析了拦截导弹的总体设计方案,利用工程算法和CFD平台设计优化了拦截导弹的气动外形,研究了侧向喷流干扰并提出了抑制措施,提出了拦截导弹控制资源分配方案并设计了非线性控制策略.建立了六自由度拦截对抗模型,利用蒙特卡洛方法分析了设计方法的有效性和鲁棒性.研究结果表明,在简易制导条件下,采用轨控脉冲发动机非线性操纵方式可满足拦截导弹的总体需求.%To satisfy terminal short-distance defense requirement,design methods for low-cost intercept missile of active protection system were presented.The general scheme was analyzed,and project methods and CFD platform were used to design and optimize the airframe of missile.The disturbance of lateral jet was simulated and analyzed,and the restrained approach was derived.Then the control resources arrangement was presented,which was suited with nonlinear control measures.Six-DOF intercept model was established,and the validity and robustness of previous design method were tested by Monte-Carlo simulation.The result shows that under the conditions of simple guidance,utilizing divert pulse motor in a nonlinear way can satisfy the general requirements.

  20. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  1. Experimental Study of Slat Noise from 30P30N Three-Element High-Lift Airfoil in JAXA Hard-Wall Low-Speed Wind Tunnel

    Science.gov (United States)

    Murayama, Mitsuhiro; Nakakita, Kazuyuki; Yamamoto, Kazuomi; Ura, Hiroki; Ito, Yasushi; Choudhari, Meelan M.

    2014-01-01

    Aeroacoustic measurements associated with noise radiation from the leading edge slat of the canonical, unswept 30P30N three-element high-lift airfoil configuration have been obtained in a 2 m x 2 m hard-wall wind tunnel at the Japan Aerospace Exploration Agency (JAXA). Performed as part of a collaborative effort on airframe noise between JAXA and the National Aeronautics and Space Administration (NASA), the model geometry and majority of instrumentation details are identical to a NASA model with the exception of a larger span. For an angle of attack up to 10 degrees, the mean surface Cp distributions agree well with free-air computational fluid dynamics predictions corresponding to a corrected angle of attack. After employing suitable acoustic treatment for the brackets and end-wall effects, an approximately 2D noise source map is obtained from microphone array measurements, thus supporting the feasibility of generating a measurement database that can be used for comparison with free-air numerical simulations. Both surface pressure spectra obtained via KuliteTM transducers and the acoustic spectra derived from microphone array measurements display a mixture of a broad band component and narrow-band peaks (NBPs), both of which are most intense at the lower angles of attack and become progressively weaker as the angle of attack is increased. The NBPs exhibit a substantially higher spanwise coherence in comparison to the broadband portion of the spectrum and, hence, confirm the trends observed in previous numerical simulations. Somewhat surprisingly, measurements show that the presence of trip dots between the stagnation point and slat cusp enhances the NBP levels rather than mitigating them as found in a previous experiment.

  2. Optimization Testbed Cometboards Extended into Stochastic Domain

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.

    2010-01-01

    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  3. In-flight investigation of shuttle tile pressure orifice installations

    Science.gov (United States)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-09-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  4. Decomposition with thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced tactical aircraft system

    Energy Technology Data Exchange (ETDEWEB)

    Rancruel, Diego F. [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States); Spakovsky, Michael R. von [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States)]. E-mail: vonspako@vt.edu

    2006-12-15

    A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications.

  5. Research on hypersonic aircraft using pre-cooled turbojet engines

    Science.gov (United States)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  6. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad−1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  7. Aeroacoustic prediction of turbulent free shear flows

    Science.gov (United States)

    Bodony, Daniel Joseph

    2005-12-01

    For many people living in the immediate vicinity of an active airport the noise of jet aircraft flying overhead can be a nuisance, if not worse. Airports, which are held accountable for the noise they produce, and upcoming international noise limits are pressuring the major airframe and jet engine manufacturers to bring quieter aircraft into service. However, component designers need a predictive tool that can estimate the sound generated by a new configuration. Current noise prediction techniques are almost entirely based on previously collected experimental data and are applicable only to evolutionary, not revolutionary, changes in the basic design. Physical models of final candidate designs must still be built and tested before a single design is selected. By focusing on the noise produced in the jet engine exhaust at take-off conditions, the prediction of sound generated by turbulent flows is addressed. The technique of large-eddy simulation is used to calculate directly the radiated sound produced by jets at different operating conditions. Predicted noise spectra agree with measurements for frequencies up to, and slightly beyond, the peak frequency. Higher frequencies are missed, however, due to the limited resolution of the simulations. Two methods of estimating the 'missing' noise are discussed. In the first a subgrid scale noise model, analogous to a subgrid scale closure model, is proposed. In the second method the governing equations are expressed in a wavelet basis from which simplified time-dependent equations for the subgrid scale fluctuations can be derived. These equations are inexpensively integrated to yield estimates of the subgrid scale fluctuations with proper space-time dynamics.

  8. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    Science.gov (United States)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  9. Design for Manufacturing – One-Piece, Fibre-Placed Composite Helicopter Tailboom

    International Nuclear Information System (INIS)

    Recurring cost has become a critical driver in the design of helicopter airframes, and although composite materials have become widely used in aircraft structures, the hand lay-up manufacturing process in many cases prevents these applications from being cost-effective. Automated manufacturing technologies promise not only reduced production costs but also higher quality, repeatable parts. The introduction of existing automated manufacturing techniques and technologies from industries such as the automotive sector into aerospace can be challenging due to the unique product characteristics as well as the stringent certification and quality control requirements of the industry. The aerospace industry is a low-volume, high value production environment where 'hand-made' products are produced by highly experienced and qualified trades-people. Both metallic and composite components are subjected to precise manufacturing control and documentation requirements. The introduction of automated manufacturing technologies must be done in such a way as to respect these often demanding constraints. The introduction of automation to industrialized processes impacts not only the way parts are produced, but also the way they are designed. Successful composite design and manufacturing automation in the aerospace industry requires the engineering designer and analyst to become increasingly involved in the manufacturing of the product, as machine limitations and producibility become increasingly important drivers for design. This paper presents an overview of a development project intended to evaluate the effectiveness and benefits of the automated fibre placement technology through the design, prototype build and testing of a composite tailboom. The discussion centres on the 'design for manufacturing' concept and provides a perspective on the project objectives, material and process selection and trade-offs, geometric and structural considerations, and component assembly and fastening.

  10. Damage and failure behavior of metal matrix composites under biaxial loads

    Science.gov (United States)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  11. Active Flow Effectors for Noise and Separation Control

    Science.gov (United States)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  12. The Behavior of a Stitched Composite Large-Scale Multi-Bay Pressure Box

    Science.gov (United States)

    Jegley, Dawn C.; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew E.

    2016-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series of tests is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this test article under maneuver and internal pressure loading conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and

  13. Modeling ultrasonic NDE and guided wave based structural health monitoring

    Science.gov (United States)

    Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian

    2015-04-01

    Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

  14. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    Science.gov (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  15. Challenges and Progress in Aerodynamic Design of Hybrid Wingbody Aircraft with Embedded Engines

    Science.gov (United States)

    Liou, Meng-Sing; Kim, Hyoungjin; Liou, May-Fun

    2016-01-01

    We summarize the contributions to high-fidelity capabilities for analysis and design of hybrid wingbody (HWB) configurations considered by NASA. Specifically, we focus on the embedded propulsion concepts of the N2-B and N3-X configurations, some of the future concepts seriously investigated by the NASA Fixed Wing Project. The objective is to develop the capability to compute the integrated propulsion and airframe system realistically in geometry and accurately in flow physics. In particular, the propulsion system (including the entire engine core-compressor, combustor, and turbine stages) is vastly more difficult and costly to simulate with the same level of fidelity as the external aerodynamics. Hence, we develop an accurate modeling approach that retains important physical parameters relevant to aerodynamic and propulsion analyses for evaluating the HWB concepts. Having the analytical capabilities at our disposal, concerns and issues that were considered to be critical for the HWB concepts can now be assessed reliably and systematically; assumptions invoked by previous studies were found to have serious consequences in our study. During this task, we establish firmly that aerodynamic analysis of a HWB concept without including installation of the propulsion system is far from realistic and can be misleading. Challenges in delivering the often-cited advantages that belong to the HWB are the focus of our study and are emphasized in this report. We have attempted to address these challenges and have had successes, which are summarized here. Some can have broad implications, such as the concept of flow conditioning for reducing flow distortion and the modeling of fan stages. The design optimization capability developed for improving the aerodynamic characteristics of the baseline HWB configurations is general and can be employed for other applications. Further improvement of the N3-X configuration can be expected by expanding the design space. Finally, the support of

  16. Discussion of the large aircraft nacelle reduction technology on noise%大型民机短舱降噪技术综述

    Institute of Scientific and Technical Information of China (English)

    任方; 李海波; 陈严华; 刘振皓; 秦朝红

    2015-01-01

    Aircraft nacelle noise is one of the most important problems in aircraft design and environment protection. The problem is so complex and involves many domains that lots of researchers are interested in. This paper gives a brief overview of the airframe noise including mechanism of large aircraft noise and the main sources,foundation of internal research. The noise source of mechanism and reduction method are discussed, Finally, the orientation methods and approach of the nacelle noise research are advanced,this is very important problem to research the comfort,economy and safety of aircraft, there is important practical significance for our country to develop long-range aircraft project.%飞机短舱噪声是飞机设计和环境保护面临的重大问题之一,因其问题复杂涉及的学科多,一直备受关注.对大型民机噪声的国内外研究状况进行概述,总结了国内研究基础,分析飞机噪声的本质和来源,针对飞机短舱讨论了噪声产生机理及降噪方法,最后提出了当前亟需研究的方向、方法和途径,对于飞机的安全性、经济性、舒适性都是很重要的课题,对于发展国家大飞机工程有很重要的现实意义.

  17. Grid Sensitivity Study for Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2014-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations in conjunction with a Ffowcs Williams-Hawkings acoustics solver. Many previous simulations have been performed for the configuration, and the case was introduced as a new category for the Second AIAA workshop on Benchmark problems for Airframe Noise Configurations (BANC-II). However, the cost of the simulations has restricted the study of grid resolution effects to a baseline grid and coarser meshes. In the present study, two different approaches are being used to investigate the effect of finer resolution of near-field unsteady structures. First, a standard grid refinement by a factor of two is used, and the calculations are performed by using the same CFL3D solver employed in the majority of the previous simulations. Second, the OVERFLOW code is applied to the baseline grid, but with a 5th-order upwind spatial discretization as compared with the second-order discretization used in the CFL3D simulations. In general, the fine grid CFL3D simulation and OVERFLOW calculation are in very good agreement and exhibit the lowest levels of both surface pressure fluctuations and radiated noise. Although the smaller scales resolved by these simulations increase the velocity fluctuation levels, they appear to mitigate the influence of the larger scales on the surface pressure. These new simulations are used to investigate the influence of the grid on unsteady high-lift simulations and to gain a better understanding of the physics responsible for the noise generation and radiation.

  18. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  19. Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation

    Science.gov (United States)

    Schwabe, O.; Shehab, E.; Erkoyuncu, J.

    2015-08-01

    The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis

  20. Developing Conceptual Hypersonic Airbreathing Engines Using Design of Experiments Methods

    Science.gov (United States)

    Ferlemann, Shelly M.; Robinson, Jeffrey S.; Martin, John G.; Leonard, Charles P.; Taylor, Lawrence W.; Kamhawi, Hilmi

    2000-01-01

    Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.